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Abstract

Aim: Previous work demonstrated a pronounced geography of synchrony for marine phytoplank-
ton and used that geography to infer statistical environmental determinants of synchrony. Here,
we determine whether terrestrial vegetation (measured by the enhanced vegetation index, EVI)
also shows a geography of synchrony and we infer determinants of EVI synchrony. As vegetation
is the basis of the terrestrial food web, changes in spatio-temporal vegetation dynamics may have
major consequences.

Location: The land.
Time period: 2001-2014.
Major taxa: Plants.

Methods: Synchrony in terrestrial vegetation is mapped globally. Spatial statistics and model selec-
tion are used to identify main statistical determinants of synchrony and of geographical patterns in

synchrony.

Results: The first main result is that there is a pronounced and previously unrecognized geography
of synchrony for terrestrial vegetation. Some areas, such as the Sahara and Southern Africa, exhib-
ited nearly perfect synchrony, whereas other areas, such as the Pacific coast of South America,
showed very little synchrony. Spatial modelling provided the second main result, namely that syn-
chrony in temperature and precipitation were major determinants of synchrony in EVI, supporting
the presence of dual global Moran effects. These effects depended on the time-scales on which
synchrony was assessed, providing our third main result, namely that synchrony of EVI and its

geography are time-scale specific.

Main conclusions: To our knowledge, this study is the first to document the geography of syn-
chrony in terrestrial vegetation. We showed that geographical variation in synchrony is
pronounced. We used geographical patterns to identify determinants of synchrony. This study is
one of very few studies to demonstrate two separate synchronous environmental variables driving
synchrony simultaneously. The geography of synchrony is apparently a major phenomenon that

has been little explored.
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cospectrum, enhanced vegetation index, geography, primary production, remote sensing, spatial
modelling
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1 | INTRODUCTION

Understanding the dynamics of terrestrial vegetation biomass and pro-
duction is both an interesting and an important topic; vegetation is con-
stantly changing over a range of temporal and spatial scales (lchii,
Kawabata, & Yamaguchi, 2002; Zhu et al.,, 2016) and it is a key compo-
nent of the global carbon cycle (Beer et al., 2010; Wieder, Cleveland,
Smith, & Todd-Brown, 2015) that is tightly coupled with climate because
it directly affects land-atmosphere heat and moisture fluxes (Meir, Cox,
& Grace, 2006). Of course vegetation is also the base of the terrestrial
food web; hence, the dynamics of vegetation biomass or production is
implicated in essentially every area of pure and applied ecology. There-
fore, changes in details of vegetation dynamics, including spatio-temporal
aspects of those dynamics, may have far reaching consequences.

One incompletely understood aspect of spatio-temporal vegeta-
tion dynamics is their spatial synchrony. Spatial synchrony is the phe-
nomenon whereby geographically separate population time series (or,
in this context, vegetation biomass or production time series) fluctuate
partly in unison. Spatial synchrony has been observed even in popula-
tions separated by hundreds or thousands of kilometres (Liebhold, Koe-
nig, & Bjarnstad, 2004; Post & Forchhammer, 2004), across a very
wide variety of taxa, including protists, insects, fish, birds, mammals
and many others (Hanski & Woiwod, 1993; Liebhold et al., 2004;
Myers, Mertz, & Bridson, 1997). One of the primary mechanisms that
has been cited to account for synchrony is the presence of spatially
synchronized environmental factors that drive population dynamics,
thereby inducing synchrony in the populations. This is known as the
Moran effect (Moran, 1953). The Moran effect is one of the main
causes of synchrony (Lande, Engen, & Saether, 1999; Liebhold et al.,
2004), but historically it was difficult to show convincingly that Moran
effects operate in specific scenarios and to identify the environmental
drivers (Abbott, 2007; Liebhold et al., 2004). This was partly because
the historically most common statistical descriptors of synchrony can
show similar patterns for Moran effects and for other causes of syn-
chrony (Abbott, 2007; Ranta, Kaitala, & Lindstrom, 1999).

We previously mapped global geographical variation in patterns of
synchrony in ocean phytoplankton (Defriez & Reuman, 2017). We
thereby provided evidence that a Moran effect, operating through
synchronized sea surface temperatures or through synchrony of an
environmental variable highly correlated with sea surface temperature,
such as nutrient availability, and possibly acting through complex
oceanographic mechanisms, is a major driver of phytoplankton syn-
chrony globally. The main goal of the present study is to apply the
same statistical techniques to map the geography of synchrony in ter-
restrial vegetation and then to infer determinants of synchrony in veg-
etation. Temperature and precipitation are two important climatic
variables affecting productivity (Clinton, Yu, Fu, He, & Gong, 2014;
Nemani et al., 2015), and Koenig (2002) found synchrony in both of
these factors over large spatial scales (up to 5000 km). Vegetation
dynamics may be synchronized in a similar manner. Shestakova et al.
(2016) investigated tree growth in two contrasting forest biomes and

found that large-scale synchrony responded to climate warming. But
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the detailed geography of synchrony in terrestrial vegetation and the
extent to which that geography reflects geographical patterns of syn-
chrony in temperature and precipitation variables are unknown.

