
Toward a Cyber-Physical Quadrotor:

Characterizing Trajectory Following Performance

Ajay Shankar, Seth Doebbeling, Justin Bradley

University of Nebraska, Lincoln, NE 68588

Abstract— An Unmanned Aircraft System (UAS) is a Cyber-
Physical System (CPS) in which a host of real-time com-
putational tasks contending for shared resources must be
cooperatively managed to provide actuation input for control
of the locomotion necessary to obtain mission objectives. Tra-
ditionally, control of the UAS is designed assuming a fixed,
high sampling rate in order to maintain reliable performance
and margins of stability. But emerging methods challenge this
design by dynamically allocating resources to computational
tasks, thereby affecting control and mission performance. To
apply these emerging strategies, a characterization and under-
standing of the effects of timing on control and trajectory
following performance is required. Going beyond traditional
control evaluation techniques, in this paper, we characterize
the trajectory following performance, timing, and control of
a quadrotor UAS under discrete linear quadratic regulator
control designed at various sampling rates. We develop a direct
relationship between trajectory following performance and the
real-time task period (i.e. sampling rate) of the real-time control
task allowing future designs to trade off UAS performance and
cyber resources at the planning and/or guidance layer. We also
introduce new metrics for characterizing cyber-physical quadro-
tor performance, and lay the groundwork for the application
of CPS control methods to quadrotor UASs.

I. INTRODUCTION

The consideration of both computational and physical re-

sources in the design and development of control systems

is increasingly important [1]. Advances in autonomy and

associated increasing demands on computation mean that

“black box” thinking about the computational system will no

longer adequately meet the requirements of next generation

smart autonomous vehicles, such as in small Unmanned

Aircraft Systems (UAS), where computational resources are

scarce due to weight and size restrictions. Under these

scenarios, the consideration of computational and physical

demands can lead to improved overall system and mission

performance by dynamically allocating computational and

physical resources according to computational and physical

performance.

The design, consideration, and intersection of computa-

tional, or cyber, resources with communication and physical

resources is the objective of Cyber-Physical Systems (CPS)

research [2]. To this end, an emerging research area is the

design of real-time controllers wherein the time instances

A. Shankar and S. Doebbeling are graduate students in the Department
of Computer Science and Engineering, and the Department of Mechanical
Engineering and Applied Mechanics, respectively, at University of Nebraska-
Lincoln, USA. ashankar@cse.unl.edu, sdoebbeling2@unl.edu

J. Bradley is an Assistant Professor in the Department of Com-
puter Science and Engineering, University of Nebraska-Lincoln, USA.
jbradley@cse.unl.edu

of the control input are considered alongside the control

input itself. Event-triggered control [3], optimal sampling

control [4], and time-varying control [5] are all relatively

new methods being developed toward this goal. Similarly,

we have developed a co-regulation mechanism [6], [7] that

simultaneously, and in response to system performance,

adjusts the control inputs alongside the period of the task

implementing the control law.

While these strategies adjust computational resources

reactively, they do not consider how to plan for this dynamic

allocation to meet mission performance objectives. In Figure 1

Fig. 1: Traditional Hybrid Architecture (left) and CPS Hybrid Architecture
(right). Subscript “p, c” represent “physical” and “cyber” respectively.

we show a traditional hybrid architecture alongside a potential

CPS hybrid architecture. In the traditional hybrid robotic

architecture (left in Figure 1), a reactive controller provides

an input, Up, to the system to command small movements

of the controlled object through space and time [8]. To

command larger movements, a guidance and deliberative

planning layer uses the explicit mathematical relationships

between actuators and movement (e.g. kinematics, dynamics,

constraints, etc.), Pp, to discretize the desired larger move-

ment into accomplishable reference commands, X̃p,ref , for

the reactive controller [9]. Similarly, to develop a CPS hybrid

architecture (right in Figure 1), where cyber effectors (i.e.

sampling rate) are controlled alongside physical ones, a cyber-

physical control input, U cp, is given to the combined cyber-

physical system to move the physical object through space

and time simultaneously with adjustments to the sampling

rate. Commanding larger adjustments is accomplished by

issuing cyber-physical reference commands, X̃cp,ref , from a

trajectory planner that requires a corresponding relationship

between both cyber and physical effectors and the movement

through physical and cyber space and time, Pcp (red dashed

line around “Coupling” block in Figure 1). This enables

a cyber-physical guidance and planning layer to optimize

physical and cyber trajectories where physical and cyber

performance is coupled.

