
Converting Basic D3 Charts into Reusable
Style Templates

Jonathan Harper and Maneesh Agrawala

Abstract—We present a technique for converting a basic D3 chart into a reusable style template. Then, given a new data source we

can apply the style template to generate a chart that depicts the new data, but in the style of the template. To construct the style

template we first deconstruct the input D3 chart to recover its underlying structure: the data, the marks and the mappings that describe

how the marks encode the data. We then rank the perceptual effectiveness of the deconstructed mappings. To apply the resulting style

template to a new data source we first obtain importance ranks for each new data field. We then adjust the template mappings to depict

the source data by matching the most important data fields to the most perceptually effective mappings. We show how the style

templates can be applied to source data in the form of either a data table or another D3 chart. While our implementation focuses on

generating templates for basic chart types (e.g., variants of bar charts, line charts, dot plots, scatterplots, etc.), these are the most

commonly used chart types today. Users can easily find such basic D3 charts on the Web, turn them into templates, and immediately

see how their own data would look in the visual style (e.g., colors, shapes, fonts, etc.) of the templates. We demonstrate the

effectiveness of our approach by applying a diverse set of style templates to a variety of source datasets.

Index Terms—Chart restyling, reusable style templates, declarative representation, D3 deconstruction, vega-lite

Ç

1 INTRODUCTION

DESIGNING visually appealing charts that convey data
clearly requires navigating a large space of visual styles.

Designers must carefully choose visual attributes (e.g., posi-
tion, size, shape, color, font) for the data encoding marks
(e.g., bars in a bar chart or points in a scatterplot) as well as
the non-data encoding elements (e.g., tick marks, gridlines,
text labels) in the chart. Although researchers have devel-
oped design principles for making these choices [1], [2], [3],
the principles are not widely known; poorly designed charts
that are visually unappealing and hinder understanding by
obscuring the data, are ubiquitous [4].

Existing visualization tools like Excel, Tableau, Spotfire,
and R/ggplot2 provide a default visual style for the charts
they produce. While these tools usually offer controls for
manually tweaking the visual attributes of the resulting
charts, altering the default style can be tedious. Most users
end up exploring a very small region of the design space
centered around the default style and the charts produced
by these tools often look homogeneous.

In contrast, the Web contains a large collection of charts
in a wide variety of different visual styles. These examples
can help designers better understand the space of possible
visual styles [5]. Moreover, for novice designers it is often
far easier to select the desired style from a set of examples

than it is to generate a new style from scratch [6], [7]. But
existing visualization tools do not provide any support for
re-using the visual style of an example chart.

The dominant tool for constructing Web-based charts is
the D3 JavaScript library [8]. A growing community of D3
developers has already published tens of thousands of D3
charts online [9], [10], [11]. But despite its widespread use,
D3 remains a tool for skilled developers and replacing data
or changing the visual look of an existing D3 chart (e.g., con-
verting a bar chart into dot plot) usually requires significant
re-coding.

Vega [12] and Vega-lite [13] have introduced higher-level
declarative languages that allow users to declaratively spec-
ify a chart as a collection of mappings between data and
marks. Each mapping describes how a visual attribute of the
mark (e.g., position, size, color etc.) encodes the correspond-
ing data field. Mackinlay [2] has shown that this mapping-
based representation significantly reduces the amount of
code necessary to specify a chart while remaining expressive
enough to generate a wide variety of basic chart types (e.g.,
bar charts, line charts, dot plots, scatterplots, etc.). Today
however, relatively few Vega/Vega-lite charts are available
online compared to D3, and Vega-lite currently provides
only one default visual style for the charts it generates.

Harper and Agrawala [14] recently developed a tech-
nique for deconstructing existing SVG-based D3 charts to
recover their underlying structure; the data, the marks and
the mappings between them. While they also provide a
graphical interface for interactively restyling D3 charts, their
tool is primarily aimed at visualization experts. All design
decisions are left to the user, who must manually modify
the deconstructed mappings to adjust the look of a chart
and their interface does not allow users to replace the
underlying data.

� J. Harper is with the University of California, Berkeley, CA 95064.
E-mail: jharper@berkeley.edu.

� M. Agrawala is with Stanford University, Stanford, CA 94305.
E-mail: maneesh@cs.stanford.edu.

Manuscript received 13 Sept. 2016; revised 16 Dec. 2016; accepted 24 Dec.
2016. Date of publication 7 Feb. 2017; date of current version 26 Jan. 2018.
Recommended for acceptance by B. Lee.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2017.2659744

1274 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 3, MARCH 2018

1077-2626� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8996-7327
https://orcid.org/0000-0002-8996-7327
https://orcid.org/0000-0002-8996-7327
https://orcid.org/0000-0002-8996-7327
https://orcid.org/0000-0002-8996-7327
mailto:
mailto:


In this paper we introduce an algorithm for converting a
basic D3 chart into a reusable style template. Applying the
resulting style template to a new data source produces a
chart that depicts the new data, but in the visual style of the
template chart (Fig. 1). To convert a D3 chart into a style
template we first deconstruct the chart using an extension
of Harper and Agrawala’s approach. We then rank the per-
ceptual effectiveness of the deconstructed mappings based
on prior work in graphical perception [1], [2]. To apply the
resulting style template to a new data source we first obtain
importance ranks for each new data field. We then adjust
the template mappings to depict the source data by match-
ing the most important data fields to the most perceptually
effective mappings.

We show how our style templates can be applied to
source data in the form of either a user-specified data table
or another basic D3 chart. Our proof-of-concept implemen-
tation focuses on constructing reusable templates for several
common chart types: variants of bar charts, line charts, dot
plots, and scatterplots. Users can easily find such basic D3
charts on the Web and immediately see how their data
would look in the visual style (e.g., colors, shapes, fonts,
etc.) of the templates. We demonstrate that our templates
enable quick exploration of visual chart styles by applying a
diverse set of style templates to a variety of source datasets.
Unlike previous chart design tools, our approach lets users
focus primarily on their data rather than designing the
visual appearance of a chart from scratch or relying on a
predefined default chart style.

Our contributions include:

� Algorithm for constructing style templates from D3
charts. We extend the approach of Harper and Agra-
wala to recover additional structure from D3 charts,
including new types of mappings and relationships
between data fields. We demonstrate that the
extended representation fully captures the structure
of many common chart types and can be directly
translated into the mapping-based representation
used by Vega-lite [13]. We develop new techniques
for ranking the perceptual effectiveness of map-
pings. We show that the additional structure and the
rankings are crucial for converting D3 charts into
reusable style templates.

� Algorithm for applying style templates to new data
sources. We provide an algorithm for applying the
resulting style templates to any user-specified data

table or D3 chart. If the new source data is a table we
assume the user has specified the importance of the
data fields. If the new source data is another D3 chart
we show that we can infer the importance of the
deconstructed data.

� Evidence for power of mapping-based chart repre-
sentation. Mackinlay [2], Harper and Agrawala [14],
and Vega-lite [13] have previously shown that the
declarative mapping-based representation of charts
is expressive enough for authors to describe a variety
of basic chart types. Our work complements these
results and shows that the mapping-based represen-
tation is high-level enough to allow programmatic
manipulation of a chart’s visual appearance and
structure.

2 RELATED WORK

Constructing a chart requires mapping data to the visual
attributes (e.g., position, area, color) of graphical marks [2],
[15]. While a number of programmatic chart construction
tools such as InfoVis Toolkit [16], ggplot2 [17], and Vega/
Vega-lite [12], [13] have been designed to facilitate this map-
ping process, D3 [8] has become the most popular Javascript
library for producing charts for the Web. Our work converts
existing basic D3 charts into reusable style templates that
can be easily applied to new data sources.