Multiple methods have been used to describe patterns of spatial syn-
chrony, ranging from standard methods based on correlation coefficients
(Bjgrnstad & Falck, 2001; Hanski & Woiwod, 1993) to spectral and wave-
let methods (Grenfell, Bjgrnstad, & Kappey, 2001; Keitt, 2008; Sheppard,
Bell, Harrington, & Reuman, 2015; Vasseur & Gaedke, 2007) and matrix
regressions and others (Haynes, Bjgrnstad, Allstadt, & Liebhold, 2013).
Many of the prior studies that have statistically illuminated the processes
driving synchrony (e.g., Sheppard et al., 2015; Shestakova et al., 2016)
have used temporally extensive data sets. Here, and following Defriez &
Reuman (2017), we adopt a different approach, taking advantage of the
unparalleled spatial coverage (but limited temporal extent) provided by
remotely sensed data. We use data describing geographical patterns and
variation in vegetation globally, as measured through the enhanced vege-
tation index (EVI), process them so as to quantify and map the phenom-
enon of synchrony, and then make comparisons with geographical
patterns in potential causal factors of synchrony. Drivers of synchrony
should have statistically similar spatial patterns to the geographical pat-
terns of synchrony revealed by the EVI data. We use spatial linear models
to compare geographical patterns in EVI synchrony with putative drivers.

A key feature of several of the studies cited in the previous paragraph
is their attention to the time-scale dependence of population dynamics in
synchrony, through the use of spectral methods. We also use spectral
methods. Spectral methods allow the decomposition of synchrony into
the frequencies or time-scales (time-scale here indicating the reciprocal of
frequency) at which it occurs, thereby showing which frequencies con-
tribute most to synchrony. Synchrony on one time-scale can be inde-
pendent of synchrony on another time-scale, and this independence can
obscure analysis of synchrony by correlation-based methods (Figure 1;
Defriez, Sheppard, Reid, & Reuman, 2016; Keitt, 2008; Sheppard et al.,
2015). In addition, synchrony on longer time-scales may be more impor-
tant than short-time-scale synchrony because it is more likely to affect
longer-lived consumers (Defriez et al., 2016; Sheppard et al., 2015). We
believe time-scale-specific approaches to synchrony are under-applied,
and that this has limited our understanding of the causes and consequen-
ces of synchrony (Defriez et al., 2016; Sheppard et al., 2015).

Past researchers have typically considered Moran effects resulting
from only one environmental driver at a time (Batchelder, Mackas, &
O'Brien, 2012; Sheppard et al., 2015). However, it is possible, in principle,
to have two or more distinct simultaneous Moran drivers of synchrony.
These multiple Moran effects may, a priori, reinforce or counteract each
other. Here, we investigate the possibility that Moran effects from both
land surface temperature and precipitation environmental drivers are
simultaneously important for the synchrony of vegetation. We also
include other possible covariates of synchrony: average EVI density (areas
with more vegetation may, a priori, exhibit systematically more or less
EVI synchrony), average temperature, average precipitation, average ele-
vation, extent of variation in elevation, latitude and average wind speed.

The main questions asked here are as follows. (Q1) What regions

of the terrestrial realm exhibit high degrees of regional synchrony in



DEFRIEZ ano REUMAN I

GIObaI ECOIogy and A Journal of Macroecology WI L EYJ—s

Biogeography

(e)

0.2

<« reveals low frequency
| synchrony

00 0.1

reveals high >

| frequency
anti—synchrony

-0.2

00 005 0.10 0.15 020 025 030

Abundance

Normalized cospectra
o

Time

FIGURE 1

®
L
[« .
reveals high S
— | frequency
<[ synchrony
<
[«
<« reveals low frequency
all anti—synchrony
[
il
0 50 100 150 200 0 50 100 150 200 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Time

Frequency

Idealized illustration of how synchrony can differ by time-scale. (a) Time series are synchronous on long and anti-synchronous on

short time-scales. (b) Time series are anti-synchronous on long and synchronous on short time-scales. (c, d) Decomposition to the individual fre-
quencies that sum to form the time series in (a) and (b), respectively. Standard correlation coefficients between time series are O for both (a) and
(b), misleadingly suggesting lack of important synchronous phenomena. Note that normalized cospectra (e, f; Methods) reveal that positive syn-
chrony at one frequency is masked by negative synchrony at the other. In practice, exact cancellation is unlikely. But asynchrony at some fre-
quencies may nevertheless strongly conceal important synchrony at other frequencies. This figure is reproduced from Defriez et al. (2016)

vegetation density (as measured by EVI), and what areas exhibit low
synchrony? (Q2) When regional synchrony is decomposed into long-
and short-time-scale components, do maps differ in their main features,
i.e., is the geography of synchrony time-scale specific? (Q3) What are
the main statistical determinants of synchrony in vegetation density, as
inferred from its geography? Do determinants of long- and short-time-
scale synchrony differ? (Q4) Do patterns of synchrony and statistical
determinants of synchrony differ between major land masses? (Q5) Is
there evidence for dual Moran effects contributing to synchrony in
vegetation density? Our hypotheses are as follows. (H1) Moran effects
will be detectable via our approach and will comprise some of the
major determinants of vegetation synchrony and its geography. Our
past research (Defriez et al., 2016; Sheppard et al., 2015) indicates that
time-scale-specific structure is a common feature of synchrony, so we
also hypothesize that (H2) Moran effects will be time-scale specific,
and therefore the geography of synchrony will be time-scale specific.
H2 would be supported if short-time-scale components of environ-
mental synchrony are spatially associated with short- but not long-
time-scale components of vegetation synchrony, or if long-time-scale
components of environmental synchrony are spatially associated with
long- but not short-time-scale components of vegetation synchrony.
This study is the first explicit exploration we are aware of into the

detailed geography of synchrony in terrestrial vegetation and is also

the first time that the geography of synchrony has been used to infer

determinants of synchrony in the terrestrial vegetation.

