Distrib. Comput. (2017) 30:261-280
DOI 10.1007/s00446-016-0287-6

@ CrossMark

Distributed algorithms for the Lovasz local lemma

and graph coloring

Kai-Min Chung' . Seth Pettie? - Hsin-Hao Su®

Received: 19 May 2016 / Accepted: 21 October 2016 / Published online: 21 November 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract The Lovész local lemma (LLL), introduced by
Erdés and Lovasz in 1975, is a powerful tool of the prob-
abilistic method that allows one to prove that a set of n
“bad” events do not happen with non-zero probability, pro-
vided that the events have limited dependence. However,
the LLL itself does not suggest how to find a point avoid-
ing all bad events. Since the works of Alon (Random Struct
Algorithms 2(4):367-378, 1991) and Beck (Random Struct
Algorithms 2(4):343-365, 1991) there has been a sustained
effort to find a constructive proof (i.e. an algorithm) for the
LLL or weaker versions of it. In a major breakthrough Moser
and Tardos (J ACM 57(2):11, 2010) showed that a point
avoiding all bad events can be found efficiently. They also
proposed a distributed/parallel version of their algorithm that
requires O (log® n) rounds of communication in a distributed
network. In this paper we provide two new distributed algo-

A preliminary version of this paper appeared in the 33rd Proceedings
of the ACM Symposium on Principles of Distributed Computing
(PODC). Pettie and Su are supported by NSF Grants CCF-0746673,
CCF-1217338, CNS-1318294, CCF-1514383, and a grant from the
US-Israel Binational Science Foundation. Part of the work was done
while visiting MADALGO at Aarhus University, supported by Danish
National Research Foundation Grant DNRF84. Chung was supported
by NSF Grants CNS-1217821, CCF-1214844, and R. Pass’s Sloan
Fellowship.

B Hsin-Hao Su
hsinhao @csail.mit.edu

Kai-Min Chung
kmchung @iis.sinica.edu.tw

Seth Pettie

pettie@umich.edu

Academia Sinica, Taipei, Taiwan

2 University of Michigan, Ann Arbor, MI, USA
3 MIT, Cambridge, MA, USA

rithms for the LLL that improve on both the efficiency and
simplicity of the Moser—Tardos algorithm. For clarity we
express our results in terms of the symmetric LLL though
both algorithms deal with the asymmetric version as well.
Let p bound the probability of any bad event and d be the
maximum degree in the dependency graph of the bad events.
When epd? < 1 we give a truly simple LLL algorithm run-
ning in O (log; /.42 n) rounds. Under the weaker condition
ep(d + 1) < 1, we give a slightly slower algorithm run-
ning in O(log’d - 1081 /¢p(a+1) 1) rounds. Furthermore, we
give an algorithm that runs in sublogarithmic rounds under
the condition p - f(d) < 1, where f(d) is an exponen-
tial function of d. Although the conditions of the LLL are
locally verifiable, we prove that any distributed LLL algo-
rithm requires £2(log*n) rounds. In many graph coloring
problems the existence of a valid coloring is established by
one or more applications of the LLL. Using our LLL algo-
rithms, we give logarithmic-time distributed algorithms for
frugal coloring, defective coloring, coloring girth-4 (triangle-
free) and girth-5 graphs, edge coloring, and list coloring.

Keywords Loviasz local lemma - Distributed algorithms -
Randomized algorithms - Coloring - Locality

1 Introduction

Consider a system P of independent random variables and
a set A of n bad events, where each A € A depends solely
on some subset vbl(A) € P. For example, in a hypergraph
2-coloring instance, P represents the vertex colors and .4 the
events in which an edge is monochromatic. The dependency
graph G 4 = (A, {(A, B) | vbl(A) Nvbl(B) # #}) includes
edges between events if and only if they depend on at least
one common variable. Let I"(A) be A’s neighborhood in G 4

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-016-0287-6&domain=pdf
http://orcid.org/0000-0003-3838-8349

262

K.-M. Chung et al.

and I'"(A) = I'(A) U {A} be its inclusive neighborhood.
The (general, asymmetric) LLL states [14,41] that if there is
a function x : A — (0, 1) such that

[T a-x®)

Bel (A)

Pr(A) = x(A) -

then Pr(() 4c.4 A) > 0, that is, there is a satisfying assign-
ment to the underlying variables in which no bad events occur.
The symmetric LLL is a useful corollary of the general LLL.
If p and d are such that Pr(A) < p and [I'(A)| < d for all
A,andep(d+1) < 1,thenPr((4c4 A) > 0. For example,
consider a hypergraph in which each edge contains k vertices
and intersects at most d < 271 /e — 1 other edges. Under
a uniformly random color assignment P — {red, blue} the
probability an edge is monochromatic is p = 2~%*=D_ 5o
ep(d + 1) < 1. The symmetric LLL proves the existence
of a satisfying color assignment but does not yield an effi-
cient algorithm to find one. Beginning with Alon [1] and
Beck [7], a long line of research has sought to find efficient
(and ideally deterministic) algorithms for computing satis-
fying assignments [1,7,9,11,16-19,22,28,31-34,42]. Most
of these results required a major weakening of the standard
symmetric LLL constraint ep(d + 1) < 1. In many applica-
tions we consider, the bad events are that the sum of ¢
random variables deviates away from its expectation. So the
probability they are violated is often bounded by Chernoft-
type tail bounds, e.g. exp(—d®D).

In arelatively recent breakthrough, Moser and Tardos [33]
gave an algorithmic proof of the general asymmetric LLL,
with no weakening of the parameters. Their algorithm is sim-
ple though the analysis is not trivial. At initialization the
algorithm chooses a random assignment to the variables P.
Call an event A € A violated if it occurs under the current
assignment to the variables. Let 7 C A be the set of violated
events. The algorithm repeatedly chooses some A € F and
resamples the variables in vbl(A), until 7 = .

The distributed LLL problem We consider Linial’s LOCAL
model [35] of distributed computation in which the distrib-
uted network is identical to the dependency graph. In other
words, each node A € A hosts a processor, which is aware of
n, the degree bound d, and its neighborhood I"(A). Compu-
tation proceeds in synchronized rounds in which each node
may send an unbounded message to its neighbors. Time is
measured by the number of rounds; computation local to
each node is free. Upon termination each node A must com-
mit to an assignment to its variables vbl(A) that is consistent
with its neighbors, i.e., the nodes must collectively agree on a
satisfying assignment to P avoiding all bad events. We con-
sider the LOCAL model because we will need to send the
assignment of vbl(A) in one message.

@ Springer

Moser and Tardos proposed a parallel version of their
resampling algorithm (Algorithm 1), which can easily be
implemented in the LOCAL model. Let G be the graph
induced by the violated events F under the current variable
assignment. They proved that O (log; /,,,(4+1) 1) iterations of
Algorithm 1 suffice to avoid all bad events with probability
1 — 1/ poly(n), i.e., O(logn) iterations suffice if ep(d + 1)
is bounded away from 1.' (For the sake of a simpler pre-
sentation we shall state many results in the symmetric LLL
language. Our algorithms and Moser—Tardos algorithm work
for the asymmetric LLL as well.) Moser and Tardos sug-
gested using Luby’s randomized MIS algorithm [27], which
runs in @ (logn) rounds w.h.p. (which can also be achieved
by [2]), for a total running time of ® (logn - 10g; /441y 1)-
This is, intuitively, a very wasteful LLL algorithm since
nodes spend nearly all their time computing MISs rather
than performing resampling steps. For certain values of d
the running time can be improved by plugging in an MIS
algorithm running in O (d + log* n) time [5] or O (log” d) +
exp(0 (y/Toglogn)) time w.h.p. [6].> However, it is not pos-
sible to find an MIS in constant time. Kuhn, Moscibroda,

and Wattenhofer [23] gave an Q Inll’l {] Olgoﬁ): T\ olglg(gn}
lower bound on the complexity of MIS and other symmetry-

breaking problems.

Initialize a random assignment to the variables P.
while F # () do
Compute a maximal independent set Z in G .
Resample each variable in vbl(Z) = |J 47 VbI(A).
end while

Algorithm 1: The Moser-Tardos parallel resampling algo-
rithm. Here F is the set of bad events occurring under the

current variable assignment and G r is the dependency graph
induced by F.

New results We give a new distributed LLL algorithm in the
Moser—Tardos resampling framework that avoids the com-
putation of MISs altogether. Due to its simplicity we are
happy to display the algorithm in its entirety. We assume
that nodes possess unique IDs, which could be assigned in
an adversarial manner. Let I'~(A) be A’s neighborhood in
Gr.

One can see that 7 is computed in one round: each node A
tells its neighbors whether A € F under the current variable
assignment. Once A receives messages from all neighbors
it can determine if ID(A) is a local minimum in G r. We
prove that under the slightly stronger criterion epd? < 1, this

! Note that 10g) /¢p(4-+1y 1t could be sublogarithmic or superlogarithmic
depending on how close ep(d + 1) is to 0 or 1.

2 These MIS algorithms are significantly more complex than Luby’s
and use larger messages.

Distributed algorithms for the Lovasz local lemma and graph coloring

263

Initialize a random assignment to the variables P

while 7 # () do
Let T = {A € 7 | ID(A) = min{ID(B) | B € '} (A)}}
Resample vbl(Z) = J 47 VDI(A).

end while

Algorithm 2: A simple distributed LLL algorithm

algorithm halts in O(logy .42 1) steps w.h.p. Most appli-
cations of the LLL satisfy the epd”> < 1 criterion, though
not all. We give another distributed LLL algorithm in the
resampling framework that finds a satisfying assignment in
(0] (log2 d~log1/ep(d+1) n) time under the usual ep(d+1) < 1
criterion.

We show that faster algorithms exist when the condi-
tion ep(d + 1) < 1 is replaced by a stronger condition
p - f(d) < 1, where f(d) is a faster growing function
than e(d + 1). However, it is not clear whether there exists
f(d) so that the LLL can be solved in sublogarithmic time
in n, independent of d. Moser and Tardos observed that
any parallel algorithm in the resampling framework requires
£2(log, ;, n) resampling steps, even if the dependency graph
has no edges. We combine the resampling framework with a
locality approach to give an O (log n/ log log n) algorithm for
an exponential function f(d). On the other hand, we prove
that no constant time distributed LLL algorithm exists and
that the LLL for any f(d) requires £2 (log* n) time.

New applications Existential results in graph coloring [29]
(those taking the Rodl nibble approach) can often be phrased
as distributed algorithms in which each step succeeds with
some tiny but non-zero probability, as guaranteed by the LLL.
By using our distributed LLL algorithms we are able to solve
a number of graph coloring problems in O (logn) time or
faster.’ Some of these applications require minor changes to
existing algorithms while others are quite involved. Below
A is the maximum degree, and € > 0 an arbitrarily small
parameter.

Frugal coloring A k-frugal vertex coloring is one in
which each color appears at most k times in the neigh-
borhood of any vertex. Pemmaraju and Srinivasan [36]
showed the existence of (A + 1)-colorings that are
O (log? A/ loglog A)-frugal, and proved that (log A -
log n/loglogn)-frugal colorings could be computed in
O (logn) time. With some modifications to their proof
we show that a O(log? A/ loglog A)-frugal (A + 1)-

3 Suppose H is both the distributed network and the graph to be colored.
When invoking the LLL, the dependency graph G 4 is not identical to
H. Typically bad events in A are associated with H-vertices and two
bad events are adjacent in G 4 only if the corresponding vertices are at
distance O(1) in H. Thus, a distributed LLL algorithm for G 4 can be
simulated in H with an O (1) slowdown.

coloring can be computed in O (logn) time. Notice that
the best existential bound on the frugality for (A + 1)-
coloring is O(log A/loglog A) by Molloy and Reed
[30].

