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‘We consider a network of n spin % systems which are pairwise interacting via Ising interaction and
are controlled by the same electro-magnetic control field. Such a system presents symmetries since
the Hamiltonian is unchanged if we permute two spins. This prevents full (operator) controllability,
in that not every unitary evolution can be obtained. We prove however that controllability is verified
if we restrict ourselves to unitary evolutions which preserve the above permutation invariance. For
low dimensional cases, n = 2 and n = 3, we provide an analysis of the Lie group of available
evolutions and give explicit control laws to transfer between two arbitrary. permutation invariant
states. This class of states includes highly entangled states such as GHZ states and W states, which
are of interest in quantum information.
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Control.

I. INTRODUCTION

The controllability of a control system describes the set of states which can be reached for that system by oppor-
tunely changing the external controls. For finite dimensional quantum systems, controllability is usually assessed by
calculating the Lie algebra generated by the Hamiltonians of the system [2]. Such a Lie algebra is called the dynamical
Lie algebra. If the dynamical Lie algebra of a system of dimension d is the full Lie algebra u(d) (su(d)) of d ® d skew-
Hermitian matrices (with zero trace) then the set of.available evolutions is the full Lie group of d @ d unitary matrices
U(d) (with determinant equal to 1, SU(d)) and the system is said to be operator controllable (the term ‘completely
controllable’ is also used to denote this situation [7]). More in general the set of the available evolutions is dense in
the Lie group associated with the dynamical Lie algebra and it is equal to such a Lie group in the case where such a
Lie group is compact. Although controllabilityis the generic situation [14], often in reality symmetries in the system’s
dynamics restrict the type of available‘evolutions. In this paper, we analyze one of these situations for a system of
interest in the implementation of quantum information processing and the generation of entangled states.

We consider a network of n — 2 spins controlled in parallel by an electromagnetic field. Such a system was also
considered in [1] and allows one to perform quantum information processing and generate entangled states without
the need to address the spins individually. A common control field is used to control all spins simultaneously. The
Hamiltonian (cf. (6) below) is'symmetric in the sense that is invariant under permutation. As a consequence, starting
from the ground state where all the spin are in state 0] the possible states of the spin network will also be permutation
invariant. Examples of such states are the GHZ staﬁ‘és introduced in [8]
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considered in [6]. We do not restrict ourselves to transfer to or from these states as in [1] but consider the control
problém on thefull subspace of permutation invariant states. A basis for such a subspace is given by the n + 1
orthonormal states, for m =0,1,...,n,
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In formula (3), for each m the sum runs for all the elements in the computational basis which have m 1’sand n.= m

0’s. For instance yHZ\ in (1) corresponds to —=( @g| + @n|), while y/\ in (2) corresponds to ¢y].
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We present the following results:
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‘ s I Wt prove the controllability of the system in the sense that the dynamical Lie algebra P is the full Lie subalgebra
. . of u(2™) consisting of matrices which have zero trace and are permutation invariant. The corresponding Lie
PUb“Shln& up is compact and therefore the set of possible available evolutions is equal to such a Lie group ¢* (Theorem
Z).
For the cases n =2 and n = 3 spins:
2. We explicitly describe the dynamical Lie algebra P which is the direct sum of u(1) with u(3) inside su(2?) for
the case n = 2. It is the direct sum of two copies of u(2) plus u(4) inside su(2%) for the case n = 3. From this,
a parametrization of the Lie group of the available evolutions is obtained and controllability between any two

permutation invariant pure states is proved. Results are summarized in Theorem 3 and 4 for the cases n = 2
and n = 3, respectively.

3. We use the above parametrization of the Lie group of available evolutionsand Lie group decomposition techniques
to provide explicit control algorithms to transfer between any two permutation invariant states (Section IV).

A. Definitions and elementary properties

The Pauli matrices 0, 4 . are defined as

01 0 % 1 0
01:—>1 ol Uy:—) i()/’ O’ZI_>0 1/. (4)

Let 1 be the two dimensional identity matrix, the Pauli‘matrices satisfy

0pOy = 0y0y— 0,0, =1,
OpOy = 10, G0, = 00y, 0,0, = 10y (5)
OyOp = U0, 0.0y =10y, 0,0, =10y

The quantum system we study in this paper is the symmetric Ising spin network under the control of a common
electromagnetic field which was also considered in [1]. The corresponding, time varying controlled Hamiltonian, for
n —2 spin % particles is defined as:

H(t) = H.. + Hyu,(t) + Hyuy(t), (6)
where

He. = [[Nepdpen 1@ e 0. ele xxde o, ele xxd,

A~ A~
Lth mth
H, =]l 16 xxde o, e1e xxd, 1)

Ekth

Hy=Jli_1e xxde o, e1le xx.
N~

Lkth

Here u, and.u, tfepresent the 2 and y components of a control electromagnetic field. H,, is the interaction
Hamiltonian whichus theé sum of 7 ( Ising interactions between all pairs of spins. The Hamiltonians H,, H, model
the interacdtion of the spins with the external control field.

