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Structural evolution and stability of
non-crosslinked fiber networks with
inter-fiber adhesion

R. C. Picu * and A. Sengab

Adhesion plays an important role in the mechanics of nanoscale fibers such as various biological

filaments, carbon nanotubes and artificial polymeric nanofibers. In this work we study assemblies of

non-crosslinked filaments and characterize their adhesion-driven structural evolution and their final

stable structure. The key parameters of the problem are the network density, the fiber length, the

bending stiffness of fibers and the strength of adhesion. The system of fibers self-organizes in one of

three types of structures: locked networks, in which fibers remain in the as-deposited state, cellular

networks, in which fibers form bundles and these organize into a larger scale network, and disintegrated

networks, in which the network of bundles becomes disconnected. We determine the parametric space

corresponding to each of these structures. Further, we identify a triangular structure of bundles, similar

to the Plateau triangle occurring in foams, which stabilizes the network of bundles and study in detail

the stabilization mechanism. The analysis provides design guidelines and a physical picture of the

stability and structure of random fiber networks with adhesion.

1. Introduction

Many artificial and biological soft materials are fibrilar, either
being made from a dense packing of filaments or having a fiber
network as their main structural component. Examples include
various types of non-wovens, fiber-based insulation and filtra-
tion materials, and a variety of hygiene products. Collagen is
one of the main structural materials in the human and animal
bodies and is present in the form of bundles of filaments of a
range of diameters.1,2

Fiber bundling in random fibrous materials is broadly
observed. Elastocapillarity represents the interaction of liquid–
air or liquid–liquid interfaces with elastic structures.3 Capillarity
organizes fibrils into structures4 and may be used to produce a
variety of effects in soft matter, as reviewed in ref. 5. If the
structure remains wet, capillary forces are sufficient to hold
the fiber bundles together. If it is dried, adhesion stabilizes the
bundled structure;6 an analysis of this process is presented by
Cranford et al.7 While the longer ranged capillary forces are more
efficient in organizing fibrous structures into fiber bundles,
adhesion-driven bundling also takes place in the dry state.8

Aggregation in colloidal particle suspensions is produced by
inter-particle interactions and hydrodynamic forces.9 Suspensions

of rigid and flexible fibers undergo flocculation as the con-
centration increases. The formation of filament bundles was
observed in dense suspensions of actin10 and collagen11 and
the process was discussed theoretically by Zilman and Safran12

using a mean field model. This theoretical work outlines a
sol–gel transition followed by another transition to a bundled
state as the fiber concentration increases or/and temperature
decreases. Inter-particle interactions lead to the modification
of the rheological response in concentrated suspensions of
filaments, including the occurrence of a pseudo-yield stress13

and shear thinning.14

Adhesion is particularly strong between carbon nanotubes
(CNT). Buckypaper is a quasi-two-dimensional material similar
to regular paper, made from CNTs deposited on a substrate.
The CNTs self-organize under the action of adhesive forces
leading to the formation of CNT bundles15–18 whose size and
structure depends on the bending stiffness (i.e. whether the
buckypaper contains single wall or multiwall CNTs) and the
length of the filaments.

While substantial work was dedicated to the mechanics
of cross-linked networks of fibers both in the mechanics of
materials and physics literature (see reviews19,20), the mecha-
nical behavior of non-cross-linked filament packings was studied
to a smaller extent.21–25 Non-cross-linked filamentary structure
mechanics is controlled by the deformation of fibers and their
topological (excluded volume) interactions. The mechanical
behavior of non-bonded assemblies of filaments in presence
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of adhesive interactions is even less studied. Li and Kroger26,27

studied numerically the structure and mechanical behavior of
buckypaper. They observe intense bundling and conclude that
for CNTs with weaker adhesion the structure is controlled by
entanglements, while CNTs with stronger adhesion form bundles.
The pore size of the respective structures could be controlled from
7 nm to 50 nm by increasing the bending stiffness of filaments.
Volkov and Zhigilei28 also simulated assemblies of CNTs and
concluded that the resulting structures can be stabilized provided
the CNT length is larger than a threshold value and, for systems
of single wall CNTs, bending-buckling is considered in the model.
A demonstration of the effect of adhesion between filaments on
the overall mechanical behavior of the network was provided by
Xu et al.29 using random networks of long un-cross-linked CNTs.
They observe strong energy dissipation under cyclic loading due
to the bundling/unbundling of filaments. Since the system is
athermal (mechanical behavior is not affected by thermal
fluctuations), the measured system-scale storage and loss
moduli are temperature independent in a broad range of tem-
peratures. Simulations reproducing this result were presented by
Li and Kroger.30

The present study is motivated by the limited understanding
of the stability and mechanics of fiber networks of non-cross-
linked filaments interacting adhesively. We focus on identifying
the types of stable structures into which a quasi-two-dimensional
fibrous network evolves under the action of adhesive forces. To
this end, we first identify the system parameters of importance
in this problem, and perform a parametric study to determine
the stable network structures of interest. A numerical model is
used for this purpose. We observe that fibers either remain
locked in the as-deposited state, or evolve by bundling. The
evolution can lead to either the full disintegration of the network
into a set of large, isolated bundles, or to a network of fiber
bundles. We find the range of parameters in which such net-
works of bundles exist. The essential contribution of this work is
the identification of the structural element that stabilizes net-
works of bundles. This is a triangular feature that forms at the
nodes of the network, resembling the Plateau triangles in foams.
Given the importance of these constructs, we provide a compre-
hensive description of the mechanisms by which such triangles
form and stabilize the network.