Hind, Molloy, and Reed [21] showed there exist S-frugal,

O(AH%)-colorings by using the asymmetric LLL. We
show how to turn their proof into a distributed algorithm
that runs in O (logn - log? A) time.

Girth 4 and 5 In prior work [37] we proved that triangle-
free graphs have (4 + €)A/In A-colorings and gave
log!*t°(M p time algorithms for (4 4 €) A/ In A-coloring
triangle-free graphs and (1 +¢€)A/In A-coloring girth-5
graphs. Here we prove that both problems can be solved
in O (logn) time.

Edge coloring Dubhashi et al. [12] gave a (1 +¢€) A edge-
coloring algorithm running in O (logn) time, provided
that A = (logn)' W is sufficiently large relative to n.
In [13], Elkin, Pettie, and Su applied our LLL algorithm
to show that (1 + €)A edge-coloring can be obtained in
O(log* A + log n/Al"’(])) rounds for A > A., where
Ac is a sufficiently large constant depending on €.
List-coloring Suppose each vertex is issued a list of
(1 +€)D > D¢ colors such that each color appears in
at most D lists in the neighborhood of any vertex, where
D¢ is a sufficiently large constant depending on €. (D
need not be close to the degree A.) Reed and Sudakov
[39] proved that (1 4 €) D-list-colorings exist. We show
how to construct them in O(log* D + logn/D'~°M)
time. Furthermore, for any D and any constant € > O,
we show that (2e 4 €) D list coloring can be solved in
O (logn) time.

Defective coloring An f-defective coloring is one in
which a vertex may share its color with up to f neighbors.
Barenboim and Elkin [4], and implicitly, Kuhn and Wat-
tenhofer [24] gave an O (1) time procedure to compute a
O (log n)-defective O (A /logn)-coloring. We prove that
for any f > 0, an f-defective O(A/f)-coloring can be
computed in O ((logn)/f) time.

2 Preliminaries

Let I'" (A) be the r-neighborhood of A (the set of nodes at
distance at most r from A, excluding A) and I'"T(A) =
I'"(A) U {A} be its inclusive r-neighborhood. A node set in
the subscript indicates a restriction of the neighborhood to
that set, e.g., I'z7(A) = M+ (A) N F.

Consider an execution of a Moser—Tardos-type resampling
algorithm. Let C : N — A be such that C(i) is the ith
event selected by the algorithm for resampling; C is called
the record of the execution. (If the algorithm selects events

@ Springer

264

K.-M. Chung et al.

in independent batches then the events in each batch can
be listed arbitrarily.) A witness tree Tt = (T, or) is a finite
rooted tree where o7 : V(T) — A labels each vertex in T
with an event such that the children of u € T receive labels
from I't (o7 (1)). A 2-witness tree T = (T, or) is defined in
the same way except that the children of u € T may receive
labels from I"2F (o7 (1)). A witness tree (or 2-witness tree)
is proper if the children of a vertex receive distinct labels.
Given a record C, the witness tree t¢ (¢) is constructed
as follows. First, create a root node labelled C(¢). Looking
backward in time, foreachi =t —1,¢r — 2, ..., 1, check if
an existing node is labeled with an event from I' ™ (C (i)). If
so, let u be one of the deepest such nodes. Create a new node
v labeled C (i) and make it a child of u. Given a witness tree
T, we say T occurs in C if there exists an index ¢ such that
tc(t) = t. Moser and Tardos proved the following lemma:

Lemma 1 Let T be a fixed witness tree and C be the record
produced by the algorithm.

1. If v occurs in C, then t is proper.
2. The probability that T occurs in C is at most Hvev(r)
Pr(o7 (v)).

Similarly, for r > 2, we can define an r-witness tree 7, (¢)
in the same way except that in each step we attach a node
labelled C(i) to the deepest node among nodes labelled
I'"T(C(i)). Also, we say T r-occurs in C if there exists 1 € N
such that 7/ (1) = 7. Then Lemma 2 holds analogously:

Lemma 2 Let T be afixed r-witness tree and C be the record
produced by the algorithm.

1. If © r-occurs in C, then 7 is proper.
2. The probability that t r-occurs in C is at most Hvev(r)
Pr(o7 (v)).

3 Algorithms

Recall that the parallel/distributed Moser—Tardos algorithm
iteratively selects maximal independent sets (MIS) of vio-
lated events for resampling. They proved that if there is some
slack in the general LLL preconditions then the algorithm
terminates in O (log n) rounds of MIS.

Theorem 1 (Moser and Tardos) Let P be a finite set of mutu-
ally independent random variables in a probability space. Let
A be a finite set of events determined by these variables. If
there exists an assignment of reals x : A — (0, 1) such that

VA e A:Pr(A) < (1 —e€)x(A) H (1 —x(B)),
Bel'(A)

@ Springer

then the probability any bad event occurs after k resampling

rounds of Algorithm 1 is at most (1 — €)* D AcA ﬂ&x)

In other words, if x(A) is bounded away from 1 then
O(log 1_n) resampling rounds suffice, w.h.p. A distrib-

uted 1mplementat10n of this algorithm takes 0(log Ln:

MIS(n, d)), where d is the maximum degree of G A and
MIS(n,d) is the time needed to find an MIS in an
n-vertex degree-d graph. It is known that MIS(n,d) =

2 (min {1 Olgoﬁ)g T/ blg%% }) [23]. Our algorithms avoid the
computation of MISs. In Sect. 3.1 we analyze the simple dis-
tributed LLL algorithm presented in the introduction, which
requires slightly weakening the general LLL conditions. In
Sect. 3.2 we present an algorithm that works for the standard
LLL conditions but is slower by a O (log” d) factor.

3.1 A simple distributed algorithm

Recall that in each round of Algorithm 2, a violated event
A e F is selected for resampling if ID(A) is a local mini-
mum in the violated subgraph G . In order to analyze this
algorithm in the witness tree framework we must establish
some connection between the depth of witness trees and the
number of rounds of resampling. Lemma 3 will let us make
such a connection.

Lemma 3 Suppose an event A is resampled in round j > 1
of Algorithm 2. There must exist some B € I'*T(A) resam-
pled in round j — 1.

Proof Let F' and F be the violated event sets just before and
after the resampling step at round j — 1. If A is not in F’ but
is in JF then its variables vbl(A) must have been changed in
round j — 1, which could only occur if some B € I"(A) were
resampled. Now suppose A is in both F” and F. It was not
resampled in round j — 1 but was in round j, meaning ID(A)
is not a local minimum in Iz (A) but is a local minimum
in I'z(A). This implies that some neighbor B € I"'(A) with
ID(B) < ID(A) is in F’ but not F, which could only occur
if some C € ' (B) € I'**(A) were resampled in round
j— L O

We can now proceed to bound the number of rounds of
Algorithm 2 needed to find a satisfying assignment.

Theorem 2 (Asymmetric LLL) Let P be a finite set of mutu-
ally independent random variables in a probability space. Let
A be a finite set of events determined by these variables. If
there exists an assignment of reals x : A — (0, 1) such that

VAe A:Pr(A) < (1—ex(A) [(1 -xB).
Bel2(A)

then the probability any bad event occurs after k resampling
x(A)

rounds of Algorithm 2 is at most (1 — €)* D AcA T2 (A"

Distributed algorithms for the Lovasz local lemma and graph coloring

265

Note the difference with Theorem 1 is that the product is over
all B € I'*(A) not B € I'(A).

Corollary 1 (Symmetric LLL) Let P be a finite set of mutu-
ally independent random variables in a probability space.

Let A be a finite set of events determined by these variables,
such that forall A € A

1. Pr(A) <p<1,and
2. A shares variables with at most d of the other events.

If epd® < 1, then w.h.p. none of the bad events occur after
O (log n) rounds of Algorithm 2.

1
epdz

Proof Setting x(A) = 1/d*> and € = 1 — epd? in Theorem
2, we have

d—exa) [] a-xmBy

Bel2(A)

l—e 1\ 7@
w2 (1 - ﬁ)

1 —e 1)@
v (1 - ﬁ)

> ! > p > Pr(A)
p T .
= 2 =P=

Therefore, the probability a bad event occurs after k rounds

of resampling is at most (1 — €)* >, 4 % = (1-

€)*n/(d* — 1), which is 1/ poly(n) if k = O(log 1_n) =

O(log 1 _n). "o
epd?

Following Moser and Tardos [33] we analyze the follow-
ing Galton-Watson process for generating an r-witness tree
T.Fixanevent A € A. Beginby creating aroot for 7' labelled
A. To shorten the notation, we let [v] := o7 (v). In each sub-
sequent step, consider each vertex v created in the previous
step. For each B € I'"*([v]), independently, attach a child
labelled B with probability x(B) or skip it with probability
1—x(B). Continue the process until no new vertices are born.
We prove a lemma analogous to one in [33].

Lemma 4 Let T be afixed proper r-witness tree with its root
vertex labelled A. The probability p. that the Galton-Watson
process yields exactly the tree t is

[T «a@p

veV(r)

1 —x(A)

Pr = x(4)

where x'(B) = x(B) - cerr)(1 — x(C)).

Proof Let W, € I'"*([v]) denote the set of inclusive r-
neighbors of [v] that do not occur as a label of some child
node of v. Then,

1
Pr=m' H

x(h - [T @ —xquD

veV(r) ueWw,
1 — x(A) I x([v]) Il
=—" —_— (1 = x([ul))
x(4) VeV (r) I=x(v] uel™*([v])
1—x(A
= % T (@b [T a—xuy
X(veV(r) uel"([v])
_1—x(4))
=~ Ue]l)x (vD)

O

Lemma 5 Ifforall A € A, we have Pr(A) < (1 —e)x(A) -
HBEW A) (1 —=x(B)), then the probability that any r-witness
tree of size at least k occurs is at most (1 —e)k 'ZAeA %.
Proof Let T{ (k) denote the infinite set of r-witness trees
having root labelled A and containing at least k vertices. By
Lemma 2 and the union bound, the probability there exists a
violated event after k resampling rounds is at most

Z Z Pr(t r-occurs in C)

AeAteT; (k)

< Z Z H Pr([v]) by Lemma 2

A€ A TeT) (k) veV ()
<> >] a-exwn

A€ A TeT) (k) veV ()
<(1-ek Z D Z pr by Lemma4
- 1 —x(A) ’

AecA €Ty (k)
ok x(A)

<(l-e Z—l_x(A)

AcA

The last inequality follows since the Galton-Watson process
grows exactly one tree. O

Let C be the record of Algorithm 2 and §; be the segment
of the record corresponding to resamplings in round j. The
following lemma relates the number of resampling rounds
with the occurence of 2-witness trees.

Lemma 6 Ifthere is still a violated event after k resampling
rounds in Algorithm 2 then some 2-witness tree of size at
least k occurs in C.

Proof Let Ay be any event in S; and ¢ be its position in the
record C. By Lemma 3 there exist events Ax_1, ..., Aj in

@ Springer

266

K.-M. Chung et al.

Sk—1,-++, Sy such that for all j < k, A; € I'*T(Aj41).
This implies that A;_1, ..., A are mapped to distinct nodes
in the 2-witness tree t¢ (1), whose root is labeled Ay. O

Therefore, by Lemma 6, if there is a violated event after
k resampling rounds, then a 2-witness tree of size at least k
occurs. However, by Lemma 5, it happens with probability at
most (1 —e)k- ZAG.A %. Thus, Theorem 2 holds. Note
that if x(A) is bounded away from 1, then after O (log L n)

rounds, w.h.p. no bad event occurs.
3.2 Resampling by weak MIS

In this section we analyze the efficiency of Moser and
Tardos’s Algorithm 1 when a new weak MIS procedure
(Algorithm 3) is used in lieu of an actual MIS. The Weak-
MIS procedure produces, in O (log” d) time, an independent
set S such that the probability that a node is not in 't (S) =
SU I (S)is 1/poly(d). The procedure consists of O (logd)
iterations where the probability that a vertex avoids I" T (S) is
constant per iteration. Each iteration consists of log d phases
where, roughly speaking, the goal of phase i is to eliminate
vertices with degree at least d/2 with constant probability.
Each phase is essentially one step of Luby’s MIS algorithm,
though applied only to a judiciously chosen subset of the
vertices. See Algorithm 3.
Our main results are as follows.