It is clear that the given Hamiltonian is invariant under a permutation of the spins. We next define the Lie

subalgebra of w(2") of matrices which are permutation invariant. The 4 @& 4 matrix

0

0

04~ (8)
1

HUlO O’QH:UQO g1. (9)

[l e N
oo = O

1
0
0
0

is such that for any two, 2 @ 2 matrices, 01 and o9
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‘ s IIpL 1 matrlces IL j+1,5=1,...,n 1, defined as
PUbIlSh”]g Hj,j+1 = 1®j_1 [ H [ ] 1®n_j_1, (10)

generate the whole group of permutations in the sense that every permutation of the n factors in a tensor product
can be obtained by multiplications of such matrices. Therefore the Lie subalgebra of u(2™) of matrices which are
permutation invariant can be described as

Ti=}A /u(2") \Pj,J#lAHJ}jJrlv j=1Ll..n 1) (11)

Since I12 = 1 e 1, we have that H 41 = 197, for every j = 1,1,...,n 1. From this it follows that if general
2" g 2" skew—Hermltlan matrices A and B are such IT; j4+1 Al ;11 = A and H“HBHJ j+1 = B, AB is also such
that I j 41 ABIL; jo1 = 11 11 ALL 5y BIL; 4 = AB. This confirms that PFLis a Lie subalgebra of u(2"), since it is
closed under commutation (it is, in fact, closed under matrix product).

II. CONTROLLABILITY

Applying general results on the controllability of systems on Lie groups [11] and quantum systems (see, e.g., [2],
[10], [15]) the study of the controllability of system (6) will be carried out by evaluating the dynamical Lie algebra P
in u(2") generated by the matrices }iH,,,iH,,iH,) in (6). Itds knownthat the set of reachable evolutions is dense in
the Lie group, e, associated with the dynamical Lie algebra®® and coincides with such a Lie group if this Lie group
is compact. The following result characterizes the dynamical Lie algebra for system (6). It shows that, except for the
fact that the matrices corresponding to H., H, and H, in (7) have zero trace, the dynamical Lie algebra is the full
Lie algebra of permutation invariant skew-Hermitian matrlces in‘w(2m).

Theorem 1. (Dynamical Lie Algebra) The dynamical Lic algebra P associated with system (6) coincides with the
space of all permutation invariant matrices in su(2%), i.exwith P°T in (11),

P= PP su(2m). (12)

The set of possible evolutions for the system (6) (%) is described in the following theorem.

Theorem 2. (Controllability) The set of possible evolutions for the system characterized by the Hamiltonian (6) is
the connected Lie group corresponding to the-Lie algebra PYT | su(2™).

Proof. From the above recalled general results on the controllability of right invariant systems on Lie groups [11] and

quantum mechanical systems’[2],[10], [15], the reachable set is the connected Lie group (containing the identity)

associated with the dynamical Lie algebra, under the assumption that such a Lie group is compact. In our case, et

is compact (which is proved in Remark I11.3 below) and SU(2") is also compact, so that
eﬁplﬁsu(Q") _ eLPI L SU(Q”),

is also compact. /Therefore, applying such known results, the set of available evolutions is exactly equal to the Lie

group, eﬁmﬁs“(z"), i,e., the connected Lie group associated with PP! | su(2"). O

We now calculate the/dimension of the Lie algebra P in (12). To do this we first introduce some notations. Let
oo:=1. For an n plel := (l,ls,...,1,) of elements in the set }0,z,y, z), we denote by

0L =0, @ X® 0. (13)

Consider a matrix X of the type X = iHl oqoy / su(2™), where the sum is taken among the 4™ possible n ples in
10, 2y, z), with coefficients . For any permutation m we let X™ = i Hl @y0r)- Thus X is permutation invariant,

ie. X 7/ PEL (see equation (11)), if and only if X = X™ for all permutations 7 / S,,, where S,, denotes the symmetric
group of degree n. For a triple (k,, ky, k) indicating the numbers of }x,y, z) symbols, we denote by ®(k,, ky, k.) the
set of n-ples with k,, 2's, ky, ¥'s, and k., z’s. We let, with definition (13),

. »
Xiwain =t ][ o
1E® (g k)
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X ks ko k) is a permutation invariant matrix, and any permutation invariant matrix can be written as a linear
.cqmbingtion of matrices of the type X7} . With these notations, in particular we have:
Publishing (ke b )

inz = X(76’072)’ ’LHZ = ,Xv(nl’o’o)7 ZHy = X(T(L)’l’o)- (14)

We first calculate the dimension of the Lie algebra PP’ in (11). Elements forming a basis for the Lie algebra P!
in (11) are in one to one correspondence with triple (kz, ky, k.). Therefore, the dimension of PP is given by all the
ways to choose the triples (ks, ky, k.), with 0 > k, + k, + k. > n.

Now, given 0 > k > n, we have w ways of choosing (ks ky, k.), with k =k, + k, + k.. In fact, k, can be
chosen in k+1 ways, then k, can be chosen in k+1 k&, ways, while k, =k (k; #k,) is now fixed. Thus by varying

ks, from 0 to k, we have that the total ways are:

k k+1
IT ¢e+1 k@:lﬁl:ﬁﬁjﬂﬁia.

2
kp=0 =1

The dimension of the Lie algebra P"' in (11) is obtained by summing{the above ntimbers as k = 0,1, ...,n. We have

(n+3)(n+2)(n+1) n
% +3 ;2 +1 ::> :3/

n n

mmP“::I[@ii¥35Q:%IIMH4ﬂk+%=
k=0 k=0

(15)

where the third equality is proved by induction on n.
Therefore, the dimension of the Lie algebra P in (12) is ":,'3< 1.