2 | METHODS

2.1 | Data

The enhanced vegetation index (EVI) and land temperature emissivity
data sets from the MODIS Aqua and Terra satellites were downloaded
for the period 2001-14 as C5 monthly products at a 0.05° resolution.
The last complete year available at the time the data were downloaded
(September 2015) was 2014. The EVI data products were retrieved
from the online Data Pool, courtesy of the NASA Land Processes Dis-
tributed Active Archive Center (LP DAAC), USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota
(https://lpdaac.usgs.gov/data_access/data_pool). The EVI gives an indi-
cation of vegetation greenness and correlates well with gross primary
productivity (Huete et al., 2002; Sims et al., 2015; Sjostrom et al.,
2009). Compared with the normalized difference vegetation index
(NDVI) it minimizes the confounding effects of soil background, atmos-
phere and canopy density (Huete et al., 2002; Huete, Liu, & van Leeu-
wen, 1997; Xiao, Zhang, Boles, Frolking, & Moore, 2003). The pixels

designated ‘lowest quality’ or below in the quality assurance flags and
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any estimated pixels (pixel reliability 4) were removed, and the data
were converted to 1° resolution by taking averages. Data from the
Aqua and Terra satellites were averaged.

Daily precipitation values for the same time period were obtained
from the Global Precipitation Climatology Project (GPCP) (Huffman
et al., 2001) as a 1° daily data set compiled from satellite observations
and rain gauge measurements. The daily precipitation data were aver-
aged to monthly time series.

Annual time series for EVI, land surface temperature (LST) and pre-
cipitation were obtained from monthly time series for each 1° grid cell
as long as there were no more than five missing months in an individual
time series and no more than one missing month from any individual
year. Otherwise the grid cell was omitted. Before annualizing, missing
months were replaced by the average value for that month for that
time series. Time series were linearly detrended and their mean was
subtracted before further analysis.

Elevation data were downloaded from the British Oceanographic
Data Centre (http://www.bodc.ac.uk/data/online_delivery/gebco/) at
one arc minute resolution. Data were re-gridded to 1° resolution by
taking averages. Elevations were log transformed because of a predom-
inance of lower values. To account for the negative values of the few
points on land below sea level, the minimal elevation was subtracted
from all values and one was added before taking logs. The standard
deviation of log-transformed elevation values over a 500 km radius
was also calculated for each cell.

Wind data were obtained from the National Centers for Environ-
mental Prediction and the National Center for Atmospheric Research
(NCEP/NCAR) reanalysis results provided by the National Oceanic and
Atmospheric Administrations, Earth System Research Laboratory, Physi-
cal Science Division (http://www.esrl.noaa.gov/psd/; Kalnay et al.,
1996). Data were provided as velocity components, with u representing
the east-west component and v the north-south component of wind.
Annual data were downloaded at 2.5° resolution over the time period
2001-14 and were re-gridded to 1° resolution. Some 1° cells fell entirely
within a 2.5° cell and were given the value of the larger cell. For 1° cells
that crossed more than one 2.5° cell, an average was taken. For each 1°
cell, an average of all annual values was calculated for the period of
study. Wind speed was calculated from the u and v components with
the formula vu2+v2. All data sets were downloaded September 2015.

2.2 | Correlation-based synchrony

For EVI, temperature and precipitation (separately), for each 1° grid cell,
Spearman’s correlation was calculated between the annual time series
of that focal cell and time series of each of the other cells within a
500 km radius. These values were averaged to produce a synchrony
value for the focal cell. Global maps of the strength of synchrony (out
to 500 km) were thereby produced for EVI, temperature and precipita-
tion. These spatial variables will be referred to as EVI synchrony, tem-
perature/temp synchrony, and precipitation/precip synchrony in
subsequent spatial modelling. As a result of the averaging over values
for cells within 500 km of the focal cell, our synchrony maps are maps

of regional synchrony. Justification for the specific choice of 500 km is
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in Supporting Information Appendix S1. We computed synchrony maps
for distance bands 500-1000 and 1000-1500 km to test sensitivity of
patterns to the choice of distance band. Spearman’s correlation was
used because not all time series were normally distributed and no single

transformation was able to normalize all time series simultaneously.

2.3 | High- and low-frequency synchrony

Following (Defriez et al., 2016), a normalized cospectrum was used to
decompose synchrony between time series according to the frequen-
cies, or time-scales, at which it occurred. The normalized cospectrum is
the frequency-specific decomposition of the correlation coefficient
commonly used to the describe synchrony between two time series. It
gives in-phase correlation between two time series as a function of fre-
quency and, like the correlation coefficient, takes values between —1
and 1. Thus, the input of the normalized cospectrum technique is two
time series, and the output is a plot with the x-axis showing frequency
and y-axis showing in-phase synchrony between the time series at
each frequency. Figure 1 gives idealized examples. An integral of the
normalized cospectrum over all frequencies equals the correlation coef-
ficient. The highest peaks in the normalized cospectrum correspond to
frequency components that are most important in accounting for cova-
riation in the time series.