Theorem 3 (Asymmetric LLL) Let P be a finite set of mutu-
ally independent random variables in a probability space. Let
A be a finite set of events determined by these variables. If
there exists an assignment of reals x : A — (0, 1) such that

VA e A:Pr(A) < (1—ex(4) [(—x®B).

Bel(A)

then the probability any bad event occurs after k resampling
rounds using the Weak-MIS algorithm is at most n(#)k +

k)2 (A)
(1= 23 4eu T

Corollary 2 (Symmetric LLL) Let P be a finite set of mutu-
ally independent random variables in a probability space.

Let A be a finite set of events determined by these variables,
such that forVA € A,

1. Pr(A) <p<1,and
2. A shares variables with at most d of the other events.

Ifep(d + 1) < 1, then w.h.p. none of the bad events occur
after O (max(log, | n, log - n)) Weak-MIS resampling
ep(d+

rounds.

Corollary 2 follows directly by plugging in x(A)=1/(d+1)
forall Ae Aand k = O (max (logdH n,log_ 1 n))

ep(d+1)

@ Springer

Notice that if ep(d—1+1) > d -+ 1, we can apply the faster simple
distributed algorithm, so the running time in Corollary 2 will
be dominated by O (log n -log®d).

)

1
ep(d+1

S <0
for iteration 1. .., ¢ = 4¢% In(2e(d + 1)*) do
G <~ G \T'"(S)
for phasei =1...[logd] do
Vi < {v e G’ | degg (v) > d/2').
For each vertex v € G/, set
. - d
bv) < 1 with pr.obablhty pi=1/G=+D
0 otherwise
For each vertex v € G/, if b(v) = 1 and b(w) = O for all w €
I'g (v),set S < SU {v}.
G < G'\ (I'*(S) U V;) (i.e., remove both I'*(S) and V; from
G')
end for
Let S’ be the (isolated) vertices that remain in G'.
SetS <~ SuU S’
end for
return S

Algorithm 3: Weak-MIS

Consider the first iteration of the Weak-MIS algorithm.
For each phase i, G’ is the subgraph of G containing
vertices with degree at most d/2' and not adjacent to the
independent set S. Let V; = {v € G’ | degg (v) > d/2'y.
Note that every vertex in G+ must end up isolated in S’
or one of the V;’s. Let (u, v) be an edge in G’. Following
Peleg’s analysis [35], define £(u, v) to be the event that at
phase i, b(u) = 0 and b(v) = 1 and for all other neighbors x
of u and v, b(x) = 0. Define £E(u) = Uverc,(u)é'(u, v)
to be the event that exactly one neighbor joins S in this
phase. Since these events are disjoint, we have Pr(€(u)) =

ZUEFG/(IA) Pr(é’(u, U))

Lemma 7 Ifv € V;, then Pr(€(u)) > ﬁ.
Proof Pr(E(u,v)) > pi(1 — p;)deec deggr(v) > 5. (] —
i—1 A .
P42 > pie~2. Since degg (1) > d/2!, Pr(E(u))
1

d -2
wPie " =3z

=
]

Therefore, if v € G 7\ I" " (S) at the beginning of iteration
1, the probability that v € I"'t(S) at the end of iteration [is
at least 1/(4e%). We say a vertex in G £ fails if, after all

t = 4% In(2e(d + 1)*) iterations, it is still not in " (S).

Lemma 8 Let S be an independent set selected by Weak-
MIS. Ifv e F then Pr(I't(v) N S = ¥) < m

Proof By Lemma 7, the probability that v survives iteration
£ conditioned on it surviving iterations 1 through ¢ — 1 is
at most 1 — 1/(4e?). Over t = 4e*InQRe(d + 1)) itera-
tions the probability of failure is at most (1 — 1/ (4e?))! <

—InQe@d+D*") — __1
¢ = 2e@r” o

Distributed algorithms for the Lovasz local lemma and graph coloring

267

The next step is to relate the number of rounds of Weak-
MIS resampling with the size of witness trees.

Lemma 9 Suppose a bad event is violated after k rounds of
Weak-MIS resampling and the maximum depth of the witness
trees is t, then there exists a sequence of not necessarily
distinct vertices vy, . .., v such that the following hold:

(1) vi € G;, where G; is the violated subgraph G r at the
beginning of round i.

(2) vigre ') forl <i <k—1.

(3) For atleast k — t indices 1 <1 <k, v; failed in the call
to Weak-MIS in round | — 1.

Proof For 1 < i < k, let S; be the segment of the record
C corresponding to events resampled at round i. Suppose
that an event A is violated after k resampling rounds. Build a
witness tree T with root labeled A, adding nodes in the usual
fashion, by scanning the record C in time-reversed order. For
each j, in decreasing order, attach anode labelled C () to the
deepest node in T whose label is in "t (C(}j)), if such a node
in 7 exists. Let vg4+1 = A. We will build vy, vg—1, ..., v1 in
backward manner. For k > i > 1, we claim there is an event
v; € I'"(v;y1) such that either v; € S; or v; € G; and v;
failed atround i. If v; 1 ¢ G; is not violated at the beginning
of round i, then it must be the case that there exists an event
v; € I'*(v;41) resampled at round i to cause v;y| € G;11.
On the other hand, if v;+; € G; is violated at the beginning
of round i, then either there exists v; € I" " (v;41) resampled
at round i or v; 4 failed at round i. In the latter case, we let
v; = vj4+1. Notice that t (excluding its artificial root labeled
A) is a witness that occured and thus has depth at most ¢.
Since in each of the k rounds, either the depth of our witness
tree grows or a vertex fails, at least k — ¢ vertices must have
failed in their respective rounds. O

Notice that the total possible number of sequences sat-
isfying (2) in Lemma 9 is at most n(d + D 1. Given
a sequence of vertices P = (vy,...,v) satisfying (2),
define Xg) to be 1 if v; € G; and v; failed, O oth-
erwise. Let Xp = Zle Xg). If a sequence satisfying
(1-3) occured, then there exists P such that Xp > k — t.
Since Xg), A Xg_l) are determined by Sy, ..., S;—1 and
Gi,....Gio, EXW | x0 x8Dy = Ex® |
St,...,8-1,G1,...,Gi—1) < q d;f m
8. Fixing r = k/2, wehave k —t = k/2 = kq - e(d + 1)* <
E[Xp] - e(d + D*. By Lemma 19 (Conditional Chernoff

by Lemma

Bound):

k
4_ 2e(d+1)*
ecld+1)7-1

(e(d + 1)4)e(d+1)4

1 k
<\—= -
B ((d + 1)2)
By the union bound over all possible P satisfying (2), the

probability that any such sequence in Lemma 9 occurs is at
most

k k
n<d+1)k—1.(;) 5(;)
d+1)2 d+1

Moser and Tardos showed that the probability that any
witness tree of size at least ¢ occurs is at most (1 —
€)’ > AcA %. Thus, either a witness tree of depth at
least t = k/2 occurs or there exists a sequence of ver-
tices (as in Lemma 9) such that t — k = k/2 of them
failed. The probability either of these occurs is at most

k
n- (ﬁ) + (=23, u % by the union bound.

Pr(Xp > k/2)

IA

3.3 A sublogarithmic algorithm

We have seen a faster algorithm for LLL when the general
condition ep(d + 1) < 1 is replaced by a stronger condition
p- f(d) < 1, where f(d) is a faster growing function than
e(d + 1). The question of how fast we can do for a stronger
condition arises. Does there exist a sublogarithmic algorithm
for faster growing f(d), independently of n? We answer this
affirmatively for an exponential function of d.

Inspired by [3], our approach is a two-stage approach. In
the first stage, we run Algorithm 2 for k(n) rounds. Then we
identify the dangerous events, who are likely to become vio-
lated if some subset of its neighborhood is resampled. We will
show there is a feasible solution by re-assigning the variables
belonging to dangerous events. Moreover, we show the com-
ponents induced by the dangerous events are likely to have
weak diameter at most k(n). The weak diameter of a com-
ponent is the maximum distance w.r.t. the original graph of
any pair in the component. In the second stage, each compo-
nent of dangerous events computes the answer independent
of others in time proportional to its weak diameter.

Theorem 4 (Asymmetric LLL) Let Pr(A) < P,(A) < 1
and Pi(A) =24 . f,;((ﬁ)), where d is the maximum degree of
the dependency graph. If there exists an assignments of reals
x1,x2 : A — (0,0.99] such that for all A € A

1. Pi(A) < (1 =)x1(A) [Tgersa) (1 — x1(B))
2. Py(A) < x2(A) [pera)(1 — x2(B))

@ Springer

268

K.-M. Chung et al.

then the LLL problem can be solved in O (logl/(l_e) n/log
logy/(1—¢) n) rounds.

Proof Sketch of Theorem 4. Given an assignment of each
variables, we will classify the vertices into safe vertices and
dangerous vertices. An event A is safe if the probability A
becomes violated when any subset of its neighbors resam-
ple is at most P»(A). In contrast, the dangerous vertices are
those where there exists a subset of neighbors whose resam-
pling will cause it to be violated with probability greater than
Py(A).

Using conditional probability, we can bound the probabil-
ity that a vertex becomes dangerous after a random sampling
of vbl(A) by P1(A) = 2¢ Pr(A)/ P>(A) (Lemma 10). Using
Cond. 1 in Theorem 4, we show in Lemma 11 that after
we resample dangerous vertices using the simple distrib-
uted algorithm for k rounds, if there exists a dangerous
component whose weak diameter is at least k, then a 3-
witness tree of size §2(klogk) would occur. When k =
©® (logn/loglogn), a 3-witness tree of size O (logn) would
occur, which happens with probability at most 1/ poly(n).
Therefore, with high probability, after O (logn/loglogn)
rounds of resampling, the weak diameters of the danger-
ous components are bounded by O (logn/loglogn). Finally,
a feasible assignment for a dangerous component can be
found in O (logn/loglogn) rounds locally, independent of
other dangerous components, which can be argued using
Cond. 2 in Theorem 4 and the definition of dangerous ver-
tices.

Proof (Proof of Theorem 4) Fix § € D C I'(A), let Tp
denote the set of assignments b for vbl(A) \ vbl(D) such that
b € Tp iff when the variables in vbl(A) \ vbl(D) are fixed
to be equal to b, the probability A becomes violated after
sampling variables in vbl(D) exceeds P»(A), that is,

Tp = {b | Pr(A | vbl(A) \ vbl(D) = b) > Pr(A)}

Given an assignment of the variables of A, we call A
“dangerous” if there exists § € D C I'(A) such that
vbl(A) \ vbl(D) € Tp. Otherwise, A is “safe”. Notice that if
A is violated then A is also dangerous, if we choose D = (.

[m}

Lemma 10 The probability that A becomes dangerous after
(re)sampling vbl(A) is at most P1(A).

Proof By the union bound over each subset of neighbors,
the probability that A becomes dangerous after sampling or
resampling variables in vbl(A) is at most

@ Springer

Z Pr(vbl(A) \ vbl(D) € Tp)
@CDCI(A)

= > D Pr(vbl(A) \ vbl(D) = b)
@CDCI(A) beTp
Yy Pr(A N (vbl(A) \ vbI(D) = b))
Pr(A | vbl(A) \ vbI(D) = b)

PCDCI (A) beTp
Sy Pr(A N (vbl(A) \ vbI(D) = b))
Py(A)

<

($CDCI(A) beTp
5 Pr(A)
#CDCI(A) Py(4)

< 2d . M
B Py (A)

= Pi(A).