A. Proof of Theorem 1

The dynamical Lie algebra P is generated by iH.., 1H,,;and iH, and since iH., iH,, and iH, belong to prI |
su(2m), P < PPI| su(2"). To prove Theorem 1 we need to establish also the converse inclusion, i.e. P71 | su(2") < P.
To get this inclusion, we will prove that,

A(ky, ky, k) such that 1> ki, + ky, + k. > n, X&m,ky,kz) /P. (16)

We will prove equation (16) by induction onk = k, + k, + k. (1 > k > n). We will derive equation (16) for k =1, 2
first and then will prove the inductive step.

Ck=1.
For k = 1 there are only/three possible triples (k,, ky, k.), with ky +k, +k, = k. X(nl.,o,o) and X(’B’LO) are already
in P because of (14). Moreover a.direct calculation gives
X000 X(0.1.0)] = 2X(0,01)-
In fact
X7 , Xt = le xxle 0, ele xxx1, 1e xx1e o, ele x| =
[(X(10.0) X(0,1.0)] H [ & ] ]
ij=1 ith Sth
J
=21 le xxXle o0, e1le x4,
H A~
z ith
since we have that, if i ¥ j then the two matrices commute, and if ¢ = j then [0,,0,] = 2i0,.
C k=2

For k = 2 there are only 6 possible triples (k,, ky, k.) with ky +k, + k. = k. X(’B 0,2) is already in P because of
(14). Moreover, we calculate
[X(nLo,o)’X(%,o,z)] - 2X(76,1,1)

[X(o,l,o)7X((),0,2)] = 2X(1,0,1) (17)
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‘ s I PLe us glve details on the first equation. The second one is similar. First we notice that:
PUbllShlng [Le xde 0, ele 1, 1e xxxLe g, @ X0 0, & XL e x| =
A~ ~ ~
jth jth Ith
\ 0 if i % j and i ¥ |
2010 xole g, @ xx0 0, e xxle ifi=j
A~ A~
= jth Ith (18)
g%lo ol e g, e xce g, e xxle xuxd ii=1
A A~
jth Ith
Thus:
n
X7 X7 = 1e xxxl le xxx, 16 xxd 9 XX XL @ xxxl| =
[ (1,0,0)» (0,072)] H [ ° ° /Q ole ,1e ° /a\ ° (] /(E ° ° }
i j,l =1 ith ) Ith

= H 2t [ 1o xx1e g, @ Xx00 0, @ X e XX +10 xxx1e 0, e Xx@ 0, ¢ XL e
A~ N~ = “~~
j,l—l jth Ith gth 1th

=2X0,11)

This shows that X (”07171) and X (”170,1) are in.P. Moreover we have, with similar calculations (cf. Appendix A),

[Xa),l,lyX(nl,O,O)] = 4X(020) 4X(76,0,2) (19)
[X(nl,o,l)vX(%,l,o)] = 4X(2,0,0)+4Xg),0,2)7

and therefore X(no,2.0)7 and X (n2,0A0) are also in P. Finally, using a similar argument as the one used to prove
(17), we have,

[X (6,01 X(2,0.0)) = 2X(1.1,0)- (20)
Therefore all the basis matrices corresponding to k = 2 are in P.

C By exchanging the roles.of z, y and z, we can see the following:

Fact: Assume.that X7 , /P for all triples (ky, Ky, k), with kg + ky + k. > k and that X with

(R koy k)
k + k + k > k is«obtained as a Lie bracket of elements X(k ey k) with &, +ky + k. > k and therefore is in

P. Then, every X(”k ho) is also in P, where (k:w, k;y, k:z) is any permutation of (k,, k:y, k:Z).

CInductive step: Let 2 >k 1 < n and assume that all possible DG JPfor1>ky+ky+k, >k 1.
Then also-all X7, /P with ky + ky + k. = k.

Progf. By the symmetry property of the above Fact, it is enough to prove that, using Lie bracket of elements
X(”km oy k2) / Pwith 1 >k, +ky+ k. >k 1, we can obtain all X&T oy k2) for ky + ky + k. = k with the
restriction that k, > ky > kg. Such a restriction does not imply a loss of generality.

We set k, =k j and will prove this fact by induction on j. The possible range of values for j is 0 > j > |2F 2k {

(here, for any x / R, |2{ denotes its integer part). In fact, if j = J%{ + 1, then in particular j > 2k ; thus

k. =k j<k 23k— so also ky + ky + k., > 3k, <k. Ontheotherhandlfj—JQk{ then k, = k j—>,,
thus 3k, —k, so there ex1stsatr1ple (k Jiky, k2), with k& J+ky + k. =Fkand k., > ky >k 4
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Buase step: j =0 (ky = k).

Publishing" get this base step, j = 0, we will prove also the cases j = 1 and j = 2. It holds that:

[X(

(k—1,0,0 +2X;

) X0 o) = 2X, (21)

(k—1,0,1) (k—2,0,1)"

To see this, assume we have an n ple 4 which has & 1 elements equal to = and all the other equal to 0 and an
n ple j with one element j, = x one j, = y and all the other equal to 0. Denote by A the set of indexes such
that i, = . We have:

\ 0 if j, ¥ A
l0i,0;] = 2i0;, @ xx® oy, ifj, / Aand j, / A, (22)
a { 2igs, ® x0e o, if j, Y Aand j,/ A
where then plel = (l1,...,l,) has k 2 indexes equal to x and one equal to'z, while the n ple s = (s1,...,5,)
has k£ 1 indexes equal to = and one equal to z. Since [X (7;571,0.0)7)( ("1:170)] is a-permutation invariant matrix,
and X(k 1,0,0) is a sum of all elements of the type o;, while X(T]i,l;o) is a sum of all elements of the type o;, from