To obtain the normalized cospectrum of two time series, one starts
with their cospectrum (a standard method; see Brillinger, 2001), and
normalizes by dividing by the geometric mean of the variances of the
time series. Because the integral of the cospectrum of two time series
is their covariance (Brillinger, 2001), this normalization ensures that the
integral of the normalized cospectrum of the time series is their Pear-
son correlation coefficient. To make the integral equal the Spearman
correlation used in the previous section, time series values were
replaced by ranks before calculating the normalized cospectrum.

For EVI, temperature and precipitation (separately), for each 1°
grid cell, normalized cospectra were calculated between the rank time
series of that focal cell and the rank time series of each other cell
within 500 km. The normalized cospectra were then integrated over
‘high’ (0.25-0.5 cycles/year) frequencies (time-scales of 2-4 years) and
‘low’ (0-0.25 cycles/year) frequencies (time-scales exceeding 4 years),
and average values for each frequency band within 500 km were then
computed. The resulting six spatial variables will be referred to as high-
(respectively, low-) frequency EVI synchrony, high- (respectively, low-)
frequency temperature/temp synchrony, and high- (respectively, low-)
frequency precipitation/precip synchrony. Because the integral of the
normalized cospectrum over the whole range of frequencies (0-0.5
cycles/year) equals the correlation, high- and low-frequency synchrony
values for a cell for a given variable summed to the all-frequency values
of the previous section. The terms total or all-frequencies EVI/temp/
precip synchrony will sometimes be used to refer to the variables of
the previous section, specifically to contrast them with frequency-
specific quantities. Our use of the normalized cospectrum is described
with formulas in Supporting Information Appendix S2, the dividing fre-
quency 0.25 cycles/year is justified in Supporting Information Appen-
dix S3, and a method is described in Supporting Information Appendix
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TABLE 1 Variable importance as shown by sums of Bayesian information criterion weights of models that contain each variable (Burnham &

Anderson, 2002), for global data

All frequencies +/—
EVI 0.00888 +
EVI lag 0.00000 -
temp 1.00000 +
temp lag 0.00000 =
temp synchrony 1.00000 +
temp synchrony lag 0.00800 +
temp synchrony high
temp synchrony high lag
temp synchrony low
temp synchrony low lag
precip 0.00002 -
precip lag 0.00000 —
precip synchrony 0.99192 +
precip synchrony lag 0.99099 +
precip synchrony high
precip synchrony high lag
precip synchrony low
precip synchrony low lag
log(elevation) 1.00000 +
log(elevation) lag 0.00000 =
sd log(elevation) 0.00000 —
sd log(elevation) lag 0.00000 +
abs(latitude) 0.00019 +
wind speed 0.00000 +
wind speed lag 0.00000 +

High +/— Low +/—
1.00000 + 0.00000 -
0.00000 = 0.00000 =
1.00000 + 1.00000 +
0.00000 = 0.00000 4=
1.00000 + 0.99991 +
0.00000 aF 0.00000 4=
0.00046 + 1.00000 +
0.00000 = 0.00013 3
0.00000 - 0.00001 -
0.00000 = 0.00000 =
0.99950 + 0.00001 -
0.13876 aF 0.00000 =
0.00000 - 0.99999 +
0.00000 = 0.00894 3
0.86123 + 0.99098 +
0.00000 = 0.00000 =
0.00002 - 0.00000 -
0.00000 + 0.00000 3
0.00000 + 0.00003 +
0.00000 aF 0.00000 4=
0.00000 + 0.00000 +

Note. Values are between 0 and 1; larger values correspond to more important predictors. + or — indicate whether model-averaged coefficients of each
variable are positive or negative. Variables in bold indicate those that are meaningfully high (their summed Bayesian information criterion weight was
> 0.6). The abbreviations temp and precip stand for temperature and precipitation, respectively, and ‘lag’ indicates a variable entering as a spatially
lagged, neighbourhood effect (Methods). Columns give results of separate spatial statistical analyses of total, high-frequency and low-frequency syn-

chrony maps.

S4 for producing 95% confidence thresholds for values on maps of

synchrony.

2.4 | Statistical modelling

Spatial linear models were run with: (a) EVI synchrony as the response
variable and temperature and/or precipitation synchrony potentially
included as explanatory variables (among other potential explanatory
variables, see below); and (b) high- and (c) low-frequency EVI syn-
chrony as the response variable and high- and low-frequency tempera-
ture and precipitation synchrony potentially included (among others,
see below) as explanatory variables instead of total temperature and

precipitation synchrony. Total, high- and low-frequency EVI synchrony

were linearly mapped from the interval —1 to 1 onto the interval O to
1 and then logit transformed before models were run so that they
were not limited by —1 and 1.