]

For each A, we define a new event A’ to be that A
becomes violated after resampling the variables of the dan-
gerous events. Also, we let A’ to be the set of all new events.
If A is safe, then Pr(A”) < P,(A) by definition of safe. If A
is dangerous, then Pr(A’) = Pr(A) < P>(A). By the second
condition in Theorem 4, there exists x” : A" — (0, 0.99] such
that Pr(A") < x"(A") [1gcpary(1 —x'(B)) forall A" € A".
Therefore, by the standard asymmetric LLL, with non-zero
probability, no new events A" € A’ occur. This implies there
exists a feasible solution by reassigning only the variables of
the dangerous events.

Let E’ C E be the edges having at least one endpoint that
is dangerous. Let G’ be the graph induced by E’. Each com-
ponent of G’ can compute the feasible solution independent
of other components. (It is tempting to consider the com-
ponents induced by only the dangerous vertices. However,
when such components C; and C; are both adjacent to a safe
vertex u, we have to consider C; and C; simultaneously to
find an assignment that does not cause u to occur.)

Next we will show that the weak diameter of each com-
ponent in G’ is bounded. Note that if the weak diameter of
each component in G’ is at most D, then each component can
find the feasible solution in O (D) time. Each vertex will first
learn the topology up to distance D, which is possible in the
LOCAL model. Then the leader in each component (say the
vertex with the smallest ID) computes the feasible solution
locally and then broadcasts the solution back to other vertices
in the component.

Lemma 11 Suppose that the conditions in Theorem 4 hold,
and there exists a component of weak diameter at least k after
running k rounds of the simple distributed algorithm, then a
3-witness tree of size §2(klogk) occurs.

Proof Suppose that there exists u, v in the same component
in G’ and distg(u, v) = D > k. Since u, v are connected
in G’, there exists a shortest u-v path P,, of length at least

Distributed algorithms for the Lovasz local lemma and graph coloring

269

D in G'. Notice that there are no consecutive safe vertices
in Py, by the definition of G’. Recall that S; is the set of
events resampled inround i. Let L1 be the set of dangerous
vertices in Py, . Ideally, one would build |Lj41| 2-witness
trees of depth k, each rooted at each vertex in L4, and then
glue them together into a 3-witness tree of size k - |Lx41].
However, these 2-witness trees may overlap, so the final 3-
witness tree may be much smaller. In the following, we will
lower bound the size of the union of the 2-witness tree level
by level and show that the size of the final 3-witness tree can
be lower bounded.

For each dangerous vertex x in Py, (i.e. x € Li1), define
Li+1(x) = {x}. For 1 <i <k, define L;(x) inductively to
be the set of events sampled during round i that are within dis-
tance 2 to any events in L; 11 (x). Define L; = Uxer, L;(x).

For each 1 < i < k, we will show the size of L; is at least
D-2

Ik—i+D+2"
Notice that L; (x) must be non-empty, because by Lemma

3,foreach k +1 > j > i and each vertex w; in L, there
exists a vertex w;_1 € S;_; such that w;_; € I'**(w)).
Also, for all w € L;(x), distg(x, w) < 2(k —i + 1), since
by definition of L;(x), there exists a sequence of vertices
(X = Vgq1, Vk, ..., v; = w)suchthatv] € L;(x)fork+1 >
i’ >iand distg(vyry1, vy) <2fork+1>i" >i.

Let Py = {xo0, x1,...x/p,,}. Let j = 0if xo is danger-
ous; otherwise x| mustbe dangerous and welet j = 1.Repeat
the following procedure (see Fig. 1): Selectany w € L;(x;).
Note that x; must be dangerous and L; (x;) is well-defined.
Let x - be the rightmost vertex in Py, such that w € L; (x;-)
(it can be the case that j' = j). If Xjry1 is dangerous, set
J < J' 4+ 1; otherwise x> must be a dangerous vertex,
then we set j < j' + 2. Repeat until j > | P,,| (Fig. 2).

|L;| must be lower bounded by the total number of itera-
tions / in the procedure above. We will show that we cannot
move too far in each iteration, otherwise we would have a
path shorter than distg (u, v) connecting u and v. Let A;
be the difference of j at the beginning of iteration ¢ and

Py, xj x ;s new ;
® > ¢
| h N /
| v,/
N
AR
|

Fig. 1 Anillustration of an iteration in the procedure for lower bound-
ing L;. The dashed lines are paths with length at most 2(k —i 4+ 1). In
this iteration, the difference, A, between the new position and the old
position of j is 5. Therefore, if 2-2(k —i + 1) +2 < 5, then the detour
from x; to x} via L; (x;) would be shorter the distance between x; and

x} on Py,

o) a0

Fig. 2 An illustration showing that each resampled events in L; is in
the 3-witness tree rooted at ys. The vertices inside the boxes are the
independent set /. The dashed line is a sequence of vertices, where
adjacent vertices have distance at most 2. The arrow links denote two
vertices are within distance 3

at the end of iteration . The procedure terminates only if
Zi=1 A; > | Pyy| — 2 (the minus 2 came from the fact that
the first and the last vertex in P,, can be safe). Consider iter-
ation t, if A; > 4(k —i + 1) + 2, it must reduce the distance
between u and v by at least A; —4(k —i 4+ 1) — 2. However,
the total distance we can reduce is at most | P, | — D, for oth-
erwise we would have a path connecting u and v with length
less D, contradicting with distg (¢, v) = D. Therefore,

I
[Pl =D = > (A — 4k —i+1)—2)

t=1

1
E(ZAI)—(4(k—i+l)—2)l

t=1

Z Pl —2—@k—-i+1)—-2)l
which implies

D -2 k—2
[> > .
T 4k—i+1D) -2 " 4k—-i+1) =2

Next, we will show that we can glue all the resampled
eventsin L1, ..., Ly into a single 3-witness tree. We select an
independent set I = {y, ..., ys} € L4 by starting from
the leftmost vertex in Ly and repeatedly selecting the first
non-adjacent vertex in Ly 1. Therefore, y;11 is in distance
at most 3 from y; for 1 < j < 5. Also, each x; € Ly is
adjacent to at least one vertex in /. Since [is an independent
set, we can append y1, ..., ys to our record artificially. We
claim that each node in L; for 1 < i < k corresponds to a
node in the 3-witness tree rooted at y,. For every node w in
L;, there must exist x € Ly such that w € L;(x). Since x
is adjacent to some y; € I, it implies w is in the 3-witness
tree rooted at y;. Finally, since y; is a node in the 3-witness
tree rooted at ys, w must also be a node in the 3-witness tree
rooted at y;. The 3-witness tree rooted at y; must have size

at least ZL] ﬁ = Q(klogk). O

@ Springer

270

K.-M. Chung et al.

. log;/(1_eyn . .
By choosing k = §2 (—/ < if there exists a com-
y g loglog;,_¢yn)”

ponent in G’ with diameter at least k, then there exists a
3-witness of size at least £2(log; /(1 _¢) n) w.h.p. However, by
Condition 1 in Theorem 4 and by Lemma 5, the probability

that such a 3-witness tree occurs is at most 1/ poly(n). There-
logy - 1
loglog/iW) rounds,
the weak diameter of each component in G’ is at most
(logy/(j_¢)n
loglog /(1_¢)n
time proportional to the weak diameter. This completes the

proof of Theorem 4. O

fore, we can conclude that after O (

) w.h.p. and the solution can be found in

Corollary 3 (Symmetric LLL) Suppose that for all A € A,
Pr(A) < pand A sharesvariables with at most d other events
in A. Let 7 = 4ep2¢d*. Ifz < 1, then a satisfying assignment
can be found in O (log, . n/loglog, . n) rounds.

Proof (Proof of Collorary 3) For each A € A, let P,(A) =

27 = P = Pr(A) and so Pi(A) =27 - J4 < 4pd2?. Let

x1(A) = 1/d3,x2(A) = 1/(2d) and 1 — € = 4ep2?d*. First,
we check that condition 1 in Theorem 4 holds

A—exi(A) [] a—xia)

Bel3(A)

| 1\

1\4-1
d

> 4p2¢d = Pr(A).

Condition 2 also holds similarly,

1 1\¢
x2(A) H (1 —x2(4)) > 2 (1 _ ﬂ)
Bel(A)
= =P
24 27 "7

3.4 Lower bound

Linial [26] proved that in an n-vertex ring, any distributed
(log® n)-coloring algorithm requires £2 (k) rounds of com-
munication, even if randomization is used. In particular,
O (1)-coloring a ring requires £2(log* n) time. We prove that
Linial’s lower bound implies that even weak versions of the
Lovasz local lemma cannot be computed in constant time.

Theorem 5 Let P, A, and G 4 be defined as usual. Let
d be the maximum degree of any vertex in G4, p =
max gc_4 Pr(A) be the maximum probability of any bad event,

@ Springer

and f : N — N be an arbitrarily quickly growing func-
tion, where f(d) > e(d + 1). If p- f(d) < 1 then
Pr(Maca A) > 0. However, 2(log* | A|) rounds of com-
munication are required for the vertices of G 4 to agree on a

point in () gc 4 A

The purpose of the function f is to show that our lower
bound is insensitive to significant weakening of the standard
criterion “ep(d + 1) < 1.” We could just as easily substitute
e p < 1 or any similar criterion, for example.

Proof Consider the following coloring procedure. Each ver-
tex in an n-vertex ring selects a color from {1,...,c}
uniformly at random. An edge is bad if it is monochromatic,
an event that holds with probability p = 1/c. Let A be the
dependency graph for these events having maximum degree
d = 2 and choose c to be (the constant) f(2) + 1, for any
quickly growing function f. It follows from the LLL that a
good c-coloring exists since p - f(2) < 1. However, by [26],
the vertices of G 4 require £2(log* n — log* ¢) = 2 (log* n)
time to find a good c-coloring. O

It is also possible to obtain conditional lower bounds
on distributed versions of the LLL. For example, the
best known randomized O (A)-coloring algorithm takes
exp(0 (y/Toglogn)) time [6], though better bounds are pos-
sible if A > logn [40]. If LLL could be solved in less than
exp(O(y/Ioglogn)) time then we could improve on [6], as
follows. Each vertex in G selects a color from a palette of
size ¢ > 2eA uniformly at random. As usual, an edge is
bad if it is monochromatic. The dependency graph of these
bad events corresponds to the line graph of G, which has
maximum degree d = 2A — 2. Since e(1/c)(d+ 1) < 1, a
valid coloring can be found with one invocation of an LLL
algorithm. Therefore, if the result of [6] turns out to be tight,
then there is an exp(O(y/loglogn))) time lower bound of
for LLL.

4 Applications

The Lovész local lemma has applications in many coloring
problems, such as list coloring, frugal coloring, total coloring,
and coloring triangle-free graphs [29]. We give a few exam-
ples of constructing these colorings distributively. In these
applications, the existential bounds are usually achieved by
the so called “Rodl Nibble” method or the semi-random
method. The method consists of one or more iterations. Each
iteration is a random process and some local properties are
maintained in the graph. The properties depend on the ran-
domness within a constant radius. Each property is associated
with a bad event, which is the event that the property fails to
hold. The Lovész local lemma can then be used to show the
probability none of the bad events hold is positive, though

Distributed algorithms for the Lovasz local lemma and graph coloring

271

it may be exponentially small in the size of the graph. This
probability can then be amplified in a distributed fashion
using a Moser—Tardos-type resampling algorithm. Notice
that we will need to find an independent set (e.g., an MIS
or Weak-MIS or set of events with locally minimal IDs) in
the dependency graph induced by the violated local prop-
erties. Since we assumed the LOCAL model, the violated
local properties can be identified in constant time and the
algorithms for MIS/Weak-MIS can be simulated with a con-
stant factor overhead, where each property is taken care by
one of the processors nearby (within constant distance). The
important point here is that the dependency graph and the
underlying distributed network are sufficiently similar so that
distributed algorithms on one topology can be simulated on
the other with O (1) slowdown. For a simple example, see
the defective coloring problem in the following subsection,
where the dependency graph is G2 (i.e. nodes are adjacent in
G? iff they are within distance 2 in G).

