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Abstract. Thermal noise is expected to be one of the noise sources limiting

the astrophysical reach of Advanced LIGO (once commissioning is complete) and

third-generation detectors. Adopting crystalline materials for thin, reflecting mirror

coatings, rather than the amorphous coatings used in current-generation detectors,

could potentially reduce thermal noise. Understanding and reducing thermal noise

requires accurate theoretical models, but modeling thermal noise analytically is

especially challenging with crystalline materials. Thermal noise models typically rely

on the fluctuation-dissipation theorem, which relates the power spectral density of the

thermal noise to an auxiliary elastic problem. In this paper, we present results from a

new, open-source tool that numerically solves the auxiliary elastic problem to compute

the Brownian thermal noise for both amorphous and crystalline coatings. We employ

the open-source deal.ii and PETSc frameworks to solve the auxiliary elastic problem

using a finite-element method, adaptive mesh refinement, and parallel processing that

enables us to use high resolutions capable of resolving the thin reflective coating. We

verify numerical convergence, and by running on up to hundreds of compute cores,

we resolve the coating elastic energy in the auxiliary problem to approximately 0.1%.

We compare with approximate analytic solutions for amorphous materials, and we

verify that our solutions scale as expected with changing beam size, mirror dimensions,

and coating thickness. Finally, we model the crystalline coating thermal noise in an

experiment reported by Cole and collaborators (2013), comparing our results to a

simpler numerical calculation that treats the coating as an “effectively amorphous”

material. We find that treating the coating as a cubic crystal instead of as an effectively

amorphous material increases the thermal noise by about 3%. Our results are a step

toward better understanding and reducing thermal noise to increase the reach of future

gravitational-wave detectors.
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1. Introduction

In 2015, the Advanced Laser Interferometer Gravitational-Wave Observatory (Advanced

LIGO) [1] detected gravitational waves from merging black holes for the first time,

inaugurating the era of gravitational-wave astronomy [2, 3, 4]. During 2017, Advanced

LIGO began its second observation run; during this run, LIGO observed gravitational

waves from both merging black holes and merging neutron stars [5, 6, 7]. Other second-

generation gravitational-wave observatories, such as Advanced Virgo [8], the Kamioka

Gravitational-wave detector (KAGRA) [9, 10], and LIGO India [11], will soon join

Advanced LIGO, helping to better constrain the sky location and the properties of

observed gravitational waves’ sources. Third-generation detector designs, such as the

Einstein Telescope [12] and Cosmic Explorer [13], aim to gain a factor of ≈ 10 in

sensitivity over second-generation detectors, which corresponds to a factor of 1000 in

detection rate.
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Figure 1. Principal noise terms for Advanced LIGO at design sensitivity, as seen

in Fig. 2 of Ref. [1], updated as of November 16, 2016, using the Gravitational Wave

Interferometer Noise Calculator [14, 15]. The component noises add as a root-square-

sum since they are statistically independent.

Thermal noise is expected to be one of the noise sources that limits the sensitivity

of second-generation detectors (once Advanced LIGO commissioning is complete). The

total thermal noise budget includes contributions from i) Brownian coating thermal

noise, caused by mechanical losses (i.e., by small, imaginary, dissipative terms of the

material’s elastic moduli), and ii) thermoelastic and thermorefractive coating noise,

caused by temperature fluctuations in the materials. Figure 1 shows an Advanced
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LIGO noise curve at design sensitivity, computed from the constituent noises in the

instrument, current as of November 2016. The figure shows that Brownian coating

thermal noise and quantum noise are the most important noises in Advanced LIGO’s

most sensitive frequency band (∼ 100 Hz).

Additionally, Brownian coating thermal noise limits the sensitivity of third

generation detectors (e.g. Fig. 20 of Ref. [16]). Therefore, a substantial research effort

is studying Brownian coating thermal noise theoretically and experimentally [17, 18,

19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Thermoelastic and thermorefractive noise

(caused by temperature fluctuations) in the coating [30, 31, 32] can also significantly

contribute to the total noise in future gravitational-wave detectors, depending on the

optics’ materials and temperatures, as can Brownian and thermoelastic noise in the

substrate [33, 34, 35, 36] and suspensions [37, 38, 39, 40, 41]. Multi-layered coatings

can be designed so that thermoelastic and thermorefractive noise largely cancel [32, 42],

since these noises add coherently. Photothermal noise (temperature fluctuations in

the coating caused by absorption of incident laser power) can similarly be coherently

canceled [43].

Even though our primary motivation for modeling thermal noise is the application

to gravitational-wave detection, we note that thermal noise is also a limiting noise in a

number of other applications. For instance, thermal noise is a limiting noise for atomic

clocks (e.g. Ref. [44]). See, e.g., Ref. [42] for a broader introduction to thermal noise.