(22), equation (21) follows.
From equation (21) since X(k 20.1) is in P, we have that X(A 10,1

above Fact we also have X (k-1.1.0) / P. The next two equations can.be proved by direct calculation:

) /P. By the symmetry property of the

[X& 1,1,0)° X(HO,O,I)] X/ 2X(nk 2,2,0) +2X(k00) (23)

[X& 1,0,1) X(010]—2X(k 2,0,2) 2X(nkoo) (24)

We now compute [ X" ) X a 0_1)] with anargument similar to the one used to derive equation (21). Assume

(k—2,1,0)" “*(
we have an n ple ¢ which has &k 2 elements equal to x, one element ¢, = y, and all the others equal to 0, and
an n ple j with one element j, = x one j, = 2 and all the others equal to 0. Denote by A the set of indexes
such that i; = 2. We have:

| Jz Y AN}i,) and j, Y AN }iy,) or
if jo /Aandj. ¥ AN}i,) or
Jz =1ty and j, /A
2io;, ® e oy, if j, ¥ AN}iy,) and j, =1,

o, 05}= 2ig,, @ x0® o, ifj, Y AN}ti,) and j. /A (25)
200y, ® 0@ 0p,  ifj, /Aand j, /A
2004, ® xo® o4, ifj, / Aand j, =1,
2i0,, & xo® o, if j, =14, and j, ¥ AN }i,).
Here the n plel = (I1y...,l,) has k indexes equal to z, the n-ple s = (s1,...,5,) has k2 indexes equal to
x and two equal to gy, then ple m = (mq,...,my,) has k 3 indexes equal to & and two equal to y, the n-ple
q= (g1, .4 Qn)has k2 indexes equal to z, and the n-ple r = (r1,...,7r,) has k2 indexes equal to = and

two equal‘to z. Since X is a sum of all elements of the type o;, while X ("1 0.1) is a sum of all elements of

(k—2,1,0)
the type oy ffom (25), we have:

(X 2100 X(on] = 2X(G 5200 T 2X(000) 2X(G220) 2X(i-202) T 2X(0,0)- (26)
Since X& 520 and X{i 20,0) are in P, putting together equations (23), (24), and (26), we get that
X (5,000 X(r=2,2,0)" X(h-2,02) / P

So, in particular, we have proven that P contains all X7 which is the base step, 7 = 0.

(k,0,0)°

Induction step: Assume we have in P all X("kT oy k) with ky +ky + k. = kand k, =k (j 1), we want to
show that we also have all X7j , , \ with k, = ko

Fix a triple k; + k, + k., = ]_f, with k, = k j. Certainly k, or k. is different from 0.
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Assume k % 0, consider the triple (k (j 1),ky, k. 1). We have that the sum of the three elements is k,
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koo 1) / P. We have:

and also k  (j 1) —k, =k, 1, thus, by the mductlve assumption X(

Publishing

k=G =1),ky,

2X7:

[X&_(j_l)vkyvkz_l)’X(novl)o)] = 2X&_j7kyvkz) (k .7"'2 k’yvk _2)

Since the second element is in P by the inductive assumption, we have that Xg—cij oy k) / P.
Ky ks
If k, = 0, the triple is (k  j,7,0). We compute:

2X7

[XG--1,5-100 X0 = 2XG (i—jiB.i—2,0)"

(k (k—3.5.0)

Again we can conclude, since the second element on the right hand side is in P. ]

IIT. DYNAMICAL LIE ALGEBRA ANALYSIS FOR n=2 AND n=3
A. Case n =2 and generalizations

The symmetric (permutation invariant) vectors ¢ol, @1, and @], defined.in (3) are an orthonormal basis of the
+1 eigenspace of I in (8) while the unit (antisymm¥etricY vector Vi
ol = —=( AL 10N (27)
| = ——= 5
v 24/ =V

span the, 1-dimensional, 1 eigenspace of II. Writing the corresponding change of basis matrix in the computational
basis, we obtain, with a := -

ﬁ7
0 1 OO[
‘ a0a0
Tt = (Yol gl g2 ll= | " g 4 oF (28)
0 001

We shall use the notation 1;; for diag( 1,5 1,... “1,1,1,...;1) with j -1’s and k ‘I’s. We have, with II in (8),
TUT' = diag( 1,1,1,1) = 1 3. Therefore-a.matrix A / u(4) is in PP! defined in (11) if and only if

TOTHTAT)TUTT = 1, 3(TAT)1, 3 = TATT,

that is, if and only if A := TATMcommutes with 1, 3. This happens if and only if A has a block diagonal form with
blocks of dimension 1 and 3¢ This proves that PFZ is included in u(1) ® u(3) in this case, where the sum is a direct
sum of Lie algebras (the two addenda commute). Using the dimension formula (15) for n = 2 we see that we must
have equality. The corresponding Lie group is the direct product of U(1) and U(3), a compact Lie group.

Remark III.1. A different way to arrive at the change of coordinates T in (28), which will then be generalized to
the case n = 3 is t0 notice that &1| and @] span an invariant subspace for the generators H.., H, and H,
of the Lie algebra P®{ and thereﬁ{re fé{ the whdle Lie algebra. The same thing is true for the subspace spanned by
\1/110| Therefore! in the basis given by the matrix 7" in (28), the elements of P! are in the 1 + 3 block diagonal form.