Toward the goal of directly coupling cyber and phys-

ical resources to mission performance, we characterize

the relationship between control task period (or sampling

period), control gain, and reference trajectory following

performance of a quadrotor UAS. A careful characterization

of the imposed sampling rate of the controller influences

stability margins [10], and schedulability [11]. Although the

relationship between sampling rate and control performance

is understood [12], we take the important next step of

characterizing the relationship between sampling rate and

trajectory following performance - the relationship required

to optimally trade off cyber and physical resources at the

planning layer. We also introduce new metrics that explicitly

measure trajectory following performance of a cyber-physical

vehicle system, going beyond traditional controller perfor-

mance metrics.

II. BACKGROUND AND RELATED WORK

The area of Cyber-Physical Systems research arose out of the

area known as “cybernetics,” an ancestor of research areas

such as control, real-time systems, optimization, autonomy,

artificial intelligence, and others [13]. Although the meanings

of “cyber” and “physical” have not reached consensus, in this

paper we consider “cyber” to be the computation, algorithms,

software, and execution of instructions, and the “physical” to

be items that occupy physical space and move in the world.

One specific CPS research aim is to investigate new

methods, models, and integrations that bridge the divide

between discrete computation and continuous control and

movement through space [14]. We briefly discuss the role

of computation in control and then present related work that

considers computation and control simultaneously, including

within UAS.

A. Real-Time Computing and Control

In a cyber-physical UAS (hereafter, just UAS), a tight

feedback control loop is used to provide reactive behavior to

the vehicle [9]. This loop is composed of physical components

and cyber components. Initially, physical sensors representing

system properties are read, and translated into the digital

signals fed into a computer. A controller, modeled in software

and executed as a real-time computational task, reads these

sensed values and computes a digital control input [11]. The

digital control input is then converted into a continuous signal

and fed to actuators. This control input is “held” (a zero-

order hold) until the control task executes again, restarting

the cycle. The question of how often the control task should

be executed is governed by the sampled-data assumption, and

chosen by the control engineer according to various rules of

thumb typically involving noise bandwidth, eigenvalues, and

the nyquist frequency [15], [16].

The implementation of the chosen sampling rate is typically

represented by assigning a periodicity value to the real-time

computational control task. Ideally, either an offline real-

time task schedule is then designed, or an online scheduling

algorithm is selected [11] and implemented on a Real-Time

Operating System (RTOS) to guarantee timing deadlines will

be met. Typically, however, because of the complexity of

implementation on an RTOS and since certifications and

performance guarantees for small UAS are not regulated,

a best-effort round-robin architecture (or similar) on a

Linux distribution or other microcontroller may be relied

upon to provide timing with significant variability. In this

scenario, time redundancy is employed to try and mitigate

the consequences of missed deadlines [17].

The implications of this cooperation between software

execution, real-time progression, and control performance are

highly consequential. For system performance and margins of

stability, the on board control software must meet deadlines,

usually over-designed for worst-case contingency manage-

ment. For cyber performance, devoting fewer resources to

control implies available resources for other computing

activities. As a result, on a constrained system the design is

a resource allocation and performance trade off.

Several related areas have investigated and leveraged this

tradeoff. In [12] an exploration of the impact of sampling rate

and control gain on step response is given for a system of

inverted pendulums. Very high sampling rates typically result

in better performance as the discrete controller approaches its

continuous counterpart, though with some caveats [18]. Qual-

ity of Service (QoS) research investigates tradeoffs between

cyber resource allocation and system performance (including

controllers) for various discrete “service” intervals in the cyber

system. This research confirms the trend that allocating more

cyber resources generally results in better performance [19],

[20]. Networked Control Systems has traditionally sought to

identify conditions under which stability and performance

can be guaranteed for a system wherein sensing, control,

and actuation occur on networked computers [21], [22].