Theoretical predictions are essential tools for understanding and minimizing

thermal noise. Thermal-noise models typically rely on the fluctuation-dissipation

theorem [45, 46, 47], which relates the thermal noise to the solution of an auxiliary elastic

problem [48, 49]. When a sinusoidally varying pressure with the same spatial distribution

as the laser beam shape (i.e. intensity profile) is applied, power is dissipated as the mirror

elastically deforms. The fluctuation-dissipation theorem relates the dissipated power in

the auxiliary elastic problem to the spectral density of the mirror’s thermal fluctuations.

In ground-based gravitational-wave detectors, a sound wave crosses the mirror in much

less time than a gravitational-wave period; therefore, thermal-noise models often make a

quasistatic approximation [49], with the dissipated energy per cycle becoming a product

of the potential energy of the elastostatic deformation and a mechanical loss angle.

Existing models of thermal noise almost always treat the elastic properties of the

materials isotropically when applying the fluctuation-dissipation theorem; this allows the

elastic problem to be approached analytically. This is perfectly sensible for amorphous

materials (as used in Advanced LIGO [1]), but most plans for future ground-based

detectors use crystalline mirror substrates [50, 51, 16]. KAGRA [9], which aims to reduce

thermal noise by lowering the detector temperature to 20 K, will use crystalline sapphire

substrates, motivated by crystalline sapphire’s high thermal conductivity [9] and fused

silica’s increased mechanical loss at low temperatures [52]. Also, GaAs:Al0.92Ga0.08As

(AlGaAs) crystalline coatings experimentally show great promise for reducing Brownian

coating thermal noise [53, 54].

Developing a theoretical model of Brownian coating thermal noise, one flexible
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enough to incorporate both amorphous and crystalline materials, will help to understand

and reduce Brownian coating thermal noise and thus to extend the reach of future

ground-based gravitational-wave detectors. To correctly understand thermal noise in

crystalline materials, these models must account for their anisotropic elastic moduli.

However, anisotropic elastic moduli make analytic calculation of elastic deformation in

crystalline materials highly nontrivial (though recent work [55] has succeeded in yielding

a semi-analytic solution for the static elastic deformation of a semi-infinite cubic crystal).

The formidable challenges toward an analytic model of crystal coating thermal noise

motivate numerical thermal-noise modeling. A recent study has numerically modeled

thermal noise in crystalline substrates [56].

In this paper, we numerically calculate Brownian coating and substrate thermal

noise. We present a new, open-source tool, based on existing open-source frameworks,

that i) solves the auxiliary elastic problem for a cylindrical mirror with a thin coating

and ii) uses the solution and the fluctuation-dissipation theorem to compute the power

spectral density of the thermal noise. We adopt a finite-element method, a typical

approach in elasticity computations, and we use adaptive mesh refinement and parallel

processing to resolve the thin coating.

Specifically, we compute the thermal noise on a cylindrical mirror with a single-

layer, thin reflective coating. For concreteness, we focus on the same case (i.e.,

same mirror dimensions, coating thickness, laser beam width, temperature, and elastic

properties) considered by Cole and collaborators in Ref. [53], to facilitate comparison

with their previous calculations (which assumed isotropic materials).

In Sec. 2.7, we show how our code’s run time scales with the number of compute

cores. We find that running on 50-100 cores greatly improved performance, but further

increases do not significantly improve performance (perhaps because of increasing

communication costs). We also find that running on hundreds of cores enabled us

to reach higher resolutions, by increasing the total memory available for the calculation.

In Sec. 3, we first test our code’s numerical convergence. We find that the elastic

internal energy (obtained from our solution of the elastic displacement vector) converges

with increasing resolution, and we estimate our numerical uncertainty in the coating

energy is 0.1%. Then, we compare our code’s results for amorphous materials to

approximate, analytic solutions for the amorphous case. We find that edge effects and

coating thickness effects scale as we expect.

Then, we compute the Brownian coating thermal noise for i) a mirror with an

amorphous, fused-silica substrate and a crystalline, AlGaAs coating, and ii) a mirror

with the same substrate but with the crystalline coating replaced with an “effective

isotropic” coating, i.e., with an amorphous coating with elastic properties meant to

mimic the AlGaAs’s crystalline elastic properties. The thermal noise, treating the

coating as a cubic crystal, is approximately 3% larger than the thermal noise when

treating the coating as an effective isotropic material.

We also compare our numerical calculations with an approximate, analytic result

for a semi-infinite, amorphous mirror with a thin, amorphous coating. The effective
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isotropic calculation predicts approximately 7% smaller thermal noise, because of finite-

size effects. The cubic-crystal, numerical, coating thermal noise differs from the

approximate solution by approximately 4%. From these results, we conclude that,

for our calculation, neglecting crystal effects introduces an error of the same order as

neglecting edge effects.

The rest of this paper is organized as follows. In Sec. 2, we introduce our notation

and detail our numerical methods for computing the Brownian coating and substrate

thermal noise for a mirror with a single-layer, thin, reflective, possibly crystalline

coating. In Sec. 3, we present our physical results after presenting results that verify

our tool’s performance and scaling. Finally, we briefly conclude in Sec. 4.