Remark II1.2. The restilt on the structure of PP1 can be generalized in at least two ways to the case of any number
n —2 of spins. In particular, assume we have n spins and we are interested in the superalgebra of PP'1 of matrices
invariant under permutation of two of the spins, which we can assume without loss of generality to be the first two.
That i§, we are-interested in the superalgebra of PP’

PP112 }A/ ( )\9112AH172>' (29)

Using the change of coordinates T'e 15,2, we have that T'e 12n72Hl,2TT ® 1yn2 = 19n—2 3,9n—2 so that, analogously
to abeve, modulo a change of coordinates, the matrices in P712 are all the matrices in u(2") which are block diagonal
with blecks of dimension 2"~% and 3 @ 2"~2. Therefore P"11? = 4(2"?) ® u(3 @ 2"~?) and the corresponding Lie
group is the direct product of U(2"~2) and U(3 @ 2"~2), again a compact Lie group.

Assume now n even, and consider the superalgebra of PP’

W::}A/u@”)\?o ITe xxxo ITAITe ITe xxxo IT=A). (30)
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the change of coordinates A € T'e T e xe® TAT' e TT e e TT, we see that, in the new coordinates, the

niatrices in P° are tensor products of block diagonal 4 @ 4 matrices with one block of dimension 1 and one block

PUb“é‘fmiﬂg] sion 3. Thus, the Lie algebra P° is spanned by all the matrices in i [iu(1) ® iu(3)]®%. Using the fact that
w(g) e wu(k) =iu(jk), we see that

kP | This manuscript was accepted by J. Math. Phys. Click here to see the version of record. |

n

Pe = @f_o); / iu(37), (31)

where for a positive integer k, we have denoted by ku(> the direct sum of k copies of u(.

Remark III.3. The Lie algebra PP’ is the intersection of all the Lie algebras P7/7* defined analogously to PF712
n (29). All these Lie algebras are conjugate (and therefore isomorphic) to PPI'2. Therefore the corresponding Lie

group e£" is the intersection of the compact Lie groups e£* " and therefore/compact.

\(?0‘ |7

0 0 0
: 1 ; 0 . 0
\é?o\ = T\G/bo\ = 8;:7 &51\ = T\q?ﬂ = (1)4%, \q/bg\ = T\?g\ = (1)4l“ (32)

@2, we obtain the basis

Vv

Applying the change of coordinates T' in (28) to the basis }

7\?1

Since the Lie group of block diagonal matrices, direct product of-¥U (1) and U(3), is transitive on the manifold of linear
combinations of ¢g|, @1|, ¢@a| with unit norm, pure state controllability, within the set of permutation invariant
states, follows. Wé sun\énari e in the following Theorem:

Theorem 3. In the coordinates given by the matriz F_in (28). the Lie algebra of permutation invariant matrices
PPL s made of block diagonal matrices with skew-Hermitian blocks of dimensions 1 and 3. The set of reachable
evolutions is the Lie group of block diagonal matrices diag(Ut,Us) with Uy (Us) unitary of dimension 1 (3) and
det(Uy) det(Us) = 1. System (6) is pure state contrellable-on _the space of permutation invariant states.

B. Casen=3

For n = 3, the dynamical Lie algebra P.is the intersection of P12 and PP12? defined in Remark I11.2 inside su(8).
In order to find a system of coordinates where-P”! has a form which displays its Lie algebra structure we follow the
idea of Remark III.1 and find orthonormal subspaces which are invariant for the generators of P! and therefore for
all of P77, One such subspace is/given by

(/)0|7 (bl‘a

Jol- gpl- gl

v

U := span}

with \Q/SJ| defined in (3). Let

1 1
ol i = —= 010] + — 100]
v 2V 2V
and
1 1
1| = —= 011] + —= 101].
v 2V 2V

It is a straightforward calculation to show that the subspace

UIZJ = Span} 1/)()'7 d)1|>7

Vv
is.invariant under H.., H, and H, defined in (6) and (7) (cf. Appendix B) and therefore for the whole Lie algebra
PEE - Moreover consider the orthonormal vectors
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‘ s IPP) a straightforward calculation (Appendix B) shows that the subspace
Publishing Uy = Span}\yol,\yllh

is invariant under H,,, H, and H, defined in (6) and (7) and therefore for the whole Lie algebra PFZ. Moreover it is
orthogonal to both Uy and U,. Therefore, the matrix

0 0 0 0 10 00
V2 1
01 0 7 0 0@00
g5 0 /0 0 2 00
M= (ol il yol xils ol Gl gl dull = | L 3 G 0 0 w0 (33)
= 0fs 1/ 0l 11y @0 11y P21, D3]] = )
YA A A AV A 70 LFY0 ™ 00
0 J5. 0 76fooﬁo
2 1
0 0 0 Y200 0
0 0 0 0 00 0 1
is such that the matrices in MPFPI M1 have the form
W, 0 o[
MAMY:= | 0 Wy 04, (34)

050 Ws

with Wy / u(2), Wa / u(2), W3 / u(4). Furthermore using the fact that I3 Al = A, for A / PPL and (34), we
obtain