Most applications of the LLL demand epd? < 1 or even
weaker bounds. In this case, the efficient simple distributed
algorithm can be applied. (The local properties are often that
some quantities do not deviate too much from their expecta-
tions. Thus, the the failure probability of each local property
is often bounded via standard Chernoff-type concentration
inequalities.)

4.1 Distributed defective coloring

We begin with a simple single-iteration application that uses
the local lemma. Let¢ : V — {1,2, ..., k} be a k-coloring.
Define defy(v) to be the number of neighbors w € N(v)
such that ¢(v) = ¢(w). The coloring ¢ is said to be f-
defective if max, defy(v) < f. Barenboim and Elkin ([4],
Open Problem 10.7) raised the problem of devising an effi-
cient distributed algorithm for computing an f-defective
O (A/f)-coloring. Note that this problem is equivalent to
partitioning the vertices into O (A/f) sets such that each set
induces a subgraph with maximum degree f.

To warm up, we give a simple procedure for obtaining an
f-defective O (A /f)-coloringin O (log n/f) time w.h.p., for
f = 601In A. Suppose each vertex colors itself with a color
selected from {1, 2, ..., [2A/f]} uniformly at random. For
every v € N(u), let X, be 1 if v is colored the same as
u, 0 otherwise. Let X = > _ N @) Xv denote the number
of neighbors colored the same as v. Let A, denote the bad
event that X > f atu. Clearly, whether A, occurs is locally
checkable by u in one round. Moreover, the event A, only
depends on the the random choices of #’s neighbors. If A,
occured and is selected for resampling, the colors chosen by
u and its neighbors will be resampled. Since two events share
variables only if they are within distance two, the dependency
graph, G 4, is G2. Therefore, G 4 has maximum degree d =
A%, Now we will calculate the probability that A, occurs. If

we expose the choice of u first, then Pr(X, = 1) < f/(2A4)
and it is independent among other v € N (u). Letting M =
f/2, we have E[X] < f/2 = M. By Lemma 18, Pr(X >
f) < e /% Let A, denote the bad event that X > f at u.
Therefore, epd2 < e~ (f/6=1-4In) — ,~(f/12) gince f >
601n A. By using the simple distributed algorithm, it takes
(0] (logl/epdz n) = O(logn/f) rounds to avoid the bad events
w.h.p.

Next, we show that there is a constant C > 0 such that
for any f > C, an f-defective O(A/f)-coloring can be
obtained in O (logn/f) rounds. For f < C, we can use the
(A + 1)-coloring algorithms to obtain O-defective (proper)
(A + 1)-colorings that runs in O (log n) rounds. Let Ag = A
and A; = log3 Ai_q.

if f <60InA;_; then
Each node in G’ chooses a color from [(1 + 6A
uniformly at random.
Let A, denote the event that more than A; neighbors of u are colored
the same with u.
Run Algorithm 2 until no bad events A, occurs.
Let G; denote the graph induced by vertices with color j.
Forj =1...,[(1464; '
i + 1) in parallel.
else
Obtain an f-defective, (24;_1/f)-coloring for G’.
end if

—1/3y A
;) A—I_] colors

) - AA—:‘], call defective-coloring(G ,

Algorithm 4: Defective-coloring(G’, i)

An f-defective O(A/f)-coloring in G can be obtained
by calling defective-coloring(G, 1), which is described in
Algorithm 4. The procedure defective-coloring(G’, i) is
a recursive procedure whose halting condition is when
f = 60log A;_;. When the condition occurs, we will
use the procedure described above to obtain an f-defective
(24;_1/f)-coloring in G’. Let [denote the total number of
levels of the recursion. The final color of node v is a vector
(c1,¢2,...,c1), where ¢; denotes the color received by v at
level i. Clearly, such a coloring obtained by the procedure is
f-defective. The total number of colors used is:

Ly A\ 24
[T (1+64,"7) =21 }1

i

1<i<l
=28/ [] |1+ 6
- ' 3 3
I<i<l loglog”...log” A
i—1
= 0(A/f).

Now we will analyze the number of rounds needed in each
level i. Suppose that each vertex colors itself with a color

@ Springer

272

K.-M. Chung et al.

selected from {1,2, ..., [(14+6A; 7). A=11} uniformly at
random. For every v € N(u), let X, be 1 if v is colored the
same as u, 0 otherwise. Let X = > _ N (u) Xv denote the
number of neighbors colored the same as v. Let A, denote
the bad event that X > A; at u. The dependency graph G 4

has maximum degree d = Aiz_l , because two events share

variables only if they are within distance two. If we expose

. _ A 1
the choice of u first, then Pr(X, = 1) < Ao m

and it is independent among other v € Ng/(u). Since the
maximum degree of G' is A;_1, E[X] < A; - .

1
Troa " BY
Chernoff Bound (Lemma 18),

Pr(A,) =Pr(X > A))
<Pr (x > (1 + 6[‘/3) -E[X])

i
2 4—2/3
< 00T

E[X1/3

1/3
i

< 64

— e—61n A[_l .

Therefore, epd? < e~™4i-1 and so Algorithm 2 runs in

O (logn/log A;—_1) rounds. The total number of rounds over
all levels is therefore

1 1 1 1
0 (1ogn - + oot ——— =
(g (logA loglog> A log A1 f))
o)
f

4.2 Distributed frugal coloring

A B-frugal coloring of a graph G is a proper vertex-coloring
of G such that no color appears more than § times in any
neighborhood. Molloy and Reed [29] showed the following
by using an asymmetric version of the local lemma:

Theorem 6 For any constant integer B > 1, if G has max-
imum degree A > BP then G has a B-frugal proper vertex

1
coloring using at most 16A"F colors.

Here we outline their proof and show how to turn it into a
distributed algorithm that finds such a coloring in O(logn -
log? A) rounds. If B = 1, then simply consider the square
graph of G, which is obtained by adding the edges between
vertices whose distance is 2. A proper coloring in the square
graph is a 1-frugal coloring in G. Since the square graph
has maximum degree A2, it can be (A% + 1)-colored by
simulating distributed algorithms for (A + 1)-coloring.

For g > 2, letk = 16A1+%. Suppose that each vertex
colors itself with one of the k colors uniformly at random.
Consider two types of bad events. For each edge uv, the
Type I event A, ,, denotes that u and v are colored the same.
For each subset {u1,...,ugy1} of the neighborhood of a

vertex, Type Il event Ay, ug,, denotes that uy, ..., ug4q

@ Springer

are colored the same. If none of the events occur, then the
random coloring is a f-frugal coloring. For each Type I
event A, ,, Pr(A4,, ,) is at most 1/k. For each Type II event
Aul’___,uﬁﬂ, Pr(AMl’__.,uﬁH) < l/kﬂ. For each bad event A,
let x(A) = 2Pr(A). Notice that x(A) < 1/2, we have:

x(A) [T a—-x®)

Bel'(A)
>x(4) [] exp(-x(B)-2mn2)
Bel'(A)
{(1=x)>e 2?2 forx < 1/2}

=x(A)-exp[—2In2- > 2Pr(B)
Bel'(A)

Since A shares variables with at most (8 + 1) A Type I events
and (B +1)A (?) Type 1I events,

> P(B) < (ﬁ+1)A-%+(/3+1)A(§)~L

B
Bel'(A) k

B+DA (B+1DAPH!
<
k BlkP
_ B+1 B+1
1647 AI16)
<1/8

forAzﬁﬁand,BZZ

Therefore,

x(A) [] a=xB) = x(A)yexp (—%)

Bel (A)

= /2 - Pr(A).

By letting 1 — ¢ = 1/+/2 in Theorem 3, we need at most
O(log /3 n) rounds of weak MIS resampling. In each resam-
pling round, we have to identify the bad events first. Type I
events A, , can be identified by either u or v in constant num-
ber of rounds, where ties can be broken by letting the node
with smaller ID checkit. If {u1, . . ., ug41} isin the neighbor-
hood of u, then the Type Il event A, .. 4 . will be checked
by u. If {u1, ..., ug41} is in the neighborhood of multiple
nodes, we can break ties by letting the one having the small-
est ID to check it. All Type Il events in the neighborhood of u
can be identified from the colors selected by the neighbors of
u. Next we will find a weak MIS induced by the bad events in
the dependency graph. Each node will simulate the weak MIS
algorithm on the events it is responsible to check. Each round
of the weak MIS algorithm in the dependency graph can be
simulated with constant rounds. The maximum degree d of
the dependency graphis O ((8+1)A (?)). Therefore, we need

Distributed algorithms for the Lovasz local lemma and graph coloring

273

atmost O (logn -log2 d) = O(logn -log2 A) rounds, since
is a constant and (8 + I)A(ﬁ) < (B+ DHAPT! = poly(A).

4.2.1 B-frugal, (A + 1)-coloring

The frugal (A + 1)-coloring problem for general graphs is
studied by Hind, Molloy, and Reed [21], Pemmaraju and
Srinivasan [36], and Molloy and Reed [30]. In particular,
the last one gave an upper bound of O(log A/loglog A)
on the frugality of (A + 1)-coloring. This is optimal up
to a constant factor, because it matches the lower bound of
£2(log A/loglog A) given by Hind et al. [30]. However, it
is not obvious whether it can be implemented efficiently in a
distributed fashion, because they used a structural decom-
position computed by a sequential algorithm. Pemmaraju
and Srinivasan [36] showed an existential upper bound of
O (log? A/ loglog A). Furthermore, they gave a distributed
algorithm that computes an O (log A - l(fgol%)—frugal, A+
1)-coloring in O (logn) rounds. We show how to improve it
to find a O (log” A/ loglog A)-frugal, (A + 1)-coloring also
in O(logn) rounds.
They proved the following theorem:

Theorem 7 Let G be a graphwith maximum vertex degree A.
Suppose that associated with each vertex v € V, there is a
palette P (v) of colors, where | P(v)| > deg(v) + 1. Further-
more, suppose |P(v)| > A /4 for all vertices v in G. Then,
for some subset C C 'V, there is a list coloring of the vertices
in C such that:

(a) G[C] is properly colored.

(b) For every vertex v € V and for every color x, there are
at most 9 - % neighbors of v colored x.

(c) For every vertex v € V, the number of neighbors of v
not in C is at most A(1 — %) 4+ 27/ Aln A,

(d) For every vertex v € V, the number of neighbors of v in
C is at most eés + 274/ Aln A.

The theorem was obtained by applying the LLL to the fol-
lowing random process: Suppose that each vertex v has an
unique ID. Every vertex picks a color uniformly at random
from its palette. If v has picked a color that is not picked by
any of its neighbor whose ID is smaller than v, then v will
be colored with that color. Let g, denote the probability that
v becomes colored. Then, if v is colored, with probability
1 — 1/(eqy), v uncolors itself. This ensures that the proba-
bility that v becomes colored in the process is exactly 1/,
provided that ¢, > 1/, which they have shown to be true.

They showed by iteratively applying the theorem for
O (log A) iterations, an O (log> A/ loglog A)-frugal, (A +
1)-coloring can be obtained. Let G; be the graph after round
i obtained by deleting already colored vertices and A; be the
maximum degree of G;. The palette P(u) for each vertex u

contains colors that have not been used by its neighbors. It
is always true that | P (v)| > deg(v) + 1. Notice that to apply
Theorem 7, we also need the condition |P(v)| > A/4. The
worst case behavior of A; and p; is captured by the recur-
rences:

1
Aip1 = 4 (1 - —5) + 27 A;In A;
e
A
piv1 =pi = —5 =27V A 4;. (M

They showed the above recurrence can be solved to obtain
the following bounds on A; and p;:

Lemma 12 Let o = (1 — 1/e). There is a constant C such
that for alli for which A; > C, A; < 2 Agal? and p; > %ai.

