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Abstract The Lovász local lemma (LLL), introduced by

Erdős and Lovász in 1975, is a powerful tool of the prob-

abilistic method that allows one to prove that a set of n

“bad” events do not happen with non-zero probability, pro-

vided that the events have limited dependence. However,

the LLL itself does not suggest how to find a point avoid-

ing all bad events. Since the works of Alon (Random Struct

Algorithms 2(4):367–378, 1991) and Beck (Random Struct

Algorithms 2(4):343–365, 1991) there has been a sustained

effort to find a constructive proof (i.e. an algorithm) for the

LLL or weaker versions of it. In a major breakthrough Moser

and Tardos (J ACM 57(2):11, 2010) showed that a point

avoiding all bad events can be found efficiently. They also

proposed a distributed/parallel version of their algorithm that

requires O(log2 n) rounds of communication in a distributed

network. In this paper we provide two new distributed algo-
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rithms for the LLL that improve on both the efficiency and

simplicity of the Moser–Tardos algorithm. For clarity we

express our results in terms of the symmetric LLL though

both algorithms deal with the asymmetric version as well.

Let p bound the probability of any bad event and d be the

maximum degree in the dependency graph of the bad events.

When epd2 < 1 we give a truly simple LLL algorithm run-

ning in O(log1/epd2 n) rounds. Under the weaker condition

ep(d + 1) < 1, we give a slightly slower algorithm run-

ning in O(log2 d · log1/ep(d+1) n) rounds. Furthermore, we

give an algorithm that runs in sublogarithmic rounds under

the condition p · f (d) < 1, where f (d) is an exponen-

tial function of d. Although the conditions of the LLL are

locally verifiable, we prove that any distributed LLL algo-

rithm requires Ω(log∗ n) rounds. In many graph coloring

problems the existence of a valid coloring is established by

one or more applications of the LLL. Using our LLL algo-

rithms, we give logarithmic-time distributed algorithms for

frugal coloring, defective coloring, coloring girth-4 (triangle-

free) and girth-5 graphs, edge coloring, and list coloring.

Keywords Lovász local lemma · Distributed algorithms ·
Randomized algorithms · Coloring · Locality

1 Introduction

Consider a system P of independent random variables and

a set A of n bad events, where each A ∈ A depends solely

on some subset vbl(A) ⊆ P . For example, in a hypergraph

2-coloring instance, P represents the vertex colors and A the

events in which an edge is monochromatic. The dependency

graph GA = (A, {(A, B) | vbl(A)∩ vbl(B) �= ∅}) includes

edges between events if and only if they depend on at least

one common variable. Let Γ (A) be A’s neighborhood in GA
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and Γ +(A) = Γ (A) ∪ {A} be its inclusive neighborhood.

The (general, asymmetric) LLL states [14,41] that if there is

a function x : A → (0, 1) such that

Pr(A) ≤ x(A) ·
∏

B∈Γ (A)

(1 − x(B))

then Pr(
⋂

A∈A A) > 0, that is, there is a satisfying assign-

ment to the underlying variables in which no bad events occur.

The symmetric LLL is a useful corollary of the general LLL.

If p and d are such that Pr(A) ≤ p and |Γ (A)| ≤ d for all

A, and ep(d + 1) < 1, then Pr(
⋂

A∈A A) > 0. For example,

consider a hypergraph in which each edge contains k vertices

and intersects at most d < 2k−1/e − 1 other edges. Under

a uniformly random color assignment P → {red, blue} the

probability an edge is monochromatic is p = 2−(k−1), so

ep(d + 1) < 1. The symmetric LLL proves the existence

of a satisfying color assignment but does not yield an effi-

cient algorithm to find one. Beginning with Alon [1] and

Beck [7], a long line of research has sought to find efficient

(and ideally deterministic) algorithms for computing satis-

fying assignments [1,7,9,11,16–19,22,28,31–34,42]. Most

of these results required a major weakening of the standard

symmetric LLL constraint ep(d + 1) < 1. In many applica-

tions we consider, the bad events are that the sum of dΘ(1)

random variables deviates away from its expectation. So the

probability they are violated is often bounded by Chernoff-

type tail bounds, e.g. exp(−dΘ(1)).

In a relatively recent breakthrough, Moser and Tardos [33]

gave an algorithmic proof of the general asymmetric LLL,

with no weakening of the parameters. Their algorithm is sim-

ple though the analysis is not trivial. At initialization the

algorithm chooses a random assignment to the variables P .

Call an event A ∈ A violated if it occurs under the current

assignment to the variables. Let F ⊆ A be the set of violated

events. The algorithm repeatedly chooses some A ∈ F and

resamples the variables in vbl(A), until F = ∅.

The distributed LLL problem We consider Linial’s LOCAL

model [35] of distributed computation in which the distrib-

uted network is identical to the dependency graph. In other

words, each node A ∈ A hosts a processor, which is aware of

n, the degree bound d, and its neighborhood Γ (A). Compu-

tation proceeds in synchronized rounds in which each node

may send an unbounded message to its neighbors. Time is

measured by the number of rounds; computation local to

each node is free. Upon termination each node A must com-

mit to an assignment to its variables vbl(A) that is consistent

with its neighbors, i.e., the nodes must collectively agree on a

satisfying assignment to P avoiding all bad events. We con-

sider the LOCAL model because we will need to send the

assignment of vbl(A) in one message.

Moser and Tardos proposed a parallel version of their

resampling algorithm (Algorithm 1), which can easily be

implemented in the LOCAL model. Let GF be the graph

induced by the violated events F under the current variable

assignment. They proved that O(log1/ep(d+1) n) iterations of

Algorithm 1 suffice to avoid all bad events with probability

1 − 1/ poly(n), i.e., O(log n) iterations suffice if ep(d + 1)

is bounded away from 1.1 (For the sake of a simpler pre-

sentation we shall state many results in the symmetric LLL

language. Our algorithms and Moser–Tardos algorithm work

for the asymmetric LLL as well.) Moser and Tardos sug-

gested using Luby’s randomized MIS algorithm [27], which

runs in Θ(log n) rounds w.h.p. (which can also be achieved

by [2]), for a total running time of Θ(log n · log1/ep(d+1) n).

This is, intuitively, a very wasteful LLL algorithm since

nodes spend nearly all their time computing MISs rather

than performing resampling steps. For certain values of d

the running time can be improved by plugging in an MIS

algorithm running in O(d + log∗ n) time [5] or O(log2 d) +
exp(O(

√
log log n)) time w.h.p. [6].2 However, it is not pos-

sible to find an MIS in constant time. Kuhn, Moscibroda,

and Wattenhofer [23] gave an Ω
(

min
{ log d

log log d
,

√
log n

log log n

})

lower bound on the complexity of MIS and other symmetry-

breaking problems.

Initialize a random assignment to the variables P .

while F �= ∅ do

Compute a maximal independent set I in GF .

Resample each variable in vbl(I) =
⋃

A∈I
vbl(A).

end while

Algorithm 1: The Moser–Tardos parallel resampling algo-

rithm. Here F is the set of bad events occurring under the

current variable assignment and GF is the dependency graph

induced by F .

New results We give a new distributed LLL algorithm in the

Moser–Tardos resampling framework that avoids the com-

putation of MISs altogether. Due to its simplicity we are

happy to display the algorithm in its entirety. We assume

that nodes possess unique IDs, which could be assigned in

an adversarial manner. Let ΓF (A) be A’s neighborhood in

GF .

One can see that I is computed in one round: each node A

tells its neighbors whether A ∈ F under the current variable

assignment. Once A receives messages from all neighbors

it can determine if ID(A) is a local minimum in GF . We

prove that under the slightly stronger criterion epd2 < 1, this

1 Note that log1/ep(d+1) n could be sublogarithmic or superlogarithmic

depending on how close ep(d + 1) is to 0 or 1.

2 These MIS algorithms are significantly more complex than Luby’s

and use larger messages.
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Initialize a random assignment to the variables P

while F �= ∅ do

Let I = {A ∈ F | ID(A) = min{ID(B) | B ∈ Γ +
F

(A)}}
Resample vbl(I) =

⋃

A∈I
vbl(A).

end while

Algorithm 2: A simple distributed LLL algorithm

algorithm halts in O(log1/epd2 n) steps w.h.p. Most appli-

cations of the LLL satisfy the epd2 < 1 criterion, though

not all. We give another distributed LLL algorithm in the

resampling framework that finds a satisfying assignment in

O(log2 d ·log1/ep(d+1) n) time under the usual ep(d +1) < 1

criterion.

We show that faster algorithms exist when the condi-

tion ep(d + 1) < 1 is replaced by a stronger condition

p · f (d) < 1, where f (d) is a faster growing function

than e(d + 1). However, it is not clear whether there exists

f (d) so that the LLL can be solved in sublogarithmic time

in n, independent of d. Moser and Tardos observed that

any parallel algorithm in the resampling framework requires

Ω(log1/p n) resampling steps, even if the dependency graph

has no edges. We combine the resampling framework with a

locality approach to give an O(log n/ log log n) algorithm for

an exponential function f (d). On the other hand, we prove

that no constant time distributed LLL algorithm exists and

that the LLL for any f (d) requires Ω(log∗ n) time.

New applications Existential results in graph coloring [29]

(those taking the Rödl nibble approach) can often be phrased

as distributed algorithms in which each step succeeds with

some tiny but non-zero probability, as guaranteed by the LLL.

By using our distributed LLL algorithms we are able to solve

a number of graph coloring problems in O(log n) time or

faster.3 Some of these applications require minor changes to

existing algorithms while others are quite involved. Below

Δ is the maximum degree, and ε > 0 an arbitrarily small

parameter.

Frugal coloring A k-frugal vertex coloring is one in

which each color appears at most k times in the neigh-

borhood of any vertex. Pemmaraju and Srinivasan [36]

showed the existence of (Δ + 1)-colorings that are

O(log2 Δ/ log log Δ)-frugal, and proved that (log Δ ·
log n/ log log n)-frugal colorings could be computed in

O(log n) time. With some modifications to their proof

we show that a O(log2 Δ/ log log Δ)-frugal (Δ + 1)-

3 Suppose H is both the distributed network and the graph to be colored.

When invoking the LLL, the dependency graph GA is not identical to

H . Typically bad events in A are associated with H -vertices and two

bad events are adjacent in GA only if the corresponding vertices are at

distance O(1) in H . Thus, a distributed LLL algorithm for GA can be

simulated in H with an O(1) slowdown.

coloring can be computed in O(log n) time. Notice that

the best existential bound on the frugality for (Δ + 1)-

coloring is O(log Δ/ log log Δ) by Molloy and Reed

[30].

Hind, Molloy, and Reed [21] showed there exist β-frugal,

O
(

Δ
1+ 1

β
)

-colorings by using the asymmetric LLL. We

show how to turn their proof into a distributed algorithm

that runs in O(log n · log2 Δ) time.

Girth 4 and 5 In prior work [37] we proved that triangle-

free graphs have (4 + ε)Δ/ ln Δ-colorings and gave

log1+o(1) n time algorithms for (4 + ε)Δ/ ln Δ-coloring

triangle-free graphs and (1 + ε)Δ/ ln Δ-coloring girth-5

graphs. Here we prove that both problems can be solved

in O(log n) time.

Edge coloring Dubhashi et al. [12] gave a (1+ε)Δ edge-

coloring algorithm running in O(log n) time, provided

that Δ = (log n)1+Ω(1) is sufficiently large relative to n.

In [13], Elkin, Pettie, and Su applied our LLL algorithm

to show that (1 + ε)Δ edge-coloring can be obtained in

O(log∗ Δ + log n/Δ1−o(1)) rounds for Δ ≥ Δε , where

Δε is a sufficiently large constant depending on ε.

List-coloring Suppose each vertex is issued a list of

(1 + ε)D > Dε colors such that each color appears in

at most D lists in the neighborhood of any vertex, where

Dε is a sufficiently large constant depending on ε. (D

need not be close to the degree Δ.) Reed and Sudakov

[39] proved that (1 + ε)D-list-colorings exist. We show

how to construct them in O(log∗ D + log n/D1−o(1))

time. Furthermore, for any D and any constant ε > 0,

we show that (2e + ε)D list coloring can be solved in

O(log n) time.