2. Problem definition

We consider ensembles of filaments of identical diameter, d0,
and length, L0, made from the same linear elastic material of
Young’s modulus, E0. The fibers are sufficiently large to be
considered athermal and hence behave mechanically as beams
of axial and bending rigidities E0A0 and E0I0, where A0 and I0 are
the area and moment of inertia of the fiber cross-section. The
torsional rigidity of fibers is less important in this problem in
absence of chirality, since random networks do not store much
strain energy in the torsional mode of the fibers.20,31

Inter-fiber adhesion is defined by the energy gain per unit
area of contact when two surfaces are brought together, g0.

In the case of cylindrical filaments, the contact is established
over an area of width c0. In absence of chirality or residual stress
in fibers, the two cylinders in contact remain parallel. The
Johnson–Kendall–Roberts (JKR) and the Derjaguin–Muller–Toporov
(DMT) theories predict that c0 B (g0d0

2/E0)
1/3.32–34 The adhesion

energy per unit length of filament is g = g0c0.
35

Fibers are randomly deposited into a quasi-two-dimensional
mat without fiber–fiber interpenetration. The structure is three-
dimensional and the mat has finite thickness. We consider
the limit of vanishing inter-fiber friction. It is convenient to
describe the mat density, r, in projection on the mean plane
of the mat as the total length of fiber per unit area of the
projection. If the mat is thicker than 3–4 fiber diameters, a
given fiber does not make contacts with all fibers it intersects in
projection. This situation is qualitatively similar to that of thin
mats and hence the concepts discussed here apply to both thin
and thick initial structures.

The as-deposited mat is organized by the adhesive inter-
actions between fibers. Bundles of closely packed parallel fibers
form and organize further into a new network of bundles. The
objective of this work is to define the structure and stabilization
mechanism of networks of fiber bundles.

3. Computational model definition

The study of the evolution of a large number of fibers inter-
acting adhesively requires a numerical approach. In this work
we use a bead-spring model similar to that employed frequently
in polymer physics to represent the coarse grained mechanics
of polymeric molecules. Such model was used to represent CNT
bundles.4,27,30 Each filament is represented by a collection of
spherical beads which interact along the filament through axial
and angular potentials that mimic the axial and bending stiffness
of the fiber. The stiffness of the harmonic axial potential is
ka = E0A0/sa, while the stiffness of the angular potential is
kb = E0I0/sa, where sa is the distance between consecutive bead
centers along the filament.

Non-bonded interactions between beads not belonging to
the same fiber are represented via Lennard-Jones (LJ) potentials
of characteristic length s and well depth, e0. These impose the
excluded volume condition and represent the adhesive energy
per unit length of contact between two straight and parallel
fibers in equilibrium, g.

The fiber parameters, g, d0 and E0 are uniquely defined
in this model by parameters s, e0 and ka (or kb). d0 is the
equilibrium distance of a bead from the axis of an infinite
straight fiber and, for the potentials used, is related to s as
d0 = 1.063s. Parameter g is given by g = 7.11e0/s. The effective
fiber modulus is defined by either ka or kb as E0 = 0.3ka/s or
E0 = 4.8kb/d0

2s.
The discreteness of the filament representation renders the

fiber surface rough, which may lead to undesirable interlocking
and friction. In order to minimize this effect, the density of
beads along the filament is increased to 4 beads per fiber
segment of aspect ratio 1, sa = d0/4. We evaluated the resulting
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roughness by considering two relaxed parallel chains in adhesive
contact which were displaced axially relative to each other. The
fluctuations of adhesion energy during such sliding are within
0.01% of the mean.

The mat of fibers is created by depositing fibers on a plane
with random orientations and random positions of their centers
of mass in a square domain of size L � L, with L 4 2L0 in all
cases. Periodic boundary conditions are imposed in the plane of
themat and zero tractions are imposed in the direction perpendi-
cular to the plane of the mat. Fibers do not interact adhesively or
frictionally with the support plane, which is removed after the
mat is constructed and relaxed.

In the production phase, the system evolves under the action
of inter-fiber adhesion forces, subjected to periodic boundary
conditions in the plane of the mat. This represents a system of
infinite 2D extent and of constant average density. The system
is evolved with molecular dynamics. Various temperatures
up to 300 K are used in separate simulations in order to test
the effect of this parameter on the resulting structure. No
significant differences are observed for the set of energetic
parameters used in these simulations; this is expected given the
athermal nature of the system.29,30 Simulating at higher tem-
peratures is desirable in order to reduce the computational
cost. Since at finite temperatures one cannot exclude aging
effects, i.e. the very slow, thermally activated evolution of the
system, we run long simulations with stopping criterion being
the variation of the total energy of the system by less than
10�5% per integration time step. However, the stability of the
system is evaluated based on theoretical considerations pre-
sented in Section 5.

Simulations are performed using LAMMPS from Sandia
National Labs.36 We use the Nose–Hoover thermostat and the
velocity Verlet integration algorithm. All simulations are per-
formed on a massively parallel computer at the RPI Center for
Computational Innovation.

4. Results and discussion
4.1 Network evolution modes

Simulations are used to evolve the system of fibers and various
sets of the control parameters are used in separate simulations.
Fig. 1 shows two examples of system evolution. Two values of
the non-dimensional parameter rL0 are selected, rL0 = 24.8 and
rL0 = 99.25, which correspond to systems of same density and
different fiber length. In Fig. 1, the images on the first line
show the two dimensional (projected) view of the as-deposited
networks, while those on the second line show the corres-
ponding final states. In the as-deposited state each line repre-
sents an individual filament, while a network of bundles forms
at later stages. It is observed that the network of low rL0
disintegrates, i.e. fibers bundle until the resulting network of
bundles loses connectivity. In this limit, the network decom-
poses in a set of individual bundles of length bounded below by
L0. The system of higher rL0 reaches a stable cellular structure
whose total energy remains constant in time.