Chart design tools like Excel, Google Spreadsheets,
Polaris/Tableau [18], Lyra [19] iVoLVER [36] and Data
Driven Guides [37] allow users to specify the mappings
between data and mark attributes through a graphical
user interface. However, users must rely on their own
expertise to choose the appropriate mappings. Mackin-
lay [2], [3] was the first to develop an algorithm for con-
structing basic charts by automatically mapping the most
important data fields (as specified by the user), to the
most perceptually effective mark attributes (as deter-
mined via graphical perception studies [1]). Our work
inverts this process; given a chart we rank the importance
of the recovered data fields based on perceptual effective-
ness of the attributes they map to.

Deconstructing a chart involves recovering its data, its
marks and the mappings that relate them. Researchers have
developed a number of image processing techniques for
recovering marks and data from bitmap images of
charts [20], [21], [22], [23]. While bitmaps are the most com-
monly available format for charts, accurate extraction

Fig. 1. Converting basic D3 charts (e.g., bar charts, line charts, dot plots, scatterplots, etc.) into reusable style templates lets users explore a variety
of visual styles for their data. Once we have constructed the templates (see Fig. 6 for the original template charts) the user can specify a new source
data table (left) with the importance of each data field (black number in parentheses) and can then apply the template to immediately produce a chart
that maintains the visual style (colors, shapes, fonts, etc.) of the template but depicts the source data. Note that due to space limitations we have
clipped the right side of the bar chart (a) and bottom of the dot plot (b). (We encourage readers to zoom in to see chart details such as fonts and
gridlines.)

HARPER ANDAGRAWALA: CONVERTING BASIC D3 CHARTS INTO REUSABLE STYLE TEMPLATES 1275



remains challenging because of low image resolution, noise
and compression artifacts. Despite such inaccuracies recent
work has shown that it is possible to use the recovered
marks and data to aid chart reading by adding graphical
overlays [24] and by connecting the chart to explanatory
text in the surrounding document [25].

Harper and Agrawala [14] focus on deconstructing D3
charts. Their approach recovers the marks and data with
100 percent accuracy and also recovers many of the map-
pings relating the data to the marks. Our work builds on
their deconstruction approach. However, we significantly
extend their deconstruction tool to recover additional chart
structure, including new types of mappings and relation-
ships between data fields. While Harper and Agrawala
demonstrate a manual tool for restyling charts using their
deconstructions, we show how the the additional structure
we recover allows us to create style templates that can be
applied directly to new data sources with no additional
user effort.

Our work is inspired by recent techniques for manipulat-
ing visualizations. Transmogrification [38] lets users apply
user-specified warps to images of charts and thereby pro-
duce new visual forms. Bigelow et al. [39] develop tools that
allow users to easily move visualizations between program-
matic construction tools like D3 and drawing tools like
Adobe Illustrator, so that they can be edited wherever it is
most convenient. Unlike these manual tools however, our
work focuses on automating the chart styling process via
reusable style templates.

Style transfer is a well studied problem in Computer
Graphics. Researchers have developed a number of meth-
ods for transferring local characteristics such as texture [26],

color [27], [28], non-photorealistic effects [29], [30], and
noise [31], [32], from one image to another. These methods
rely on non-parametric learning and signal processing tech-
niques to separate the style of the image from its content
and then apply the resulting model of the style to a new
image. However these techniques cannot capture higher-
level aspects of design (e.g., fonts, color palettes, line thick-
ness) or domain-specific semantics (e.g., chart type, axes)
and therefore are not well suited to our problem of transfer-
ring style between charts.

Our work is similar in spirit to Bricolage [33], an exam-
ple-based tool for restyling webpages. Given two webpages,
a content source and a style target, Bricolage matches page
elements that are visually and semantically similar and then
transfers the content from each source page elements to best
matching target page element. Our style transfer approach
similarly considers visual, perceptual and semantic similar-
ity between elements of two input charts to determine how
to map data from the data source chart to mark attributes of
the style target chart.

3 DECONSTRUCTION

Our style templates explicitly represent the visual structure
of a chart as a set of mappings between its data and its
visual mark attributes. Harper and Agrawala [14] recently
developed a tool for deconstructing basic SVG-based D3
charts into this representation. While D3 is general enough
to work with other Web-based graphics APIs like Canvas
and WebGL, we have found that SVG-based D3 charts are
most common, likely because SVG provides a well-known
scene graph representation for 2D graphics. To extract the

Fig. 2. Harper and Agrawala’s deconstruction tool (top) extracts three groups of marks for the example dot plot alongwith fivemappings (four mappings
for Group 1 and onemapping for Group 3).We extend their tool to recover muchmore of the chart’s structure (bottom). Our tool identifies two groups of
data encoding marks, as well as a discrete x-axis and a continuous y-axis, each comprised of two groups of marks (labels and ticks). We unify data
fields across the mark groups as indicated by the corresponding colored backgrounds. We construct attribute ordering Oattr fields for each mark attri-
bute (onlyOxPos is shown). We recover 13 mappings, including several attribute order mappings (denoted!O ) and text mappings (denoted!T ). We also
construct a data domain for each linear mapping (e.g., the data domain forGPA!L yPos is [0.0, 4.0]). Note that we have added the red labels in paren-
thesis to some of the groups to make it easier for readers to match the groups to the chart. These labels are not recovered by either tool.

1276 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 3, MARCH 2018



data and associated mark information their tool uses the fact
that D3 charts bind input data to the SVG nodes represent-
ing marks. Their tool further checks if there are any linear
or categorical mappings (denoted data field ! mark attribute)
that explain the relationships between the data and the
mark attributes. They represent linear mappings as linear
functions that take quantitative data values to quantitative
attribute values. They represent categorical mappings as a
table of correspondences between unique data values and
unique attribute values.

We extract additional structure from D3 charts by
extending their deconstruction tool in six ways: (1) we
explicitly label data-encoding marks and axis marks as well
as axis orientation (x- or y-axis) and whether the axis repre-
sents continuous or discrete data, (2) we group marks to
identify additional mappings, (3) we construct data fields
(e.g., OxPos) to represent the ordering of the marks with
respect to each mark attribute, (4) we unify data fields
which are the same across mark groups, (5) we identify text
format mappings which generate the text strings for text
marks from the values in a data field, and (6) we compute
data domains—the range of meaningful input values – for
each linear mapping. Fig. 2 shows the additional structure
we recover when we deconstruct a dot plot chart using
our extensions. We describe these extensions in detail in
Appendix A.

Note that even with these extensions our deconstructor is
limited to basic charts—those that can be described as a col-
lection of mappings between the data and mark attributes.
Our implementation also inherits a few limitations from
Harper and Agrawala and cannot handle certain types of
charts including those that contain non-linear functional
mappings (e.g., log scales), algorithmic layouts (e.g.,
treemaps), and non-axis reference marks (e.g., legends).
We detail all of the limitations of our implementation in
Section 7.1.

Similarity to Vega-Lite [13]. Our deconstructed repre-
sentation for charts is very similar to the mapping-based
representation of Vega-lite. As shown in Fig. 3a Vega-lite
specification consists of data, marks and a collection of
mappings from the data to mark attributes. To increase
brevity of specification, users do not specify reference
marks (e.g., axes, tick marks, etc.) and their mappings,
and instead rely on Vega-lite to generate them implicitly
based on the data.

But because the representations are so similar, we have
developed a parser that can directly convert such Vega-
lite specifications for data-encoding marks into our

deconstructed representation and vice versa. For example,
given the Vega-lite specification in Fig. 3a, where
the mark type is bar, our parser directly translates the
encodings into three linear mappings b !L yPos, b !L height
and b !L area as well as an attribute order mapping
a !O xPos. Our parser uses the mark type as well the the
encoding information (e.g., type: quantitative or ordinal,
field: a or b) to generate these mappings. It can similarly
convert our mapping-based representation into a Vega-
lite specification. Note however that because Vega-lite
does not include reference marks and mappings we leave
those out of these conversions.