2. Techniques

2.1. Mirror geometry and laser beam intensity profile

We begin by considering a cylindrical mirror of radius R and height H, where the mirror

dimensions are comparable: R ∼ H. A thin, reflective coating of thickness d satisfying

d� R and d� H covers the front face of the mirror. (In practice, LIGO mirror coatings

consist of even thinner alternating layers of different materials; here, for simplicity we

only consider single-layer coatings, leaving multi-layer coatings for future work.) We

typically will choose our coordinates so that the z axis is the axis of symmetry of the

cylinder, where the coating-substrate interface lies in the plane z = 0.

LIGO measures the position of the mirror by shining a laser beam on the mirror’s

surface; the beam measures q(t), the surface position weighted by the beam’s intensity:

q(t) ≡
∫ 2π

0

dϕ

∫ R

0

drrp(r, ϕ)Z(r, ϕ, t). (1)

Here, Z(r, ϕ, t) is the displacement at time t of a point on the mirror’s surface at

cylindrical coordinates (r, ϕ), in the direction parallel to the incident laser beam (which

we take to travel along the z axis).

Typically, we will center the beam profile p(r, ϕ) on the mirror, so that the beam’s

intensity profile is

p(r) =
1

πr2
0

(
1− e−R2/r20

)e−r2/r20 , (2)

normalized so that∮
dAp(r) = 2π

∫ R

0

drrp(r) = 1. (3)

In LIGO, to minimize diffraction losses, the beam size r0 is kept small enough, relative

to the mirror radius, to neglect the Gaussian in the denominator of Eq. (2) when

normalizing p(r). Unless stated otherwise, in the rest of this paper, we choose an

intensity profile

p(r) =
1

πr2
0

e−r
2/r20 , (4)
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Note that some references, such as Ref. [17] and Ref. [53], use a beam width w =
√

2r0.

In terms of w, the intensity profile becomes

p(r) =
2

πw2
e−2r2/w2

. (5)

2.2. Fluctuation-dissipation theorem

Because the mirror has a temperature T , internal thermal noise in the mirror causes

fluctuations in Z(r, ϕ, t). We compute the single-sided power‡ spectral density Sq(f)

of the thermal noise associated with the measurement q at frequency f using the

fluctuation-dissipation theorem [45, 46, 47, 48, 49]. The theorem relates Sq(f) to the

solution of an auxiliary elastic problem:

(i) Imagine applying a pressure to the mirror face (i.e., the top of the mirror coating) by

pushing on it with a force Fp(r, ϕ) sin 2πft, where F is a force amplitude and p(r, ϕ)

is the same as the intensity profile of the laser beam in the actual measurement.

(ii) The mirror deforms, dissipating energy at a rate§ (averaged over a cycle) Wdiss.

(iii) The fluctuation-dissipation theorem gives the thermal noise Sq(f) associated with

the actual measurement q in terms of Wdiss calculated in the auxiliary elastic

problem:

Sq(f) =
2kBT

π2f 2

Wdiss

F 2
. (6)

Here kB is Boltzmann’s constant. Note that Wdiss ∝ F 2, so the thermal noise does

not depend on F .

2.3. Elasticity

For applications to LIGO, the thermal noise is relevant at frequencies f ∼ 100 Hz where

LIGO is most sensitive. Because these frequencies are far below the resonant frequencies

f ∼ 104 Hz of the mirrors (determined by the mirror materials and geometries), the

applied force can be treated quasistatically. In the quasistatic approximation, the

oscillating applied force is replaced with a static force.

Applying this static force to the face of the mirror deforms the mirror. A small

element in the mirror at position xi is displaced by ui:

xi → xi + ui. (7)

This leads to a strain

Sij = ∇(iuj) ≡
1

2
(∇iuj +∇jui) . (8)

‡ Note that occasionally we will refer to the amplitude spectral density, which is the square root of the

power spectral density.
§ Note that in Ref. [25], Wdiss refers not to the dissipated power but to the energy dissipated in each

cycle. In this paper, Wdiss refers to dissipated power averaged over a cycle, and Ediss refers to the

energy dissipated in one cycle.
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Here and throughout this paper, indices i, j, k, . . . are spatial indices running over

Cartesian coordinates x, y, z. By choosing F to be sufficiently small, the deformation

can be made sufficiently small that the material’s deformation is within its elastic limit.

That is, the applied stress is proportional to the strain (“Hooke’s law”):

Tij = YijklSkl, (9)

where here and throughout this paper we adopt the Einstein summation convention,

summing over repeated indices. The Young’s tensor Yijkl is symmetric on each pair of

indices and on interchanging the pairs of indices,

Yijkl = Yjikl = Yijlk = Yklij, (10)

leaving 21 independent components of Yijkl. In this paper, although our tool and

methods are implemented for any Yijkl, we primarily confine our attention to two cases:

(i) amorphous materials, where symmetry leaves only 2 independent components in

Yijkl, corresponding to the Young’s modulus Y and Poisson ratio σ, and

(ii) cubic crystalline materials, which have 3 independent components in Yijkl.