We analyze the network evolution using two parameters: the
average cell diameter, %d, and the average bundle size, %n. The cell

diameter is computed as d ¼ ffiffiffiffi
A

p
, where A is the projected area

of a cell (inset to Fig. 2). This parameter is evaluated by
processing images similar to that of the cellular structure in
Fig. 1. The bundle size represents the number of fibers forming
a bundle.

Fig. 2 shows the variation of the normalized inverse %d, L0/ %d,
versus %n for four representative systems. This figure shows the
main features of structural evolution. In the initial state, %n = 1,

Fig. 1 Initial and final structures for two networks of same density but
different fiber length, L0. The initial network of short fibers disintegrates,
while that of longer fibers forms a cellular structure.

Fig. 2 The evolution of the structure of four initial networks of different
r and L0. The structure is described in terms of the mean cell size, %d, and
the mean bundle size, %n. Systems in the as-deposited conditions are not
bundled and correspond to points on the vertical axis ( %n = 1). System
evolution leads either to the full disintegration of the network or to a
cellular structure. The inset defines the approximate cell diameter.
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the network is in the as-deposited state (initial states of Fig. 1) and
can be described using concepts relevant for two-dimensional
Mikado networks. In these networks, the mean segment length,
lc, is related to the density through the Kallmes–Corte relation,
lc = p/2r.37 Furthermore, in the initial state, %d varies linearly
with lc as:

%d = 0.86lc. (1)

This relationship is supported by the data shown in Fig. 3,
which results from a separate analysis of the geometry of Mikado
networks. In this analysis, random 2D networks of straight lines of
length L0 are generated with various densities, such to control lc.
The area of each cell is computed by image processing and

�d ¼ ffiffiffiffi
A

p
is evaluated. The figure supports the relation between

the mean segment length and the mean cell diameter of
eqn (1). With eqn (1) and the Kallmes–Corte relation, the point
on the vertical axis in Fig. 2 corresponding to a given system
results as L0/ %d = 0.74rL0.

The minimum density below which a network does not form
in the as-deposited state is given by the geometric percolation
threshold for networks constructed by depositing randomly
fibers of length L0. The percolation threshold, rl, is given by
rlL0 = 5.71.38,39 Hence, no network exists for L0/ %d o 4.22. This
provides the lower bound for the range of the vertical axis in
Fig. 2 in which points corresponding to as-deposited networks
( %n = 1) may exist.

Fig. 2 shows that systems starting at %n = 1 evolve such that
L0/ %dB 1/ %n (or %dB %n) at all stages of the evolution. This relation
is a consequence of mass conservation. Consider the system at
some stage of its evolution, in which the cell size is %d and the
degree of bundling is %n. The total number of chains in the
model can be computed as rL2/L0, where rL2 is the total length
of fiber in the model (or projected area A = L2). On the other
hand, the number of chains can be also estimated based on the
perimeter Y of the bundled network, i.e. the total length of
bundles in the model at given time, as %nY/L0. Hence, rL2/ %nY.
The total perimeter of the bundled network can be also
evaluated as the perimeter of the representative cell times the
number of such cells. Considering that the perimeter of the

mean cell is proportional to %d, it results that: Y B L2/ %d.
Replacing this expression forY in the previous relation involving
%n, one obtains:

%n B r %d, (2)

which provides conceptual support for the numerical results
in Fig. 2.

It is observed in simulations that systems with larger initial
rL0 lead to the formation of cellular structures, while systems
with smaller rL0 disintegrate (Fig. 1). This is shown schemati-
cally in Fig. 2. The boundary separating the two types of behavior
cannot be predicted based on theoretical considerations at
this stage.

It is instructive to analyze the variation of the energies involved
(axial, bending and adhesion) during the structural evolution of
a network starting from the as-deposited state. The total axial
energy is at all times much smaller than all other energies (below
5% of the total energy).

The adhesion energy is expected to be proportional to the
total length of bundle in given state, Y, times the adhesion
energy per unit length of a bundle of size %n. This bundle-scale
adhesion energy can be evaluated as the energy per contact
between two fibers, g, times the number of binary contacts in the
bundle, nc(%n). Harborth40 has shown that the maximum number
of contacts in a packing of n congruent circles is:

ncðnÞ ¼ 3n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12n� 3

p
: (3)

Therefore, the adhesive energy stored within a perfect bundle

of %n filaments, per unit length of the bundle, is g 3�n� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12�n� 3

p� �
.

The negative term in the parenthesis has the physical meaning
of a surface tension. Therefore the total adhesion energy
reads:

Ea � gncð�nÞY � gncð�nÞ
�n

: (4)

Fig. 4(a) shows the mean adhesion energy per fiber length s,

Eas, normalized by
gsncð�nÞ

�n

� �
vs. %n for all systems shown in

Fig. 2. This numerical result is in agreement with eqn (4).
The variation of the bending energy during relaxation is

shown in Fig. 4(b). The energy increases fast at the beginning
of the process and then remains approximately constant
throughout the deformation. The initial increase is due to the
bending of initially straight fibers in the vicinity of the con-
tact points, under the action of the adhesive forces. The sub-
sequent behavior is more difficult to understand on theoretical
grounds.

Fiber kinematics is of importance in order to understand
the mechanisms of structural evolution. Three main fiber re-
arrangement modes are identified, as follows:

(i) Rigid rotation/translation of fibers. This fiber motion
mode implies that filaments move as rigid bodies, as shown
in Fig. 5(a). Driving is due to the small, but non-vanishing
moments resulting from the adhesive interaction at contact
points, Mi. Each of these moments tends to align the respective
pair of fibers, closing the acute angle defined by them. Since fiber

Fig. 3 Relation between the mean cell size, %d, and the mean segment
length, lc, for 2D Mikado networks in the as-deposited, un-bundled state.
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crossings are random, both the magnitude and direction of
these moments is random. This motion mode becomes less
efficient as the fiber length increases since the effective moment
rotating the fiber is

P
Mi, which decreases as the number of the

random, uncorrelated terms in the sum increases. Therefore,
this mechanism is expected to apply only in the case of short and
stiff fibers and in the limit of vanishing friction.