Defective coloring An f -defective coloring is one in

which a vertex may share its color with up to f neighbors.

Barenboim and Elkin [4], and implicitly, Kuhn and Wat-

tenhofer [24] gave an O(1) time procedure to compute a

O(log n)-defective O(Δ/ log n)-coloring. We prove that

for any f > 0, an f -defective O(Δ/ f )-coloring can be

computed in O((log n)/ f ) time.

2 Preliminaries

Let Γ r (A) be the r -neighborhood of A (the set of nodes at

distance at most r from A, excluding A) and Γ r+(A) =
Γ r (A) ∪ {A} be its inclusive r -neighborhood. A node set in

the subscript indicates a restriction of the neighborhood to

that set, e.g., Γ 2+
F

(A) = Γ 2+(A) ∩ F .

Consider an execution of a Moser–Tardos-type resampling

algorithm. Let C : N → A be such that C(i) is the i th

event selected by the algorithm for resampling; C is called

the record of the execution. (If the algorithm selects events
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in independent batches then the events in each batch can

be listed arbitrarily.) A witness tree τ = (T, σT ) is a finite

rooted tree where σT : V (T ) → A labels each vertex in T

with an event such that the children of u ∈ T receive labels

from Γ +(σT (u)). A 2-witness tree τ = (T, σT ) is defined in

the same way except that the children of u ∈ T may receive

labels from Γ 2+(σT (u)). A witness tree (or 2-witness tree)

is proper if the children of a vertex receive distinct labels.

Given a record C , the witness tree τC (t) is constructed

as follows. First, create a root node labelled C(t). Looking

backward in time, for each i = t − 1, t − 2, . . . , 1, check if

an existing node is labeled with an event from Γ +(C(i)). If

so, let u be one of the deepest such nodes. Create a new node

v labeled C(i) and make it a child of u. Given a witness tree

τ , we say τ occurs in C if there exists an index t such that

τC (t) = τ . Moser and Tardos proved the following lemma:

Lemma 1 Let τ be a fixed witness tree and C be the record

produced by the algorithm.

1. If τ occurs in C , then τ is proper.

2. The probability that τ occurs in C is at most
∏

v∈V (τ )

Pr(σT (v)).

Similarly, for r ≥ 2, we can define an r -witness tree τ r
C (t)

in the same way except that in each step we attach a node

labelled C(i) to the deepest node among nodes labelled

Γ r+(C(i)). Also, we say τ r -occurs in C if there exists t ∈ N

such that τ r
C (t) = τ . Then Lemma 2 holds analogously:

Lemma 2 Let τ be a fixed r-witness tree and C be the record

produced by the algorithm.

1. If τ r -occurs in C , then τ is proper.

2. The probability that τ r -occurs in C is at most
∏

v∈V (τ )

Pr(σT (v)).

3 Algorithms

Recall that the parallel/distributed Moser–Tardos algorithm

iteratively selects maximal independent sets (MIS) of vio-

lated events for resampling. They proved that if there is some

slack in the general LLL preconditions then the algorithm

terminates in O(log n) rounds of MIS.

Theorem 1 (Moser and Tardos) Let P be a finite set of mutu-

ally independent random variables in a probability space. Let

A be a finite set of events determined by these variables. If

there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1 − ε)x(A)
∏

B∈Γ (A)

(1 − x(B)),

then the probability any bad event occurs after k resampling

rounds of Algorithm 1 is at most (1 − ε)k
∑

A∈A
x(A)

1−x(A)
.

In other words, if x(A) is bounded away from 1 then

O(log 1
1−ε

n) resampling rounds suffice, w.h.p. A distrib-

uted implementation of this algorithm takes O(log 1
1−ε

n ·
MIS(n, d)), where d is the maximum degree of GA and

MIS(n, d) is the time needed to find an MIS in an

n-vertex degree-d graph. It is known that MIS(n, d) =
Ω
(

min
{ log d

log log d
,

√
log n

log log n

})

[23]. Our algorithms avoid the

computation of MISs. In Sect. 3.1 we analyze the simple dis-

tributed LLL algorithm presented in the introduction, which

requires slightly weakening the general LLL conditions. In

Sect. 3.2 we present an algorithm that works for the standard

LLL conditions but is slower by a O(log2 d) factor.

3.1 A simple distributed algorithm

Recall that in each round of Algorithm 2, a violated event

A ∈ F is selected for resampling if ID(A) is a local mini-

mum in the violated subgraph GF . In order to analyze this

algorithm in the witness tree framework we must establish

some connection between the depth of witness trees and the

number of rounds of resampling. Lemma 3 will let us make

such a connection.

Lemma 3 Suppose an event A is resampled in round j > 1

of Algorithm 2. There must exist some B ∈ Γ 2+(A) resam-

pled in round j − 1.

Proof Let F ′ and F be the violated event sets just before and

after the resampling step at round j − 1. If A is not in F ′ but

is in F then its variables vbl(A) must have been changed in

round j −1, which could only occur if some B ∈ Γ (A) were

resampled. Now suppose A is in both F ′ and F . It was not

resampled in round j −1 but was in round j , meaning ID(A)

is not a local minimum in ΓF ′(A) but is a local minimum

in ΓF (A). This implies that some neighbor B ∈ Γ (A) with

ID(B) < ID(A) is in F ′ but not F , which could only occur

if some C ∈ Γ +(B) ⊆ Γ 2+(A) were resampled in round

j − 1. ��

We can now proceed to bound the number of rounds of

Algorithm 2 needed to find a satisfying assignment.

Theorem 2 (Asymmetric LLL) Let P be a finite set of mutu-

ally independent random variables in a probability space. Let

A be a finite set of events determined by these variables. If

there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1 − ε)x(A)
∏

B∈Γ 2(A)

(1 − x(B)),

then the probability any bad event occurs after k resampling

rounds of Algorithm 2 is at most (1 − ε)k
∑

A∈A
x(A)

1−x(A)
.
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Note the difference with Theorem 1 is that the product is over

all B ∈ Γ 2(A) not B ∈ Γ (A).

Corollary 1 (Symmetric LLL) Let P be a finite set of mutu-

ally independent random variables in a probability space.

Let A be a finite set of events determined by these variables,

such that for all A ∈ A

1. Pr(A) ≤ p < 1, and

2. A shares variables with at most d of the other events.

If epd2 < 1, then w.h.p. none of the bad events occur after

O(log 1

epd2
n) rounds of Algorithm 2.

Proof Setting x(A) = 1/d2 and ε = 1 − epd2 in Theorem

2, we have

(1 − ε)x(A)
∏

B∈Γ 2(A)

(1 − x(B))

≥
1 − ε

d2
·
(

1 −
1

d2

)|Γ 2(A)|

≥
1 − ε

d2

(

1 −
1

d2

)(d2−1)

≥
1 − ε

ed2
≥ p ≥ Pr(A).

Therefore, the probability a bad event occurs after k rounds

of resampling is at most (1 − ε)k
∑

A∈A
x(A)

1−x(A)
= (1 −

ε)kn/(d2 − 1), which is 1/ poly(n) if k = O(log 1
1−ε

n) =
O(log 1

epd2
n). ��

Following Moser and Tardos [33] we analyze the follow-

ing Galton-Watson process for generating an r -witness tree

T . Fix an event A ∈ A. Begin by creating a root for T labelled

A. To shorten the notation, we let [v] := σT (v). In each sub-

sequent step, consider each vertex v created in the previous

step. For each B ∈ Γ r+([v]), independently, attach a child

labelled B with probability x(B) or skip it with probability

1−x(B). Continue the process until no new vertices are born.

We prove a lemma analogous to one in [33].

Lemma 4 Let τ be a fixed proper r-witness tree with its root

vertex labelled A. The probability pτ that the Galton-Watson

process yields exactly the tree τ is

pτ =
1 − x(A)

x(A)

∏

v∈V (τ )

x ′([v])

where x ′(B) = x(B) · 
C∈Γ r (B)(1 − x(C)).

Proof Let Wv ⊆ Γ r+([v]) denote the set of inclusive r -

neighbors of [v] that do not occur as a label of some child

node of v. Then,

pτ =
1

x(A)
·

∏

v∈V (τ )

⎛

⎝x([v]) ·
∏

u∈Wv

(1 − x([u])

⎞

⎠

=
1 − x(A)

x(A)
·

∏

v∈V (τ )

⎛

⎝
x([v])

1 − x([v])
·

∏

u∈Γ r+([v])
(1 − x([u]))

⎞

⎠

=
1 − x(A)

x(A)
·

∏

v∈V (τ )

⎛

⎝x([v]) ·
∏

u∈Γ r ([v])
(1 − x([u]))

⎞

⎠

=
1 − x(A)

x(A)
·

∏

v∈V (τ )

x ′([v])

��

Lemma 5 If for all A ∈ A, we have Pr(A) ≤ (1 − ε)x(A) ·
∏

B∈Γ r (A)(1−x(B)), then the probability that any r-witness

tree of size at least k occurs is at most (1−ε)k ·
∑

A∈A
x(A)

1−x(A)
.

Proof Let T r
A (k) denote the infinite set of r -witness trees

having root labelled A and containing at least k vertices. By

Lemma 2 and the union bound, the probability there exists a

violated event after k resampling rounds is at most

∑

A∈A

∑

τ∈T r
A (k)

Pr(τ r -occurs in C)

≤
∑

A∈A

∑

τ∈T r
A (k)

∏

v∈V (τ )

Pr([v]) by Lemma 2

≤
∑

A∈A

∑

τ∈T r
A (k)

∏

v∈V (τ )

(1 − ε)x ′([v])

≤ (1 − ε)k
∑

A∈A

x(A)

1 − x(A)

∑

τ∈T r
A (k)

pτ by Lemma 4

≤ (1 − ε)k
∑

A∈A

x(A)

1 − x(A)

The last inequality follows since the Galton-Watson process

grows exactly one tree. ��

Let C be the record of Algorithm 2 and S j be the segment

of the record corresponding to resamplings in round j . The

following lemma relates the number of resampling rounds

with the occurence of 2-witness trees.

Lemma 6 If there is still a violated event after k resampling

rounds in Algorithm 2 then some 2-witness tree of size at

least k occurs in C.

Proof Let Ak be any event in Sk and t be its position in the

record C . By Lemma 3 there exist events Ak−1, . . . , A1 in

123



266 K.-M. Chung et al.

Sk−1, · · · , S1 such that for all j < k, A j ∈ Γ 2+(A j+1).

This implies that Ak−1, . . . , A1 are mapped to distinct nodes

in the 2-witness tree τC (t), whose root is labeled Ak . ��

Therefore, by Lemma 6, if there is a violated event after

k resampling rounds, then a 2-witness tree of size at least k

occurs. However, by Lemma 5, it happens with probability at

most (1 − ε)k ·
∑

A∈A
x(A)

1−x(A)
. Thus, Theorem 2 holds. Note

that if x(A) is bounded away from 1, then after O(log 1
1−ε

n)

rounds, w.h.p. no bad event occurs.

3.2 Resampling by weak MIS

In this section we analyze the efficiency of Moser and

Tardos’s Algorithm 1 when a new weak MIS procedure

(Algorithm 3) is used in lieu of an actual MIS. The Weak-

MIS procedure produces, in O(log2 d) time, an independent

set S such that the probability that a node is not in Γ +(S) =
S ∪ Γ (S) is 1/ poly(d). The procedure consists of O(log d)

iterations where the probability that a vertex avoids Γ +(S) is

constant per iteration. Each iteration consists of log d phases

where, roughly speaking, the goal of phase i is to eliminate

vertices with degree at least d/2i with constant probability.

Each phase is essentially one step of Luby’s MIS algorithm,

though applied only to a judiciously chosen subset of the

vertices. See Algorithm 3.

Our main results are as follows.