In both cases, the nonzero Young’s tensor components can be written in terms of three

elastic moduli c11, c12, and c44 as follows:

c11 = Yxxxx = Yyyyy = Yzzzz, (11)

c12 = Yxxyy = Yxxzz = Yyyxx = Yyyzz = Yzzxx = Yzzyy, (12)

c44 = Yxyxy = Yxyyx = Yyxxy = Yyxyx = Yxzxz = Yxzzx

= Yzxxz = Yzxzx = Yyzyz = Yzyyz = Yzyzy = Yyzzy. (13)

For cubic crystals, c11, c12, and c44 are independent, while for amorphous materials,

c11 =
Y (1− σ)

(1 + σ)(1− 2σ)
, (14)

c12 =
Y σ

(1 + σ)(1− 2σ)
, (15)

c44 =
Y

2(1 + σ)
. (16)

The stress and strain combine to form the stored potential energy density, such

that the total stored potential energy in a volume V is

U = −1

2

∫
V
dV SijTij. (17)

The dissipated power is then (e.g., inserting Eq. 17 into Eq. (12) of Ref. [49])

Wdiss = 2πfφ(f)U = −πfφ(f)

∫
dV SijTij, (18)

where φ(f) is a (potentially frequency-dependent) loss angle whose scale is set by the

imaginary, dissipative elastic moduli. Then the thermal noise becomes (Eq. (46) of

Ref. [25])

Sq(f) =
4kBT

πf

Uφ(f)

F 2
(19)
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For a mirror consisting of a thin reflective coating on top of a substrate, the

stored energy is the sum of the energy stored in the substrate and in the coating:

U = Usub +Ucoat. When the coating and substrate are different materials, the substrate

and coating have different loss angles, φsub and φcoat. Then, the thermal noise becomes

Sq(f) =
4kBT

πf

Usubφsub + Ucoatφcoat

F 2
, (20)

where the stored energies Usub and Ucoat are volume integrals over the substrate and

coating, respectively:

Usub = U = −1

2

∫
sub

dV SijTij, (21)

Ucoat = U = −1

2

∫
coat

dV SijTij. (22)

In fact, as in Ref. [25], an amorphous coating has two loss angles, φB =

Im(K)/Re(K) and φS = Im(µ)/Re(µ), that depend on the real and (small) imaginary

parts of the coating’s bulk modulus K and shear modulus µ. If UB and US are the

elastic energy corresponding to the bulk and shear portions of the elastic energy, then

Eq. (20) becomes (cf. Eq. (57) of Ref. [25])

Sq(f) =
4kBT

πf

Usubφsub + UBφB + USφS

F 2
. (23)

A crystal coating has, in principle, different loss angles for each independent component

of the Young’s tensor Yijkl. For instance, for a cubic or zincblende crystal, one might

write

Sq(f) =
4kBT

πf

Usubφsub + U11φ11 + U12φ12 + U44φ44

F 2
, (24)

where φ11 = Im(c11)/Re(c11), φ12 = Im(c12)/Re(c12), and φ44 = Im(c44)/Re(c44) depend

on the real and (small) imaginary parts of c11, c12, and c44, respectively, while U11, U12,

and U44 are the portions of the elastic energy corresponding to each elastic modulus.

Abernathy and collaborators have recently made the first measurements of separate

bulk and coating loss angles for a material [57]. While perhaps a generalization of

their method will be able to successfully measure the three (or more) loss angles in a

crystalline material, this has not yet been done. Therefore, in this paper, we characterize

the coating by a single effective loss angle φcoat, determined from experiment, though

we look forward to generalizing our results along the lines of Eq. (24) once experimental

measurements of 3 independent loss angles for crystalline materials are available.

Thus to compute the thermal noise, we first numerically compute the displacement

ui of the mirror given an applied pressure exerted at the top of the coating; this amounts

to numerically solving Newton’s second law for elastostatics,

0 = −∇iTij − fi. (25)

Because we are seeking a solution where the mirror is in elastostatic equilibrium, we set

fi = 0 except on the mirror boundary with the applied pressure.
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After obtaining the numerical solution for ui, we i) numerically compute its gradient

to obtain the strain Sij, ii) use Eq. (9) to compute the stress, iii) insert the stress and

strain into Eqs. (21) and (22) and integrate to compute Usub and Ucoat, and finally iv)

insert Usub and Ucoat into Eq. (20) to compute the Brownian thermal noise Sq(f).

In the rest of this section, we derive the equations that determine ui and cast them

in a form suitable for numerical solution using finite elements.

2.4. Weak form of the elastostatic equations for finite-element numerical solutions

For completeness, we present the weak form of the three-dimensional elasticity equations

that we implemented and used in this paper. The following derivation is not new; it

generally follows the derivation given in Sec. 2.4.3 of Ref. [58] except that we prefer

different notation.