(ii) Bundling and unbundling. Two bundles of n1 and n2
fibers merge into a larger bundle of n1 + n2 fibers, which we call
a ‘handle’ for the respective junction. The contact point may
travel in both directions along the handle leading to bundling
and unbundling (Fig. 5(b)). The handle O1O2 in Fig. 5(c) splits
on the left side into two bundles of size n1 and n2, and on the
right side into two bundles of size n3 and n4, with the obvious

Fig. 5 Structural evolution modes for bundles and for individual fibers. (a) shows a rigid rotation mode, (b) and (c) show bundling and unbundling for two
configurations, and (d) and (e) show reptation of individual fibers. The orange filament in (a) is loaded by moments that tend to close the acute angle at
each fiber crossing. The bundle of size n1 in (b) either peels off forming two bundles of smaller size, n2 and n3 (n1 = n2 + n3), or re-bundles, such that node
O, with connectivity z = 3, moves left or right. The configuration in (c) contains two nodes with z = 3 that may move past each other without interference.
In (d) and (e) the red fiber slides relative to the rest of the bundle. The fiber can be on the outside of the bundle, as shown here, or inside. State (d) is stable
since no driving force for fiber motion exists. In state (e) the fiber is driven to the right by the gradient of bending energy.

Fig. 4 Variation of the system average (a) adhesion and (b) bending energies with the bundle size during the evolution of the four systems shown in
Fig. 2. The energies are reported per length of fiber equal to s, and are normalized by the adhesion energy of two fibers in contact over length s, i.e. gs.
The adhesion energy is multiplied by the non-dimensional %n-dependent group of eqn (4).
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conservation relation n1 + n2 = n3 + n4. This example demon-
strates that nodes with z = 3 may travel past each other (by the
motion of O1 and O2 in either direction). This structural
evolution mode is not affected by friction and is the dominant
evolution mechanism for the type of networks discussed in
this article.

(iii) Reptation. Filaments are able to slide along the contour
of bundles. This is shown schematically in Fig. 5(d) and (e). This
mode is driven by the adhesive and bending energy difference
(the chemical potential difference) between the two ends of the
respective filament. Thermal fluctuations play no role in the
reptation of athermal filaments. Fiber CD in Fig. 5(d) has ends
C and D in regions of bundle AB of zero curvature. Hence, the
bending energy at the two ends of CD is zero. If in addition, the
adhesive energy of the two ends is equal, there is no driving
force for reptation. The opposite situation is shown in Fig. 5(e),
where fiber CD is driven to the right by the gradient of bending
energy. An energy barrier prevents the reptation of fiber CD
from the configuration in Fig. 5(e) to that in Fig. 5(d). Hence,
fibers longer than the mean segment length of the network of
bundles tend not to reptate, while short fibers reptate to the
nearest state in which the energy difference between their ends
vanishes.

4.2 Phase diagram of stable network states

We characterize the system of fibers with adhesion using two
non-dimensional parameters: rL0 and

C ¼ gL0
2

E0I0
: (5)

C can be rewritten as C = L0
2/LEC

2, where LEC is the elasto-
capillarity length introduced by Bico,6 which captures the physics
of bending-dominated elasticity in presence of surface forces.41

Also, in ref. 27 the length scale LEC ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0I0=g

p
is identified

as the key parameter controlling CNT structures stabilized by
adhesion.

Networks with a broad range of parameter values are con-
sidered and evolved until energy stabilization. A summary of all
simulation results is presented in Fig. 6. The figure shows a
map of the resulting structures in different regimes of system
parameters rL0 and C. The map is bounded on the left by
rlL0 = 5.71. For rL0 o rlL0 no network forms upon fiber
deposition and hence no further fiber organization is possible.
Networks with rL0 4 rlL0 either remain locked in the initial,
as-deposited state, or evolve. Crosses indicate simulated struc-
tures which remain in the as-deposited state, circles indicate
simulations in which network disintegration occurs, while
filled squares indicate cases in which a cellular network of
bundles develops. The boundary between the cellular networks
and disintegrating structures regions is defined based on
simulation results. The boundary between evolving and locked
structures is defined numerically and justified theoretically, as
described below.

To identify the conditions under which the as-deposited net-
work starts evolving under the action of adhesion, we consider

two fibers of the network in contact at O and making an angle a
(Fig. 7(a)). These fibers are in contact with other filaments
at points not shown in the figure. Adhesion tends to bundle

Fig. 6 Map indicating the expected structure of the network for various
values of parameters rL0 andC. No network forms for rL0o rlL0, while below
the line of slope 2 defined by C B (rL0)

2, the as-deposited network does not
evolve. The colored domains correspond to evolving networks which either
disintegrate or form cellular structures. The symbols indicate states which
have been simulated. Red crosses indicate non-evolving locked structures,
open circles indicate networks that disintegrate and filled squares correspond
to the formation of cellular structures. It is also indicated that increasing the
filament length moves a point in this map further into the cellular domain,
parallel to the boundary with the locked structures region, while increasing the
density at constant fiber length transforms the structure into a locked state.