Theorem 3 (Asymmetric LLL) Let P be a finite set of mutu-

ally independent random variables in a probability space. Let

A be a finite set of events determined by these variables. If

there exists an assignment of reals x : A → (0, 1) such that

∀A ∈ A : Pr(A) ≤ (1 − ε)x(A)
∏

B∈Γ (A)

(1 − x(B)),

then the probability any bad event occurs after k resampling

rounds using the Weak-MIS algorithm is at most n( 1
d+1

)k +
(1 − ε)k/2

∑

A∈A
x(A)

1−x(A)
.

Corollary 2 (Symmetric LLL) Let P be a finite set of mutu-

ally independent random variables in a probability space.

Let A be a finite set of events determined by these variables,

such that for ∀A ∈ A,

1. Pr(A) ≤ p < 1, and

2. A shares variables with at most d of the other events.

If ep(d + 1) < 1, then w.h.p. none of the bad events occur

after O(max(logd+1 n, log 1
ep(d+1)

n)) Weak-MIS resampling

rounds.

Corollary 2 follows directly by plugging in x(A)=1/(d+1)

for all A ∈ A and k = O
(

max
(

logd+1 n, log 1
ep(d+1)

n
))

.

Notice that if 1
ep(d+1)

> d +1, we can apply the faster simple

distributed algorithm, so the running time in Corollary 2 will

be dominated by O(log 1
ep(d+1)

n · log2 d).

S ← ∅
for iteration 1 . . . , t = 4e2 ln(2e(d + 1)4) do

G ′ ← GF \ Γ +(S)

for phase i = 1 . . . �log d� do

Vi ← {v ∈ G ′ | degG′ (v) ≥ d/2i }.
For each vertex v ∈ G ′, set

b(v) ←
{

1 with probability pi = 1/( d
2i−1 + 1)

0 otherwise

For each vertex v ∈ G ′, if b(v) = 1 and b(w) = 0 for all w ∈
ΓG′ (v), set S ← S ∪ {v}.
G ′ ← G ′ \ (Γ +(S) ∪ Vi ) (i.e., remove both Γ +(S) and Vi from

G ′.)
end for

Let S′ be the (isolated) vertices that remain in G ′.
Set S ← S ∪ S′

end for

return S

Algorithm 3: Weak-MIS

Consider the first iteration of the Weak-MIS algorithm.

For each phase i , G ′ is the subgraph of GF containing

vertices with degree at most d/2i and not adjacent to the

independent set S. Let Vi = {v ∈ G ′ | degG ′(v) ≥ d/2i }.
Note that every vertex in GF must end up isolated in S′

or one of the Vi ’s. Let (u, v) be an edge in G ′. Following

Peleg’s analysis [35], define E(u, v) to be the event that at

phase i , b(u) = 0 and b(v) = 1 and for all other neighbors x

of u and v, b(x) = 0. Define E(u) =
⋃

v∈ΓG′ (u) E(u, v)

to be the event that exactly one neighbor joins S in this

phase. Since these events are disjoint, we have Pr(E(u)) =
∑

v∈ΓG′ (u) Pr(E(u, v)).

Lemma 7 If v ∈ Vi , then Pr(E(u)) ≥ 1
4e2 .

Proof Pr(E(u, v)) ≥ pi (1 − pi )
degG′ (u)+degG′ (v) ≥ pi (1 −

pi )
2d/2i−1 ≥ pi e

−2. Since degG ′(u) ≥ d/2i , Pr(E(u)) ≥
d
2i pi e

−2 ≥ 1
4e2 ��

Therefore, if v ∈ GF \Γ +(S) at the beginning of iteration

l, the probability that v ∈ Γ +(S) at the end of iteration l is

at least 1/(4e2). We say a vertex in GF fails if, after all

t = 4e2 ln(2e(d + 1)4) iterations, it is still not in Γ +(S).

Lemma 8 Let S be an independent set selected by Weak-

MIS. If v ∈ F then Pr(Γ +(v) ∩ S = ∅) ≤ 1
2e(d+1)4 .

Proof By Lemma 7, the probability that v survives iteration

� conditioned on it surviving iterations 1 through � − 1 is

at most 1 − 1/(4e2). Over t = 4e2 ln(2e(d + 1)4) itera-

tions the probability of failure is at most (1 − 1/(4e2))t ≤
e− ln(2e(d+1)4) = 1

2e(d+1)4 . ��
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The next step is to relate the number of rounds of Weak-

MIS resampling with the size of witness trees.

Lemma 9 Suppose a bad event is violated after k rounds of

Weak-MIS resampling and the maximum depth of the witness

trees is t , then there exists a sequence of not necessarily

distinct vertices v1, . . . , vk such that the following hold:

(1) vi ∈ Gi , where Gi is the violated subgraph GF at the

beginning of round i .

(2) vi+1 ∈ Γ +(vi ) for 1 ≤ i ≤ k − 1.

(3) For at least k − t indices 1 < l ≤ k, vl failed in the call

to Weak-MIS in round l − 1.

Proof For 1 ≤ i ≤ k, let Si be the segment of the record

C corresponding to events resampled at round i . Suppose

that an event A is violated after k resampling rounds. Build a

witness tree τ with root labeled A, adding nodes in the usual

fashion, by scanning the record C in time-reversed order. For

each j , in decreasing order, attach a node labelled C( j) to the

deepest node in τ whose label is in Γ +(C( j)), if such a node

in τ exists. Let vk+1 = A. We will build vk, vk−1, . . . , v1 in

backward manner. For k ≥ i ≥ 1, we claim there is an event

vi ∈ Γ +(vi+1) such that either vi ∈ Si or vi ∈ Gi and vi

failed at round i . If vi+1 /∈ Gi is not violated at the beginning

of round i , then it must be the case that there exists an event

vi ∈ Γ +(vi+1) resampled at round i to cause vi+1 ∈ Gi+1.

On the other hand, if vi+1 ∈ Gi is violated at the beginning

of round i , then either there exists vi ∈ Γ +(vi+1) resampled

at round i or vi+1 failed at round i . In the latter case, we let

vi = vi+1. Notice that τ (excluding its artificial root labeled

A) is a witness that occured and thus has depth at most t .

Since in each of the k rounds, either the depth of our witness

tree grows or a vertex fails, at least k − t vertices must have

failed in their respective rounds. ��

Notice that the total possible number of sequences sat-

isfying (2) in Lemma 9 is at most n(d + 1)k−1. Given

a sequence of vertices P = (v1, . . . , vk) satisfying (2),

define X
(i)
P to be 1 if vi ∈ Gi and vi failed, 0 oth-

erwise. Let X P =
∑k

i=1 X
(i)
P . If a sequence satisfying

(1–3) occured, then there exists P such that X P ≥ k − t .

Since X
(1)
P , . . . , X

(i−1)
P are determined by S1, . . . , Si−1 and

G1, . . . , Gi−1, E(X
(i)
P | X

(1)
P , . . . , X

(i−1)
P ) = E(X

(i)
P |

S1, . . . , Si−1, G1, . . . , Gi−1) ≤ q
def= 1

2e(d+1)4 by Lemma

8. Fixing t = k/2, we have k − t = k/2 = kq · e(d + 1)4 ≤
E[X P ] · e(d + 1)4. By Lemma 19 (Conditional Chernoff

Bound):

Pr(X P ≥ k/2) ≤

⎛

⎝
ee(d+1)4−1

(

e(d + 1)4
)e(d+1)4

⎞

⎠

k

2e(d+1)4

≤
(

1

(d + 1)2

)k

.

By the union bound over all possible P satisfying (2), the

probability that any such sequence in Lemma 9 occurs is at

most

n (d + 1)k−1 ·
(

1

(d + 1)2

)k

≤ n ·
(

1

d + 1

)k

.

Moser and Tardos showed that the probability that any

witness tree of size at least t occurs is at most (1 −
ε)t

∑

A∈A
x(A)

1−x(A)
. Thus, either a witness tree of depth at

least t = k/2 occurs or there exists a sequence of ver-

tices (as in Lemma 9) such that t − k = k/2 of them

failed. The probability either of these occurs is at most

n ·
(

1
d+1

)k

+ (1 − ε)k/2
∑

A∈A
x(A)

1−x(A)
by the union bound.

3.3 A sublogarithmic algorithm

We have seen a faster algorithm for LLL when the general

condition ep(d + 1) < 1 is replaced by a stronger condition

p · f (d) < 1, where f (d) is a faster growing function than

e(d + 1). The question of how fast we can do for a stronger

condition arises. Does there exist a sublogarithmic algorithm

for faster growing f (d), independently of n? We answer this

affirmatively for an exponential function of d.

Inspired by [3], our approach is a two-stage approach. In

the first stage, we run Algorithm 2 for k(n) rounds. Then we

identify the dangerous events, who are likely to become vio-

lated if some subset of its neighborhood is resampled. We will

show there is a feasible solution by re-assigning the variables

belonging to dangerous events. Moreover, we show the com-

ponents induced by the dangerous events are likely to have

weak diameter at most k(n). The weak diameter of a com-

ponent is the maximum distance w.r.t. the original graph of

any pair in the component. In the second stage, each compo-

nent of dangerous events computes the answer independent

of others in time proportional to its weak diameter.

Theorem 4 (Asymmetric LLL) Let Pr(A) ≤ P2(A) ≤ 1

and P1(A) = 2d · Pr(A)
P2(A)

, where d is the maximum degree of

the dependency graph. If there exists an assignments of reals

x1, x2 : A → (0, 0.99] such that for all A ∈ A

1. P1(A) ≤ (1 − ε)x1(A)
∏

B∈Γ 3(A)(1 − x1(B))

2. P2(A) ≤ x2(A)
∏

B∈Γ (A)(1 − x2(B))
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then the LLL problem can be solved in O
(

log1/(1−ε) n/ log

log1/(1−ε) n
)

rounds.

Proof Sketch of Theorem 4. Given an assignment of each

variables, we will classify the vertices into safe vertices and

dangerous vertices. An event A is safe if the probability A

becomes violated when any subset of its neighbors resam-

ple is at most P2(A). In contrast, the dangerous vertices are

those where there exists a subset of neighbors whose resam-

pling will cause it to be violated with probability greater than

P2(A).

Using conditional probability, we can bound the probabil-

ity that a vertex becomes dangerous after a random sampling

of vbl(A) by P1(A) = 2d Pr(A)/P2(A) (Lemma 10). Using

Cond. 1 in Theorem 4, we show in Lemma 11 that after

we resample dangerous vertices using the simple distrib-

uted algorithm for k rounds, if there exists a dangerous

component whose weak diameter is at least k, then a 3-

witness tree of size Ω(k log k) would occur. When k =
Θ(log n/ log log n), a 3-witness tree of size O(log n) would

occur, which happens with probability at most 1/ poly(n).

Therefore, with high probability, after O(log n/ log log n)

rounds of resampling, the weak diameters of the danger-

ous components are bounded by O(log n/ log log n). Finally,

a feasible assignment for a dangerous component can be

found in O(log n/ log log n) rounds locally, independent of

other dangerous components, which can be argued using

Cond. 2 in Theorem 4 and the definition of dangerous ver-

tices.

Proof (Proof of Theorem 4) Fix ∅ ⊆ D ⊆ Γ (A), let TD

denote the set of assignments b for vbl(A)\vbl(D) such that

b ∈ TD iff when the variables in vbl(A) \ vbl(D) are fixed

to be equal to b, the probability A becomes violated after

sampling variables in vbl(D) exceeds P2(A), that is,

TD = {b | Pr(A | vbl(A) \ vbl(D) = b) > P2(A)}

Given an assignment of the variables of A, we call A

“dangerous” if there exists ∅ ⊆ D ⊆ Γ (A) such that

vbl(A) \ vbl(D) ∈ TD. Otherwise, A is “safe”. Notice that if

A is violated then A is also dangerous, if we choose D = ∅.

��

Lemma 10 The probability that A becomes dangerous after

(re)sampling vbl(A) is at most P1(A).