Consider an applied force deforming a mirror occupying a volume V enclosed by a

surface boundary Γ.

Note that while eventually we will choose fi = 0 except on the part of Γ where the

pressure is applied, in this section we postpone making this choice for generality.

On some parts of the boundary, Γu ⊂ Γ, the displacement is fixed by a Dirichlet

boundary condition

ui = ūi, (26)

while on other parts of the boundary ΓT ⊂ Γ, the traction is fixed by a Neumann

boundary condition

niTij = Tnj = T̄nj, (27)

where ni is normal to the boundary. Note that only one condition is applied at a given

point on the boundary: Γ = Γu ∪ ΓT and Γu ∩ ΓT = ∅.
To find the weak form of Eq. (25), begin by introducing a virtual displacement

vector wi, with the property that wi = 0 on Γu (i.e., the virtual displacement vanishes

on the Dirichlet boundary). Otherwise, the wi are arbitrary functions of position.

Contracting both sides of Eq. (25) by wj and integrating over the volume gives

0 = −
∫
V

dV wj∇iTij −
∫
V

dV wjfj. (28)

Integrating by parts gives

0 =

∫
V

dV∇i (wj)Tij

−
∫
V

dV∇i (wjTij)−
∫
V

dV wjfj, (29)

which after applying Gauss’s theorem becomes

0 =

∫
V

dV∇i (wj)Tij

−
∮

Γ

dAniwjTij −
∫
V

dV wjfj. (30)



Numerical Brownian thermal noise in amorphous and crystalline coatings 10

Because the virtual displacement wj vanishes on the Dirichlet boundaries, the boundary

term becomes∮
Γ

dAniwjTij =

∫
ΓT

dAniwjTij, (31)

so

0 =

∫
V

dV∇i (wj)Tij

−
∫

ΓT

dAwjniTij −
∫
V

dV wjfj. (32)

Applying the Neumann boundary condition and inserting Eqs. (9) and (8) yields

0 =

∫
V

dV∇i (wj)Yijkl∇kul

−
∫
V

dV wjfj −
∫

ΓT

dAwjT̄nj. (33)

This is the weak form of the elastostatic equations that we will use in the next subsection.

2.5. Discretizing the weak form of the elastostatic equations

We discretize Eq. (33) in a standard way. A similar derivation for the two-dimensional,

amorphous, elastic equations is given in the discussion of deal.ii’s step-8 tutorial [59],

which solves the elasticity equations in two dimensions for amorphous materials. For

a detailed discussion of finite-element methods applied to the elasticity equations, see,

e.g., Ref. [58].

To discretize Eq. (33), we choose N scalar shape functions φa (xi), where a =

1, 2, . . . N , which are arbitrary functions of position xi. Then, construct 3N three-

dimensional vector shape functions, by multiplying each scalar shape function by

each of the 3 orthonormal basis vectors. E.g., one can define Φ0 = (φ0, 0, 0) ,Φ1 =

(0, φ0, 0) ,Φ2 = (0, 0, φ0) ,Φ3 = (φ1, 0, 0) ,Φ4 = (0, φ1, 0) ,Φ5 = (0, 0, φ1) , . . ..

We then expand the vectors ul and wj in terms of these vector-valued shape

functions

ul = UAΦAl (xi) , (34)

wj = WAΦAj (xi) . (35)

Here ΦAj is the jth vector component of the Ath vector shape function, and UA and

WA are independent of position xi. Here and in the rest of this paper, the positional

dependence of the φA and ΦAi will be suppressed for clarity.

Inserting these expansions into Eq. (33) gives

0 =

∫
V

dV∇i (WAΦAj)Yijkl∇k (UBΦBl)

−
∫
V

dVWAΦAjfj −
∫

ΓT

dAWAΦAjT̄nj. (36)
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Since WA and UA are independent of position, this becomes

0 = WAUB

∫
V

dV Yijkl∇i (ΦAj)∇k (ΦBl)

−WA

∫
V

dV ΦAjfj −WA

∫
ΓT

dAΦAjT̄nj. (37)

We are free to choose shape functions that vanish on the boundary, and since wj is

arbitrary other than having to vanish on the boundary, the coefficient of each WA must

satisfy the equation separately. This gives a discretized weak form of the elastostatic

equations suitable for solving via finite-element methods:

0 = UB

∫
V

dV Yijkl∇i (ΦAj)∇k (ΦBl)

−
∫
V

dV ΦAjfj −
∫

ΓT

dAΦAjT̄nj. (38)

Defining

MAB ≡
∫
V

dV Yijkl∇i (ΦAj)∇k (ΦBl) , (39)

FA ≡
∫
V

dV ΦAjfj +

∫
ΓT

dAΦAjT̄nj, (40)

the equations can be written in matrix form as

MABUB = FA. (41)

In practice, the shape functions ΦAj are low-order polynomials, with each function

having support only within one finite-element cell. We use second order polynomials for

the shape functions except when we integrate to separately calculate the elastic energy

in the substrate and coating, in which case we sub-divide each cell into 1000 smaller

cells and interpolate with cubic-polynomial shape functions.