Fig. 7 Initial (a) and relaxed (b) configurations for two crossed fibers
in contact at O. The two fibers bend and slide along their contour to
accommodate adhesive contact along a segment of length 2s in the
vicinity of O. (c) Shows a detail of one of the fibers in the vicinity of O,
and the adhesive forces in the vicinity of E. Their resultant force P and
moment M (shown in red) drive the change of shape of fiber OA.
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these filaments, which is however restrained by their inter-
actions with other fibers in the model. The boundary conditions
in this case require that points A and B move during relaxation
along line AB and likewise, C and D remain on the original line
CD (Fig. 7(a)). Hence, filaments have to slide along their contour
to accommodate the relative fiber rotation and bending in the
vicinity of the contact point. This leads to the configuration of
Fig. 7(b) in which the filaments stick over a length 2s in the
vicinity of point O.

Fig. 7(c) shows the region of one of the fibers close to point
O in Fig. 7(b). Segment OE rotates by a/2 to adhere to filament
OC. This is caused by the distribution of adhesive forces in the
vicinity of point E, as shown schematically in the inset to
Fig. 7(c). The mechanical equivalent of this distribution is the
force P and moment M.

The bending energy stored in the filament can be evaluated as:

Eb ¼ 2E0I0
a=2ð Þ2
L� s

þ 6E0I0
s2

L� sð Þ3 sin
2 a
2
þ 3E0I0

s

ðL� sÞ2a sin
a
2
;

(6)

This expression results by solving the beam equation for the
configuration in Fig. 7(c) under the boundary conditions: the

deflection at E is s sin
a
2
, the rotation at E is a/2, while at A, both

deflection and rotation vanish. Segment AE stores bending energy.
The energy of adhesion corresponding to this filament is:

Ec ¼ 1

2
gs; (7)

and the work performed against the far field friction (if any) is:

Wf � Ffs sin2
a
4
: (8)

Eqn (8) results by evaluating the change of the length of the
beam from the straight to the current configuration shown in
Fig. 7(c). Taking the derivative of Eb � Ec + Wf with respect to s,
the condition for the onset of relaxation result as:

a2 aþ bF̂ f

� �
o gL2

E0I0
; (9)

where a and b are numerical coefficients of order unity,
F̂f = FfL

2/E0I0 and the approximation sin a E a was used.
L represents the length of fiber between two successive contact
points and is equal to the mean segment length, lc. Using the
Kallmes–Corte relation, lc = p/2r, eqn (9) can be arranged as:

C 4 (rL0)
2f (F̂f,a). (10)

Function f in eqn (10) is linear in the normalized friction
force (eqn (9)). If the friction force is proportional to the number

of contacts along the fiber (i.e.
L0

lc
� rL0), F̂f B 1/r. In the

absence of friction, F̂f = 0, and the condition for the initiation
of system evolution becomes:

C B (rL0)
2. (11)

The constant of proportionality in eqn (11) is linear in a2.
Extrapolating to the scale of the entire network analytically is

not straightforward because fibers cross at angles forming a
broad distribution. However, we conjecture that rearrangement
should take place at a sufficient number of crossing points in
order for the entire structure to re-organize. Hence, the factor
containing a should be replaced at the scale of the entire
network with a system average constant.

This analysis indicates that the boundary between locked
and evolving structures should be described by eqn (11). This
relation is shown in Fig. 6 by the diagonal line of slope 2. We
observe that numerical results support this result. Further,
eqn (9) and (10) indicate that accounting for inter-fiber friction
would move the boundary between locked and evolving structures
towards larger C, therefore inhibiting system self-organization.

It is of interest to discuss the results in Fig. 6 in relation to
specific filamentary systems. A given filament type is character-
ized by the elastocapilarity length LEC. Networks of various
densities and of various fiber lengths can be constructed with
such filaments. Considering that C = L0

2/LEC
2, any point of the

map in Fig. 6 can be represented as logC = 2 log rL0 � 2 log
rLEC. Based on this relation and the data (which correspond to
vanishing friction between fibers), the boundary separating
locked and evolving structures corresponds to rLEC = 44.6.
Therefore, for a specific type of fiber defined by LEC, network
densities r 4 44.6/LEC correspond to locked structures, while
r o 44.6/LEC correspond to evolving structures. The character-
istic length LEC can be evaluated based on literature data for
various nanoscale filaments. For example, the adhesion energy
per unit length of contact between two microtubules, g, was
reported to range from 2 � 10�14 to 17 � 10�14 J m�1 function
of the ionic strength of the solution.42 With E0I0 = 9 �
10�24 Nm2 reported for individual microtubules43 of 25 nm
outer diameter one obtains LEC in the range 7 to 20 mm. Single
wall carbon nanotubes (10,10) of diameter 1.4 nm have
E0I0 E 3.2 � 10�25 Nm2 44 and g E 2.9 � 10�9 J m�1 45 which
leads to LEC E 10 nm. Likewise, polyacrylonitrile (PAN) fibers
of B300 nm diameter produced by electrospinning exhibit
g E 1 � 10�9 J m�1,46 which, with a measured E0 = 3 GPa,47

leads to LEC E 34 mm. Note the much smaller value of LEC
obtained for carbon nanotubes which indicates, in agreement
with experimental observations, that network self-organization
should be prevalent in these systems.

4.3 Network design considerations

The data presented in Section 4.2 can be used to guide the design
of fiber networks with adhesion. In particular, it is of practical
interest to understand the effect of parameters controllable in
experiments, such as r and L0, on the final state of the relaxed
structure. The map indicates that increasing the filament length
L0 moves a given point of the map towards the regime of cellular
structures (shown in Fig. 6 by a red arrow). Hence, working with
networks of longer fibers increases the probability to obtain a
cellular network of bundles upon full system relaxation. Volkov
and Zigilei28 also report this effect and observe that increasing the
fiber length stabilizes the resulting structure of bundles.