More recently, in [23], an optimization strategy is used to

identify communication and control inputs simultaneously

while taking into account packet loss. Event-triggered control

research seeks to maximize cyber resource allocation [3], [24]

while maintaining control performance guarantees. While

successful in some instances, a fully-developed theory similar

to digital control has still eluded the community [25]. A few

mechanisms utilizing optimal control techniques to generate

control trajectories and sampling instants form a time-varying

sampling rate controller [5], [4]. These have been successful

theories although with increased computational complexity.

For quadrotors, control systems and their real-time require-

ments have been studied [26], [27]. Others have implemented

an event-triggered control system for attitude stabilization,

which is more resource aware [28]. In related work, the

authors examined the response-time constraints for a real-

time controller implemented onboard the quadrotor [29].

They analyze the response rate of actuators at different

operating conditions in order to design a controller that has

an update rate of at least as much as the sampling rate of the

various sensors. Seghour et al. [30] implemented a real-time

embedded control system for stabilizing a quadrotor, however,

they do not reason about the response time or the control

rate chosen.

These methods demonstrate and leverage traditional control

analysis techniques by assessing controller response to step in-

puts – the generally accepted strategy in controller design [15].

However, assessing trajectory following performance as a

function of cyber resource allocation provides another trade

off to exploit in the pursuit of dynamic resource allocation for

the holistic cyber-physical system. Here, we extend traditional

controller analysis by investigating trajectory following

performance and providing the mathematical relationship

needed to apply a full cyber-physical control and planning

architecture for a UAS. This architecture will enable a more

dynamic UAS that can adjust computation in response to

performance at both a low, reactive control level, as well as

a higher, deliberative planning level.

III. QUADROTOR CONTROL FRAMEWORK

A quadrotor is an under actuated system requiring active

control which can be provided by autopilot software. The

software periodically generates control signals to ensure

stability and drive the quadrotor to a commanded reference

in a timely fashion.

Software timing is critical in this process. A controller and

planner implemented in software must consider the dynamics

and limitations of the vehicle and on-board sensors as well as

the timing and scheduling of software tasks in the computer.

A low control task period (high sampling rate) can better

approximate a continuous model, potentially offering better

performance at the expense of computation. Conversely, a

high task period (low sampling rate) is easier to achieve

computationally amongst many competing autonomy-related

tasks, but this may be detrimental to performance. This is

compounded in a digital system by sensor values and control

inputs that are “sampled and held” until the next time the

control task is executed [15]. In this duration, the vehicle

continues to react based on its dynamics, possibly becoming

unstable.

A. State-Space Model

The nonlinear dynamic motion of a quadrotor UAS can be

derived using Newton’s and Euler’s equations in R
3, [31],

a =
F

m
+

F drag

m
− g

α = I−1 [τ − ω × Iω]
(1)

where a is linear acceleration, F is the net thrust, F drag is

forces due to drag, g is the gravitational vector, α is angular

acceleration, I is the inertia matrix, τ represents external

torques, and ω is angular velocity. α, I, τ , and ω are all

calculated about the principle (roll, pitch, and yaw) axes of

the quadrotor (i.e. I = diag (Ixx, Iyy, Izz), etc.). Here, the

nonlinear equations of motion are written in the frame of

reference of the vehicle with respect to an inertial world frame

and are used to simulate the quadrotor’s motion in response

to control inputs. The state of the quadrotor is represented as

X =
(

x, y, z,φ, θ,ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇
)T

(x, y, z) = position in R
3

(φ, θ,ψ) = Euler rotation angles.