We solve Eq. (41) for UB using deal.ii finite-element library [60, 61]‖, the

PETSc [62, 63, 64] conjugate gradient linear solver, and the ParaSAILS preconditioner

in the Hypre package [65]. Our specific implementation begins with the deal.ii step-

8 tutorial [59], which solves the elastic equations in two dimensions for amorphous

materials, and then generalizes to three dimensions and arbitrary Young’s tensors

(though in this paper, we only use isotropic and cubic-crystal Young’s tensors).

2.6. Mesh

For simplicity, here we confine our attention to simple mirror geometries, generating our

initial computational meshes using deal.ii’s built-in primitives. We model the mirror as

a simple cylinder.

We begin with an initial, coarse mesh. We create this coarse mesh by refining

a deal.ii primitive mesh (cylinder or rectangular prism) in two stages: first, we apply

‖ We used version 8.2.1 of the deal.II library to obtain the results in this paper, as it was current when

we began developing our code. At the time of writing, deal.ii version 8.5 is available.
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two refinements to every element, and then we apply up to two additional refinements

on elements within one beam width r0 of the mirror’s front, center point. Then, after

achieving a solution on the coarse mesh, we refine using adaptive mesh refinement. We

estimate the numerical error in each cell using the Kelly error estimator [66, 67], and

then we rank them by this error estimate. We then refine the top 14% and coarsen the

bottom 2%, approximately doubling the number of cells with each refinement¶. Figure

2 shows a progression of such refinements on a sample meshed cylindrical domain.

Figure 2. A cross-sectional view of a sample meshed cylindrical domain (fused silica

mirror with a cubic crystalline coating) that has been refined, from left to right, 1, 5,

and 9 times using adaptive mesh refinement. Below each upper panel, a lower panel

zooms in. The dark ring in each image has radius r0 to represent the Gaussian profile

pressure applied to the cylinder. The magnitude of the resulting displacement is shown

by the coloring.

2.7. Performance

We have tested how the performance of our code varies with increasing resolution and

increasing numbers of compute cores. We label each resolution by an integer N , where

increasing N by one corresponds to approximately doubling the number of finite-element

cells. Figure 3 shows the wall-clock time elapsed for each resolution of a typical thermal-

noise calculation. Initially, increasing the number of processors decreases the time

required to complete a given resolution; however, the performance then hits a plateau,

as communication costs increase.

For the highest resolutions (e.g., N = 12 in Fig. 3), we often run on more cores

than Fig. 3 would suggest are necessary, because these high resolutions (with hundreds

of millions of finite-element degrees of freedom) require the memory from the additional

compute nodes. Also, note that occasionally, when performing these timing tests, we

¶ When running on multiple processors (i.e., multiple cores), we divide the mesh among them. We

then refine the top 14% and coarsen the bottom 2% of cells on each processor.
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Figure 3. The run time of our thermal-noise calculations as a function of the

number of compute cores used in the calculation. Colors indicate resolution N , where

each resolution N has approximately twice the number of finite elements as resolution

N − 1. Performance improves with increasing numbers of cores until it levels off; we

suspect this is caused by increasing communication costs. Running on more cores

(i.e., on more compute nodes) increases the available memory. Given the memory

limits of the cluster where we ran these calculations, the highest resolutions achieved

(N >= 9) require running on more cores (and thus on more compute nodes and more

total memory).

observed spuriously inconsistent timing for some simulations; we suspect this occurred

when our cluster’s network became saturated.

2.8. Analytic approximate solutions

The amplitude spectral density of the substrate thermal noise
√
Sq, assuming a semi-

infinite amorphous mirror with Young’s modulus Ysub, mechanical loss angle φsub, and

Gaussian beam radius r0, is given by the square root of its power spectral density (e.g.,

Eq. (59) of. Ref. [34]):

√
Sq =

√√
2kBT

π3/2f

1− σ2
sub

Ysubr0

φsub. (42)

For an amorphous substrate with a thin, reflective, amorphous coating, the coating

thermal noise is given by (e.g., Eq. (21) of Ref. [17] with φ‖ = φ⊥ = φcoat)√
Sq =

√
kBT

π2f

1− σ2
sub

r0Ysub

d

r0

φcoat

YsubYcoat(1− σ2
coat)(1− σ2

sub)

×
√
Y 2

coat(1 + σsub)2(1− 2σsub)2 + Y 2
sub(1 + σcoat)2(1− 2σcoat) (43)

Here, to facilitate comparison with our numerical calculations, we treat the coating as

having a single mechanical loss angle φ. More realistically [cf. Eqs. (23)–(24) and the
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surrounding discussion], an amorphous coating should have one loss angle for each of

its two independent elastic moduli [25], and a cubic crystalline coating should have one

loss angle for each of the three independent components in its Young’s tensor Yijkl.