Therefore, |P(v)| > A/4 always holds. The two assump-
tions of Theorem 7 are always satisfied and so it can be
applied iteratively until A; < C, which takes at most
log; /o (2%) = O(log A) iterations. Since each iteration
introduces at most O(log A/loglog A) neighbors of the
same color to each vertex, the frugality will be at most
O(log?> A/loglog A). In the end, when A; < C, one can
color the remaining graph in O(4; + log* n) time using
existing (A; + 1)-coloring algorithms [5]. This will only
add O (1) copies of each color to the neighborhood, yielding
a O(log? A/loglog A)-frugal, (A 4 1)-coloring. In order
to make it suitable for our simple distributed algorithm and
achieve the running time of O (logn), we will relax the cri-
teria of (b),(c),(d) in Theorem 7:

(b’) For every vertex v € V and for every color x, there are

at most 18 - h?}nAA"O neighbors of v colored x.

(c¢’) For every vertex v € V, the number of neighbors of v
not in C is at most A(1 — eis) + 404/ Aln A.

(d’) For every vertex v € V, the number of neighbors of v

in C is at most eés +40/Aln A.

In (b’), A is replaced by Ag, which is the maximum degree
of the initial graph. Also, the constant 9 is replaced by 18. In
(c’) and (d’), the constant 27 is replaced by 40 and +/In A is
replaced by In A.Itis nothard to see that Lemma 12 still holds
and an O (log> A/loglog A)-frugal coloring is still obtain-
able. Originally, by Chernoff Bound and Azuma’s Inequality,
they showed

In A
Pr | # neighbors of v colored x exceeds 9 - 1
Inln A

< — @

@ Springer

274 K.-M. Chung et al.
and 4.3 Distributed triangle-free graphs coloring
d) . s . i
pe(|p, — eg(v) =~ 27JAInA) < 3) Pett1§ and 'Su [37] gave a distributed algorithm for (A/k)
ed A4S coloring triangle-free graphs:

where P, is the number of colored neighbors of v. Theorem
7 can be derived from (2) and (3). The relaxed version (b’),
(c’), and (d’) can be shown to fail with a lower probability.

InA
Pr | # neighbors of v colored x exceeds 18 - 170
Inln A

1
< A_(])2 “4)
and
deg(v) 2
Pr(P, — fs >~ 40v/A1n A) < —oma (5)

The bad event A, is when the neighbors of v colored x

In Ag _ deg(v)
exceeds 18 - TinAg for some color x or | P, e_5| >

40/ Aln A happens. By (4), (5), and the union bound,
Pr(A,) < (A+ 1)/A(1)2+2/A91"A.Intheirrandomprocess,
they showed A, depends on variables up to distance two.
Thus, the dependency graph G 4 has maximum degree d
less than A*. Note that

epd® = eA((A +1)/2A0%) +2/4°14)
< 1/Q240) + 1/2AM™4)
< 2-max(1/(2A¢), 1/(2AM4))
= max(1/Ag, 1/4M4).

The number of resampling rounds needed is at most
O(logL n) which is at most

epdz

Inn Inn_ +
min(In Ag,In> A) — In4p
Inn
In>A°

clndo Inn Inn
> (1o s o
InAy In* A;

i=1
cln Ag
Inn Inn
< + :
; (ln Ao 1n2(2A0a1))

cln Ag

Therefore, the total number of rounds needed is at most:

Inn

Z (InAg—ilnl +1n2)2

i=1

o
1
<clnn+Inn- O(Z 3) = O(logn)
i

i=1

Inn n
In Ap

=clnAp-

where ¢ > 0 is some constant, and o« = (1 — 1/e5).

@ Springer

Theorem 8 Fix a constant € > 0. Let A be the maximum
degree of a triangle-free graph G, assumed to be at least
some A depending on €. Let k > 1 be a parameter such
that 2¢ <1 — %. Then G can be (A/k)-colored, in time

O (k + log* A) U‘A]*%*S = (Inn), and, for any A, in
time on the order of

logn 1+o(1)
ﬁ = log n.

eO(\/lnlnn) . (k +10g>k A) .

The algorithm consists of O(k + log* A) iterations. For
each iteration i, a property H; (1) is maintained at each ver-
tex u. If H;_1(u) is true for all u in G, then after round
i, it is shown H;(u) fails with probability at most p =
exp (—A"%’”Q(E)), which is at most exp

(—Al’%’e) JeA*if A > A, for some constant A.. Note

that if Al_%_e = $2(logn), then by union bound, with
high probability all H;(#) holds. Otherwise, they revert to
the distributed constructive Lovasz Local Lemma. Let G; be
the subgraph of G induced by uncolored vertices. The event
‘H;(u) shares random variables up to distance two from u
in G;_1. The bad events A is made up with A, = E;(u)
foru € G;_1. Therefore, the dependency graph G 4 is Gi5_41,
where (u, v) is connected if the distg,_, (¢, v) < 4. The max-
imum degree d of G 4 is less than A*. By the Lovész Local
Lemma, since ep(d+1) < 1, the probability all H; (u) simul-
taneously hold is positive. To achieve this constructively,
note that by Theorem 1, it requires O (log L n) resampling

rounds, where 1 —e = ep(d+1) < exp (—Al_%_e).Each
resampling round involves finding an MIS. They showed in
the case Al "ha—¢ = O (logn), A will be at most polylog(n),
where faster MIS algorithms can be applied. Now we will
use the simple distributed algorithm presented in the pre-
vious section to resample without finding an MIS in each
resampling round. First, notice that with some larger con-
stant A, if A > A, the failure probability p is at most
exp (—Al_%_e) /eA8. Since epd® < exp (—Al_%_e),
by Corollary 1, w.h.p. none of the bad events happen after
O(logL n) = 0(%

epd? A "Tha "€
simple distributed algorithm, where each resampling round
takes constant time. As a result, the number of rounds is
reduced to O (logn).

) resampling rounds of the

Theorem 9 Fix a constant € > 0. Let A be the maximum
degree of a triangle-free graph G, assumed to be at least
some A depending on €. Let k > 1 be a parameter such

Distributed algorithms for the Lovasz local lemma and graph coloring

275

that 2¢ <1 — %. Then G can be (A/k)-colored, in time

O(k +log* A) if A'"ma—¢ = 2(Inn), and, for any A, in
time on the order of

" logn _
(k+1log" A). ————— = O(logn).
A

l—%—e
Similarly, the (1 4+ o(1))A/log A-coloring algorithm for
girth-5 graphs in [37] can be obtained in O(logn) rounds
by replacing Moser and Tardos’ algorithm with the simple
distributed algorithm.

4.4 Distributed list coloring

Given a graph G, each vertex v is associated with a list (or
a palette) of available colors P(v). Let deg.(v) denote the
number of neighbors w € N (v) such that ¢ € P(w). Sup-
pose that deg,.(v) is upper bounded by D. The list coloring
constant is the minimum K such that for any graph G and any
palettes P(u) foru € G,if |P(u)| > K-D anddeg.(u) < D
for every u € G and every ¢ € P(u), then a proper color-
ing can be obtained by assigning each vertex a color from
its list. Reed [38] first showed the list coloring constant is at
most 2e by a single application of LLL. Haxell [20] showed
2 is sufficient. Later, Reed and Sudakov [39] used a multi-
ple iterations Rodl Nibble method to show the list coloring
constant is at most 1 + o(1), where o(1) is a function of
D. Reed’s upper bound of 2e can be made distributed and
constructive with a slightly larger factor, say 2e 4 € for any
constant € > 0. The LLL condition they need is close to
tight and so we will need to use the weak MIS algorithm.
The additional slack needed is due to the e-slack needed in
distributed LLL (ep(d + 1) < 1 —€). The constructive algo-
rithm can be easily transformed from their proof. Here we
outline their proof: Suppose |P (v)| > (2¢ + €)D for all v.
Each vertex is assigned a color from its palette uniformly at
random. They showed that with positive probability, a proper
coloring is obtained. Lete = uv € E,and ¢ € P(u) N P(v).
Define A, . to be the bad event that both 1 and v are assigned
c. Clearly, p = Pr(A..) = 1/((2e + €)D)%. Also, there
are at most (2¢ + €)D? events that depend on the color u
picks and at most (2¢ + €)D? events that depend on the
color v picks. The dependency graph has maximum degree
d = 22e + €)D? — 2. Since ep(d+ 1) < 2e/(2e +€) is
upper bounded by a constant less than 1, we can construct
the coloring in O (logn - log? D) rounds by using the weak
MIS algorithm.

In the following, we shall show that for any constants
€,y > 0, there exists D¢, > 0 such that for any D >
De y, any (1 + €)D-list coloring instance can be colored
in O(log* D - max(1, log n/D'=7)) rounds. The algorithm
consists of multiple iterations. Let P; (1) and deg; .(u) be the
palette and the c-degree of u at end of iteration i. Also, at the

end of iteration i, denote the neighbor of u by N; (1) and the
c-neighbor by N; .(u), which are the neighbors of u having
c in their palette. Suppose that each vertex u# has an unique
ID, ID(u). Let N;‘)‘ (1) denote the set of c-neighbors at the
end of iteration i having smaller ID than u. Let degz L) =
INF ().

1: Go <~ G

2:i <0

3: repeat

4: i <«—i+1

5. foreachu € G;,_; do

6: (Si(w), K;(u)) < Select(u, 7;, B;)

7 Set P;(u) < K;(u) \ S;(N}_, (u))

8: if S; (u)N P; (1) # ¢ then color u with any colorin S; (u) N P; (1)

end if
9: end for
10: G; < Gj_1 \ {colored vertices}
11: until

Algorithm 5: List-Coloring (G, {r;}, {Bi})

1: Include each ¢ € P;_(u) in S;(u) independently with probability
;.

2: For each c, calculate r, = B; /(1 — Jr,-)deg’tl-c(“).

: Include ¢ € P;_(u) in K;(«) independently with probability r..

4: return (S;(u), K;(u)).

(98]

Algorithm 6: Select(u, 7;, §;)

In each iteration i, each vertex will select a set of colors
S;(u) € P;_1(u) and K; (u) < P;_1(u), which are obtained
from Algorithm 6. If a color is in K; (u) and it is not in S; (v)
forany v € Ni’i1 (u), then it remains in its new palette P; ().
Furthermore, if S; (#) contains a color that is in P; (), then
u colors itself with the color (in case there are multiple such
colors, break ties arbitrarily).

Given m;, the selecting probability for each vertex u to
include a color in S; (1), the probability thatu ¢ S; (Nl.*_ 1 (@)
is (1—7;)%81." Define B; = (1—m;)"~1, where t/_,isan
upper bound on deg; _; .(u) for each vertex u and each color
¢.Thenre = Bi /(1—m;) %810 jg always at most 1 and thus
itis a valid probability. Therefore, the probability that a color
¢ € P,y (u) remains in P;(u) is (1 — ;)38 18 . = ;.
As a result, the palette size shrinks by at most a §; factor in
expectation.

Suppose that p; is the lower bound on the palette size at
the end of iteration i. Then the probability that # remains
uncolored is upper bounded by the probability that any of
the colors in P; (1) was not selected to be in S; (). The prob-
ability is roughly (1 — m)pz{ , which we will define it to be «; .
The slight inaccuracy comes from the fact that we are con-
ditioning on the new palette size | P;(u)| is lower bounded
by p}. However, we will show the effect of this conditioning
only affects the probability by a small amount.

@ Springer

276

K.-M. Chung et al.