Wi 0.0 [ Wi 0 0 {
MM | 0 W 0 {-dllpsMT = | 0 Wy 0 | (35)
Using MT in (33) and the (easily verifiable) relations|16]
1 3 1 3
Has tho| =45 Yo 5ol oz | =5 ol — xil, (36)
VO T2 Y VARV
1 3 1 3
a3 %0l = S0l — %ol oz a1l = = x| — l,
W 2y VIt 2y
we calculate
11, %1, 0 0
2
MMt = | %12 312 0 0 (37)
0 0 1, 0O
0 0 0 1o
This, used in (35) gives Wi = W. In conclusion in the new coordinates, matrices in PP/ must be of the form
. W 0 0
B:=10 W 0, (38)
0 0 @

with Wiand @ skew-Hermitian matrices of dimensions 2 and 4, respectively. Since the number of degrees of freedom
in (88) is equal to the dimension of PP’ calculated in (15) (which for n = 3 is 20) the Lie algebra of matrices in (38)
with trace.equal to 0 gives exactly P. The Lie group corresponding to the dynamical Lie algebra P = PP | su(8),
whichiis the space of available evolutions for the system (6) is, in the given coordinates, the Lie group of matrices of
the form

0 U 0], (39)
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I:PUQ and Uy arbitrary unitary matrices of dimensions 2 and 4, respectively, and [det(Us)]? det(Uy) = 1. In the
6w, coordinates ¢o|, @1|, ¢2| and ¢4| are the elements of the standard basis €5, €, €7, €s. From this, and the fact
PUb|l§1tl! ﬂ:g ) is tran itive\/on th/e compl\e/x sphere of dimension 4, pure state controllability of system (6), in the space
of permutation invariant states, follows. Summarizing we have the following Theorem which is the corresponding of

Theorem 3 for the case n = 3.

Theorem 4. In the coordinates given by the matrix M in (33), the Lie algebra of permutation invariant matrices
PPI is made of block diagonal matrices with skew-Hermitian blocks of dimensions 2, 2 and 4, where the blocks of
dimension 2 are equal. The set of reachable evolutions is the Lie group of block diagonal matrices diag(Us,Us,Uy)
with Uy (Uy) unitary of dimension 2 (4) and det(Usz)? det(Uy) = 1. System (6) is piire state controllable on the space
of permutation invariant states.

IV. ALGORITHMS FOR CONTROL

We now give algorithms for control to perform an arbitrary unitary operation on.the space of permutation invariant
states. The change of coordinates displayed in the previous section shows that we have a problem of control on U(3)
and U(4) respectively. In fact the upper blocks of the matrices in P (in the new coordinates) can be neglected since
they do not affect the space of permutation invariant states. We shall assume that in (6) we can use arbitrarily large
controls possibly in very short time (hard pulses). This will allow us to use methods of Cartan decompositions of Lie
groups for control.

A. Casen=—2

Consider the matrices iH,, @H, and iH.. defined in (7) for the case n = 2. In the new coordinates defined by
the matrix 7' in (28), iH,, iH, and iH,, transferm respectively into

0 0 08 .0 0 0 0 0
0 0 i 2% 0 0 0 2 0
— ; T _ _ — ; T _ _
Ay :=T( iH,)T" = 0 i 2o o A, =T( iH,)T 0 5 0 5%
0 0 IN2NO 0 0 2 0
i 00 0
- . +_ |0 @0 04L‘
Ay, :=T( iH..)T" = 00 i 0%
00 0 i
One extra change of coofdinatesid € TATT with
1000
. 0 =% 0 =%
._ V2 V2
=100 1 0% (40)
1 -1
0 7 0 7
gives
00 0 0 000 O
o -+ 100 204L‘ Ao AT_OOOO4L‘
Az *T(Az)T - 02 0 0 ’ Ay *T(Ay)T - 000 2 ’
00 0 0 002 0
i 00 0
s - 0 40 O;\
A, =T(A..)T" = 00 i 0L
00 0 =1
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‘ s Illlse coordinates the system (6) becomes the right invariant system on a Lie group
Publishing X = A X+ A, Xu, + Ay Xu,. (41)

Neglecting the upper 1 @ 1 block of the matrix X (which does not affect the permutation invariant states), and
neglecting matrices which are multiples of the identity which only add a phase factor to the solution, this system has
a P K structure, i.e., there exists a Cartan decomposition of su(3) = L ® S, with

[£,L] <L, [£,8]<S, [S,S]< L,

such that the matrices multiplying the control (in this case A, and fly) generate the Lie subalgebra £ and the drift
matrix (in this case A,) belongs to S. In our case, the decomposition is obtained with“ = so(3) while S is the space
of purely imaginary matrices. The method of control in this case is as follows:;

First write the desired final condition Xy / SU(3) according to the Cartan decomposition as Xy := K1 AK, where
K7 and K5 which are in the Lie group corresponding to £ (in this case SO(3)). The matrix A is an element of the Lie
group associated to a Cartan subalgebra (i.e., a maximal Abelian subalgebra contained in §). Then the problem is to
obtain evolutions which implement K5, A and K7 in that order. K7 and Ko are obtained with hard pulses, i.e., high
amplitude short time controls, which essentially allow us to neglect the drift term. The element A is implemented by
alternating hard pulses with free evolutions (setting the controls equal to zero).

Details of the approach to control based on decompositions of Lie groups are described in [2] which also gives
computational methods to find the factors K 2 and A in the decomposition. The paper [12] shows that this method
of control is, in fact, time optimal.