Proof By the union bound over each subset of neighbors,

the probability that A becomes dangerous after sampling or

resampling variables in vbl(A) is at most

∑

∅⊆D⊆Γ (A)

Pr(vbl(A) \ vbl(D) ∈ TD)

=
∑

∅⊆D⊆Γ (A)

∑

b∈TD

Pr(vbl(A) \ vbl(D) = b)

=
∑

∅⊆D⊆Γ (A)

∑

b∈TD

Pr(A ∩ (vbl(A) \ vbl(D) = b))

Pr(A | vbl(A) \ vbl(D) = b)

≤
∑

∅⊆D⊆Γ (A)

∑

b∈TD

Pr(A ∩ (vbl(A) \ vbl(D) = b))

P2(A)

≤
∑

∅⊆D⊆Γ (A)

Pr(A)

P2(A)

≤ 2d ·
Pr(A)

P2(A)
= P1(A).

��

For each A, we define a new event A′ to be that A

becomes violated after resampling the variables of the dan-

gerous events. Also, we let A′ to be the set of all new events.

If A is safe, then Pr(A′) ≤ P2(A) by definition of safe. If A

is dangerous, then Pr(A′) = Pr(A) ≤ P2(A). By the second

condition in Theorem 4, there exists x ′ : A′ → (0, 0.99] such

that Pr(A′) ≤ x ′(A′)
∏

B′∈Γ (A′)(1 − x ′(B ′)) for all A′ ∈ A′.
Therefore, by the standard asymmetric LLL, with non-zero

probability, no new events A′ ∈ A′ occur. This implies there

exists a feasible solution by reassigning only the variables of

the dangerous events.

Let E ′ ⊆ E be the edges having at least one endpoint that

is dangerous. Let G ′ be the graph induced by E ′. Each com-

ponent of G ′ can compute the feasible solution independent

of other components. (It is tempting to consider the com-

ponents induced by only the dangerous vertices. However,

when such components C1 and C2 are both adjacent to a safe

vertex u, we have to consider C1 and C2 simultaneously to

find an assignment that does not cause u to occur.)

Next we will show that the weak diameter of each com-

ponent in G ′ is bounded. Note that if the weak diameter of

each component in G ′ is at most D, then each component can

find the feasible solution in O(D) time. Each vertex will first

learn the topology up to distance D, which is possible in the

LOCAL model. Then the leader in each component (say the

vertex with the smallest ID) computes the feasible solution

locally and then broadcasts the solution back to other vertices

in the component.

Lemma 11 Suppose that the conditions in Theorem 4 hold,

and there exists a component of weak diameter at least k after

running k rounds of the simple distributed algorithm, then a

3-witness tree of size Ω(k log k) occurs.

Proof Suppose that there exists u, v in the same component

in G ′ and distG(u, v) = D ≥ k. Since u, v are connected

in G ′, there exists a shortest u-v path Puv of length at least
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D in G ′. Notice that there are no consecutive safe vertices

in Puv by the definition of G ′. Recall that Si is the set of

events resampled in round i . Let Lk+1 be the set of dangerous

vertices in Puv . Ideally, one would build |Lk+1| 2-witness

trees of depth k, each rooted at each vertex in Lk+1, and then

glue them together into a 3-witness tree of size k · |Lk+1|.
However, these 2-witness trees may overlap, so the final 3-

witness tree may be much smaller. In the following, we will

lower bound the size of the union of the 2-witness tree level

by level and show that the size of the final 3-witness tree can

be lower bounded.

For each dangerous vertex x in Puv (i.e. x ∈ Lk+1), define

Lk+1(x) = {x}. For 1 ≤ i ≤ k, define L i (x) inductively to

be the set of events sampled during round i that are within dis-

tance 2 to any events in L i+1(x). Define L i =
⋃

x∈Puv
L i (x).

For each 1 ≤ i ≤ k, we will show the size of L i is at least
D−2

4(k−i+1)+2
.

Notice that L i (x) must be non-empty, because by Lemma

3, for each k + 1 ≥ j > i and each vertex w j in L j , there

exists a vertex w j−1 ∈ S j−1 such that w j−1 ∈ Γ 2+(w j ).

Also, for all w ∈ L i (x), distG(x, w) ≤ 2(k − i + 1), since

by definition of L i (x), there exists a sequence of vertices

(x = vk+1, vk, . . . , vi = w) such that v′
i ∈ L i (x) for k+1 ≥

i ′ ≥ i and distG(vi ′+1, vi ′) ≤ 2 for k + 1 > i ′ ≥ i .

Let Puv = {x0, x1, . . . x|Puv |}. Let j = 0 if x0 is danger-

ous; otherwise x1 must be dangerous and we let j = 1. Repeat

the following procedure (see Fig. 1): Select any w ∈ L i (x j ).

Note that x j must be dangerous and L i (x j ) is well-defined.

Let x j ′ be the rightmost vertex in Puv such that w ∈ L i (x ′
j )

(it can be the case that j ′ = j). If x j ′+1 is dangerous, set

j ← j ′ + 1; otherwise x j ′+2 must be a dangerous vertex,

then we set j ← j ′ + 2. Repeat until j > |Puv| (Fig. 2).

|L i | must be lower bounded by the total number of itera-

tions l in the procedure above. We will show that we cannot

move too far in each iteration, otherwise we would have a

path shorter than distG(u, v) connecting u and v. Let Δt

be the difference of j at the beginning of iteration t and

xjPuv

Li(xj)

xj new xj

Fig. 1 An illustration of an iteration in the procedure for lower bound-

ing L i . The dashed lines are paths with length at most 2(k − i + 1). In

this iteration, the difference, Δ, between the new position and the old

position of j is 5. Therefore, if 2 · 2(k − i + 1)+ 2 < 5, then the detour

from x j to x ′
j via L i (x j ) would be shorter the distance between x j and

x ′
j on Puv

Li(x)

ysys−1ys−2 x

Fig. 2 An illustration showing that each resampled events in L i is in

the 3-witness tree rooted at ys . The vertices inside the boxes are the

independent set I . The dashed line is a sequence of vertices, where

adjacent vertices have distance at most 2. The arrow links denote two

vertices are within distance 3

at the end of iteration t . The procedure terminates only if
∑l

t=1 Δt ≥ |Puv| − 2 (the minus 2 came from the fact that

the first and the last vertex in Puv can be safe). Consider iter-

ation t , if Δt > 4(k − i + 1) + 2, it must reduce the distance

between u and v by at least Δt − 4(k − i + 1)− 2. However,

the total distance we can reduce is at most |Puv|− D, for oth-

erwise we would have a path connecting u and v with length

less D, contradicting with distG(u, v) = D. Therefore,

|Puv| − D ≥
l

∑

t=1

(Δt − 4(k − i + 1) − 2)

≥
(

l
∑

t=1

Δt

)

− (4(k − i + 1) − 2) l

≥ |Puv| − 2 − (4(k − i + 1) − 2) l

which implies

l ≥
D − 2

4(k − i + 1) − 2
≥

k − 2

4(k − i + 1) − 2
.

Next, we will show that we can glue all the resampled

events in L1, . . . , Lk into a single 3-witness tree. We select an

independent set I = {y1, . . . , ys} ⊆ Lk+1 by starting from

the leftmost vertex in Lk+1 and repeatedly selecting the first

non-adjacent vertex in Lk+1. Therefore, y j+1 is in distance

at most 3 from y j for 1 ≤ j < s. Also, each x j ∈ Lk+1 is

adjacent to at least one vertex in I . Since I is an independent

set, we can append y1, . . . , ys to our record artificially. We

claim that each node in L i for 1 ≤ i ≤ k corresponds to a

node in the 3-witness tree rooted at ys . For every node w in

L i , there must exist x ∈ Lk+1 such that w ∈ L i (x). Since x

is adjacent to some y j ∈ I , it implies w is in the 3-witness

tree rooted at y j . Finally, since y j is a node in the 3-witness

tree rooted at ys , w must also be a node in the 3-witness tree

rooted at ys . The 3-witness tree rooted at ys must have size

at least
∑k

i=1
k−2

4(k−i+1)−2
= Ω(k log k). ��
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By choosing k = Ω

(
log1/(1−ε) n

log log1/(1−ε) n

)

, if there exists a com-

ponent in G ′ with diameter at least k, then there exists a

3-witness of size at least Ω(log1/(1−ε) n) w.h.p. However, by

Condition 1 in Theorem 4 and by Lemma 5, the probability

that such a 3-witness tree occurs is at most 1/ poly(n). There-

fore, we can conclude that after O
(

log1/(1−ε) n

log log1/(1−ε) n

)

rounds,

the weak diameter of each component in G ′ is at most

O
(

log1/(1−ε) n

log log1/(1−ε) n

)

w.h.p. and the solution can be found in

time proportional to the weak diameter. This completes the

proof of Theorem 4. ��

Corollary 3 (Symmetric LLL) Suppose that for all A ∈ A,

Pr(A) ≤ p and A shares variables with at most d other events

in A. Let z = 4ep2dd4. If z < 1, then a satisfying assignment

can be found in O(log1/z n/ log log1/z n) rounds.

Proof (Proof of Collorary 3) For each A ∈ A, let P2(A) =
1

4d
≥ p ≥ Pr(A) and so P1(A) = 2d · Pr(A)

P2(A)
≤ 4pd2d . Let

x1(A) = 1/d3, x2(A) = 1/(2d) and 1−ε = 4ep2dd4. First,

we check that condition 1 in Theorem 4 holds

(1 − ε)x1(A)
∏

B∈Γ 3(A)

(1 − x1(A))

= 4ep2dd4 ·
1

ed3
·
(

1 −
1

d3

)|Γ 3(A)|

≥ 4ep2dd

(

1 −
1

d3

)d3−1

≥ 4p2dd = Pr(A).

Condition 2 also holds similarly,

x2(A)
∏

B∈Γ (A)

(1 − x2(A)) ≥
1

2d
·
(

1 −
1

2d

)d

=
1

2d
·

1

2
= P2(A).

��

3.4 Lower bound

Linial [26] proved that in an n-vertex ring, any distributed

(log(k) n)-coloring algorithm requires Ω(k) rounds of com-

munication, even if randomization is used. In particular,

O(1)-coloring a ring requires Ω(log∗ n) time. We prove that

Linial’s lower bound implies that even weak versions of the

Lovász local lemma cannot be computed in constant time.

Theorem 5 Let P , A, and GA be defined as usual. Let

d be the maximum degree of any vertex in GA, p =
maxA∈A Pr(A) be the maximum probability of any bad event,

and f : N → N be an arbitrarily quickly growing func-

tion, where f (d) ≥ e(d + 1). If p · f (d) < 1 then

Pr(
⋂

A∈A A) > 0. However, Ω(log∗ |A|) rounds of com-

munication are required for the vertices of GA to agree on a

point in
⋂

A∈A A.

The purpose of the function f is to show that our lower

bound is insensitive to significant weakening of the standard

criterion “ep(d + 1) < 1.” We could just as easily substitute

eed
p < 1 or any similar criterion, for example.

Proof Consider the following coloring procedure. Each ver-

tex in an n-vertex ring selects a color from {1, . . . , c}
uniformly at random. An edge is bad if it is monochromatic,

an event that holds with probability p = 1/c. Let A be the

dependency graph for these events having maximum degree

d = 2 and choose c to be (the constant) f (2) + 1, for any

quickly growing function f . It follows from the LLL that a

good c-coloring exists since p · f (2) < 1. However, by [26],

the vertices of GA require Ω(log∗ n − log∗ c) = Ω(log∗ n)

time to find a good c-coloring. ��

It is also possible to obtain conditional lower bounds

on distributed versions of the LLL. For example, the

best known randomized O(Δ)-coloring algorithm takes

exp(O(
√

log log n)) time [6], though better bounds are pos-

sible if Δ � log n [40]. If LLL could be solved in less than

exp(O(
√

log log n)) time then we could improve on [6], as

follows. Each vertex in G selects a color from a palette of

size c ≥ 2eΔ uniformly at random. As usual, an edge is

bad if it is monochromatic. The dependency graph of these

bad events corresponds to the line graph of G, which has

maximum degree d = 2Δ − 2. Since e(1/c)(d + 1) < 1, a

valid coloring can be found with one invocation of an LLL

algorithm. Therefore, if the result of [6] turns out to be tight,

then there is an exp(O(
√

log log n))) time lower bound of

for LLL.