Let po = (1 +€) - D and tp = D be the initial palette
size and upper bound on c-degree. In the following, p; and
t; are the ideal lower bound of the palette size and the ideal
upper bound of the c-degree at the end of each iteration i.
p; and ¢/ are the approximation of p; and #;, incoporating
the errors from concentration bounds. K is a constant in the
selecting probability that depends on €. T is the threshold on
the c-degree before we switch to a different analysis, since the
usual concentration bound does not apply when the quantity
is small. § = 1/1log D is the error control parameter which
is set to be small enough such that (1 £ 8)’ is 1 + o(1) for
every iteration i.

m:l/(KtiLl+1) 6 =1/log D

o = (1 —m)" B = (1=l
pi = Bipi—1 t; = max(e;ti—1, T)
pi=0-8"p = (1+8)"
K=2+2/e T =D

Intuitively, we would like to have #; shrink faster than p;.
To ensure this happens, we must have oy < f1, which holds
under our setting of m;. As we will show, ¢; shrinks much
faster than B8; as i becomes larger. Note that §; is at least a
constant, as

Bi=(1—1/(Kt]_, + 1))li-1
= (1= 1/(Kt]_, + 1)K (/6

> (e)/K = ¢~ V/K

since (1 — 1/(x + 1))* = e~ 1.

Lemma 13 1, = T after at most r = O (log* D) iterations.

Proof We divide the iterations into two stages, where the
first stage consists of iterations ¢ for which t,_1/p;i—1 >
1/(1.1*/K K). During the first stage, we show that the ratio
t;/ p; decreases by a factor of exp (—(1 — 0(1))4(16—_2“)) in
every round.

et
pi Bi pi-1
’ ! t—
= (1 —m;)Pi7li-1. izl
Pi—1
defn. o;, ﬂ,‘
ti—1
<exp(—m-(p;—t;_)) —
(l i i—1) Pi_1

con(coen () £

/ .
Pi— (1 - oy 2o
i-1 li-1

defn. m;,

@ Springer

con(C o £ (825) £

defn. Di

(e*I/K(l Teo)— 1))

|

|~

< exp (—(1 —o0(1)) -

ti—
Diet pi—1/tic1 = (1 +€)
Di—1
< exp (—(1 —o(1)) - a- 1/K)I({l +e€)— 1))
e e
Pi—1
e ti—
= exp (—(1 —o(1)) - m)) E
K=2(1+e)/e

Therefore, the first stage ends after at most (1 + o(1))
4(16—;’5) In(1.1K e*/K) iterations. Let j be the first iteration
when the second stage begins. Fori > j, we show that 1 /«;
has an exponential tower growth.

@ = (1 —m)Pi
1
<exp(—(1—o(1)— -
_exp((0())K
l—x<e™

< exp (—(1 - 0(1))% :

defn. p;
1 Bi1 Bipi—
< —(1=o0(1)—.2=L.
< eXp((1 —o())K w0
Pi-1 _ Bi-1pi2
li—1 i1 li2
1 e 2/K pi_
<exp(—(1—o(p— 0 22
K a1 tio
pi = e VK
= exp(—1/aj—1)
ti—o 1

Di—2 = 1.1Ke?/K

e

1

¢

Therefore, m > e > D, and so tj+10g* D+1 <
log* D

max(oszog* D41 D, T)=T. O

On the other hand, we show the bound on the palette size
remains large throughout the algorithm.

Lemma 14 p/ = D'=°W fori = O(log* D).

Proof pj = (1= &)pi = (1= &) [[j_ ;D = (I -
8)ie=i/KD = (1 — o(1))D " Flob . p = pl=o(), -

Distributed algorithms for the Lovasz local lemma and graph coloring

277

In the following we shall show how to ensure that for each
iteration 7 the palette sizes are lower bounded by p; and the
c-degrees are upper bounded by #/. For convenience let H; (1)
denote the event that | P; (u)| > p; and deg; .(u) < tl./ for u
and ¢ € P;_1(u). Let H; denote the event that H;(u) holds
for every u € G;.

Lemma 15 Suppose that H;_y holds, then Pr(|P;(u)| <
(1= &) Pr—1)]) < e 2P0,

Proof Consider a color ¢ € P;_1(u). The probability that ¢
remains in P; (u) is exactly B;. Since the event that ¢ remains
in P;(u) is independent among other colors, by a Chernoff
Bound, Pr(|P;(u)| < (1 — 8)B;|Pimi(w)]) < e~ Pi-0). o

Lemma 16 Suppose that H;— holds, then Pr(deg; .(u) >
(148)-max(a;-deg;_y (), T)) < e~ 20T 4. p.e=2@ P,

Proof Let x1,...x;y € Nj_1,(u) be the c-neighbors of u,
ordered by their ID. Let £; denote the event that | P; (x;)| >
p}, where Pr(£;) < e~ 2Ep) by Lemma 15.

Let X; denote the event that x; remains uncolored after
iteration 7. Let X; denote the shorthand for (Xi,..., X;).
We will show that for any realization of X;_1, Pr(X; |
X;—1,€1,...,&)) < «;. Then we can apply Lemma 19,
which is a variant of Chernoff bound that works when con-
ditioning on a sequence of likely events.

Let Uy = N;i—1(N;)) \ Nj.(u) be the neighbors
of the c-neighbors excluding the c-neighbors themselves
(u € Up unlessdeg;_; .(u) = 0). First, notice that the events
X; 1 and & ...,¢&; are functions of §;(U), Si(x1), ...,
Si(xj—1), Ki(x1),..., Ki(x;). Therefore, we can instead
show that under any realization of S;(U>), S;(x1),...,
Si(xj—1), Ki(x1), ..., Ki(x;) subjecttotheevents & ..., &;
hold, Pr(X; | S§;(U2),Si(x1),...,Si(xj—1), K;i(x1),
ey K,'()Cj)) < ;.

Obviously for any ¢’ € P;_1(x;),

Pr(c’ € 8i(x;) | $i(U2), Si(x1), ..., Si(xj—1),
Ki(x1), ..., Ki(xj)) = m;.

Therefore,

Pr(X; | 5;(U2), Si(x1), ..., Si(xj—1),
Ki(x1), ..., Ki(xj))
= (1 —Pr(C, S Sz(-x]) | Si(Uz), Sl-(_x])7 e Si(xjfl),
Ki(x1), ..., Ki(xj)!fi®!

<(—m)Pi =a.

Therefore, by Lemma 19, Corollary 5, and by the fact that
> PrE€)) < D-e @), we have Pr(deg; (1) > (1 +
8) - max(e; -deg;_; (), T)) < e~ 2@ 1 p.o~ 2@ 1

Corollary 4 Suppose that H;_ holds, Pr(H;(u)) < D -
e—g(azr) +2D2. 6—9(5217;).

Proof By taking union bound over the event in Lemma 15
and the events in Lemma 16 over each ¢ € P;_1(u), we get
the desired result. O

Let r be the first iteration such that t, = T. If H, holds,
then deg, (1) <t/ < (14+8)"t, < (1 +o(1)t, < 2T
for all # and c. Now we switch to the following analysis,
which shows the algorithm terminates in a constant number
of iterations. Fori > r, we define tl.’ = ti/_ 1 5 The definition
for the rest of parameters remain the same.lBy Lemma 14,
if D is large enough, we can assume that p; > D087 for
i =r+[1/(0.1y)], since r + [1/(0.1y)] = O(log* D).
Then from the definition of ti’, it shrinks to less than one in
[ﬁ} iterations, since 7/p, < D! and tr/+1/(0.1y) <
(D~017)[1/©.1p)] < 1.

Now we will show that under this new definition of #; for
i > r, H;(u) is likely to hold, provided that H;_; holds.

Lemma 17 Suppose that H;_1 is true where i > r, then
Pr(deg; .(u) > 1) < e 2T 4 D . e~ 26PD

Proof Let x1,...x;y € Nj_1,(u) be the c-neighbors of u,
ordered by their ID in the increasing order. Let £; denote the
event that | P;(x;)| > p|. Note that Pr(€;) < e 2@ 7D,
As we have shown in the proof of Lemma 16, Pr(X; |
X;, &1, ..., &) < a;. Therefore,

Pr(deg; .(u) > 1;)

= Pr{ deg; .(u) > iy ot
i,c aiti/—l 1hi—1

Applying Lemma 19 and Corollary 5 with 1 + § =
t//(a;t/_,), and noticing that o; deg; | .(u) < «a;t/_,, the
probability above is bounded by

t t t!
< exp —ontl_, (i (L
ol il oil;_y

+ De 2@ p)

t ,
<exp (—tl.’ (ln T 1)) + De—2@%p))
oit;_y
1 et]
cen(o) ()
! i

+ De™ 2P

@ Springer

278

K.-M. Chung et al.

< exp(—r; ((1 —o(1)) K’:f —In (etj/‘l)))
i—1 i

/

. 1 J
4+ De Q@) (I —o0(1)) p/l
o Kt

<exp (— ((1 — 0(1))% — 1 ln(eD)))

+ De= 20D defn. 7] andt/_, /1] < D

< exp (—T ((1_—1(0(1)) — t;,l ln(eD)))

1

+ De~ 2@
- (a | 1 2ln(eD)
<exp(—T (1 —of))E_W
, 2T 2
—2@p) 4 2
+ De tl_lp, =< pl, = DO-1y

< exp (—R(T)) + De~ G

m}

Suppose that H;_; holds, by taking the union bound
over all the events P;(u) > p,f for all u € G;_; and
Pr(deg; .(u) > t) forall u € G;_y and all c € P;_1(u),
we get that Pr(H; (1)) < D - e~ 2T 1 22 . ¢=2@°p),

Therefore, we conclude that for each iteration i > 1,
if H;_; holds, then Pr(H;(u)) < D - exp(—$2(8°T)) +
2D%. exp(—.Q(Szpl/.)) < exp(—Dl_O'%V) for large enough
D. Now we want to ensure that H; holds for every itera-
tion i. If H;_1 is true, then Pr(H; (1)) < exp (—DI_O'%V).
If D=7 > log n, then each of the bad events occur with
probability at most 1/ poly(n). Since there are O (n) events,
by the union bound, H; holds w.h.p. On the other hand,
if D177 < logn, then we can use the LLL algorithm to
make H; hold w.h.p. The probability of the failure events
are bounded by p = exp (—D1_0'957’). Each event depends
on at most d = O(A?) other events, since each event only
depends on the outcomes of the random variables in its neigh-
borhood. Therefore, epd? < exp(—D'~7) and we can apply
the simple LLL algorithm to make all the events hold w.h.p.
in O(logy ;,pz2 1) < O(logn/D'~7) iterations.

By Lemma 13 and the fact that #; shrinks to 1 in a con-
stant number of iterations after i > r, the algorithm uses
O(log* D) iterations. Each iteration uses
max(1, O(logn/D'~")) rounds. The total number of rounds
is therefore O (log* D - max(1, O(logn/D'~7))).

5 Discussion
We gave distributed LLL algorithms under the conditions

p - f(d) < 1 for different functions f(d). When f(d) =
e(d + 1) that matches the general condition of LLL, our

@ Springer

weak-MIS resampling algorithm gives a running time of
0 (log? d 108 /ep(d+1)) Note that the weak-MIS algorithm
was later applied in local computation algorithms for comput-
ing MIS [25]. Recently, Ghaffari’s new MIS algorithm [15]
can compute a weak-MIS in O (log d) time, which improves
the overall running time for LLL to O (logd -108; /¢ (a+1) 1)-

The lower bound we showed in this paper is £2(log* n).
Very recently, Brandtet al. [8] obtained an §2 (log log n) lower
bound for LLL from the sinkless orientation problem and
the sinkless coloring problem in 3-regular graphs. Subse-
quently, Chang, Kopelowitz, and Pettie generalized [8] to
show an £2(log, n) lower bound for deterministic LLL algo-
rithms and an §2(log, logn) lower bound for randomized
LLL algorithms [10]. Note that the lower bounds they have
obtained requires f(d) to be upper bounded by 2¢, while
ours allows it to grow unbounded.