B. Casen=3

Analogously to the case n = 2, we first transform ¢H,, %H, and ¢H.. in new coordinates using the transfor-
mation M in (33). A direct calculation (using AppendixB) shows:

000 0 0 0 0
000 0 0 0 0
0001 0 0 0 0

fyny \ “foo1o o0 0 0 o0

(M=% 0000 0 3 0 o0 (42)
0000 3 0 2 0
0000 0 2 0 3
0000 0 O 3 0
0100 0 0 0 0
1000 0O 0 0 O
0001 0 0 0 O

, ’ 00 10 0 0 0 0

M(CH)MY =g 9 g0 0 3 0 0 (43)
00 00 30 2 0
0000 O 2 0 3
0000 0 0 30
10 0 000 0O
0 1.0 000 00
0 0 1000 00

R IR R w0
0 0 0 00 100
00 0 00O 10
0 0 0 00O 0 3

From now on we shall only focus on the last four rows and columns which represent the evolution of the dynamics
on the subspace of permutation invariant states spanned by \/0| , \/1\ , \/2| , and \/3| . The problem of control is solved
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are able to factorize the desired final evolution X; / U(4) in exponentials of matrices proportional to (cf. (42),
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Publishing

0 3 0 0 0 3 0 0 300 0 4{2
3t 0 20 0 3 0 2 0 ~ 0 20 0
B, = 0 2 0 3P By = 0 5 0 33 Beai=| 0 07 oL (45)
0 0 3i 0 0 0 30 0 00 3
that is as exponentials of the form eB+t, eBust and B+t for real t. The exponentials,6f the form eB=t and eB+* can be

t

obtained using hard pulses in the Hamiltonian (6), the elements eB=:t are obtainéd by setting the controls equal to

zero and allowing the system free evolution. Notice that the orbit }eP==* ¢ / R+).is periodic and so we can obtain all
the values in it even if we restrict ourselves to positive values of the tim& ¢ ag it is required in physical applications.
Furthermore, by neglecting an overall phase factor which does not have a physical meaning, and rescaling the time ¢,
we can consider instead of the matrix B,, in (45), the matrix

i 040 o[
1\~ 0. i 00

B..:= §)Bzz+zl<— oS (46)
0%0 0%

and restrict to matrices Xy / SU(4).

We shall again use an appropriate Cartan decomposition along with the method for generating ‘new directions’
described in [4]. In particular, we use the AIIT KAK Cartan‘decomposition [9] of SU(4): every element X, / SU(4)
can be factorized as

Xy = ARy, (47)

where K7 and K5 are matrices with elements at the intersection of rows and columns 1-4 and 2-3 occupied by 2 @ 2
unitary matrices Uy and Us (by permuting row and-column indexes these would be block diagonal matrices with 2@ 2
blocks) and det(U;) det(Us) = 1. The matrix A is'the product of two commuting matrices belonging to the associated
Cartan subalgebra which we can take equalito.span} As, C3) with

0 £ 0 0 1 0£
1 0 0 01

0
0 0 100

which are commuting. Methods to comptite the factors in (47) are described in [2]. Our task is therefore to show how
to express matrices of theform 'y Ky and A in (47) as products of exponentials of the matrices B,, B, and B, in
(45).

Our treatment is split inte two steps: First we introduce two auxiliary Lie algebras and corresponding Lie groups
and show that we can obtain the elements K, K9 and A in (47) if we have arbitrary elements in these Lie groups.
Then we will show how to use the exponentials of the matrices B,, By and B.. in (45) to obtain the elements of the
auxiliary Lie groups.

We considertwo atixiliary Lie subalgebras of su(4) which are isomorphic to each other. In particular the Lie algebra
B is given by

B :=span}Aq, Ay, As, E),

with Aj given in (48) and

0100[ 0001[ 0001;2

11 100 0 1o o010 1o o0 10

Ai=5100 01 =30 1002f=3 01 0 or (49)
00 10 1000 100 0

We have the commutation relations

[A1, Ag] = As, [As, A3l = Ay, [As,A1] =As, [B,E]=0, (50)
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‘ s show that B is the direct sum of a Lie subalgebra isomorphic to su(2) with its centralizer spanned by E (this
Jsomorphism will be further confirmed later by performing a change of coordinates).

Publis lﬂﬁg :cond auxiliary Lie algebra we consider is the Lie algebra K, with K := span} By, By, B3, F') where By := A

n (49) and

000 ¢ 00 ¢ 0 00 0 ¢
T R U S
i 000 0 +00 1. 0 00
We have the commutation relations
[B1, Ba] = Bs, [Ba, B3] = B1, [Bs,Bi] = B, /K F] =0 (52)

which, compared to (50), show that K is isomorphic to 5.

We shall assume now that we are able to obtain all matrices in the connected Lie'groups corresponding to B and
KC, that we denote by e and €5, respectively. We will show that with tHese we can.construct the decomposition (47).

The matrices of the form e(42=F)t / eA (e(A2+E)t / 0A) are equal tothe ddentity except for the rows and columns
2 and 3 (1 and 4) which contain an arbitrary (depending on t) Y retation. Analogously, the matrices of the form
e(B2=F)t /B ((B2=F)t / ¢BY are equal to the identity except for the rows and columns 2 and 3 (1 and 4) which contain
an arbitrary (depending on ¢t) X rotation. Using these matrices and FEuler decompositions we obtain matrices such
that the elements corresponding to indexes 1 and 4 give an arbitrary matrix in SU(2), and the elements corresponding
to indexes 2 and 3 give an arbitrary matrix in SU(2). Multiplying the overall 4 & 4 matrix by a matrix of the form
eP==t we obtain matrices of the form K; and K, in (47). The clement A in (47) is obtained as the commuting product
of an element of the form e#3* and an element of the form e“#% (cf. (48)), and we have 3! / e already, while, it is
immediate to verify that e~ P B3eP:=7 = (3, so that