4 Applications

The Lovász local lemma has applications in many coloring

problems, such as list coloring, frugal coloring, total coloring,

and coloring triangle-free graphs [29]. We give a few exam-

ples of constructing these colorings distributively. In these

applications, the existential bounds are usually achieved by

the so called “Rödl Nibble” method or the semi-random

method. The method consists of one or more iterations. Each

iteration is a random process and some local properties are

maintained in the graph. The properties depend on the ran-

domness within a constant radius. Each property is associated

with a bad event, which is the event that the property fails to

hold. The Lovász local lemma can then be used to show the

probability none of the bad events hold is positive, though

123



Distributed algorithms for the Lovász local lemma and graph coloring 271

it may be exponentially small in the size of the graph. This

probability can then be amplified in a distributed fashion

using a Moser–Tardos-type resampling algorithm. Notice

that we will need to find an independent set (e.g., an MIS

or Weak-MIS or set of events with locally minimal IDs) in

the dependency graph induced by the violated local prop-

erties. Since we assumed the LOCAL model, the violated

local properties can be identified in constant time and the

algorithms for MIS/Weak-MIS can be simulated with a con-

stant factor overhead, where each property is taken care by

one of the processors nearby (within constant distance). The

important point here is that the dependency graph and the

underlying distributed network are sufficiently similar so that

distributed algorithms on one topology can be simulated on

the other with O(1) slowdown. For a simple example, see

the defective coloring problem in the following subsection,

where the dependency graph is G2 (i.e. nodes are adjacent in

G2 iff they are within distance 2 in G).

Most applications of the LLL demand epd2 < 1 or even

weaker bounds. In this case, the efficient simple distributed

algorithm can be applied. (The local properties are often that

some quantities do not deviate too much from their expecta-

tions. Thus, the the failure probability of each local property

is often bounded via standard Chernoff-type concentration

inequalities.)

4.1 Distributed defective coloring

We begin with a simple single-iteration application that uses

the local lemma. Let φ : V → {1, 2, . . . , k} be a k-coloring.

Define defφ(v) to be the number of neighbors w ∈ N (v)

such that φ(v) = φ(w). The coloring φ is said to be f -

defective if maxv defφ(v) ≤ f . Barenboim and Elkin ([4],

Open Problem 10.7) raised the problem of devising an effi-

cient distributed algorithm for computing an f -defective

O(Δ/ f )-coloring. Note that this problem is equivalent to

partitioning the vertices into O(Δ/ f ) sets such that each set

induces a subgraph with maximum degree f .

To warm up, we give a simple procedure for obtaining an

f -defective O(Δ/ f )-coloring in O(log n/ f ) time w.h.p., for

f ≥ 60 ln Δ. Suppose each vertex colors itself with a color

selected from {1, 2, . . . , �2Δ/ f �} uniformly at random. For

every v ∈ N (u), let Xv be 1 if v is colored the same as

u, 0 otherwise. Let X =
∑

v∈N (u) Xv denote the number

of neighbors colored the same as v. Let Au denote the bad

event that X > f at u. Clearly, whether Au occurs is locally

checkable by u in one round. Moreover, the event Au only

depends on the the random choices of u’s neighbors. If Au

occured and is selected for resampling, the colors chosen by

u and its neighbors will be resampled. Since two events share

variables only if they are within distance two, the dependency

graph, GA, is G2. Therefore, GA has maximum degree d =
Δ2. Now we will calculate the probability that Au occurs. If

we expose the choice of u first, then Pr(Xv = 1) ≤ f/(2Δ)

and it is independent among other v ∈ N (u). Letting M =
f/2, we have E[X ] ≤ f/2 = M . By Lemma 18, Pr(X >

f ) ≤ e− f/6. Let Au denote the bad event that X > f at u.

Therefore, epd2 ≤ e−( f/6−1−4 ln Δ) ≤ e−( f/12), since f ≥
60 ln Δ. By using the simple distributed algorithm, it takes

O(log1/epd2 n) = O(log n/ f ) rounds to avoid the bad events

w.h.p.

Next, we show that there is a constant C > 0 such that

for any f ≥ C , an f -defective O(Δ/ f )-coloring can be

obtained in O(log n/ f ) rounds. For f < C , we can use the

(Δ + 1)-coloring algorithms to obtain 0-defective (proper)

(Δ+1)-colorings that runs in O(log n) rounds. Let Δ0 = Δ

and Δi = log3 Δi−1.

if f < 60 ln Δi−1 then

Each node in G ′ chooses a color from �(1 + 6Δ
−1/3
i ) · Δi−1

Δi
� colors

uniformly at random.

Let Au denote the event that more than Δi neighbors of u are colored

the same with u.

Run Algorithm 2 until no bad events Au occurs.

Let G j denote the graph induced by vertices with color j .

For j = 1 . . . , �(1 + 6Δ
−1/3
i ) · Δi−1

Δi
�, call defective-coloring(G j ,

i + 1) in parallel.

else

Obtain an f -defective, (2Δi−1/ f )-coloring for G ′.
end if

Algorithm 4: Defective-coloring(G ′, i)

An f -defective O(Δ/ f )-coloring in G can be obtained

by calling defective-coloring(G, 1), which is described in

Algorithm 4. The procedure defective-coloring(G ′, i) is

a recursive procedure whose halting condition is when

f ≥ 60 log Δi−1. When the condition occurs, we will

use the procedure described above to obtain an f -defective

(2Δi−1/ f )-coloring in G ′. Let l denote the total number of

levels of the recursion. The final color of node v is a vector

(c1, c2, . . . , cl), where ci denotes the color received by v at

level i . Clearly, such a coloring obtained by the procedure is

f -defective. The total number of colors used is:

⎛

⎝

∏

1≤i<l

(

1 + 6Δ
−1/3
i

)

·
Δi−1

Δi

⎞

⎠ ·
2Δl−1

f

= 2(Δ/ f ) ·
∏

1≤i<l

⎛

⎜
⎜
⎜
⎝

1 +
6

log log3 . . . log3 Δ
︸ ︷︷ ︸

i−1

⎞

⎟
⎟
⎟
⎠

= O(Δ/ f ).

Now we will analyze the number of rounds needed in each

level i . Suppose that each vertex colors itself with a color
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selected from {1, 2, . . . , �(1+6Δ
−1/3
i ) · Δi−1

Δi
�} uniformly at

random. For every v ∈ N (u), let Xv be 1 if v is colored the

same as u, 0 otherwise. Let X =
∑

v∈NG′ (u) Xv denote the

number of neighbors colored the same as v. Let Au denote

the bad event that X > Δi at u. The dependency graph GA

has maximum degree d = Δ2
i−1, because two events share

variables only if they are within distance two. If we expose

the choice of u first, then Pr(Xv = 1) ≤ Δi

Δi−1
· 1

1+6Δ
−1/3
i

and it is independent among other v ∈ NG ′(u). Since the

maximum degree of G ′ is Δi−1, E[X ] ≤ Δi · 1

1+6Δ
−1/3
i

. By

Chernoff Bound (Lemma 18),

Pr(Au) = Pr(X > Δi )

≤ Pr
(

X >

(

1 + 6Δ
−1/3
i

)

· E[X ]
)

≤ e−62Δ
−2/3
i ·E[X ]/3

≤ e−6Δ
1/3
i = e−6 ln Δi−1 .

Therefore, epd2 ≤ e− ln Δi−1 and so Algorithm 2 runs in

O(log n/ log Δi−1) rounds. The total number of rounds over

all levels is therefore

O

(

log n ·
(

1

log Δ
+

1

log log3 Δ
+ · · · +

1

log Δl−1
+

1

f

))

= O

(
log n

f

)

.

4.2 Distributed frugal coloring

A β-frugal coloring of a graph G is a proper vertex-coloring

of G such that no color appears more than β times in any

neighborhood. Molloy and Reed [29] showed the following

by using an asymmetric version of the local lemma:

Theorem 6 For any constant integer β ≥ 1, if G has max-

imum degree Δ ≥ ββ then G has a β-frugal proper vertex

coloring using at most 16Δ
1+ 1

β colors.

Here we outline their proof and show how to turn it into a

distributed algorithm that finds such a coloring in O(log n ·
log2 Δ) rounds. If β = 1, then simply consider the square

graph of G, which is obtained by adding the edges between

vertices whose distance is 2. A proper coloring in the square

graph is a 1-frugal coloring in G. Since the square graph

has maximum degree Δ2, it can be (Δ2 + 1)-colored by

simulating distributed algorithms for (Δ + 1)-coloring.

For β ≥ 2, let k = 16Δ
1+ 1

β . Suppose that each vertex

colors itself with one of the k colors uniformly at random.

Consider two types of bad events. For each edge uv, the

Type I event Au,v denotes that u and v are colored the same.

For each subset {u1, . . . , uβ+1} of the neighborhood of a

vertex, Type II event Au1,...,uβ+1 denotes that u1, . . . , uβ+1

are colored the same. If none of the events occur, then the

random coloring is a β-frugal coloring. For each Type I

event Au,v , Pr(Au,v) is at most 1/k. For each Type II event

Au1,...,uβ+1 , Pr(Au1,...,uβ+1) ≤ 1/kβ . For each bad event A,

let x(A) = 2 Pr(A). Notice that x(A) ≤ 1/2, we have:

x(A)
∏

B∈Γ (A)

(1 − x(B))

≥ x(A)
∏

B∈Γ (A)

exp (−x(B) · 2 ln 2)

{(1 − x) ≥ e−x ·2 ln 2 for x ≤ 1/2}

= x(A) · exp

⎛

⎝−2 ln 2 ·
∑

B∈Γ (A)

2 Pr(B)

⎞

⎠

Since A shares variables with at most (β +1)Δ Type I events

and (β + 1)Δ
(
Δ
β

)

Type II events,

∑

B∈Γ (A)

Pr(B) ≤ (β + 1)Δ ·
1

k
+ (β + 1)Δ

(
Δ

β

)

·
1

kβ

<
(β + 1)Δ

k
+

(β + 1)Δβ+1

β!kβ

=
β + 1

16Δ
1
β

+
β + 1

β!(16)β

< 1/8

for Δ ≥ ββ and β ≥ 2

Therefore,

x(A)
∏

B∈Γ (A)

(1 − x(B)) ≥ x(A) exp

(

−
ln 2

2

)

=
√

2 · Pr(A).

By letting 1 − ε = 1/
√

2 in Theorem 3, we need at most

O(log√
2 n) rounds of weak MIS resampling. In each resam-

pling round, we have to identify the bad events first. Type I

events Au,v can be identified by either u or v in constant num-

ber of rounds, where ties can be broken by letting the node

with smaller ID check it. If {u1, . . . , uβ+1} is in the neighbor-

hood of u, then the Type II event Au1,...,uβ+1 will be checked

by u. If {u1, . . . , uβ+1} is in the neighborhood of multiple

nodes, we can break ties by letting the one having the small-

est ID to check it. All Type II events in the neighborhood of u

can be identified from the colors selected by the neighbors of

u. Next we will find a weak MIS induced by the bad events in

the dependency graph. Each node will simulate the weak MIS

algorithm on the events it is responsible to check. Each round

of the weak MIS algorithm in the dependency graph can be

simulated with constant rounds. The maximum degree d of

the dependency graph is O((β+1)Δ
(
Δ
β

)

). Therefore, we need
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at most O(log n · log2 d) = O(log n · log2 Δ) rounds, since β

is a constant and (β + 1)Δ
(
Δ
β

)

≤ (β + 1)Δβ+1 = poly(Δ).

4.2.1 β-frugal, (Δ + 1)-coloring

The frugal (Δ + 1)-coloring problem for general graphs is

studied by Hind, Molloy, and Reed [21], Pemmaraju and

Srinivasan [36], and Molloy and Reed [30]. In particular,

the last one gave an upper bound of O(log Δ/ log log Δ)

on the frugality of (Δ + 1)-coloring. This is optimal up

to a constant factor, because it matches the lower bound of

Ω(log Δ/ log log Δ) given by Hind et al. [30]. However, it

is not obvious whether it can be implemented efficiently in a

distributed fashion, because they used a structural decom-

position computed by a sequential algorithm. Pemmaraju

and Srinivasan [36] showed an existential upper bound of

O(log2 Δ/ log log Δ). Furthermore, they gave a distributed

algorithm that computes an O
(

log Δ · log n
log log n

)

-frugal, (Δ +
1)-coloring in O(log n) rounds. We show how to improve it

to find a O(log2 Δ/ log log Δ)-frugal, (Δ+ 1)-coloring also

in O(log n) rounds.