4 CONVERTING A D3 CHART INTO A STYLE

TEMPLATE

Deconstructing a basic D3 chart recovers the mappings
from the data to the mark attributes. To convert this
deconstructed representation into a style template we
rank the perceptual effectiveness of each recovered map-
ping. As we show in Sections 5 and 6, these rankings are
essential for applying the resulting style template to new
data sources.

We use Mackinlay’s [2] rankings of the perceptual effec-
tiveness of visual attributes to set the ranking of each map-
ping for the data encoding marks. Mackinlay’s rankings
differ depending on map-
ping type (quantitative/lin-
ear or categorical). We
adapt these rankings to our
set of mark attributes as in
the inset Figure. Fig. 4a
shows a style template with
ranked mappings (numbers
in green parentheses) for the
D3 chart from Fig. 2. Note
that while we have chosen Mackinlay’s rankings for our
examples because of their grounding in prior graphical per-
ception research, the rankings are fully customizable within
our system.

5 APPLYING STYLE TEMPLATE TO SOURCE

DATA TABLE

Given a style template and a source data table as input, our
goal is to replace the data in the template chart with data
from the source table (Figs. 4a, 4b, and 4e). We also require
that an importance value (1 = most important, N = least
important) is associated with each field of the input data
source. In practice we assume that the user has provided
this importance information as part of the source data table.
For many chart creators this importance information is easy
to provide as they are familiar with the data.

We apply the style template to the source data table
using a three-stage algorithm; (1) we first compute addi-
tional metadata (e.g., data type) for the source data table, (2)
we then use this metadata to adjust the mappings for the
data encoding marks of the template chart to depict the
source data, and (3) finally we rebuild the axes of the tem-
plate chart to serve as reference lines for the updated data
encoding marks.

Fig. 3. Vega-lite [13] lets users describe a chart as a collection of map-
pings from data to mark attributes (a). The Vega-lite compiler renders
such specifications using a single default visual style (b). Our parser can
directly convert Vega-lite specifications into our deconstructed represen-
tation by analyzing the Vega-lite data, marks and encodings (c).

HARPER ANDAGRAWALA: CONVERTING BASIC D3 CHARTS INTO REUSABLE STYLE TEMPLATES 1277



5.1 Stage 1: ComputeMetadata for SourceData Table

In the first stage of our algorithm we infer the data type
(quantitative or categorical) for each field in the source data
table. Specifically, we analyze the data values in each field
of the source table. If the field contains only numeric values
we set its data type to quantitative and if it contains non-
numeric values (e.g., text strings) we set its data type to cate-
gorical. We also set the data domain for each quantitative
data field to the min/max range of its data values.

Note that this simple classification heuristic will incor-
rectly label numerical categorical data (e.g., employee ID
numbers, social security numbers, etc). as quantitative.
But, because stage two of our algorithm allows quantita-
tive data fields to serve as input to categorical mappings it
can generate the proper result chart. We also allow users
the option of specifying the data type for any field in the
source table.

We also extend the source data table to include an order-
ing field O� that represents the row index of each tuple in
the data table. Since we construct this ordering data field
and it does not represent any of the actual data in the table
we assign it the least importance of all the source data
fields. We use this ordering field in stage two of our algo-
rithm to serve as input to attribute order mappings.
Figs. 4b and 4c shows how we analyze and extend an input
source data table.

5.2 Stage 2: Update Data-Encoding Marks

Data-encoding marks are the most important marks in a
chart because their attributes directly encode the under-
lying data. To update the data-encoding marks of the
template chart so that they reflect the source data, we
first match source data fields to attribute mappings in
the template. For each such match we then synthesize a
new mapping function that maps the source data values
to template mark attribute values. Finally we generate

the marks for the new chart according to the updated
mappings.

5.2.1 Match Source Data Fields to Template Mappings

Algorithm 1 describes our procedure for matching the
source data fields to template mappings. Fig. 4d shows
our matching process. Our approach is to map the most
important data to the most perceptually effective mark
attributes.

Our matching algorithm considers each source data field
in order by decreasing importance (line 4) and selects a
matching template mapping based on the data field type
(lines 4-24). Quantitative data can serve as input to any lin-
ear mapping in the style template. Moreover, by treating
each unique numeric data value as a distinct category,
quantitative data can also serve as input to categorical map-
pings. Thus, if the data field is quantitative we match
against the top ranked linear or categorical data mapping.
A categorical data field however, may not be numeric and
can therefore only serve as input to categorical mappings in
the template. Thus, if the data field is categorical we match
it to the top ranked categorical mapping. Note that text
mappings are treated as categorical mappings in this match-
ing procedure. Finally we match the ordering data field O� to
the top ranked attribute order mapping.

If we find a match we replace the template data field with
the source data field in the matched mapping. The style tem-
plate may include redundant encodings in which a single
data fieldmaps to several different visual attributes. We con-
sider such redundant encodings to be stylistic constraints
and if we replace such a redundantly mapped data field, we
propagate the replacement to all of the redundant mappings
including axis mappings (lines 25-27 and Fig. 4d). Once we
have completed the propagation we continue the matching
process with the next highest ranked source data field and
the remaining unmatched style templatemappings.

Fig. 4. We apply a style template (a) to a source data table (b) to generate the result chart (e).We convert a D3 chart (depicting averageGPA for engineer-
ing and humanities colleges) into a style template (a) by deconstructing it and then ranking the perceptual effectiveness of the mappings for the data
encodingmarks (green numbers in parentheses for mark groups 1 and 2). Given a source data table (containing costs of Coke and Pepsi brand drinks) (b)
with importance ranks for each field (blue numbers in parentheses), in stage 1 (c) we compute additional metadata (data type, data domain and ordering
field O�). In stage 2 (d) we match the most important data field to the most perceptually effective template mapping, while ensuring that the type of the
data field is compatible with themapping type. Once we find amatch we propagate the replacement data field to any other redundant mapping in the tem-
plate. For example, after matching the source data field cost to theGPA!L yPosmapping we propagate cost as the replacement for GPA in every other
templatemapping, including axismappings. Finally we generate themarks and rebuild the axes to produce the result chart (e).

1278 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 3, MARCH 2018



Algorithm 1.Match SourceData Fields To Style TargetMapping

1 Input: Source data table with importance rank and data
type for each field. Deconstructed style target chart with
perceptual effectiveness rankings for each target mapping.

2 U = {target mappings} //Set of unmatched target mappings
3 M = {} //Set of matched target mappings
4 for each source data field s in descending importance order do
5 match = null //Initialize target mapping match
6 switch DataType(s) do
7 case Quantitative
8 match = Top ranked linear or categorical
9 mapping in U . If tie in rank, pick any one
10 of top ranked linear mappings. If no linear
11 mapping available, pick any top ranked
12 categorical mapping.
13 end
14 case Categorical
15 match = Top ranked categorical mapping in U .
16 If tie in rank, pick any one of top ranked
17 categorical mappings.
18 end
19 case Ordering
20 match = Top ranked attribute order mapping in
21 U . If tie in rank, pick any one of top ranked
22 attribute order mappings.
23 end
24 end
25 t = DataField(match) //Get original data field for match
26 DataField(match) = s //Set replacement data field
27 Propagate s as replacement data field to any other
28 mapping in U for which t is the original data field.
29 Move all such modified mappings from U toM.
30 end

If we do not find a match for a source data field our data
replacement result will not depict the data field. Such
unmatched data fields occur when either the data source
table includes many more data fields than the style template
chart depicts, or when the source data fields are incompati-
ble with the template mappings (i.e., the source contains
only categorical data fields, but the style template contains
only linear mappings). Alternatively, if the style template
chart depicts more data fields than contained in the source
data table, some style template mappings may remain
unmatched after one complete pass of the matching loop.
We can optionally use these extra template mappings to
redundantly encode source data by repeating the matching
loop over all of the source data fields, but only permitting a
match with the remaining unmatched template mappings.
If the style template includes any unmatched attribute order
mappings this redundant encoding approach matches the
ordering field O� to them.