On the other hand, increasing the density promotes locking.
Points in the map corresponding to systems with increasing r,
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but constant C, move horizontally (shown in Fig. 6 by a
red arrow). Clearly, decreasing g or increasing the bending
rigidity of fibers brings the system into the range of locked
structures.

In practical situations, the as-deposited filaments could be
fiber bundles. The map in Fig. 6 can be used for these cases too,
since the relevant mechanics remains unchanged. However,
the values of rL0 and C to be used in this context become
dependent on the size of the as-deposited bundles, n. Parameter
rL0 is to be replaced by rbL0, where rb is the density of as-
deposited bundles, while g should be replaced by gb(n) which
represents the variation of the adhesion energy when two
bundles, each of size n, merge into a single bundle of size 2n.
Eqn (3) can be used to evaluate gb(n):

gbðnÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12n� 3

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24n� 3

p� �
g (12)

With eqn (12), parameter Cb (which replaces C in this
evaluation) becomes:

Cb ¼ gbðnÞL0
2

E0I
¼ gbðnÞ

gn
C � 2ffiffiffi

n
p C; (13)

where the moment of inertia of the bundle, I, was evaluated as
I = nI0, since the fibers in the bundle are free to slide axially
during bundle bending.

SinceCb{C, the adhesive interaction of two bundles is much
weaker than the interaction of two fibers. Therefore, as-deposited
networks which are composed from bundles are unlikely to evolve
into cellular networks of fiber bundles.

5. Cellular networks are stabilized by
triangular structures of fiber bundles

Simulations indicate that in the last stages of evolution of a
network of bundles, triangular features form at a majority of
the network nodes. Fig. 8 shows a small region of a much larger

cellular network which exhibits such triangles at each node.
Each edge of the triangle is made from multiple fibers. The
bundles outside the triangular regions, i.e. the cell walls, tend
to become straight. Therefore, the triangles concentrate the
entire bending energy of the cellular network.

In this section we outline the mechanism by which these
triangular features stabilize cellular structures. Give their impor-
tance, we also discuss the relation between the size of the bundles
merging into a node and the structure and energy of the triangle
that stabilizes the respective node.

The physical picture emerging from this analysis is that
adhesion drives the ensemble of fibers towards disintegration
in all cases. Cellular networks of fiber bundles are stabilized
when the kinetics of formation of nodal triangular features is
faster than the kinetics of disintegration.

5.1 Cellular network stability analysis

We consider first cases in which the fiber length, L0, is much
larger than the cell size, d. The overall structural evolution of the
cellular network requires that network nodes move and hence
mandates that triangles slide along network bundles. Consider
that a driving force exists for triangle ABC in Fig. 9(a) to move
along bundle A0C0 to the right. In this process, bundles AB
and AC merge at A (segment AA0 becomes longer), while

Fig. 8 Section of a cellular network showing triangular features developing
at all network nodes.

Fig. 9 Schematic representation of the correlated motions of two neigh-
boring triangular structures. (a) The motion of triangle ABC along bundle
A0C0 (in the direction shown by the black arrow) requires bundling at A,
unbundling at C, and relative sliding of the red and orange sub-bundles
along BB0. Panels (b) and (c) show the three possible correlated motion
modes of two neighboring triangles (ABC and B0DE): (b) improbable case in
which all fibers separating from AA0 (red) continue into DD0. This configu-
ration is locked; (c) most probable configuration in which fibers separating
from AA0 and CC0 form part of both DD0 and EE0. This configuration is
locked. (d) Improbable case in which all fibers separating from AA0 (red) form
part of EE0 and all fiber separating from CC0 (orange) form DD0.

Paper Soft Matter

View Article Online

http://dx.doi.org/10.1039/c7sm02555f


2262 | Soft Matter, 2018, 14, 2254--2266 This journal is©The Royal Society of Chemistry 2018

bundles BC and AC separate at C (segment CC0 becomes shorted).
This requires minimal energy expenditure since no relative
sliding is involved and only the adhesive energy associated
with bundling (at A) and unbundling (at C) varies. Actually, this
energy difference drives the motion of the node. However, the
process requires relative sliding of sub-bundles within bundle
BB0 (indicated by colored arrows). Sliding in BB0 takes place
against inter-fiber friction and has to be accommodated by a
reciprocal evolution of the triangle located at the other end of
segment BB0. Hence, in order to evaluate the ability of triangle
ABC to move, it is necessary to consider the correlated evolu-
tion of multiple neighboring nodes of the cellular network.
Fig. 9(b)–(d) show schematically three possible such configura-
tions. In all these cases, we consider the fiber length L0 to be
larger than the cell size d and much larger than the length of
any segment in Fig. 9. Fig. 9(b) shows the extremely improbable
case in which all fibers separating from AA0 at A (red segment
AB) continue into B0D and DD0, and all fibers forming CB
also form B0E and EE0. Consider that triangle ABC moves to
the right as shown by the black arrow. Under these circum-
stances, moving triangle B0DE to the right, as shown by the
black continuous arrow, is impossible since filament length has
to be provided at both A and D and has to be eliminated from
both C and E, which violates mass conservation. The 4 small
arrows parallel to the respective bundles indicate the direction
of sliding mandated by the imposed motion of triangles ABC
and B0DE. This topological incompatibility is eliminated if
triangle B0DE moves to the left, as indicated by the dashed
black arrow. However, in this case segment BB0 is subjected to
bending and its length has to increase which, again, violates
mass conservation. The most probable configuration is shown
in Fig. 9(c) where fibers forming AB as well as the fibers forming
BC continue into both bundles B0D0 and B0E0, as indicated
schematically by the colors used. This case is locked for reasons
identical to those outlined in relation to the case in Fig. 9(b).
The only configuration in which both nodes B and B0 can move
without violating mass conservation and without bending
or elongating BB0 is shown in Fig. 9(d). The two triangles ABC
and B0DE have to move in the same direction and their motion
is accommodated by the relative sliding of the sub-bundles
of BB0 shown in red and orange, as indicated by the two small
colored arrows (Fig. 9(d)). If A0C0 and D0E0 are parallel, the
length of BB0 does not increase. This is the only energetically
neutral and topologically allowable correlated motion mode of
two neighboring triangles. However, the probability of existence
of such configuration is extremely small (and decreases fast
with increasing the size of the respective bundles) since it is
necessary that all fibers in AB form also B0E and all fibers in
BC also form B0D. This analysis demonstrates that structural
evolution of a cellular network of bundles which has triangles
at all nodes is topologically impossible. Therefore, the nodal
triangles are the key geometric features that stabilize the cellular
network.