They proved the following theorem:

Theorem 7 Let G be a graph with maximum vertex degreeΔ.

Suppose that associated with each vertex v ∈ V , there is a

palette P(v) of colors, where |P(v)| ≥ deg(v)+ 1. Further-

more, suppose |P(v)| ≥ Δ/4 for all vertices v in G. Then,

for some subset C ⊆ V , there is a list coloring of the vertices

in C such that:

(a) G[C] is properly colored.

(b) For every vertex v ∈ V and for every color x, there are

at most 9 · ln Δ
ln ln Δ

neighbors of v colored x.

(c) For every vertex v ∈ V , the number of neighbors of v

not in C is at most Δ(1 − 1
e5 ) + 27

√
Δ ln Δ.

(d) For every vertex v ∈ V , the number of neighbors of v in

C is at most Δ

e5 + 27
√

Δ ln Δ.

The theorem was obtained by applying the LLL to the fol-

lowing random process: Suppose that each vertex v has an

unique ID. Every vertex picks a color uniformly at random

from its palette. If v has picked a color that is not picked by

any of its neighbor whose ID is smaller than v, then v will

be colored with that color. Let qv denote the probability that

v becomes colored. Then, if v is colored, with probability

1 − 1/(e5qv), v uncolors itself. This ensures that the proba-

bility that v becomes colored in the process is exactly 1/e5,

provided that qv ≥ 1/e5, which they have shown to be true.

They showed by iteratively applying the theorem for

O(log Δ) iterations, an O(log2 Δ/ log log Δ)-frugal, (Δ +
1)-coloring can be obtained. Let Gi be the graph after round

i obtained by deleting already colored vertices and Δi be the

maximum degree of Gi . The palette P(u) for each vertex u

contains colors that have not been used by its neighbors. It

is always true that |P(v)| ≥ deg(v)+ 1. Notice that to apply

Theorem 7, we also need the condition |P(v)| ≥ Δ/4. The

worst case behavior of Δi and pi is captured by the recur-

rences:

Δi+1 = Δi

(

1 −
1

e5

)

+ 27
√

Δi ln Δi

pi+1 = pi −
Δi

e5
− 27

√

Δi ln Δi . (1)

They showed the above recurrence can be solved to obtain

the following bounds on Δi and pi :

Lemma 12 Let α = (1 − 1/e5). There is a constant C such

that for all i for which Δi ≥ C, Δi ≤ 2Δ0α
i and pi ≥ Δ0

2
αi .

Therefore, |P(v)| ≥ Δ/4 always holds. The two assump-

tions of Theorem 7 are always satisfied and so it can be

applied iteratively until Δi < C , which takes at most

log1/α

(
2Δ0

C

)

= O(log Δ) iterations. Since each iteration

introduces at most O(log Δ/ log log Δ) neighbors of the

same color to each vertex, the frugality will be at most

O(log2 Δ/ log log Δ). In the end, when Δi < C , one can

color the remaining graph in O(Δi + log∗ n) time using

existing (Δi + 1)-coloring algorithms [5]. This will only

add O(1) copies of each color to the neighborhood, yielding

a O(log2 Δ/ log log Δ)-frugal, (Δ + 1)-coloring. In order

to make it suitable for our simple distributed algorithm and

achieve the running time of O(log n), we will relax the cri-

teria of (b),(c),(d) in Theorem 7:

(b’) For every vertex v ∈ V and for every color x , there are

at most 18 · ln Δ0
ln ln Δ0

neighbors of v colored x .

(c’) For every vertex v ∈ V , the number of neighbors of v

not in C is at most Δ(1 − 1
e5 ) + 40

√
Δ ln Δ.

(d’) For every vertex v ∈ V , the number of neighbors of v

in C is at most Δ

e5 + 40
√

Δ ln Δ.

In (b’), Δ is replaced by Δ0, which is the maximum degree

of the initial graph. Also, the constant 9 is replaced by 18. In

(c’) and (d’), the constant 27 is replaced by 40 and
√

ln Δ is

replaced by ln Δ. It is not hard to see that Lemma 12 still holds

and an O(log2 Δ/ log log Δ)-frugal coloring is still obtain-

able. Originally, by Chernoff Bound and Azuma’s Inequality,

they showed

Pr

(

# neighbors of v colored x exceeds 9 ·
ln Δ

ln ln Δ

)

<
1

Δ6
(2)
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and

Pr

(∣
∣
∣
∣
Pv −

deg(v)

e5

∣
∣
∣
∣
> 27

√
Δ ln Δ

)

<
2

Δ4.5
(3)

where Pv is the number of colored neighbors of v. Theorem

7 can be derived from (2) and (3). The relaxed version (b’),

(c’), and (d’) can be shown to fail with a lower probability.

Pr

(

# neighbors of v colored x exceeds 18 ·
ln Δ0

ln ln Δ0

)

<
1

Δ12
0

(4)

and

Pr

(∣
∣
∣
∣
Pv −

deg(v)

e5

∣
∣
∣
∣
> 40

√
Δ ln Δ

)

<
2

Δ9 ln Δ
(5)

The bad event Av is when the neighbors of v colored x

exceeds 18 · ln Δ0
ln ln Δ0

for some color x or |Pv − deg(v)

e5 | >

40
√

Δ ln Δ happens. By (4), (5), and the union bound,

Pr(Av) ≤ (Δ + 1)/Δ12
0 +2/Δ9 ln Δ. In their random process,

they showed Av depends on variables up to distance two.

Thus, the dependency graph GA has maximum degree d

less than Δ4. Note that

epd2 = eΔ8((Δ + 1)/(2Δ12
0 ) + 2/Δ9 ln Δ)

≤ 1/(2Δ0) + 1/(2Δln Δ)

< 2 · max(1/(2Δ0), 1/(2Δln Δ))

= max(1/Δ0, 1/Δln Δ).

The number of resampling rounds needed is at most

O
(

log 1

epd2
n
)

, which is at most ln n

min
(

ln Δ0,ln2 Δ
) ≤ ln n

ln Δ0
+

ln n

ln2 Δ
. Therefore, the total number of rounds needed is at most:

c ln Δ0∑

i=1

(
ln n

ln Δ0
+

ln n

ln2 Δi

)

≤
c ln Δ0∑

i=1

(
ln n

ln Δ0
+

ln n

ln2(2Δ0αi )

)

= c ln Δ0 ·
ln n

ln Δ0
+

c ln Δ0∑

i=1

ln n

(ln Δ0 − i ln 1
α

+ ln 2)2

≤ c ln n + ln n · O

( ∞
∑

i=1

1

i2

)

= O(log n)

where c > 0 is some constant, and α = (1 − 1/e5).

4.3 Distributed triangle-free graphs coloring

Pettie and Su [37] gave a distributed algorithm for (Δ/k)-

coloring triangle-free graphs:

Theorem 8 Fix a constant ε > 0. Let Δ be the maximum

degree of a triangle-free graph G, assumed to be at least

some Δε depending on ε. Let k ≥ 1 be a parameter such

that 2ε ≤ 1 − 4k
ln Δ

. Then G can be (Δ/k)-colored, in time

O(k + log∗ Δ) if Δ1− 4k
ln Δ

−ε = Ω(ln n), and, for any Δ, in

time on the order of

eO(
√

ln ln n) · (k + log∗ Δ) ·
log n

Δ1− 4k
ln Δ

−ε
= log1+o(1) n.

The algorithm consists of O(k + log∗ Δ) iterations. For

each iteration i , a property Hi (u) is maintained at each ver-

tex u. If Hi−1(u) is true for all u in G, then after round

i , it is shown Hi (u) fails with probability at most p =
exp

(

−Δ1− 4k
ln Δ

−ε+Ω(ε)
)

, which is at most exp
(

−Δ1− 4k
ln Δ

−ε
)

/eΔ4 if Δ ≥ Δε , for some constant Δε . Note

that if Δ1− 4k
ln Δ

−ε = Ω(log n), then by union bound, with

high probability all Hi (u) holds. Otherwise, they revert to

the distributed constructive Lovász Local Lemma. Let Gi be

the subgraph of G induced by uncolored vertices. The event

Hi (u) shares random variables up to distance two from u

in Gi−1. The bad events A is made up with Au = E i (u)

for u ∈ Gi−1. Therefore, the dependency graph GA is G
≤4
i−1,

where (u, v) is connected if the distGi−1
(u, v) ≤ 4. The max-

imum degree d of GA is less than Δ4. By the Lovász Local

Lemma, since ep(d+1) < 1, the probability all Hi (u) simul-

taneously hold is positive. To achieve this constructively,

note that by Theorem 1, it requires O(log 1
1−ε

n) resampling

rounds, where 1−ε = ep(d+1) ≤ exp
(

−Δ1− 4k
ln Δ

−ε
)

. Each

resampling round involves finding an MIS. They showed in

the caseΔ1− 4k
ln Δ

−ε = O(log n),Δwill be at most polylog(n),

where faster MIS algorithms can be applied. Now we will

use the simple distributed algorithm presented in the pre-

vious section to resample without finding an MIS in each

resampling round. First, notice that with some larger con-

stant Δε , if Δ ≥ Δε , the failure probability p is at most

exp
(

−Δ1− 4k
ln Δ

−ε
)

/eΔ8. Since epd2 ≤ exp
(

−Δ1− 4k
ln Δ

−ε
)

,

by Corollary 1, w.h.p. none of the bad events happen after

O
(

log 1

epd2
n
)

= O
(

log n

Δ
1− 4k

ln Δ
−ε

)

resampling rounds of the

simple distributed algorithm, where each resampling round

takes constant time. As a result, the number of rounds is

reduced to O(log n).

Theorem 9 Fix a constant ε > 0. Let Δ be the maximum

degree of a triangle-free graph G, assumed to be at least

some Δε depending on ε. Let k ≥ 1 be a parameter such
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that 2ε ≤ 1 − 4k
ln Δ

. Then G can be (Δ/k)-colored, in time

O(k + log∗ Δ) if Δ1− 4k
ln Δ

−ε = Ω(ln n), and, for any Δ, in

time on the order of

(k + log∗ Δ) ·
log n

Δ1− 4k
ln Δ

−ε
= O(log n).

Similarly, the (1 + o(1))Δ/ log Δ-coloring algorithm for

girth-5 graphs in [37] can be obtained in O(log n) rounds

by replacing Moser and Tardos’ algorithm with the simple

distributed algorithm.

4.4 Distributed list coloring

Given a graph G, each vertex v is associated with a list (or

a palette) of available colors P(v). Let degc(v) denote the

number of neighbors w ∈ N (v) such that c ∈ P(w). Sup-

pose that degc(v) is upper bounded by D. The list coloring

constant is the minimum K such that for any graph G and any

palettes P(u) for u ∈ G, if |P(u)| ≥ K · D and degc(u) ≤ D

for every u ∈ G and every c ∈ P(u), then a proper color-

ing can be obtained by assigning each vertex a color from

its list. Reed [38] first showed the list coloring constant is at

most 2e by a single application of LLL. Haxell [20] showed

2 is sufficient. Later, Reed and Sudakov [39] used a multi-

ple iterations Rödl Nibble method to show the list coloring

constant is at most 1 + o(1), where o(1) is a function of

D. Reed’s upper bound of 2e can be made distributed and

constructive with a slightly larger factor, say 2e + ε for any

constant ε > 0. The LLL condition they need is close to

tight and so we will need to use the weak MIS algorithm.

The additional slack needed is due to the ε-slack needed in

distributed LLL (ep(d + 1) ≤ 1 − ε). The constructive algo-

rithm can be easily transformed from their proof. Here we

outline their proof: Suppose |P(v)| ≥ (2e + ε)D for all v.