Four types of model were considered. First, standard linear models
y=X1B+& were considered, where y is the response variable (a column
matrix with one entry for each grid cell for which data were available)
and X; is the standard design matrix, with columns containing explana-
tory variables. The specific columns depended on the explanatory vari-
ables included in a given model (see below). Second, models with
spatially ‘lagged’ variables y=X13+WX,3+¢ were considered (LeSage,
2014). If N is the number of grid cells for which data were available
(this is the length of the column y) then W is an N X N matrix of

weights encoding the geographical neighbourhoods of each location.
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The term WX,38 represents neighbourhood, or spatially ‘lagged’ effects
of the explanatory variables in X, on the response variable, y, and the
estimated parameters & represent the strengths of these effects for
each explanatory variable in X5. Third, the spatial error model y=X13+
u was considered; and fourth, the spatial Durbin error model y=X18+
WX28+u (Elhorst, 2010) was considered, where for both models the
equation u=AWu+e implicitly defines u, and u represents spatially
autocorrelated residuals. See Supporting Information Appendix S5 for
further details on the models.

Variables that could enter in a model are listed in abbreviation in
Table 1 and are explained here. Temporally averaged EVI (abbreviation
‘EVI) in the focal cell, as well as temporally averaged land surface temper-
ature (‘temp’) and precipitation (‘precip’) variables were used, as was aver-
age elevation within the focal cell [log transformed as described in the
Data section, abbreviation ‘log(elevation)], standard deviation of log(ele-
vation) values over grid cells within the 500 km radius disc centred at the
focal cell ['sd log(elevation)] and average wind speed within a focal cell
(‘wind speed’). The strengths of synchrony of temperature and precipita-
tion (‘temp synchrony’, ‘precip synchrony’), as computed above, were also
used to test for Moran effects. Either total or low- and high-frequency
versions of these variables were used, as described above. Variables
could enter as local effects or, in models with lagged variables, could
enter as neighbourhood effects, the latter specified by ‘lag’ in Table 1.

The variance inflation factor (VIF) was used to test for collinearity.
The VIF indicated only negligible collinearity among predictor variables
(Supporting Information Table S1), following the recommendations of
Dormann et al. (2013) for assessment of collinearity.

To limit the number of models fitted and because we sought main
determinants of synchrony, the total number of variables allowed in
any one model was restricted to five or fewer. For models with spa-
tially lagged variables and for spatial Durbin error models, explanatory
variables were allowed to enter the models either as part of X; (local
effects) only, or as part of both X; and X, (both local and neighbour-
hood/lagged effects). Neighbourhood effects without local effects (i.e.,
putting a variable in X, but not X;) were not considered.

For each model, the Bayesian information criterion (BIC) was cal-
culated and BIC weights were computed to determine the top 95%
confidence set of models. The BIC was used instead of the Akaike
information criterion (AIC) because it is known that AIC tends to favour
more complex models (Burnham & Anderson, 2002) and we sought the
main determinants of synchrony. Importance of a given variable as a
predictor of EVI synchrony (total, low or high frequency) was measured
by summing BIC weights across models that included the variable.
Signs of model-averaged coefficients were computed (Burnham &
Anderson, 2002). Residual plots were produced for top models to
check that model assumptions were reasonable.

Spatial statistical models were fitted and model selection was per-
formed using the global data. But if determinants of synchrony differed
markedly by continent, the global analysis would represent an average
of different processes. To diagnose whether important differences
occurred (Q4 from the Introduction), analyses were also run separately
for Eurasia, Africa, North America, South America and Oceania. See

Supporting Information Appendix Sé for methodological details.
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BIC approaches can identify which of several models is best sup-
ported by the data (Burnham & Anderson, 2002) but do not, on their
own, indicate whether any of the models was objectively good. We
provided three pieces of information to assess model fit. First, we com-
puted R?, the fraction of spatial variation in EVI synchrony explained by
the model. Second, we compared, via BIC and ANOVA, our best (low-
est BIC) model from each model comparison exercise with the null
model y=X1B+u, for X; a column of 1s and u spatially autocorrelated
residuals. All analyses were done using R v3.1.3. Spatial models were
fitted using the R package spdep (Bivand & Piras, 2015).

3 | RESULTS

Figure 2a shows total EVI synchrony and answers Q1 from the Intro-
duction by depicting which areas have relatively much and which areas
have relatively little synchrony. The confidence threshold was very low
compared with observed strengths of synchrony. The areas of highest
synchrony are found in Africa over the Sahara and also in Botswana
and Namibia. Eastern Brazil, Northern Europe and large areas of Aus-
tralia were also highly synchronized. Regions of relatively low syn-
chrony included areas on the west coast of South America, the Pacific
Northwest of the U.S.A., some islands of Oceania and areas in central
China and West Africa. Global variation in the strength of synchrony
was enormous, spanning essentially the entire range of possibilities
from almost no synchrony (purple in Figure 2a) to almost perfect syn-
chrony (yellow in Figure 2a). Patterns of synchrony were broadly simi-
lar for 500-1000 and 1000-1500 km (Supporting Information Figure
S1), but the geographical variation in strength of synchrony at these
distances was not as great, as might be expected because averages are
computed across more space.

Answering Q2, geographical patterns of synchrony were strongly
frequency specific (Figure 2cd), with areas that were strongly
synchronized at low frequencies often differing from (though some-
times being near to) areas that were strongly synchronized at high fre-
quencies. For example, synchrony in the Sahara and in China
predominantly occurred at low frequencies. Synchrony on the Atlantic
coast of Brazil was primarily at low frequencies, but synchrony inland
from the coast had a larger high-frequency component.