If the fiber length L0 is smaller than the cell wall length, BB0,
conditions exist for network disintegration. Under the action of
adhesion, segments AD and CE collapse into an isolated bundle

of length L0, and a similar process takes place at all cell walls
leading to network disintegration.

This discussion indicates that if triangles form at all nodes
of the network before the cells grow to a size d comparable with
L0, the cellular network of bundles becomes stable. Otherwise,
the network decomposes into isolated bundles. Since adhesion
always drives the network towards disintegration, the forma-
tion of stable cellular networks requires that the kinetics of
formation of nodal triangular features is faster than that of cell
growth and network disintegration.

Further insight into the structural evolution of the network
and formation of nodal triangles can be obtained from an
entirely geometric analysis of cell evolution, as discussed in the
Appendix. A ‘stability index’ is defined indicating under what
conditions a cell is stable. A cell with triangles at all nodes is
always stable, independent of the number of cell walls or cell
size. The cellular network is globally stable when all of its cells
are stable. This method allows identifying how close to global
stability is a cellular structure in some intermediate state of its
evolution.

It is interesting to draw a parallel between these triangles
formed by fiber bundles, with role in the stabilization of cellular
filamentary structures, and the Plateau triangles observed in
foams.48 In a liquid foam, all intersections of cell faces are
decorated with regions of fluid with triangular cross-section known
as Plateau triangles. Liquid rich domains are found at triple points
where multiple 3D cells meet. These Plateau triangles are neces-
sary for the stability of the foam and store the largest amount of
fluid in the structure. While surface tension plays the stabilizing
role in the Plateau triangles case, in the problem discussed here
the stabilization effect is due to the constrained kinematics of
filaments.

5.2 Structure and energetics of triangles of fiber bundles

Given the central role of triangular structures in the stability of
cellular networks, and for completeness, it is necessary to fully
characterize them from structural and energetic points of view.

The structure of a triangle depends on the size of the 3
external bundles and the angles between them. Consider the
structure in Fig. 10, with external bundles of size n1, n2 and
n3 forming angles a1, a2 and a3. The sub-bundles connecting

Fig. 10 Parameters defining a triangle of fiber bundles.
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nodes A, B and C are of size ni1, ni2 and ni3 and the obvious
conservation conditions of eqn (14) hold.

n1 = ni1 + ni3,

n2 = ni1 + ni2,

n3 = ni2 + ni3 (14)

Several observations can be made by inspection. Bundles
AB, BC and AC forming the triangle are loaded in pure bending
and hence are arcs of circle of radii R1, R2 and R3. Since these
circles must be tangent to each other at A, B and C, segments
OA, OB and OC are also of equal length, ltr. If the incoming
bundles AA0, BB0 and CC0 are straight, i.e. the entire bending
energy is concentrated in the triangle, the bending moments
loading the three edges of the triangle are equal, Mtr.

The equilibrium configuration results by minimizing the
total energy, for given bundle sizes and set of angles, relative to
the size of the triangle, ltr. The bending moment results:

Mtr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gE0I0

p
B

r
(15)

and the total bending and adhesive energies of the structure are:

Eb tr ¼ p
2
Mtr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pgE0I0

2
B

r
(16)

Eatr = CLtr � Ebtr, (17)

where

C ¼
X
k¼1;3

gnc nkð Þ

B ¼
X
k¼1;3

niknc nkð Þ tanp� ak
2

� niknc nikð Þ p� akð Þ (18)

and Ltr is the length of segments OA0, OB0 and OC0 and scales
proportional with the mean segment length of the cellular
network.

6 Conclusions

The structural evolution of networks of non-crosslinked filaments
self-organized by adhesion is discussed in this article. The driving
force for system evolution is provided by the interplay between
bending and adhesion energies. Since fibers are free to relax
axially, the axial deformation energy is negligible. At small fiber
densities and/or small filament lengths, rL0, the formation of
bundles leads to the loss of connectivity of the network which
eventually disintegrates into isolated fiber bundles. Cellular
networks of bundles form at large rL0 and large values of the
adhesion parameter C. Such cellular networks are qualitatively
different from non-crosslinked and cross-linked networks
without adhesion. These are stabilized by the formation of a
characteristic triangular structure of fiber bundles at all nodes.
The stabilization mechanism and the configuration of these
triangles are discussed in detail. If C is sufficiently small

compared to (rL0)
2, adhesion is too weak to drive network

self-organization, and the structure remains in the unbundled
state. This analysis provides a comprehensive physical picture
of structural evolution and bundling under the action of adhe-
sion in filamentary structures, with applications to a diverse set
of systems of current interest.
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Appendix

In this appendix we present a geometric method to predict the
stability of a generic cell of the cellular network at some inter-
mediate state of its evolution. A ‘stability index’ is introduced

Table 1 Structural evolution of cells with no nodes stabilized by triangles
in the initial state. The initial structures are shown in column 2, with the
number of edges of the cell, Ne, indicated in column 1. The initial structures
evolve by holding the nodes fixed and allowing the total contour length
to increase. Column 3 shows the transformed structure, while columns 4,
5 and 6 indicate the values of parameters Ni1, Ni2, the number of triangles
resulting upon structural evolution, and the corresponding cell stability index,
CSI (eqn (A1))

Ne Initial cell shape Relaxed cell shape Ni1; Ni2 No. triangles CSI

3 0; 0 1 3

4 0; 0 2 4

4 1; 0 1 3

4 2; 0 0 (collapse) 2

5 0; 0 3 5

5 1; 0 2 4
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which can be used to determine whether a cell is stable in the
current configuration or not.