Each vertex is assigned a color from its palette uniformly at

random. They showed that with positive probability, a proper

coloring is obtained. Let e = uv ∈ E , and c ∈ P(u)∩ P(v).

Define Ae,c to be the bad event that both u and v are assigned

c. Clearly, p = Pr(Ae,c) = 1/((2e + ε)D)2. Also, there

are at most (2e + ε)D2 events that depend on the color u

picks and at most (2e + ε)D2 events that depend on the

color v picks. The dependency graph has maximum degree

d = 2(2e + ε)D2 − 2. Since ep(d + 1) ≤ 2e/(2e + ε) is

upper bounded by a constant less than 1, we can construct

the coloring in O(log n · log2 D) rounds by using the weak

MIS algorithm.

In the following, we shall show that for any constants

ε, γ > 0, there exists Dε,γ > 0 such that for any D ≥
Dε,γ , any (1 + ε)D-list coloring instance can be colored

in O(log∗ D · max(1, log n/D1−γ )) rounds. The algorithm

consists of multiple iterations. Let Pi (u) and degi,c(u) be the

palette and the c-degree of u at end of iteration i . Also, at the

end of iteration i , denote the neighbor of u by Ni (u) and the

c-neighbor by Ni,c(u), which are the neighbors of u having

c in their palette. Suppose that each vertex u has an unique

ID, ID(u). Let N∗
i,c(u) denote the set of c-neighbors at the

end of iteration i having smaller ID than u. Let deg∗
i,c(u) =

|N∗
i,c(u)|.

1: G0 ← G

2: i ← 0

3: repeat

4: i ← i + 1

5: for each u ∈ Gi−1 do

6: (Si (u), Ki (u)) ← Select(u, πi , βi )

7: Set Pi (u) ← Ki (u) \ Si (N∗
i−1(u))

8: if Si (u)∩Pi (u) �= ∅ then color u with any color in Si (u)∩Pi (u)

end if

9: end for

10: Gi ← Gi−1 \ {colored vertices}
11: until

Algorithm 5: List-Coloring (G, {πi }, {βi })

1: Include each c ∈ Pi−1(u) in Si (u) independently with probability

πi .

2: For each c, calculate rc = βi /(1 − πi )
deg∗

i−1,c(u)
.

3: Include c ∈ Pi−1(u) in Ki (u) independently with probability rc.

4: return (Si (u), Ki (u)).

Algorithm 6: Select(u, πi , βi )

In each iteration i , each vertex will select a set of colors

Si (u) ⊆ Pi−1(u) and Ki (u) ⊆ Pi−1(u), which are obtained

from Algorithm 6. If a color is in Ki (u) and it is not in Si (v)

for any v ∈ N∗
i−1(u), then it remains in its new palette Pi (u).

Furthermore, if Si (u) contains a color that is in Pi (u), then

u colors itself with the color (in case there are multiple such

colors, break ties arbitrarily).

Given πi , the selecting probability for each vertex u to

include a color in Si (u), the probability that u /∈ Si (N∗
i−1(u))

is (1−πi )
deg∗

i−1,c(u)
. Define βi = (1−πi )

t ′i−1 , where t ′i−1 is an

upper bound on degi−1,c(u) for each vertex u and each color

c. Then rc = βi/(1−πi )
deg∗

i−1,c(u)
is always at most 1 and thus

it is a valid probability. Therefore, the probability that a color

c ∈ Pi−1(u) remains in Pi (u) is (1 − πi )
deg∗

i−1,c(u) · rc = βi .

As a result, the palette size shrinks by at most a βi factor in

expectation.

Suppose that p′
i is the lower bound on the palette size at

the end of iteration i . Then the probability that u remains

uncolored is upper bounded by the probability that any of

the colors in Pi (u) was not selected to be in Si (u). The prob-

ability is roughly (1−πi )
p′

i , which we will define it to be αi .

The slight inaccuracy comes from the fact that we are con-

ditioning on the new palette size |Pi (u)| is lower bounded

by p′
i . However, we will show the effect of this conditioning

only affects the probability by a small amount.
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Let p0 = (1 + ε) · D and t0 = D be the initial palette

size and upper bound on c-degree. In the following, pi and

ti are the ideal lower bound of the palette size and the ideal

upper bound of the c-degree at the end of each iteration i .

p′
i and t ′i are the approximation of pi and ti , incoporating

the errors from concentration bounds. K is a constant in the

selecting probability that depends on ε. T is the threshold on

the c-degree before we switch to a different analysis, since the

usual concentration bound does not apply when the quantity

is small. δ = 1/ log D is the error control parameter which

is set to be small enough such that (1 ± δ)i is 1 ± o(1) for

every iteration i .

πi = 1/(K t ′i−1 + 1) δ = 1/ log D

αi = (1 − πi )
p′

i βi = (1 − πi )
t ′i−1

pi = βi pi−1 ti = max(αi ti−1, T )

p′
i = (1 − δ)i pi t ′i = (1 + δ)i ti

K = 2 + 2/ε T = D1−0.9γ /2

Intuitively, we would like to have ti shrink faster than pi .

To ensure this happens, we must have α1 ≤ β1, which holds

under our setting of πi . As we will show, αi shrinks much

faster than βi as i becomes larger. Note that βi is at least a

constant, as

βi = (1 − 1/(K t ′i−1 + 1))t ′i−1

= (1 − 1/(K t ′i−1 + 1))(K t ′i−1)·(1/K )

≥ (e−1)1/K = e−1/K

since (1 − 1/(x + 1))x ≥ e−1.

Lemma 13 tr = T after at most r = O(log∗ D) iterations.

Proof We divide the iterations into two stages, where the

first stage consists of iterations i for which ti−1/pi−1 ≥
1/(1.1e2/K K ). During the first stage, we show that the ratio

ti/pi decreases by a factor of exp
(

−(1 − o(1)) ε2

4(1+ε)

)

in

every round.

ti

pi

=
αi

βi

ti−1

pi−1

= (1 − πi )
p′

i −t ′i−1 ·
ti−1

pi−1

defn. αi , βi

≤ exp
(

−πi · (p′
i − t ′i−1)

)

·
ti−1

pi−1

1 − x ≤ e−x

≤ exp

(

−(1 − o(1)) ·
1

K

(
pi

ti−1
− 1

))

·
ti−1

pi−1

defn. πi ,
p′

i

t ′i−1

= (1 − o(1))
pi

ti−1

≤ exp

(

−(1 − o(1)) ·
1

K

(
βi pi−1

ti−1
− 1

))

·
ti−1

pi−1

defn. pi

≤ exp

(

−(1 − o(1)) ·
1

K

(

e−1/K (1 + ε) − 1
)
)

·
ti−1

pi−1
pi−1/ti−1 ≥ (1 + ε)

≤ exp

(

−(1 − o(1)) ·
((1 − 1/K )(1 + ε) − 1)

K

)

·
ti−1

pi−1
e−x ≥ 1 − x

= exp

(

−(1 − o(1)) ·
ε2

4(1 + ε)

)

·
ti−1

pi−1

K = 2(1 + ε)/ε

Therefore, the first stage ends after at most (1 + o(1))
4(1+ε)

ε2 ln(1.1K e2/K ) iterations. Let j be the first iteration

when the second stage begins. For i > j , we show that 1/αi

has an exponential tower growth.

αi = (1 − πi )
p′

i

≤ exp

(

−(1 − o(1))
1

K
·

pi

ti−1

)

1 − x ≤ e−x

≤ exp

(

−(1 − o(1))
1

K
·
βi pi−1

ti−1

)

defn. pi

≤ exp

(

−(1 − o(1))
1

K
·
βi−1

αi−1
·
βi pi−2

ti−2

)

pi−1

ti−1
=

βi−1

αi−1

pi−2

ti−2

≤ exp

(

−(1 − o(1))
1

K
·

e−2/K

αi−1
·

pi−2

ti−2

)

βi ≥ e−1/K

≤ exp (−1/αi−1)

ti−2

pi−2
<

1

1.1K e2/K

Therefore, 1
α j+log∗ D+1

≥ ee··
·e

︸︷︷︸

log∗ D

≥ D, and so t j+log∗ D+1 ≤

max(α j+log∗ D+1 · D, T ) = T . ��

On the other hand, we show the bound on the palette size

remains large throughout the algorithm.

Lemma 14 p′
i = D1−o(1) for i = O(log∗ D).

Proof p′
i = (1 − δ)i pi ≥ (1 − δ)i

∏i
j=1 β j D ≥ (1 −

δ)i e−i/K D = (1 − o(1))D
− i

K log D · D = D1−o(1). ��
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In the following we shall show how to ensure that for each

iteration i the palette sizes are lower bounded by p′
i and the

c-degrees are upper bounded by t ′i . For convenience let Hi (u)

denote the event that |Pi (u)| ≥ p′
i and degi,c(u) ≤ t ′i for u

and c ∈ Pi−1(u). Let Hi denote the event that Hi (u) holds

for every u ∈ Gi .

Lemma 15 Suppose that Hi−1 holds, then Pr(|Pi (u)| <

(1 − δ)βi |Pi−1(u)|) < e−Ω(δ2 p′
i ).

Proof Consider a color c ∈ Pi−1(u). The probability that c

remains in Pi (u) is exactly βi . Since the event that c remains

in Pi (u) is independent among other colors, by a Chernoff

Bound, Pr(|Pi (u)| < (1 − δ)βi |Pi−1(u)|) < e−Ω(δ2 pi−1). ��

Lemma 16 Suppose that Hi−1 holds, then Pr(degi,c(u) >

(1+δ)·max(αi ·degi−1,c(u), T )) < e−Ω(δ2T )+D·e−Ω(δ2 p′
i ).

Proof Let x1, . . . xk ∈ Ni−1,c(u) be the c-neighbors of u,

ordered by their ID. Let E j denote the event that |Pi (x j )| ≥
p′

i , where Pr(E j ) < e−Ω(δ2 p′
i ) by Lemma 15.

Let X i denote the event that xi remains uncolored after

iteration i . Let X j denote the shorthand for (X1, . . . , X j ).

We will show that for any realization of X j−1, Pr(X j |
X j−1, E1, . . . , E j ) ≤ αi . Then we can apply Lemma 19,

which is a variant of Chernoff bound that works when con-

ditioning on a sequence of likely events.

Let U2 = Ni−1(Ni,c(u)) \ Ni,c(u) be the neighbors

of the c-neighbors excluding the c-neighbors themselves

(u ∈ U2 unless degi−1,c(u) = 0). First, notice that the events

X j−1 and E1 . . . , E j are functions of Si (U2), Si (x1), . . . ,

Si (x j−1), Ki (x1), . . . , Ki (x j ). Therefore, we can instead

show that under any realization of Si (U2), Si (x1), . . . ,

Si (x j−1), Ki (x1), . . . , Ki (x j ) subject to the eventsE1 . . . , E j

hold, Pr(X j | Si (U2), Si (x1), . . . , Si (x j−1), Ki (x1),

. . . , Ki (x j )) ≤ αi .

Obviously for any c′ ∈ Pi−1(x j ),

Pr(c′ ∈ Si (x j ) | Si (U2), Si (x1), . . . , Si (x j−1),

Ki (x1), . . . , Ki (x j )) = πi .

Therefore,

Pr(X j | Si (U2), Si (x1), . . . , Si (x j−1),

Ki (x1), . . . , Ki (x j ))

≤ (1 − Pr(c′ ∈ Si (x j ) | Si (U2), Si (x1), . . . , Si (x j−1),

Ki (x1), . . . , Ki (x j )))
|Pi (u)|

≤ (1 − πi )
p′

i = αi .

Therefore, by Lemma 19, Corollary 5, and by the fact that
∑

j Pr(E j ) ≤ D · e−Ω(δ2 p′
i ), we have Pr(degi,c(u) > (1 +

δ) ·max(αi ·degi−1,c(u), T )) ≤ e−Ω(δ2T ) + D · e−Ω(δ2 p′
i ). ��

Corollary 4 Suppose that Hi−1 holds, Pr(H i (u)) ≤ D ·
e−Ω(δ2T ) + 2D2 · e−Ω(δ2 p′

i ).