Acknowledgements Thanks Mohsen Ghaffari for pointing out that by
iteratively applying LLL, the range of f can be improved from §2 (log A)
to any positive integer for f-defective, O (A /f)-colorings.

Appendix: Tools

Lemma 18 (Chernoff Bound) Let X1, ..., X,, be indicator
variables such that Pr(X; = 1) = p. Let X = >/, X;.
Then, for 6 > 0:

5 E[X]

& E[X]
The two bounds above imply that for 0 < § < 1, we have:

Pr(X > (1 4+ 8) E[X]) < e ® EIXI/3
Pr(X < (1 —) E[X]) < e ® EIX1/2,

Lemma 19 Let&y, ..., &, be(likely)eventsand Xy, ..., X,
be indicator variables such that for each 1 < i < n and

X = Z?:l Xi,

maxPr(X; | X;_1,&1,...&) < p

Xi—

where X denotes the shorthand for (X1, ..., X,-).4 Then for

s> 0:

6(S "
Pr((X > (1+8)np) ﬂ(ﬂ &-)) = [m]

4 We slightly abuse the notation that when conditioning on the ran-
dom variable X;, it means X; may take arbitrary values, whereas when
conditioning on the event &;, it means that £ happens.

Distributed algorithms for the Lovasz local lemma and graph coloring 279
and thus by the union bound, Therefore, by (6),
&8 np B
Pr(X > (1 +8)np) < [m} + Zpr(ei). Pr((X > (14 8)np) N (ﬂ 5,-))
1 1
Proof For now let us treat & as 0/1 random variables and let _ E[€ - [[i_, exp(tX)]
E=1]];&.Foranyt > 0, exp(t(1 + 8)np)
_ (Lt pe =1
Pr ((X > (1 4+8&np)N (ﬂ 51-)) (6) — exp(t(1 4+ 8)np)
i
n _ explp(e’ — 1)
=Pr ((H 5,) ~exp(tX) > exp(¢(l + 8)np)) ~ exp(t(1 + 8)np)
i=1 np
exp(d)
_ B[, &) -exp 0] = [W] :
exp(t(1 4 8)np)
E[([T/2 & - exp(X)))] The last equality follows from the standard derivation of
- exp(t (1 + 8)np) (7) " Chernoff Bound by choosing # = In(1 + 8). o

We will show by induction that

k
E [(H & exp(rx,»ﬂ < (14 pe' = 1)
i=1

When k = 0, it is trivial that E[£] < 1.

b [(H 6 exp(tx,.>)}

r/k—1
<E (H & exp(tXi))

i=1
‘E[Eexp(tXp) | Xi—1, &1, ...

[/k—1
=E (HE exp(t X;))

i=1

1]

Pr(&) - E[exptXp) | Xi—1. &1, ... &]]
<E _(kl_[lé’ exp(tX;))
-EEexp(th)lX, LEL L&
=E (kl_[le exp(tX;))
-(llri’riXlez 1 EL L &) = 1)]

[/k—1
<E (HE exp(tX;)

L \i=1
r/k—1
:E(

<1+ p —

~(1+p(e - 1))}

5 exp(t X;))] (1+ pe —=1)
i=1

Corollary 5 Suppose that for any § > 0,

) np
Pr((X > (1 + S)I’lp) N (ﬂ 5)) [m]

then for any M > np and 0 < § < 1,

eé

i

M

2
< o—02M/3

Proof Without loss of generality, assume M = tnp for some
t > 1, we have

Pr((X > np +8M) N (ﬂ 5,-))

r eza np
<\ -
“La+ t8)(1+’5)i|

- 5 M
_ e
- (1 +t8)(1+t5)/t:|

IA

_ o M
|+ 8)““&)

28
efézM/3

2

< m565/3f0r0<8<1

Inequality (*) follows if (1 4+ #8)(1F9/t > (1 4 §)1+9 or
equivalently, ((1 + #8)/t)In(1 4+ ¢5) > (1 +) In(1 + §).
Letting f(¢t) = ((1 +¢8)/t) In(1 4+ ¢5) — (1 4+ 8) In(1 + §),
we have f/(t) = le (6t —In(1 +6t)) > 0 for r > 0. Since
f() =0and f/(t) > 0 fort > 0, we must have f(¢) > 0
fort > 1. O

@ Springer

280

K.-M. Chung et al.

References

11.

12.

13.

14.

15.

16.

17.

19.

Alon, N.: A parallel algorithmic version of the local lemma. Ran-
dom Struct. Algorithms 2(4), 367-378 (1991)

Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel
algorithm for the maximal independent set problem. J. Algorithms
7(4), 567-583 (1986)

Alon, N., Krivelevich, M., Sudakov, B.: Coloring graphs with
sparse neighborhoods. J. Comb. Theory Ser. B 77(1), 73-82 (1999)
Barenboim, L., Elkin, M.: Distributed Graph Coloring: Fundamen-
tals and Recent Developments Synthesis Lectures on Distributed
Computing Theory. Morgan & Claypool, San Rafael (2013)
Barenboim, L., Elkin, M., Kuhn, F.: Distributed (A 4 1)-coloring
in linear (in A) time. STAM J. Comput. 43(1), 72-95 (2014)
Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of
distributed symmetry breaking. J. ACM 63(3), 1-20 (2016)

Beck, J.: An algorithmic approach to the Lovasz local lemma. I.
Random Struct. Algorithms 2(4), 343-365 (1991)

Brandt, S., Fischer, O., Hirvonen, J., Keller, B., Lempidinen, T.,
Rybicki, J., Suomela, J., Uitto, J.: A lower bound for the distributed
lovasz local lemma. In: Proceedings of 48th ACM Symposium on
Theory of Computing (STOC), pp. 479-488 (2016)
Chandrasekaran, K., Goyal, N., Haeupler, B.: Deterministic algo-
rithms for the Lovész local lemma. SIAM J. Comput. 42(6),
2132-2155 (2013)

Chang, Y., Kopelowitz, T., Pettie, S.: An exponential separation
between randomized and deterministic complexity in the LOCAL
model. In: Proceedings of 57th Symposium on Foundations of
Computer Science (FOCS), pp. 195-197 (2016)

Czumaj, A., Scheideler, C.: A new algorithm approach to the
general Lovasz local lemma with applications to scheduling and
satisfiability problems (extended abstract). In: Proceedings of 32nd
ACM Symposium on Theory of Computing (STOC), pp. 38-47
(2000)

Dubhashi, D., Grable, D.A., Panconesi, A.: Near-optimal, distrib-
uted edge colouring via the nibble method. Theor. Comput. Sci.
203(2), 225-251 (1998)

Elkin, M., Pettie, S., Su, H.-H.: (2A — 1)-edge-coloring is much
easier than maximal matching in the distributed setting. In: Pro-
ceedings of 26th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 355-370 (2015)

Erdés, P., Lovasz, L.: Problems and results on 3-chromatic hyper-
graphs and some related questions. In: Hanjal, A., Rado, R., Sés,
V.T. (eds.) Infinite and Finite Sets, vol. 11, pp. 609-627. North-
Holland, Amsterdam (1975)

Ghaffari, M.: Animproved distributed algorithm for maximal inde-
pendent set. In: Proceedings of 27th ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 270-277 (2016)

Haeupler, B., Saha, B., Srinivasan, A.: New constructive aspects of
the Lovasz local lemma. J. ACM 58(6), 28 (2011)

Harris, D.G.: Lopsidependency in the Moser—Tardos framework:
beyond the lopsided Lovész local lemma. In: Proceedings of 26th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1792-1808 (2015)

. Harris, D.G., Srinivasan, A.: The Moser-Tardos framework with

partial resampling. In: Proceedings of 54th IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 469-478 (2013)
Harris, D.G., Srinivasan, A.: A constructive algorithm for the
Lovédsz local lemma on permutations. In: Proceedings of 25th
ACM-SIAM Symposium on Discrete Algorithms (SODA) pp.
907-925 (2014)

@ Springer

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Haxell, PE.: A note on vertex list colouring. Comb. Probab. Com-
put. 10(4), 345-347 (2001)

Hind, H., Molloy, M., Reed, B.: Colouring a graph frugally. Com-
binatorica 17(4), 469-482 (1997)

Kolipaka, K., Szegedy, M.: Moser and Tardos meet Lovasz. In: Pro-
ceedings 43rd ACM Symposium on Theory of Computing (STOC),
pp. 235-244 (2011)

Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation:
lower and upper bounds. J. ACM 63(2), 17 (2016)

Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph
coloring. In: Proceedings 25th Annual ACM Symposium on Prin-
ciples of Distributed Computing (PODC), pp. 7-15 (2006)

Levi, R., Rubinfeld, R., Yodpinyanee, A.: Local computation algo-
rithms for graphs of non-constant degrees. Algorithmica, pp. 1-24
(2016)

Linial, N.: Locality in distributed graph algorithms. SIAM J. Com-
put. 21(1), 193-201 (1992)

Luby, M.: A simple parallel algorithm for the maximal independent
set problem. SIAM J. Comput. 15(4), 1036-1053 (1986)

Molloy, M., Reed, B.: Further algorithmic aspects of the local
lemma. In: Proceedings of 30th ACM Symposium on Theory of
Computing (STOC), pp. 524-529 (1998)

Molloy, M., Reed, B.: Graph Colouring and the Probabilistic
Method. Algorithms and Combinatorics. Springer, Berlin (2001)
Molloy, M., Reed, B.: Asymptotically optimal frugal colouring. J.
Comb. Theory Ser. B 100(2), 226-246 (2010)

Moser, R.A.: Derandomizing the Lovasz local lemma more effec-
tively. CoRR, abs/0807.2120 (2008)

Moser, R.A.: A constructive proof of the Lovasz local lemma. In:
Proceedings of 41st ACM Symposium on Theory of Computing
(STOC), pp. 343-350 (2009)

Moser, R.A., Tardos, G.: A constructive proof of the general Lovasz
local lemma. J. ACM 57(2), 11 (2010)

Pegden, W.: An extension of the Moser—Tardos algorithmic local
lemma. SIAM J. Discrete Math. 28(2), 911-917 (2014)

Peleg, D.: Distributed Computing: A Locality-Sensitive Approach.
Monographs on Discrete Mathematics and Applications. Society
for Industrial and Applied Mathematics, Philadelphia (2000)
Pemmaraju, S., Srinivasan, A.: The randomized coloring procedure
with symmetry-breaking. In: Proceedings of 35th Int’l Collog. on
Automata, Languages, and Programming (ICALP), pp. 306-319
(2008)

Pettie, S., Su, H.-H.: Fast distributed coloring algorithms for
triangle-free graphs. In: Proceedings of 40th Int’l Collog. on
Automata, Languages, and Programming (ICALP), pp. 687-699,
(2013)

Reed, B.: The list colouring constants. J. Graph Theory 31(2), 149—
153 (1999)

Reed, B., Sudakov, B.: Asymptotically the list colouring constants
are 1. J. Comb. Theory Ser. B 86(1), 27-37 (2002)

Schneider, J., Wattenhofer, R.: A new technique for distributed
symmetry breaking. In: Proceedings of 29th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 257-266 (2010)
Spencer, J.: Asymptotic lower bounds for Ramsey functions. Dis-
cret. Math. 20, 69-76 (1977)

Srinivasan, A.: Improved algorithmic versions of the Lovész local
lemma. In: Proceedings of 19th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 611-620 (2008)

	Distributed algorithms for the Lovász local lemma and graph coloring
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 A simple distributed algorithm
	3.2 Resampling by weak MIS
	3.3 A sublogarithmic algorithm
	3.4 Lower bound

	4 Applications
	4.1 Distributed defective coloring
	4.2 Distributed frugal coloring
	4.2.1 β-frugal, (iDelta + 1)-coloring

	4.3 Distributed triangle-free graphs coloring
	4.4 Distributed list coloring

	5 Discussion
	Acknowledgements
	Appendix: Tools
	References