Both globally and for continental regions, spatial linear models of
synchrony were fitted and ranked by BIC weight (Supporting Informa-
tion Tables S2-S7 of Appendix S7), variable importance tables were
generated by summing BIC weights (Table 1, Supporting Information
Tables $8-512), signs of model coefficients were tabulated (Supporting
Information Tables S13-519), and model-averaged predictions were
generated (Figure 2b, Supporting Information Figures S2 and S3). Fig-
ure 2b shows model-averaged total EVI synchrony as predicted by the
top 95% confidence set of global models (by BIC weight). The models
generally identified the areas of highest synchrony, such as the Sahara,
Southern Africa and Eastern Brazil (compare with Figure 2a). However,
predicted synchrony was often lower than observed synchrony when
observed synchrony was high, and was higher than observed syn-

chrony when observed synchrony was low; total geographical variation
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(a) Observed enhanced vegetation index (EVI) synchrony, all frequencies. (b) Predicted EVI synchrony, all frequencies, from the

95% confidence set of models. (c) Observed high-frequency EVI synchrony (time-scales of 2-4 years). (d) Observed low-frequency syn-
chrony (time-scales exceeding 4 years). The white horizontal lines on the colour legends in (a), (c), (d) are approximate 95% significance
thresholds compared with a null hypothesis of no synchrony (Appendix S4). Projection is equidistant cylindrical

in the strength of synchrony was underestimated by the model. High
synchrony in Northern Europe was also not captured by predictions.
Although model predictions roughly captured large-scale trends, they
were poor at representing fine spatial structure in synchrony. The best
model explained 29% of the variation in total EVI synchrony (Support-
ing Information Table S2). It had a BIC far superior to the BIC of the
null model y=X1B+u, for X; a column of 1s: BIC was —626 for the
best model and 307 for the null model. ANOVA revealed a highly sig-
nificant difference between these models (p < .001).

Models of frequency-specific synchrony explained less of the vari-
ation than models for all frequencies, as might be expected given the
greater variability intrinsic to estimates of frequency-specific quantities
(Supporting Information Table S2). But BIC comparisons and ANOVA
p-values nevertheless indicated highly meaningful differences between
best models and the null model (Supporting Information Figures S4-
S21 of Appendix S8).

Synchrony in temperature and precipitation are both consistently
highly important in statistically explaining all-, high- and low-frequency
EVI synchrony (Table 1), answering Q3 from the Introduction. They
have a positive effect, meaning that greater synchrony in temperatures
or precipitation is associated with greater synchrony in EVI, demon-
strating the likely importance of Moran effects and supporting H1 from
the Introduction. The importance of both variables supports the pres-
ence of dual Moran effects, answering Q5.

Results show that both temperature and precipitation effects are

frequency specific, confirming H2 from the Introduction. High-

frequency precipitation synchrony was a more important predictor of
high-frequency EVI synchrony than it was of low-frequency EVI syn-
chrony. Low-frequency temperature synchrony was a more important
predictor of low-frequency EVI synchrony than it was of high-
frequency EVI synchrony, and likewise for precipitation (Table 1).

Given that both synchrony in temperature and synchrony in pre-
cipitation were important determinants of total EVI synchrony, it was
possible, a priori, that interaction effects were present between the
two. As there was only one supported model in the global, all-
frequencies analysis (Supporting Information Table S2), we compared
that model with a model that had interaction effects between tempera-
ture and precipitation synchrony variables, but was otherwise the
same. The BIC value of the model with interactions was —616, com-
pared with —626 for the best model with no interactions, so there was
no evidence for interaction effects.

Also important and also having a positive association with EVI syn-
chrony were mean temperature and log elevation (Table 1). These
were important predictors for all frequencies and for high and low fre-
quencies, separately. Average EVI itself was an important predictor of
high-frequency EVI synchrony only, further demonstrating the fre-
quency specificity of synchrony and its determinants.

Results for the continent-specific analyses (Table 2, Supporting
Information Tables S8-512) were similar to global results, but with
some heterogeneity in some determinants of synchrony, answering Q4
from the Introduction. Apparent dual Moran effects with temperature

and precipitation drivers were supported at high, low or all frequencies
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TABLE 2 Most important variables driving enhanced vegetation index synchrony by continent

Eurasia +/— Africa +/— North America +/— South America +/— Oceania +/-
All frequencies
temp + temp synchrony + temp + EVI + EVI +
temp synchrony + temp synchrony lag  + temp synchrony + temp + temp +
log(elevation) + log(elevation) + precip + temp synchrony + temp synchrony +
abs(latitude) + wind speed — precip lag — log(elevation) + log(elevation) +
wind speed lag + log(elevation) lag -
High frequencies
temp + EVI + EVI + EVI + temp +
temp synchrony high + temp 4 temp synchrony high + temp 4 temp synchrony +
high
precip synchrony high + temp synchrony high + sd log(elevation) — temp synchrony high + log(elevation) +
precip synchrony + precip synchrony high + temp synchrony high lag + log(elevation) lag —
high lag
log(elevation) +
Low frequencies
temp synchrony high + temp synchrony low + temp + temp synchrony low + temp synchrony high +
temp synchrony low + wind speed + precip synchrony high + precip synchrony low + temp synchrony low +
precip synchrony low + precip synchrony low + precip synchrony low lag + precip synchrony high —

EVI = enhanced vegetation index. Note. Variables were included if their summed Bayesian information criterion weight was > 0.6. The + or — signs indi-
cate whether model-averaged coefficients of each variable are positive or negative.