Proof By taking union bound over the event in Lemma 15

and the events in Lemma 16 over each c ∈ Pi−1(u), we get

the desired result. ��

Let r be the first iteration such that tr = T . If Hr holds,

then degr,c(u) ≤ t ′r ≤ (1 + δ)r tr ≤ (1 + o(1))tr ≤ 2T

for all u and c. Now we switch to the following analysis,

which shows the algorithm terminates in a constant number

of iterations. For i > r , we define t ′i = t ′i−1·
T
p′

i

. The definition

for the rest of parameters remain the same. By Lemma 14,

if D is large enough, we can assume that p′
i ≥ D1−0.8γ for

i = r + �1/(0.1γ )�, since r + �1/(0.1γ )� = O(log∗ D).

Then from the definition of t ′i , it shrinks to less than one in

� 1
0.1γ

� iterations, since T/p′
i ≤ D−0.1γ and t ′r+1/(0.1γ )

<

(D−0.1γ )�1/(0.1γ )� · t ′r < 1.

Now we will show that under this new definition of ti for

i > r , Hi (u) is likely to hold, provided that Hi−1 holds.

Lemma 17 Suppose that Hi−1 is true where i > r , then

Pr(degi,c(u) > t ′i ) < e−Ω(T ) + D · e−Ω(δ2 p′
i )

Proof Let x1, . . . xk ∈ Ni−1,c(u) be the c-neighbors of u,

ordered by their ID in the increasing order. Let E j denote the

event that |Pi (x j )| ≥ p′
i . Note that Pr(E j ) ≤ e−Ω(δ2 p′

i ).

As we have shown in the proof of Lemma 16, Pr(X j |
X j , E1, . . . , E j ) ≤ αi . Therefore,

Pr(degi,c(u) > t ′i )

= Pr

(

degi,c(u) >

(

t ′i−1

αi t
′
i−1

)

· αi t
′
i−1

)

Applying Lemma 19 and Corollary 5 with 1 + δ =
t ′i /(αi t

′
i−1), and noticing that αi degi−1,c(u) ≤ αi t

′
i−1, the

probability above is bounded by

≤ exp

(

−αi t
′
i−1

(

t ′i
αi t

′
i−1

ln
t ′i

αi t
′
i−1

−
(

t ′i
αi t

′
i−1

− 1

)))

+ De−Ω(δ2 p′
i )

≤ exp

(

−t ′i

(

ln
t ′i

αi t
′
i−1

− 1

))

+ De−Ω(δ2 p′
i )

= exp

(

−ti

(

ln

(
1

αi

)

− ln

(
et ′i−1

t ′i

)))

+ De−Ω(δ2 p′
i )
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≤ exp

(

−t ′i

(

(1 − o(1))
p′

i

K t ′i−1

− ln

(
et ′i−1

t ′i

)
))

+ De−Ω(δ2 p′
i ) ln

1

αi

= (1 − o(1))
p′

i

K t ′i−1

≤ exp

(

−
(

(1 − o(1))
T

K
− t ′i ln(eD)

))

+ De−Ω(δ2 p′
i ) defn. t ′i and t ′i−1/t ′i < D

≤ exp

(

−T

(
(1 − o(1))

K
−

t ′i−1

p′
i

ln(eD)

))

+ De−Ω(δ2 p′
i )

≤ exp

(

−T

(

(1 − o(1))
1

K
−

2 ln(eD)

D0.1γ

))

+ De−Ω(δ2 p′
i ) t ′i−1 p′

i ≤
2T

p′
i

≤
2

D0.1γ

≤ exp (−Ω(T )) + De−Ω(δ2 p′
i )

��

Suppose that Hi−1 holds, by taking the union bound

over all the events Pi (u) ≥ p′
i for all u ∈ Gi−1 and

Pr(degi,c(u) > t ′i ) for all u ∈ Gi−1 and all c ∈ Pi−1(u),

we get that Pr(H i (u)) ≤ D · e−Ω(T ) + 2D2 · e−Ω(δ2 p′
i ).

Therefore, we conclude that for each iteration i ≥ 1,

if Hi−1 holds, then Pr(H i (u)) ≤ D · exp(−Ω(δ2T )) +
2D2 · exp(−Ω(δ2 p′

i )) ≤ exp(−D1−0.95γ ) for large enough

D. Now we want to ensure that Hi holds for every itera-

tion i . If Hi−1 is true, then Pr(H i (u)) ≤ exp
(

−D1−0.95γ
)

.

If D1−γ ≥ log n, then each of the bad events occur with

probability at most 1/ poly(n). Since there are O(n) events,

by the union bound, Hi holds w.h.p. On the other hand,

if D1−γ ≤ log n, then we can use the LLL algorithm to

make Hi hold w.h.p. The probability of the failure events

are bounded by p = exp
(

−D1−0.95γ
)

. Each event depends

on at most d = O(Δ2) other events, since each event only

depends on the outcomes of the random variables in its neigh-

borhood. Therefore, epd2 ≤ exp(−D1−γ ) and we can apply

the simple LLL algorithm to make all the events hold w.h.p.

in O(log1/epd2 n) ≤ O(log n/D1−γ ) iterations.

By Lemma 13 and the fact that ti shrinks to 1 in a con-

stant number of iterations after i > r , the algorithm uses

O(log∗ D) iterations. Each iteration uses

max(1, O(log n/D1−γ )) rounds. The total number of rounds

is therefore O(log∗ D · max(1, O(log n/D1−γ ))).

5 Discussion

We gave distributed LLL algorithms under the conditions

p · f (d) < 1 for different functions f (d). When f (d) =
e(d + 1) that matches the general condition of LLL, our

weak-MIS resampling algorithm gives a running time of

O(log2 d ·log1/ep(d+1) n). Note that the weak-MIS algorithm

was later applied in local computation algorithms for comput-

ing MIS [25]. Recently, Ghaffari’s new MIS algorithm [15]

can compute a weak-MIS in O(log d) time, which improves

the overall running time for LLL to O(log d · log1/ep(d+1) n).

The lower bound we showed in this paper is Ω(log∗ n).

Very recently, Brandt et al. [8] obtained anΩ(log log n) lower

bound for LLL from the sinkless orientation problem and

the sinkless coloring problem in 3-regular graphs. Subse-

quently, Chang, Kopelowitz, and Pettie generalized [8] to

show an Ω(logd n) lower bound for deterministic LLL algo-

rithms and an Ω(logd log n) lower bound for randomized

LLL algorithms [10]. Note that the lower bounds they have

obtained requires f (d) to be upper bounded by 2d , while

ours allows it to grow unbounded.

Acknowledgements Thanks Mohsen Ghaffari for pointing out that by

iteratively applying LLL, the range of f can be improved fromΩ(log Δ)

to any positive integer for f -defective, O(Δ/ f )-colorings.

Appendix: Tools

Lemma 18 (Chernoff Bound) Let X1, . . . , Xn be indicator

variables such that Pr(X i = 1) = p. Let X =
∑n

i=1 X i .

Then, for δ > 0:

Pr(X ≥ (1 + δ) E[X ]) <

[
eδ

(1 + δ)(1+δ)

]E[X ]

Pr(X ≤ (1 − δ) E[X ]) <

[
eδ

(1 − δ)(1−δ)

]E[X ]

The two bounds above imply that for 0 < δ < 1, we have:

Pr(X ≥ (1 + δ) E[X ]) < e−δ2 E[X ]/3

Pr(X ≤ (1 − δ) E[X ]) < e−δ2 E[X ]/2.

Lemma 19 LetE1, . . . , En be (likely) events and X1, . . . , Xn

be indicator variables such that for each 1 ≤ i ≤ n and

X =
∑n

i=1 X i ,

max
X i−1

Pr(X i | X i−1, E1, . . . Ei ) ≤ p

where X i denotes the shorthand for (X1, . . . , X i ).
4 Then for

δ > 0:

Pr

(

(X > (1 + δ)np) ∩
(

⋂

i

Ei

))

≤
[

eδ

(1 + δ)(1+δ)

]np

4 We slightly abuse the notation that when conditioning on the ran-

dom variable X i , it means X i may take arbitrary values, whereas when

conditioning on the event Ei , it means that Ei happens.
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and thus by the union bound,

Pr(X > (1 + δ)np) ≤
[

eδ

(1 + δ)(1+δ)

]np

+
∑

i

Pr(Ei ).

Proof For now let us treat Ei as 0/1 random variables and let

E =
∏

i Ei . For any t > 0,

Pr

(

(X > (1 + δ)np) ∩
(

⋂

i

Ei

))

(6)

= Pr

((
n
∏

i=1

Ei

)

· exp(t X) > exp(t (1 + δ)np)

)

≤
E
[(∏n

i=1 Ei

)

· exp(t X)
]

exp(t (1 + δ)np)

=
E
[(∏n

i=1 Ei · exp(t X i )
)]

exp(t (1 + δ)np)
(7)

We will show by induction that

E

[(
k
∏

i=1

Ei exp(t X i )

)]

≤ (1 + p(et − 1))k

When k = 0, it is trivial that E[E] ≤ 1.

E

[(
k
∏

i=1

Ei exp(t X i )

)]

≤ E

[(
k−1
∏

i=1

Ei exp(t X i )

)

· E
[

Ek exp(t Xk) | X i−1, E1, . . . , Ek−1

]]

= E

[(
k−1
∏

i=1

Ei exp(t X i )

)

· Pr(Ek) · E
[

exp(t Xk) | X i−1, E1, . . . , Ek

]]

≤ E

[(
k−1
∏

i=1

Ei exp(t X i )

)

· E
[

exp(t Xk) | X i−1, E1, . . . , Ek

]]

= E

[(
k−1
∏

i=1

Ei exp(t X i )

)

·(1 + Pr(Xk | X i−1, E1, . . . , Ek)(e
t − 1))

]

≤ E

[(
k−1
∏

i=1

Ei exp(t X i )

)

· (1 + p(et − 1))

]

= E

[(
k−1
∏

i=1

Ei exp(t X i )

)]

· (1 + p(et − 1))

≤ (1 + p(et − 1))k

Therefore, by (6),

Pr

(

(X > (1 + δ)np) ∩
(

⋂

i

Ei

))

=
E[E ·

∏n
i=1 exp(t X i )]

exp(t (1 + δ)np)

≤
(1 + p(et − 1))n

exp(t (1 + δ)np)

≤
exp(np(et − 1))

exp(t (1 + δ)np)

=
[

exp(δ)

(1 + δ)1+δ

]np

.

The last equality follows from the standard derivation of

Chernoff Bound by choosing t = ln(1 + δ). ��

Corollary 5 Suppose that for any δ > 0,

Pr

(

(X > (1 + δ)np) ∩
(

⋂

i

Ei

))

≤
[

eδ

(1 + δ)(1+δ)

]np

then for any M ≥ np and 0 < δ < 1,

Pr

(

(X > np + δM) ∩
(

⋂

i

Ei

))

≤
[

eδ

(1 + δ)(1+δ)

]M

≤ e−δ2 M/3

Proof Without loss of generality, assume M = tnp for some

t ≥ 1, we have

Pr

(

(X > np + δM) ∩
(

⋂

i

Ei

))

≤
[

etδ

(1 + tδ)(1+tδ)

]np

=
[

eδ

(1 + tδ)(1+tδ)/t

]M

≤
[

eδ

(1 + δ)(1+δ)

]M

(∗)

≤ e−δ2 M/3 eδ

(1 + δ)(1+δ)
≤ e−δ2/3 for 0 < δ < 1

Inequality (*) follows if (1 + tδ)(1+tδ)/t ≥ (1 + δ)(1+δ), or

equivalently, ((1 + tδ)/t) ln(1 + tδ) ≥ (1 + δ) ln(1 + δ).

Letting f (t) = ((1 + tδ)/t) ln(1 + tδ) − (1 + δ) ln(1 + δ),

we have f ′(t) = 1
t2 (δt − ln(1 + δt)) ≥ 0 for t > 0. Since

f (1) = 0 and f ′(t) ≥ 0 for t > 0, we must have f (t) ≥ 0

for t ≥ 1. ��
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