Note that because we are considering noise in a single mirror, rather than two (as

in Ref. [53]), our analytic formula differs from Eq. (1) of Ref. [53].

3. Results

Unless stated otherwise (e.g., when adjusting a parameter to observe how the numerical

solution scales with the adjustments), the numerical parameters in our calculations are

taken from Table 1. To take a concrete example, we choose the parameters in the

top two sections of Table 1 to agree with those in the supplementary information for

Ref. [53].

When we treat the reflective coating as a crystal, we use the elastic moduli c11, c12,

and c44 given in the middle section of Table 1. Also following Ref. [53], we consider the

specific case of AlxGa1−xAs with x = 0.92, and we take the values of the elastic moduli

from Sec. S2 of the supplementary information of Ref. [68]. We use the same loss angle

as in the effective isotropic case. Note that in our numerical calculations, we choose a

cubic crystal lattice orientation so that the cube faces are parallel to the mirror faces.

We also use the same, single loss angle as in the effective isotropic case.

The bottom section of Table 1 shows our choice for the mirror radius, where we

choose a “typical” height that gives a mirror diameter of approximately 1 inch. We

choose the total height of the mirror (including the coating) to be the sum of the mirror

radius and the coating thickness.

The amplitude of the thermal noise,
√
Sq(f), is proportional to f−1/2 [Eq. (20)].

For concreteness, we evaluate the thermal noise at a frequency f = 100 Hz, chosen as a

representative frequency of where Advanced LIGO is most sensitive (cf. Fig. 1).

Figure 4 assesses our code’s numerical convergence by showing fractional differences

in the total stored energy and in the coating stored energy as a function of resolution

N (Cf. Sec. 2). In the first plot, we consider a mirror made entirely of fused silica,

treating a thin slice of thickness d on the top face of the cylinder as the coating. The

remaining panels in Fig. 4 use an AlGaAs coating, with the first treating the coating as

an effective isotropic material (with effective bulk and shear elastic moduli) and with the

second treating the coating as a cubic crystal with three independent elastic modulus

components. We do not expect perfectly monotonic behavior, because adaptive mesh

refinement does not uniformly increase resolution. Nevertheless, we are satisfied that the

differences are generally decreasing until they achieve a fractional error of 0.1%, which

is sufficient for our purposes (e.g., sufficient to compare with experimental results).

Figure 5 compares our code’s results to known, approximate, analytic solutions,

for isotropic, amorphous coatings. We find that our numerical solutions approach the

expected analytic solutions in the appropriate limits. In Fig. 5, the left panels show

thermal noise as a function of different dimensionless ratios that each characterize a
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Parameter Description Value

r0 beam width 177 µm

d coating thickness 6.83 µm

T temperature 300 K

σSiO2 fused silica Poisson ratio 0.17

σiso effective isotropic AlGaAs Poisson ratio 0.32

YSiO2 fused silica Young’s modulus 72 GPa

Yiso effective isotropic AlGaAs Young’s modulus 100 GPa

φSiO2 fused silica loss angle 1×10−6

φiso effective isotropic AlGaAs loss angle 2.5×10−5

c11 AlxGa1−xAs elastic modulus 119.94 GPa

c12 AlxGa1−xAs elastic modulus 55.38 GPa

c44 AlxGa1−xAs elastic modulus 59.15 GPa

x AlxGa1−xAs fraction of aluminum 0.92

φcrystal crystalline AlGaAs loss angle 2.5×10−5

R mirror radius 12500 µm

H mirror height d+R µm

f frequency 100 Hz

Table 1. Numerical values of parameters used in our numerical thermal-noise

computations, unless otherwise stated (e.g., when adjusting a parameter to check the

expected scaling).

different approximation in the analytic solutions. The right panels show differences

between the numerical and approximate analytic results. Each numerical point

represents the highest simulated resolution for the given physical dimensions.

In the top two rows of Fig. 5, we show the coating thermal noise for different

beam sizes r0, holding all other quantities fixed. The mirror is entirely fused silica,

with the topmost layer of thickness d treated as the coating. In the top row, we show

the coating thermal noise as a function of the dimensionless quantity d/r0, which is

small in the thin-coating approximation used in the analytic solution. The numerical

solution approaches the analytic as d/r0 approaches zero, as expected. In the middle

row, we show the total thermal noise for different beam widths r0 as a function of the

dimensionless quantity r0/R, which characterizes the importance of edge effects, which

are neglected in the analytic solution (i.e., the analytic solution does not depend on R).

The mirror is again entirely fused silica. Again, the numerical solution approaches the

analytic as r0/R approaches zero, as expected.

In the bottom row of Fig. 5, we show the coating thermal noise for different coating

thicknesses d as a function of the dimensionless quantity d/R, which characterizes the

thin-coating approximation. The mirror in this case is made of two materials, a fused

silica substrate of thickness R and an effective isotropic AlGaAs coating of thickness d.