on all continents (Table 2). The frequency specificity of temperature
effects is visible for all continents: either high-frequency temperature
synchrony is important only for high-frequency EVI synchrony and not
for low; or low-frequency temperature synchrony is important only for
low-frequency EVI synchrony and not for high; or both (Table 2). The
same can be said for precipitation in Eurasia, Africa and South America.
Some of the variables not important in the global analysis were impor-
tant when looking at specific continents (Table 2; for all models see
Supporting Information Tables S3-S7). For example, in Africa wind
speed is an important determinant of synchrony across all frequencies
and at low frequencies, although it has opposite effects. At all frequen-
cies, it has a negative effect on EVI synchrony, but its lag has a positive
effect, and at low frequencies it has a positive effect. Mean EVI itself is
also important at all frequencies for two continents, South America and
Oceania, and at high frequencies for three, Africa and South and North
America. It always has a positive effect: areas with higher EVI values
have greater EVI synchrony. In continent-specific analyses, best models
were always much better than the null model (y=X18+u, for X; a col-
umn of 1s) according to BIC comparisons and ANOVA results (Support-
ing Information Appendix S8).

4 | DISCUSSION

Our principal result is that there is an important geography of syn-
chrony of terrestrial vegetation, globally. Regional (500 km) synchrony
varied enormously, from areas with almost no synchrony to areas with
near-perfect synchrony. Dual apparent Moran effects of precipitation
and temperature were the major statistical determinants of EVI syn-
chrony and its geographical patterns worldwide, with some variation
among continents in the details of these effects and in the importance

of other determinants of synchrony. The geography and determinants

of synchrony were strongly frequency specific. Inferences leading to
our conclusions about likely Moran effects and frequency specificity of
synchrony were effective because they exploited the geography of
synchrony. Moran effects from a single environmental driver have
been reported (e.g., Batchelder et al., 2012; Sheppard et al., 2015), and
studies have combined multiple drivers using principal components
analysis (Haynes et al., 2013). However, as far as we are aware, this is
the first study or one of few studies to provide evidence for two dis-
tinct separate synchronous environmental variables driving ecological
synchrony in concert. Additional observations on effects of elevation
on synchrony and the partial coincidence of high-synchrony areas with
arid regions are in Supporting Information Appendix S9.

This work complements Defriez & Reuman (2017), in which we
analysed the main statistical determinants of synchrony in ocean chlo-
rophyll. The key similarities between synchronies of chlorophyll and
terrestrial vegetation are that the geography of synchrony was pro-
nounced in both contexts, and Moran effects were statistically sup-
ported and frequency specific. There were also differences. Chlorophyll
synchrony is highest in areas where chlorophyll itself is low; but EVI
often has a positive association with EVI synchrony.

It is well known that temperature and precipitation can be impor-
tant factors in vegetation dynamics (Clinton et al., 2014; Ichii et al.,
2002; Piao et al., 2006). However, our new result that geographies of
synchrony in temperature and precipitation are important correlates of
the geography of EVI synchrony, while true, does not follow automati-
cally from the earlier knowledge. Defriez & Reuman (2017) found that
the geography of synchrony of incident solar irradiance was not statis-
tically related to the geography of synchrony in chlorophyll a abun-
dance in the world's oceans, even though it is well known that
irradiance can be an important factor in chlorophyll a dynamics. In com-

plex ecosystems, known importance of an environmental factor for
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ecological dynamics does not necessarily mean that the factor produces
a Moran effect or a geography of synchrony, for several potential rea-
sons, including the following: the possibility that the environmental fac-
tor itself has a muted geography of synchrony; and the possibility that
the factor's influence on vegetation is nonlinear or complex in some
important way that varies geographically (see, e.g., Defriez & Reuman,
2017, where mechanisms are discussed for the phytoplankton case).
The following paragraphs explore some of these complexities further.

Non-monotonic relationships are increasingly important in ecology
(Zhang, Yan, Krebs, & Stenseth, 2015). A non-monotonic effect of an
environmental variable on a population variable may modify the
extents to which Moran effects can occur and the geographies of syn-
chrony of the environmental and population variables match. To illus-
trate the concept, suppose the population p;(t) at time t in location i,
for i=1,2, equals f(ej(t)) for ej(t) some environmental variable. And
suppose f is an increasing function of e; for e;<o and decreases for
e;>o, for some constant, o. Then even if e;1(t) and e;(t) are perfectly
synchronous through time, the populations p;(t) need not be perfectly
synchronous. For instance, if the mean of g; is less than o for i =1 and
greater than o for i = 2, many year-to-year fluctuations in the environ-
ment will produce opposite effects in the two populations. For more
than two locations, geographical variation in local mean environments
could produce a geography of population synchrony even if the envi-
ronmental fluctuations are perfectly correlated across all locations.
Although this example is oversimplified, it illustrates that non-
monotonicity may mediate relationships between the geographies of
synchrony of population variables and their environmental drivers. Our
methods probably cannot illuminate intricacies such as these, if they
are indeed important in real systems. These ideas might reveal a worth-
while area for future research.