A cell is defined by the number of edges, Ne, and the nature of
the nodes. Table 1 shows a classification of cells in these terms. The
discussion uses terminology introduced in Section 4.1 referring to
Fig. 5(b). Specifically, a bundle that splits into two sub-bundles
(bundle AO in Fig. 5(b)) is called a ‘handle’. Bundles (or handles)
forming the walls of a cell are called ‘internal,’ while all others are
called ‘external.’

A number of observations can be made based exclusively
on the geometry. Triangular cells (Ne = 3) may take only one
configuration and only the external bundles can be handles.
The triangle is stable only in the concave configuration shown
in Table 1, line 1.

Multiple configurations are possible for Ne = 4 (lines 2 to 4 in
Table 1). We evaluate their stability by the following procedure:
the end nodes, A, B, C and D, are held fixed and the density of
the cell is allowed to increase by sliding in, along its contour,
one of the bundles going through the end nodes. The resulting
structures for the four configurations shown for Ne = 4 are
represented in the third column of Table 1, lines 2 to 4. Only
one of the multiple (but equivalent) resulting configurations
corresponding to each initial state is shown. Two possibilities
exist: either the cell collapses, or it develops into a simpler
structure that contains triangles. The number of resulting
triangles depends on the number of the initial cell edges
that are handles. A cell edge bundle that splits at one end is
called ‘‘internal handles of order 1’’ and is denoted by Hi1.
Ni1 represents the number of such handles in the given cell.
The structure on line 2 of Table 1 has only external handles,
that on line 3 has one internal handle of order 1 (segment AE),

while that on line 4 has 2 internal handles of order 1 (segments
AE and EF).

This argument applies to cells with any number of edges; a
further example is shown in Table 1, lines 5 and 6, for Ne = 5.
The situation is similar: the structure with no internal handles
(line 5 of Table 1) evolves into a simpler structure with 3
triangles, while as the number of internal handles increases,
the number of triangles in the final structure decreases. A
collapsed structure (the cell disappears) results for Ne = 5 and
Ni1 = 3.

Further, we consider situations in which some of the nodes
of the original cell are stabilized by triangles. A family of related
configurations based on the Ne = 4, Ni1 = 1 of Table 1 (line 3) is
shown in Table 2. A case with one stabilized node is shown on
the first line of Table 2. This example has Ne = 5 after the
introduction of the triangle at node C and of edge FG. The
number of internal handles in this case is Ni1 = 3. This structure
may evolve into the configuration shown in column 3, line 1, of
Table 2, having a single triangle. To envision this transforma-
tion, hold the outer handle nodes A, B, C and D fixed and allow
segment AD to move into the cell and adhere to AEFGD. As the
number of stabilized nodes increases, both Ne and Ni1 increase
and this stabilizes the initial state. ‘‘Internal handles of order
2’’ (denoted Hi2) are bundles that split into sub-bundles at both
ends and appear as edges connecting two triangles. Their
number in the cell is indicated by Ni2. An example is segment
GH in the initial structure on line 2, column 2 of Table 2. This
structure has Ne = 6, Ni1 = 3 and Ni2 = 1 and is stable. It has
two triangles and one external handle. Even if the external
handle node is allowed to move into the cell, node E may be
eliminated, but the general structure of the cell does not change.

Table 2 Structural evolution of cells with nodes stabilized by triangles in the initial state. Parameter specification identical to that in Table 1

Ne Initial cell shape Relaxed cell shape Ni1; Ni2 No. triangles CSI

5 3; 0 0 (collapse) 2

6 3; 1 Stable cell of type 1 1

7 1; 3 Stable cell of type 0 0

8 0; 4 Stable cell of type 0 0
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A cell with one external handle and all other nodes being stable
is denoted as ‘‘Stable cell or type 1’’. Eliminating the external
handle and placing triangles at all nodes of the original structure
fully stabilizes the cell. The stable structure on line 4 of Table 2
has Ne = 8,Ni1 = 0 and Ni2 = 4. We denote this structure as ‘‘Stable
cell of type 0.’’

This geometric analysis indicates two important features of
cellular structures:

– The triangle is the most stable structure and is needed in
order to stabilize cells with number of edges larger than 3,

– It is possible to devise an index, the ‘‘cellular stability
index,’’ CSI, which indicates the type of structure resulting from
any initial cell. This index is defined as:

CSI = Ne � Ni1 � 2Ni2, (A1)

and its values for the cells in Tables 1 and 2 are shown in the
respective tables.

CSI indicates the number of triangles in the relaxed struc-
ture and whether the cell is stable in the current configuration
or not:

(1) If CSI Z 2, the cell is not stable in the current state. If
CSI = 2, the cell collapses. If CSI 4 2, CSI � 2 represents the
number of triangles of the structure that results upon cell
evolution.

(2) Cells with CSI = 1 and CSI = 0 correspond to stable cells of
types 1 and 0, respectively (Table 2).
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