5.2.2 Synthesize Mapping Functions

After completing the matching process we synthesize new
mapping functions for each matched pair of source data
field and style template mapping, based on the template
mapping’s type: linear, categorical, attribute order, or
text.

Linear. To synthesize a linearmapping function, we relate
the endpoints of the data domain of the source data field to

the endpoints of mark attribute range for the style template
mapping. Since our matching algorithm ensures that the
source data field for a linear mapping is quantitative we
directly look up its data domain as computed in stage one of
our algorithm. We compute the attribute range of the style
template mapping by applying its mapping function to the
endpoints of its original data domain. We then fit a linear
function which maps the start and end points of the source
data domain to the start and end points of the style template
attribute range respectively.We use the resulting linear func-
tion as themapping function for our result chart.

Note that for some chart types (e.g., bar charts, dot plots)
it is critical that the chart include the origin at zero when
depicting a quantitative data field. For other chart types
(e.g., scatterplots) including the origin at zero can make it
difficult to see the marks. To handle these two cases we
check whether the data domain of the original template
mapping include zero and if so we extend the source data
domain to also include zero. If not, we leave the source data
domain as we computed it in stage one (e.g., the min/max
range of the data values). In Fig. 4e the linear yPos mapping
for the dots is synthesized using the source cost field with
domain [140, 210]. However, the original data domain of
the style template was [0.0, 4.0] and so we extend the data
domain of the result mapping to [0, 210].

Categorical. To synthesize a categorical mapping func-
tion, we create a new correspondence table pairing each
unique value of the source data field with a unique value of
the style template mapping’s mark attribute. If the number
of unique data values is less than or equal to the number of
unique attribute values our approach generates a one-to-
one correspondence table that serves as the new mapping
function. For example, in Fig. 4b the source brand data field
contains 2 values (Coca Cola and Pepsi) while the template
contains two unique fill-color values and two unique shape
values. In this case we assign one fill-color and one shape to
each brand. If however, there are more unique data values
than unique attribute values, our approach will leave some
of the data values unmatched. In such cases we report to the
user that it is impossible to construct a one-to-one categori-
cal mapping and instead we reuse attribute values in cyclic
order so that the same attribute value may be paired with
multiple data values. Although the resulting chart does not
correctly depict the source data—it visually aggregates dis-
tinct data values—it can still provide a visual sense for over-
all look of the resulting chart.

Attribute order. Attribute order mappings typically cap-
ture information about the chart’s layout. To maintain the
template chart’s layout while using the ordering data from
the source data table, we update the data field of the tem-
plate attribute order mapping, but maintain the linear
parameters of the mapping function unchanged. If the new
source field contains more values (or fewer values) than the
template ordering data field this approach extends (or
shrinks) the layout to fit the new number of data values.
The transfer result in Fig. 4e shows an example of such
shrinking as the data source contains only five data ele-
ments while the style template contains six data elements.

Text. For text mappings we create a function that simply
converts the source data value into a string.

HARPER ANDAGRAWALA: CONVERTING BASIC D3 CHARTS INTO REUSABLE STYLE TEMPLATES 1279



5.2.3 Generate Marks

The final step of stage two is to generate the data encoding
marks for the result chart. For each group of data encoding
marks and mappings in the style template we retrieve the
matched data fields from the source data table. We then join
together these data fields into a unified data table and gen-
erate a mark for each row in the resulting table. We set the
attributes for each mark by applying the newly synthesized
mappings. For any unmapped mark attributes, we set the
attribute value to the average (for numeric attributes) or
mode (for other attributes) of the corresponding attribute
values from the style template.

5.3 Stage 3: Rebuild Axes

Once we have updated the data encoding marks of the style
template, we rebuild its axes to reflect the new data. We use
a different rebuilding algorithm depending on whether the
axis is continuous or discrete. We describe the algorithms
assuming we are rebuilding an x-axis; the algorithms for a
y-axis are similar.

Continuous axis. A continuous x-axis commonly appears
in a scatterplot or a horizontal bar chart and serves as a ref-
erence line relating the positions of the data encoding marks
to data values. Maintaining the relationship between the
xPos of the data encoding marks and the xPos of the axis tick
marks is critical for such an axis to function properly.

Suppose d !L xPos is a linear mapping from data field d
to the xPos attribute. We can represent the linear mapping
function as a matrix L in homogeneous coordinates where

L ¼ a b
0 1

� �
; (1)

and L � d ¼ a � dþ b ¼ xPos. Our deconstruction tool recov-
ers the linear parameters a and b for each such linear map-
ping. In this notation we refer to the xPos mappings for the
data encoding marks and the axis ticks marks in the original
style template as Lmarks and Lticks respectively.

Even though the data encoding
marks and the x-axis tick marks
depict the same data domain, the
mappings Lmarks and Lticks may
differ. For example, in a horizontal
bar chart (inset) the bar positions
are based on the center point of
the rectangle and the xPos mapping for the bars is 1

2 the
value of the xPosmapping for the ticks. Therefore, to rebuild
a continuous x-axis for the result chart we must first recover
the relationship between these mappings in the original
style template.

We compute this relationship R between the two map-
pings as

R � Lmarks ¼ Lticks (2)

R ¼ Lticks � L�1
marks: (3)

We treat this relationship R between the data-encoding
marks and the axis tick marks as part of the style of the orig-
inal template chart that must be maintained when we
rebuild the axis for the new data. After synthesizing a new
xPos mapping for the data encoding marks in stage two of

our algorithm, we denote the new mapping function as
L0
marks. To build the new x-position mapping for the axis

tick marks L0
ticks while preserving the relationship to

the data encoding marks we compute L0
ticks ¼ R � L0

marks

Although this approach updates the mapping from the data
to the x-position of the tick marks, it preserves the positions
of the ticks in image space. It simply changes the data value
associated with each tick mark. To recover these data values
we invert L0

ticks and apply it to the tick positions. We then
treat these data values as the data for the text mappings of
the axis labels. The tick marks of the continuous y-axis in
the result chart of Fig. 4e match in position with the corre-
sponding tick marks in the style template, but the axis labels
are based on the updated source data field.

Discrete axis. A discrete x-axis commonly appears in a
vertical bar chart or dot plot and is typically used to label
the data encoding marks (e.g., bars or dots). For such charts,
our style template contains a unified attribute order data
field OxPos, and mappings from this field to the the xPos of
the ticks, labels and data encoding marks. The unification
ensures when we update the attribute order mapping for
the data encoding marks in stage two, our algorithm will
propagate the update to set the xPosmappings for the x-axis
ticks and labels. After updating the tick positions we adjust
the axis line to span the new tick marks.

To update the text mappings for the axis labels we
search the source data table for a data field containing a
unique value for each row in the table. If our search finds
more than one such data field we favor using a categorical
field over a quantitative field as the input for the text map-
ping. If we cannot find any such data field we use O� as
the data field for the axis label text mapping. For the exam-
ple in Fig. 4e, we find the drink data field through this
search process and create the drink !T text mapping for
the result chart.

6 APPLYING STYLE TEMPLATE TO SOURCE D3
CHART

In some cases users may have access to a basic D3 chart
depicting their data, but wish to quickly explore other chart
styles by applying alternative style templates. We can apply
a style template to a D3 chart using our three-stage algo-
rithm with small modifications to stage one. Moreover, our
modified algorithm infers the importance values for the
data fields depicted in the source D3 chart and therefore
does not require that the user provide them as part of the
input. However the user can always supply these importan-
ces if their preference differs from the inferred values.