Cst ,—BoF  Bit,B..3

(& =

Our last step is to show how to obtain elements in e*and e? using exponentials of the matrices B, B, and B, in
(45). We start with e (B is similar). We are allowed to take exponentials eP+! for B, in (45) but also exponentials
of

5. (53)

In a basis (H) given by eigenvectors of B,,, we write B, as

220 0 O [ i 0 0 0[
0 2¢ 0 0 0 100
T

HByH =10 0 20 ot |0 0 oL (54)

0O 0 0 2 0 0 03¢
In the same coordinates, By becomes

i 3 0 0 i 0 00

ot | 3 i 0 0 0 i0 04L‘

HB,H = | 7 o " a0 (55)

0 3 0 0 0 i

The second matrix in (54) and (55) commutes with both matrices and therefore spans the centralizer of the Lie algebra
generated by the two matrices which is conjugate to B. In these coordinates, it is also clear that such a Lie algebra
is isomorphic to the direct sum of su(2) and a one dimensional centralizer. The 2 @ 2 blocks of the first matrices on
the right hand sides in (54) and (55) are equal to each other. The problem of factorization is therefore a problem on
SU(2) with an additional phase factor which we would like to fix arbitrarily. Let us first neglect the second term in
(54) and (55) and consider the problem of factorization of elements in SU(2) with matrices e?'! and e?2!, with

_\2i 0 i i 5/
A Y A 1l )
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roblem can be solved (with minimum number of switches) with the method described in [5] (see also [13]). The
.extra phase factor can be introduced by adding an extra identity matrix factor which can be obtained in arbitrary
PUbI|§1 bng\[ore in detail, assume we want to obtain the matrix with e=%X; in the upper block and e X in the
lower block, for Xy / SU(2). Let 2:1 eZ1titeZ2ti2 the sequence which gives X according to the method of [5].

. . . . 0 1 . .
Moreover let 2:1 eZ1951¢%2952 the sequence which gives Ry := ) 10 and Zzl eZ1bireZ2b52 the sequence which

. 1 . .
gives Ry 1= )(1) 0 ( Notice that RleZW‘RIeZl”‘ = 1, independently of a. We use
\/ eHByH tj1 ;JHB,H t L@ \/ eHByH aji ;HB,H a;s L@ pHByH'a \/ HByH b1y HB, H'bjo L@ oHByH'a (57)
7j=1 j=1 =1

Set tior = [[,;(tj1 + tj2) + [ (a1 + aj2) + [[;(bj1 + bj2). In the upper (lower) block, the sequence (57) gives
X pe~itrorg=2i (X peitiore?) and choosing 2av + tyor = p we obtain the desired final condition.
The treatment of €® is perfectly analogous starting with B, in (45) rather than B, and obtaining the extra ‘direction’

(cf. (53))
0 23 0 0
5 .. _B..T _B..T 3t 0 24 0
B, :=e7**2 B,e 2 = 0 9 0 3,5 (58)
0 0 3 0

We express the matrices B, and B, in the coordinates given by the eigenvectors of B,, that is, for an appropriate
matrix U, we have (cf. (54) and (55))

92 0% 00 i 0 00
. 020 O}E 0 72004i;
UB.UT= o 0020 oxT o 0 i o
0o 0 2 0 0 04
“. 3 0 0 i 0 00
. S0 00 0 00
T Z
UBaU_ = 0 i 3i+007304l;'
0 0 3i i 0 0 0=

Then the treatment follows,as fér the case of e from the results on factorizations of SU(2) in [5].

Remark IV.1. Similar ideas can.very likely be applied to the cases n > 3. In fact, computations for the case n = 4
suggest the conjecture that the Lie algebra generated by the restrictions of iH.., iH, and ¢H, in (7) to the space
spanned by the symmetric states ¢;, j = 0,1,...,n in (3) is always u(n + 1). Given therefore such a full operator
controllability property on this subspace, one can in principle apply general constructive techniques such as those in
[4] to obtain control algorithms. Lie groups decompositions, like Cartan decompositions, applied on a case by case
basis, can be combined with such techniques to give more efficient and simple controls.
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Appendix A: Proef of formula (19)

To prove the first one, let first observe that:

[Le xx1e o, @ X0 0. e xxde xod,1e xxde g, ele x| =
~ = “~

7-”,‘ Ith ith

\ 0 if i % j and i ¥ [
2i1e xxXle 0, @ xxxe o, @ xxXl e X ifi =7
~ ~
= jth Jth (59)
21 Lo xodie g, e x0@ g, e xxle xxd ifi=1
~ ~
sth lf,h

J

Using the previous equation we have:

n

X7 , X% 3 le xxXlLe g, @ Xxxx0 0, @ XxxXLe xxX1,1e xXle 0, ele Xl
[ (0,1,1) (1,0,0)] . H [ ,\”’ /\z /\m }
i,7,l=1 jth Ith ith
¥l

n

= H 2t [Te e o, @ X0 0, @ xxXLe XX 1e xx1e g,  xx0 g, ® XX e xxx1
A~ A~

. N~ “~
j,l L jth Ith jth Ith

j %1

4 X(TEJ.,O,Q) +4 X(%,z,oy

The second equality can be proved in a similar way.
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‘ s I Ppendix B: Calculation of the action of H,, H, and H.. on the basis {|1o), [¢1),]x0), |X1),|P0), |61), |#2), |P3)}
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