The carrying capacity of vegetation varies globally because of
spatial variation in soils and other factors, and therefore the nature
of density dependence in vegetation dynamics also varies spatially.
Liebhold, Johnson, and Bjgrnstad (2006) describe a reduction in
environmentally caused spatial synchrony resulting from geographi-
cal variation in density-dependent dynamics. The effect can mediate
or produce a geography of population synchrony and is related to
the concepts of the previous paragraph. If spatial variation in density
dependence over a region is pronounced, the geography of ecologi-
cal synchrony need not match the geography of synchrony of an
environmental driver.

Although temperature and precipitation are key drivers of pri-
mary productivity, which of these is more important can differ
among biomes (Nemani et al., 2015). For example, precipitation is
often found to be more tightly coupled with vegetation and produc-
tivity in arid zones (Fabricante, Oesterheld, & Paruelo, 2009; Zhang,
2005). Although it is difficult to tell from the analyses of this study
whether both synchrony in temperature and synchrony in precipita-
tion are driving EVI synchrony everywhere across a given continent
or if their relative importance varies, future work might be able to
illuminate this question. There is substantial heterogeneity globally

in the correlation between EVI and precipitation and temperature

9
Glo:i?)lgEe?gI:agpyhaynd A Journal of Macroecology W I L E YJ—

intra-annually (Clinton et al., 2014). Furthermore, in Africa, accord-
ing to our results, there are two areas of strong synchrony: the
Sahara and an area in Southern Africa. Synchrony in the Sahara is
predominantly at low frequencies (Figure 2d), whereas synchrony in
Southern Africa is predominantly at high frequencies (Figure 2c).
Both high-frequency precipitation synchrony and high-frequency
temperature synchrony were important determinants of high-
frequency EVI synchrony in Africa; but only low-frequency tempera-
ture synchrony, and not low-frequency precipitation synchrony, was
an important determinant of low-frequency EVI synchrony. This sug-
gests that in Southern Africa synchrony in both temperature and
precipitation drive synchrony in vegetation density, but in the
Sahara only synchrony in temperature drives synchrony in vegeta-
tion density, despite the tight coupling with precipitation often
found in arid regions (Fabricante et al., 2009; Zhang, 2005). The
wavelet methods of Sheppard et al. (2015) can illuminate what is
causing synchrony with no need to rely on geographical variation in
synchrony. Although our time series are probably too short for their
wavelet analyses, a Fourier version of the techniques of Sheppard
et al. (2015), applied separately to different regions of Africa (and
elsewhere), might identify precisely how temperature and precipita-
tion trade off against each other in relative importance as Moran
drivers.

We used LST as opposed to surface air temperatures (SAT, meas-
ured at 1.5-2 m above ground level) because LST is available from sat-
ellite measurements and SAT is measured at discrete weather stations.
Data products that provide SAT estimates globally based on interpola-
tion between weather stations are available, but interpolation creates
artefactual synchrony, so those products could not be used. LST can be
affected by vegetation cover and condition (through evapotranspira-
tion) and by soil wetness and therefore precipitation (Jin & Dickinson,
2010; Mildrexler, Zhao, & Running, 2011), so causal relationships
between our temperature and EVI synchrony variables might be com-
plex and are incompletely illuminated by our correlative statistical
approach. It is possible that temperature synchrony causes EVI syn-
chrony through Moran effects or that EVI synchrony causes tempera-
ture synchrony through vegetation effects on LST or, most probably in
our opinion, that the factors jointly affect each other or the causal rela-
tionship itself varies geographically. Our models establish statistical
determinants of synchrony, a necessary but not sufficient condition for
a causal effect of temperature synchrony on EVI synchrony. SAT may
be a better variable for improving causal understanding of synchrony in
future research, although a modified statistical approach would be
needed to account for the fact that direct SAT measurements are avail-
able only at weather stations.

Changes in synchrony through time have received recent attention
(Defriez et al., 2016; Koenig & Liebhold, 2016; Sheppard et al., 2015;
Shestakova et al., 2016), raising the possibility of changes in synchrony
superimposed on the geography of synchrony or affecting this geogra-
phy itself. Shestakova et al. (2016) describe increasing synchrony
through time in spatio-temporal forest tree growth data. They con-

cluded that observed increases are not attributable to increasing
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synchrony of Moran drivers, but instead to stronger synchronizing
influence of the drivers; as climate becomes more extreme and impacts
in climatic variation therefore become more widely influential on eco-
systems, climate has a more synchronizing influence even when climate
need not itself have become more spatially synchronous. In our analy-
sis, we did not address the possibility of changes in synchrony with the
passage of time, and our time series are probably too short to do so.
Although we removed trends before calculating synchrony, we found
that mean temperature was an important determinant of synchrony
across all frequencies and has a positive effect. The results of Shesta-
kova et al. (2016) raise the possibility that longer term increases (or
decreases) in synchrony might be superimposed on top of the spatial
patterns we found. Changes in synchrony might also interact with and
modify spatial patterns of synchrony. To examine this possibility, one
would need data that are extensive both spatially and temporally. Syn-
chrony is ecologically important, as metapopulations displaying
increased spatial synchrony have an increased risk of extinction (Heino,
Kaitala, Ranta, & Lindstrom, 1997). It has also been proposed that an
increase in spatial correlation might occur in environments before a
regime shift (Dakos, van Nes, Donangelo, Fort, & Sheffer, 2010). As
such, our study may act as a baseline for examining future changes in
synchrony and its geography, in addition to being one of the first to

document the geography of synchrony at all.
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