Computing source data importance ranks. We start by
deconstructing the source D3 chart to obtain its data, mark
attributes and mappings. We focus on the subset of map-
pings for the data-encoding marks and assign a perceptual
effectiveness ranking to each one using the same approach
we used to construct the style templates (Section 4). Based
on the assumption that charts map the most important data
to the most perceptually effective mark attribute, we then
directly treat the effectiveness rank as the importance of the
mapped data field. If the same data field appears in more
than one source mapping we give it the importance of its
highest ranked mapping. Fig. 5a and 5b shows a source D3

1280 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 3, MARCH 2018



bar chart with perceptually ranked mappings for the data
encoding bars (left column of Fig. 5b), aggregated into
importance ranks (right column of Fig. 5b).

Computing source data types. We also use the source
mappings to set the data type for each source data field. If
the field is involved in any linear mapping we set its data
type to quantitative and set its data domain to the domain of
any one of the corresponding linear mappings. Our decon-
struction process ensures that all linear mappings for the
same data field are equivalent. If a source data field is only
involved in categorical or text mappings we set its data type
to categorical.

Working with source attribute ordering mappings. The
deconstructed source D3 chart may also contain attribute
order mappings. We set the data type to ordering for each
data field involved in such an attribute order mapping.
As in stage one of the original algorithm we extend the
deconstructed source data table with an ordering data field
O� that holds the row index of each tuple in the table. Thus,
the deconstructed source D3 chart may provide more than
one ordering data field with different importance ranks
(Fig. 5b). Nevertheless we can apply stage two of our algo-
rithm without any modification to this deconstructed source
data table (Fig. 5c). In this case Algorithm 1 matches the the
most important ordering data fields of the source chart to
the most perceptually effective attribute order mappings of
the style template. Any unmatched attribute order mapping
in the style template is then matched with O�. In the Fig. 5
example we first match OyPos and O� does not need to be
used. The result chart for this example appears exactly the
same as in Fig. 4e, but with all attribute order mappings
using OyPos from the source D3 chart rather than O� from
the source data table.

7 RESULTS

We have implemented a pair of tools for (1) converting a
basic D3 chart into a re-usable style template and (2) apply-
ing the resulting style template to new source data (either a
data table or the data in another D3 chart). Our chart con-
version tool extends Harper and Agrawala’s D3 Decon-
structor Chrome plugin [14] so that users can click on any
basic D3 chart from the Web and produce the correspond-
ing style template. Our template application tool is a com-
mand-line tool that takes a data source file as input (either a
CSV file with the importance of each field specified as meta-
data, or a deconstructed D3 chart with its corresponding

data table as produced by the D3 Deconstructor) and produ-
ces an SVG-based chart that matches the style of the input
chart as output. Users can further tweak the resulting chart
if necessary using the manual re-styling tools included with
the original D3 Deconstructor.

As shown in Figs. 1 and 6, our techniques for construct-
ing and applying style templates let users quickly explore a
variety of visual styles for any input source dataset. When
the source data set is given as a data table (Figs. 1 and 6 cols
a,b), the user must also specify the importance of each data
field (numbers in parentheses). When the source data is
given as a D3 chart (Fig. 6 cols c,d), the importance is
inferred by our algorithm. In these cases users can see how
a default chart style (e.g., the Excel style of the data source
in Fig. 6 col c) might be restyled to produce better looking
charts. All result charts were generated automatically with-
out any additional user intervention.

The result charts maintain the visual style of the style
template with similar attribute values (colors, fonts, shapes,
etc.) for the marks, axes and labels. Yet, the data values and
the numbers of marks differ significantly between the tem-
plate charts and the result charts. Our algorithm is robust to
these differences and generates result charts that depict the
source data with the look of the style template.

The fonts, colors and gridlines vary considerably
between the templates. A few of the templates include text
labels on the marks (Fig. 6 rows 2,3,4) that redundantly
encode data values to make it easier for viewers to read the
exact values. The bar charts (Fig. 6 rows 1,2), dot plots
(Fig. 6 rows 3,4), line chart (Fig. 6 row 5) and area chart
(Fig. 6 row 6) all include a quantitative axis that starts at
zero because zero is included in the template chart data
domain. In contrast the scatterplots (Fig. 6 rows 7,8,9) do
not always include an origin at zero.

The blue horizontal bar chart (Fig. 6 row 2) and orange
purple dot plot (Fig. 6 row 3) style templates use color to
depict a two-valued categorical variable. Several of the
result charts for these templates (Fig. 6 rows 2,3 cols a,b,d)
cycle between the colors because the source data fields that
map to color contain more than two unique values (Section
5.2.2). However, the source data in Fig. 6 col c includes a
field with only two unique data values and the result charts
use color to depict it accurately.

The source data chart in Fig. 6 col c includes only one
quantitative data field. Thus, when we apply the line, area,
and scatterplot chart templates (Fig. 6 rows 5-9) to this
source we produce a 1-dimensional result where the

Fig. 5. We can apply style templates to a source D3 chart (a) using the three-stage algorithm of Section 5 but modifications to stage one (b). We
deconstruct the source chart and use the perceptual effectiveness of the mappings for the data encoding marks (b left column) to set the importance
of the source data fields (b right column). We also infer the data type, data domain and ordering field O� using the deconstructed mappings. Finally
we apply stages two and three of our algorithm as before to generate a result chart that appear exactly the same as the chart in Fig. 4e, but with all
attribute order mappings using OyPos from the source D3 chart rather than O� from the source data table.

HARPER ANDAGRAWALA: CONVERTING BASIC D3 CHARTS INTO REUSABLE STYLE TEMPLATES 1281



quantitative data field is mapped to xPos and the yPos
remains unmapped so that all of the marks appear on the
same horizontal line. While the line and area charts are diffi-
cult to read because of self-occlusions in this case, the 1-
dimensional scatterplots can be useful plots for seeing the

distributions of the quantitative data field. In all of these
cases the resulting charts are correct in the sense that they
depict the single quantitative dimension of the data source
on a single axis. The resulting charts also remain visually
similar to the style templates and thereby convey how the

Fig. 6. Once we have converted a D3 chart into a style template we can apply it to new data sources in the form of data tables (a,b) or other D3 charts
(c,d). The result charts maintain the visual style of the style template chart with similar attribute values (colors, fonts, shapes, etc.) for the marks, axes
and labels. Yet, the data values and the numbers of marks differ significantly between the template charts and the result charts. Our algorithm is
robust to these differences and generates result charts that depict the source data in the look of the style template. Red borders indicate transfer
results that our algorithm warns users about as noted in Section 7.(Please zoom in to see chart details like fonts and gridlines.)

1282 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 3, MARCH 2018



data would look using the template. However the line and
area charts in particular are difficult to read and therefore
whenever we apply a template that has a mismatch in the
number of quantities or categorical mappings from the
number of such fields in the data source we report the mis-
match to the user and suggest that it would be better to pick
an alternative style template that matches the data source.
By showing the result rather along with the warning, the
user can see what happens when there is a mismatch and
potentially learn from it.

The source data chart in Fig. 6 col d contains two quanti-
tative data fields, but neither are monotonic. Thus, when we
apply the line and area chart templates (rows 5 and 6) to
this data we produce charts that can be difficult to read and
interpret. However, in the line chart case we produce a valid
connected scatterplot [34] where the ordering of the connec-
tions is based on an ordering data field. In all such cases we
report the lack of monotonicity whenever a line or area
chart template produces such a result. Here again, our
warning can help users learn what happens when data
points are connected in a non-monotonic order in a line or
area chart.

Stylization tool for vega-lite [13]. As noted in Section 3,
we have also developed a parser for converting Vega-lite
specifications of common chart types into our deconstructed
representation and vice versa. Vega-lite currently offers a
single default visual style (with pre-selected, fonts, colors,
axis thicknesses, absence of gridlines, etc.). With our parser
and style transfer approach we can take a Vega-lite specifi-
cation as input (Fig. 3), and apply any template D3 charts
we have generated to try out different appearances for the
chart (Fig. 7). In this case since we are applying the tem-
plates to a source chart rather than a data table we can use
the automatic approaches for computing data importance
ranks, source data types and also make use of the source
attribute ordering mappings (Section 6). Similarly we can
apply our deconstructor to common D3 charts, parse the
resulting deconstruction into Vega-lite and apply the Vega-
lite toolchain to the D3 visualization [12].