The numerical solution approaches the analytic as d/R approaches zero, as expected.
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Figure 4. Numerical convergence for a fused silica mirror with various coatings:

Top: fused silica, Bottom Left: AlGaAs (effective isotropic), Bottom Right: AlGaAs

(crystalline)

Finally, note that the value of each point in the difference plots are within the numerical

error of that particular point’s simulation. Larger numerical error (caused, e.g., by

greater difficulty in resolving different length scales) explains the anomalous behavior

of the left most points.

Finally, we compare the numerical thermal noise for AlGaAs coatings on fused

silica substrates, comparing the results when the coating is treated as a cubic crystal

in the elastic problem to results treating the coating as an effective isotropic material.

Figure 6 shows the coating thermal noise as a function of resolution for two mirrors with

the fused silica substrate: one with an AlGaAs effective isotropic coating and one with

an AlGaAs crystalline coating. We compare both numerical results to an approximate

analytic solution for an amorphous, semi-infinite mirror with a thin, amorphous coating.

We resolve the effect of treating the crystalline coating as a cubic crystal.

Unlike the analytic solution, neither numerical solution neglects edge effects or

coating thickness effects in the elasticity calculation. As a result of these finite-

size effects, the effective isotropic and analytic solutions differ by approximately 7%.

Additionally including crystalline effects (i.e., treating the coating as a cubic crystal,
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Figure 5. Numerical computations of thermal noise for different mirrors. The left

column shows the numerical thermal noise and the approximate analytic solutions

given in Eqs. (42)–(43). The right column shows the fractional differences between the

numerical and approximate analytic solutions. The top two rows show thermal noise

for a mirror where both the substrate and coating are made of fused silica, while the

bottom row shows thermal noise for a fused-silica substrate with a AlGaAs coating,

treated as an effective isotropic material (so that the analytic solutions can be used).

rather than as an amorphous material) causes the thermal noise to differ from the

approximate, analytic solution by about 4%, since the crystalline numerical result is
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about 3% larger than the effective-isotropic numerical result. For the particular case

we consider (mirror dimension, beam size, temperature, etc.), then, we conclude that

including finite-size effects causes a deviation from the approximate, analytic solution

comparable in magnitude to that caused by treating the coating as a cubic crystal.
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Figure 6. Brownian coating thermal noise at f = 100 Hz for analytic and numerical

effective isotropic and numerical anisotropic crystalline elastic moduli.

4. Conclusion

In this paper, we have numerically computed the Brownian coating and substrate

thermal noise for a cylindrical mirror with a thin, reflective, possibly crystalline coating.

To do this, we have developed a new tool, built on open-source libraries, that computes

thermal noise by solving an elastostatic problem and inserting the solution into the

fluctuation-dissipation theorem. Using a parallel finite-element method with adaptive

mesh refinement, we have demonstrated numerical convergence, resolutions up to

approximately 2× 108 degrees of freedom, and the capability to run on up to hundreds

of processors. Because of limited memory on the cluster where we performed our

calculations, the highest resolutions were only achievable with the increased memory

available with running on a larger number of processors than would otherwise be

necessary.

Using this new tool, we have computed the Brownian coating thermal noise for

a cylindrical mirror with a thin, reflective coating. When the coating is amorphous,

our results agree well with approximate, analytic solutions that neglect edge effects and

anisotropic effects, and our numerical results scale as expected with beam radius, mirror

size, and coating thickness. When the coating is a cubic crystal (specifically, AlGaAs),

our numerical results show a small but significant difference between the noise computed

accounting for the crystal’s anisotropy and the noise computed while treating the crystal

as an effective isotropic material. The C++ source code for our tool is available at [69].
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Because our code is open, additional physics can be incorporated in future work,

supporting the long-term goal of understanding and reducing thermal noise in future

gravitational-wave detectors. For instance, as discussed in Sec. 2.3, rather than using a

single mechanical loss angle, one could extend our tool to treat the mechanical loss in

the coating more realistically, by introducing one loss angle for each independent com-

ponent of the Young’s tensor, generalizing the “bulk” and “shear” loss angles introduced

in Ref. [25]. Other directions for future work include extending our code to compute

thermoelastic and thermorefractive noise and incorporating more realistic LIGO mirror

shapes with physically correct edge effects. The mirrors could also be treated more

realistically, e.g., by including a more realistic mirror shape (including “ears” that are

bonded to the mirrors and to which the suspension fibers are flame welded [70]) and

adjusting our outer boundary condition accordingly. Another potential direction for

future study includes varying the laser beam intensity profile. Flatter intensity profiles

better average thermal fluctuations than Gaussian profiles do; one can use our tool to

explore numerically how thermal noise varies with beam shape, generalizing results for

semi-infinite, amorphous optics [35, 30, 31, 36, 71, 72] to crystalline optics of finite size.

Finally, realistic LIGO optics use multi-layer coatings; improved, high-accuracy meshes

could potentially enable our tool to explore the effects of multiple layers on the coating

thermal noise.
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