User feedback. To further understand the usefulness of
our tools we showed them to seven professional data ana-
lysts who visited our lab for a visualization workshop as
well as three professional journalists experienced in chart-
making. The data analysts were familiar with tools like
Excel and R/ggplot2 but did not go much beyond the
defaults in generating charts. The journalists regularly used
a variety of chart construction software including Excel,
Adobe Illustrator, Tableau as well as programmatic tools
like R/ggplot2 and D3. Unlike the data analysts they were
experts in these construction tools.

After a brief introduction explaining the capabilities of
our tools, we showed them how our tool could be used
to take any data table, specify the importance of each
field and immediately see the data in a variety of styles,
using a set of 15 templates we had constructed earlier.
We offered to let the visitors try stylization on their own
datasets and four of them took us up on this offer. One
of the journalists who primarily worked in D3 also asked
us to convert one of his own D3 bar charts into a style
template and tested the template on several of our
datasets.

While the visitors gave us oral feedback throughout the
demonstrations we explicitly asked them to provide qualita-
tive feedback about our tools via a written feedback form
right before they left. On a 5 point Likert scale ranging from
strongly disagree to strongly agree, all of the visitors wrote
that they agreed or strongly agreed that “Re-usable style
templates make it quick and easy to see data in a variety of
styles”. They also agreed or strongly agreed that “Choosing
a basic D3 chart from the Web as a style template is useful.”
Note that only one of the visitors tested the ability to use a
D3 chart as a template, but he told us that he was satified
with the results he obtained when applying the template to
new data sets.

The experienced journalists did mention that a few of our
results could still use a bit of tweaking (e.g., spacing grid-
lines, reorienting text labels, etc.) before they would be ready
for publication. They were happy to learn that they could
use the manual re-styling toools of Harper and Agrawala’s
D3 Deconstructor [14] or load the resulting chart into an SVG
editor like Adobe Illustrator to perform such tweaks. Over-
all, they thought that the stylized charts produced by apply-
ing our templates were excellent starting points and could
save them hours of time in the initial chart design stage.

While this qualititative user feedback suggests that our
re-usable style templated offer useful functionality to both
novice and expert users, we believe that a formal user study
is an excellent direction for future work in order to fully
evaluate the effectiveness of our tools.

7.1 Limitations

Although our technique for applying style templates suc-
cessfully handles a variety of input charts it does have some
limitations. Our approach requires a structural representa-
tion of the data, marks and mappings of a chart. While our
deconstruction tool can produce this representation for
SVG-based D3 charts, it is currently limited to basic chart
types (e.g., variants of bar charts, scatterplots, dot plots, line
charts, etc.) with linear, categorical, attribute order and text
mappings. Specific limitations include:

Fig. 7. After deconstructing a Vega-lite [13] chart using our parser (original Vega-lite specification and our deconstruction shown in Fig. 3) we can
apply our style templates (original template charts 1-4 shown in Fig. 6 to to this source chart to explore additional chart styles that go beyond the
Vega-lite default.

HARPER ANDAGRAWALA: CONVERTING BASIC D3 CHARTS INTO REUSABLE STYLE TEMPLATES 1283



Cannot recover non-linear functional mappings. Our
deconstructor cannot recover non-linear functional map-
pings (e.g., logarithmic, polynomial exponential, etc.)
between the data and mark attributes. Extending our decon-
structor to use function fitting techniques to test whether
commonly used mappings functions (e.g., log scales) pro-
duce good fits whenever the linear mapping cannot be gen-
erated is a direct next step for our work.

Cannot fully manipulate mark shape. Like Harper and
Agrawala’s [14] deconstructor, we parameterize the geomet-
ric attributes of marks using their bounding boxes. While
this approach lets us recover mappings from data to many
geometric mark attributes including position, x-scale,
y-scale, and area, we cannot recover or manipulate map-
pings to the internal angle of a shape. More specifically,
given a D3 pie chart our deconstructor cannot recover or
modify the mapping between the data and the pie slice
angle. Modifying our deconstructor to appropriately param-
eterize commonly used mark types such as pie slices is a
direct extension of our work. Note that Vega-lite also does
not support generation of pie charts, but if it did then we
could apply our stylization tool for Vega-lite (see Section 7)
to generate and apply pie chart templates.

Cannot recover algorithmic mappings. Some chart types
like treemaps, jittered scatterplots and force-directed node-
link graphs use complex algorithmic techniques to choose
the position of marks. Our deconstructor cannot correctly
recover the mapping algorithm between data the mark posi-
tion attribute for these charts. Perhaps using more sophisti-
cated program slicing and analysis techniques it would be
possible to directly extract the code implementing the map-
ping function from the template D3 chart.

Cannot handle non-axis reference marks. As noted in
Section A.1 non-axis reference marks such as legends are
treated as data-encoding marks by our deconstructor breaks
our style transfer process. Developing techniques for identi-
fying such non-axis reference marks and deconstructing
them separately from the main chart and its axes is an open
direction for future work.

Cannot handle interaction and animation. Our style tem-
plates focus on capturing the visual appearance and struc-
ture of basic D3 charts that are static. While some D3 charts
include interaction and/or animation our techniques cannot
capture these dynamic aspects of the charts and therefore
cannot apply them to new data sources. One challenge is to
develop a declarative representation for interaction and ani-
mation. Recent work by Satyanarayan et al. [35] extends the
declarative language of Vega-lite to represent certain kinds
of chart interactions. Converting an interactive D3 chart into
this Vega-lite interaction specification is an exciting direc-
tion for future work.

As we have noted the first two of these limitations
require extending the implementation of our deconstructor
in relatively direct ways and would not affect our algo-
rithms for capturing and applying style templates. The
other limitations are deeper challenges that may require
new algorithmic techniques. Nevertheless, despite these
limitations, our work shows that our deconstruction tool
fully captures the structure of many of the most common
types of basic charts.

8 CONCLUSION

We have presented a technique for converting a basic D3
chart into a style template and a three-stage algorithm for
applying the resulting template to new data sources. Our
algorithm operates on a high-level structural representation
of charts. Our work shows that this representation is suffi-
cient to capture both the style and content of a chart, and
that it can be recovered by analyzing only the data and
marks in a chart. Our approach let users quickly try new
looks for their charts. In practice we have seen that it is
much faster to apply our style templates than it is to create a
chart or restyle an existing chart using common chart-
making tools like Excel, Tableau, Illustrator, or D3.

APPENDIX: EXTENDED DECONSTRUCTION

We detail the six extensions we make to Harper and
Agrawala’s [14] D3 chart deconstruction technique to
recover additional chart structure.

A.1 Label Data-Encoding Marks and Axis Marks

A chart is often composed of two types of marks—data-
encoding marks that depict the data via their visual attributes,
and reference marks, such as axes and legends, that allow
viewers to associate the visual attributes of the data-encod-
ing marks (e.g., xPos, yPos, etc.) with specific data values.
Maintaining the relationships between these two types of
marks is critical for viewers to correctly read the data from
a chart. However, Harper and Agrawala’s deconstruction
tool does not differentiate between these two mark types.

We extend their deconstruction tool to explicitly label axis
marks, which are the most common reference marks. We use
the fact that D3 groups together all of the marks comprising
an axis and stores a specialized axis scale objectwith the group.
In deconstruction we check whether each SVG group node
has an associated scale object and if so we label all of its child
SVG nodes as axis marks. We also recover two additional
properties from the scale object; the orientation of the axis
(x-axis or y-axis) and whether the axis is a reference for dis-
crete data (e.g., dot plot x-axis) or for continuous data (e.g.,
dot plot y-axis). Finally, we examine the geometry of the axis
marks to differentiate tick marks, text labels and the axis line.
Note that in D3 gridlines are typically created as chart-span-
ning tickmarks, sowe label gridlines as tickmarks.

After labeling all of the axis marks we label the remain-
ing marks as data-encoding. Note that our approach labels
non-axis reference marks, such as legends, as data-encoding
marks. This incorrect labeling can break our style transfer
process. We leave it to future work to automatically label
such non-axis reference marks.

A.2 Regroup Marks to Identify Additional Mappings

In order to construct mappings Harper and Agrawala [14]
first group together marks that have the same data schema.
For each such group they then identify any linear or categori-
cal functions that relate the data to the mark attributes. But
this approach can over-group marks and fail to find some of
the mappings. We instead start by only grouping together the
marks if they have the same SVG node type (e.g.,<circle>,
<rect>, <text>). We then construct mappings for each

1284 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 3, MARCH 2018



group independently. Finally, for each pair of groups we
check whether the mappings are equivalent; that is, for each
mapping in one group we check whether there is a mapping
in the second group for which the data field and mark attri-
bute match. If we find a match for all the mappings in both
groups, we merge the two groups and test whether we can
construct additionalmappings.

For our example dot plot (Fig. 2), Harper and Agrawala
group together the <circle> and <rect> marks corre-
sponding to the dots with the <text> marks correspond-
ing to their labels because they all share the same data
schema. This grouping prevents their technique from recov-
ering the GPA !L yPos mapping since the same GPA value
maps to two different yPos values (one for the dot and one
for the text) and they instead recover a less useful cate-
gorical mapping GPA !C xPos. In contrast, our procedure
only groups together the <circle> and <rect> marks
while leaving the <text>marks in a separate group. It can
then recover a GPA !L yPos mapping for both of these
groups as well as a College!C shapemapping for the dots.

A.3 Construct Mark Attribute Ordering Data and
Mappings

In some chartsmark attributes are not related to any data field
but instead form a regular ordered sequence in attribute
space. For example, the xPos of eachdot in our dot plot is regu-
larly spaced in the image. Harper and Agrawala attempt to
recover such ordering information from the SVG rendering
order of the marks in the chart. However, the rendering order
does not always correspond to the attribute ordering and in
such cases their approachwill fail to find the ordering.

Our approach for recovering such ordering information
is to construct an attribute ordering data field Oattr for each
mark attribute. We set the data for this field as the sort
ordering index of the corresponding attribute values. For an
attribute that is regularly spaced, we can then recover a lin-
ear mapping between this ordering data and the attribute
values to capture the regular spacing relationship. We call
such mappings attribute order mappings.

In our dot plot example (Fig. 2), Harper andAgrawala only
recover a categorical mapping between the SVG rendering
order index deconID and the xPos attributewhich does not rep-
resent the regular spacing between the marks. In contrast, our
approach recovers an attribute order mapping OxPos !O xPos
that captures the regular spacing as a linear function.

A.4 Unify Replicated Data Fields

Some charts replicate the same data for two different groups
of marks. In our dot plot example (Fig. 2), dots and dot
labels replicate the GPA data field and linearly map these
fields to the yPos attribute in slightly different ways. We
unify such replicated data fields so that any change to the
data field propagates to all of the mark attributes mapped
by it. So, if the unified GPA data is changed the yPos for
both the corresponding dot and dot label will be updated.

Our unification approach considers each pair of data
fields in the chart and checks for two conditions: (1) the
data field names match and (2) they contain the same data
values, including repeated values (i.e., we sort the data and
check that corresponding values match). Some D3 charts do

not include the data field name with the data bound to the
marks. In these cases Harper and Agrawala generate a data
field name based on the the type of the data (number, string,
or boolean). Since these data values do not have a semantic
field name, we attempt to unify them with all other data
fields by only performing the second check and matching
the sorted data values. In our example dot plot (Fig. 2) we
unify a number of fields across the different groups of data
encoding and axis marks.

A.5 Extract Text Format Mappings

Charts commonly use text marks to display specific data val-
ues. For example, our dot plot (Fig. 2) labels each dot with a
text mark that shows the exact GPA value for the dot. Given
the group of label marks, Harper and Agrawala would
recover a categorical mapping from the GPA data field to the
text attribute of the text mark. However, because a categorical
mapping is represented as a table of correspondences
between unique data values and unique attribute values, it is
not extensible and cannot convert new data values into attri-
bute values. It does not capture the general functional rela-
tionship between the data and the text string attribute.

We recover a more general and extensible text format
mapping. For each categorical mapping between a data field
and a text string attribute we further check if the string ver-
sion of the data value matches the corresponding text attri-
bute value. If so we set the text format mapping function to
simply convert the data value to a string—, i.e., string(data
value). However, in some cases the data value may be
related to the text string attribute value by a more compli-
cated formatting function. For example, data representing
U.S. dollars may be prefixed with the “$” symbol or post-
fixed with the string “dollars” when displayed as a text
mark. In such cases we apply a regular expression parser on
the group of text marks to recover the common prefix and/
or postfix and set the text format mapping function to: prefix
+ string(data value) + postfix.

A.6 Recover Data Domain of Linear Mappings

Although a linear mapping function can be applied to any
numeric input to produce an attribute value, in the context of
the chart, only a limited domain of input data values produce
meaningful mark attribute values. In our dot plot (Fig. 2) the
GPA!L yPosmapping for the dots is onlymeaningful over the
data domain ½0:0; 4:0�, the limits of the y-axis. We construct
such data domains for linearmappings as follows.

For each linear mapping we first set its data domain to the
min/max range of its data values. However, the resulting
domain may only represent a subset of the meaningful data
domain for the chart. In the dot plot, the data domain for the
GPA!L yPosmapping would initially range from ½2:1; 3:8�. To
recover the completemeaningful data domainwe consider all
linear mappings to samemark attribute (yPos in our example)
which also have overlapping min/max data ranges. We
assume that all such mappings share the same data domain
and compute the domain as the union of the overlapping
min/max data ranges. In our example, this approach consid-
ers the min/max data range for yPos mappings of the dots
and of the y-axis axis tickmarks together and thereby recovers
the complete ½0:0; 4:0� data domain.

HARPER ANDAGRAWALA: CONVERTING BASIC D3 CHARTS INTO REUSABLE STYLE TEMPLATES 1285



ACKNOWLEDGMENTS

This work was supported by an Allen Distinguished Inves-
tigator Award.

REFERENCES

[1] W. S. Cleveland, The Elements of Graphing Data. Monterey, CA,
USA: Wadsworth Advanced Books and Software, 1985.

[2] J. Mackinlay, “Automating the design of graphical presentations
of relational information,” ACM Trans. Graph., vol. 5, no. 2,
pp. 110–141, 1986.

[3] J. Mackinlay, P. Hanrahan, and C. Stolte, “Show me: Automatic
presentation for visual analysis,” IEEE Trans. Vis. Comput. Graph.,
vol. 13, no. 6, pp. 1137–1144, Nov./Dec. 2007.

[4] “WTF Visualizations,” 2015. [Online]. Available: http://viz.wtf/,
retrieved Mar 2016.

[5] S. R. Herring, C.-C. Chang, J. Krantzler, and B. P. Bailey, “Getting
inspired!: Understanding how and why examples are used in cre-
ative design practice,” in Proc. SIGCHI Conf. Human Factors Com-
put. Syst., 2009, pp. 87–96.

[6] B. Lee, S. Srivastava, R. Kumar, R. Brafman, and S. R. Klemmer,
“Designing with interactive example galleries,” in Proc. SIGCHI
Conf. Human Factors Comput. Syst., 2010, pp. 2257–2266.

[7] D. Ritchie, A. A. Kejriwal, and S. R. Klemmer, “D. tour: Style-
based exploration of design example galleries,” in Proc. 24th
Annu. ACM Symp. User Interface Softw. Technol., 2011, pp. 165–174.

[8] M. Bostock, V. Ogievetsky, and J. Heer, “D3 data-driven doc-
uments,” IEEE Trans. Vis. Comput. Graph., vol. 17, no. 12,
pp. 2301–2309, 2011.

[9] M. Bostock, “D3 Gallery,” 2015. [Online]. Available: https://
github.com/mbostock/d3/wiki/Gallery, retrieved Mar. 2016.

[10] I. Ros, 2015. [Online]. Available: https://bl.ocksplorer.org,
retrieved Mar. 2016.

[11] C. Viau, “The Big List of D3.js Examples,” 2015. [Online]. Avail-
able: http://christopheviau.com/d3list/, retrieved Mar. 2016.

[12] “Vega,” 2015. [Online]. Available: https://vega.github.io/,
retrieved Mar. 2016.

[13] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer, “Voyager: Exploratory analysis via faceted browsing
of visualization recommendations,” IEEE Trans. Vis. Comput.
Graph., vol. 22, no. 1, pp. 649–658, Jan. 2016.

[14] J. Harper and M. Agrawala, “Deconstructing and restyling D3
visualizations,” in Proc. 27th Annu. ACM Symp. User Interface
Softw. Technol., 2014, pp. 253–262.

[15] J. Bertin, Semiology of Graphics: Diagrams, Networks, Maps. Madison,
WI, USA: University of Wisconsin press, 1983.

[16] J. Fekete, “The infovis toolkit,” in Proc. IEEE Symp. Inf. Vis., 2004,
pp. 167–174.

[17] H. Wickham, Ggplot2: Elegant Graphics for Data Analysis. Berlin,
Germany: Springer, 2009.

[18] C. Stolte, D. Tang, and P. Hanrahan, “Polaris: A system for query,
analysis, and visualization of multidimensional relational data-
bases,” IEEE Trans. Vis. Comput. Graph., vol. 8, no. 1, pp. 52–65,
2002.

[19] A. Satyanarayan and J. Heer, “Lyra: An interactive visualization
design environment,” Comput. Graph. Forum (Proc. EuroVis), 2014.
[Online]. Available: http://idl.cs.washington.edu/papers/lyra

[20] Y. P. Zhou and C. L. Tan, “Hough technique for bar charts detec-
tion and recognition in document images,” in Proc. Int. Conf. Image
Process., 2000, pp. 605–608.

[21] W. Huang, R. Liu, and C. L. Tan, “Extraction of vectorized graphi-
cal information from scientific chart images,” in Proc. 9th Int. Conf.
Document Anal. Recognit., 2007, pp. 521–525.

[22] L. Yang, W. Huang, and C. L. Tan, “Semi-automatic ground truth
generation for chart image recognition,” in Document Analysis Sys-
tems VII. Berlin, Germany: Springer, 2006, pp. 324–335.

[23] M. Savva, N. Kong, A. Chhajta, L. Fei-Fei , M. Agrawala, and
J. Heer, “ReVision: A utomated classification, analysis and rede-
sign of chart images,” in Proc. 24th Annu. ACM Symp. User Interface
Softw. Technol., 2011, pp. 393–402.

[24] N. Kong and M. Agrawala, “Graphical overlays: Using layered
elements to aid chart reading,” IEEE Trans. Vis. Comput. Graph.,
vol. 18, no. 12, pp. 2631–2638, Dec. 2012.

[25] N. Kong, M. A. Hearst, and M. Agrawala, “Extracting references
between text and charts via crowdsourcing,” in Proc. SIGCHI
Conf. Human Factors Comput. Syst., 2014, pp. 31–40.

[26] A. A. Efros and W. T. Freeman, “Image quilting for texture syn-
thesis and transfer,” in Proc. 28th Annu. Conf. Comput. Graph. Inter-
active Techn., 2001, pp. 341–346.

[27] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley, “Color
transfer between images,” IEEE Comput. Graph. Appl., vol. 21,
no. 5, pp. 34–41, Sep. 2001.

[28] F. Pitie, A. C. Kokaram, and R. Dahyot, “N-dimensional probabil-
ity density function transfer and its application to color transfer,”
in Proc. 10th IEEE Int. Conf. Comput. Vis., 2005, pp. 1434–1439.

[29] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H.
Salesin, “Image analogies,” in Proc. 28th Annu. Conf. Comput.
Graph. Interactive Techn., 2001, pp. 327–340.

[30] L. Ritter, W. Li, B. Curless, M. Agrawala, and D. Salesin, “Painting
with texture,” in Proc. Rendering Techn., 2006, pp. 371–376.

[31] J. Chen, C.-K. Tang, and J. Wang, “Noise brush: Interactive high
quality image-noise separation,” ACM Trans. Graph., vol. 28, no. 5,
2009, Art. no. 146.

[32] K. Sunkavalli, M. K. Johnson, W. Matusik, and H. Pfister, “Multi-
scale image harmonization,” ACM Trans. Graph., vol. 29, no. 4,
2010, Art. no. 125.

[33] R. Kumar, J. O. Talton, S. Ahmad, and S. R. Klemmer, “Bricolage:
Example-based retargeting for web design,” in Proc. SIGCHI Conf.
Human Factors Comput. Syst., 2011, pp. 2197–2206.

[34] S. Haroz, R. Kosara, and S. Franconeri, “The connected scatterplot
for presenting paired time series,” IEEE Trans. Vis. Comput. Graph.,
vol. 22, no. 9, pp. 2174–2186, 2016.

[35] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer,
“Vega-lite: A grammar of interactive graphics,” IEEE Trans. Vis.
Comp. Graph. (Proc. InfoVis), 2017. [Online]. Available: http://idl.
cs.washington.edu/papers/vega-lite

[36] G. G. M�endez, M. A. Nacenta, and S. Vandenheste, “iVoLVER:
Interactive Visual Language for Visualization Extraction and
Reconstruction,” in Proc. 2016 CHI Conf. Human Factors Comp.
Syst., 2016, p. 13, doi: 10.1145/2858036.2858435.

[37] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic
and H. Pfister, “Data-Driven Guides: Supporting Expressive
design for information graphics,” IEEE Trans. Vis. Comput. Graph.,
no. 1, pp. 491–500, 2017.

[38] J. Brosz, M. A. Nacenta, R. Pusch, S. Carpendale, and C. Hurter,
“Transmogrification: causal manipulation of visualizations,” in
Proc. UIST, 2013, pp. 97–106.

[39] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer, “Iterating
between tools to create and edit visualizations,” IEEE Trans. Vis.
Comput. Graph., no. 1, pp. 481–490, 2017.

Jonathan Harper received the graduate degree
from UC Berkeley building information visualiza-
tion design tools. He is a software engineer work-
ing at Strava to build tools that help athletes
better understand and share their activities.

Maneesh Agrawala is a professor of computer
science and director of the Brown Institute for
Media Innovation at Stanford University. He
works on computer graphics, human computer
interaction and visualization. His focus is on
investigating how cognitive design principles can
be used to improve the effectiveness of audio/
visual media. The goals of this work are to dis-
cover the design principles and then instantiate
them in both interactive and automated design
tools.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1286 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 3, MARCH 2018

http://viz.wtf/
https://github.com/mbostock/d3/wiki/Gallery, retrieved Mar. 2016.
https://github.com/mbostock/d3/wiki/Gallery, retrieved Mar. 2016.
https://bl.ocksplorer.org, retrieved Mar. 2016.
https://bl.ocksplorer.org, retrieved Mar. 2016.
http://christopheviau.com/d3list/, retrieved Mar. 2016.
https://vega.github.io/
http://idl.cs.washington.edu/papers/lyra
http://idl.cs.washington.edu/papers/vega-lite
http://idl.cs.washington.edu/papers/vega-lite