We use a linearized state-space model of the nonlinear

equations to design and implement our control strategy. We

linearize Eq (1) about a stationary hover, and as a result, the

input is biased to account for a vertical component of gravity

which does not appear in the system matrix. We have

Ẋ = AX +BU (2)

where A and B are system and control input matrices

respectively, constructed as in [31], and U is the control

input. These matrices are functions of m (the mass of the

vehicle), g (gravity), Dx, Dy, and Dz (coefficients of drag

force acting in each of the coordinate axes), and Ixx, Iyy,

and Izz (inertial moments of the quadrotor’s body about the

pitch, roll, and yaw axis respectively).

We augment the system matrices, A and B, to allow

the system to follow different waypoints by adding three

integrator states corresponding to the x, y, and z location

states of the quadrotor system. This allows for an input

waypoint in the form of a positional three vector. The modified

state-space equation using the augmented matrices, Aaug and

Baug , is now given as,

Ẋaug = AaugXaug +BaugU +BrX̃ref

Xaug =
(

x, y, z,φ, θ,ψ, ẋ, ẏ, ż, φ̇, θ̇, ψ̇, 0, 0, 0
)T

Aaug =

[

A12×12 012×3

I3×3 03×12

]

Baug =

[

B12×4

03×4

]

, and Br =

[

012×3

−I3×3

]

.

(3)

The input vector in Eq (3) is U = [τφ, τθ, τψ, F]
T

where

τφ, τθ, and τψ are the torques about roll, pitch, and yaw

axes respectively, and F is the net thrust exerted by the

propellers. For a quadrotor UAS, these can be controlled

independently of each other as long as motor saturation is

not reached, a common assumption for this simplified model.

The additional input vector in Eq (3) contains the location

of the target waypoint, X̃ref = [x, y, z]
T

.

B. Real-Time Requirements

If the control signals are not generated in a timely sequence,

the quadrotor may become unstable [16]. As a result, flight

control code must be executed correctly and completely before

a specified deadline. The deadline itself may be categorized

as a “hard deadline,” since failure to meet it may result in

instability [11].

In computer-based control, the sampled-data assumption

is often employed to construct digital controllers that are

executed periodically according to a real-time schedule. The

sampled-data assumption presumes that sensors are read, and

the control input is calculated and sent to the actuators at

a single, and periodically recurring, instant of time, t. It

assumes there is no delay in the states or control input, only

that the control input is then held by the actuators for the entire

sampling period, Td, called a zero-order hold (ZOH) [15]. The

sampling period of the discrete system is, ideally, matched by

the control task execution period enforced by the real-time

computing schedule [11]. However, in a real-time system, the

only timing guarantee is that deadlines will be met, not that

the period between task completion times is consistent. This

means that control inputs may not be given at regular time

intervals, and there will be state delay in the control input

calculation (thus violating the sampled-data assumption) [6].

Consider an implication following this assumption. From

the simplified model in Eq (2), the angular roll acceleration

at a given time t can be written as:

φ̈(t) =
τφ(t)

Ixx
.

We compute the rotation angle by integrating φ̈ twice over

the (k + 1)th discrete time-interval, where k ∈ [0, t/Td], as

follows:

φ =
1

Ixx

ˆ (k+1)Td

kTd

(

ˆ (k+1)Td

kTd

τφ(t)dt

)

dt.

In this case the input torque is held constant throughout each

sampling period and is only recomputed at the end of the

step. Therefore,

τφ(t) = KTd,φτ
max
φ , kTd ≤ t < (k + 1)Td,

where τmax
φ is the maximum torque that can be applied, and

KTd,φ is the roll gain constant chosen suitably for a given

Td. Plugging τφ(t) into the relationship for φ, we have,

φ =
1

Ixx

ˆ (k+1)Td

kTd

(

ˆ (k+1)Td

kTd

KTd,φτ
max
φ dt

)

dt

= KTd,φ

τmax
φ

Ixx
T 2
d ,

(4)

which implies a quadratic relationship between the angular

displacement and the amount of time the input is applied for.

Using Eq (4) we can compute the maximum amount of time

the full input can be applied to the system while keeping the

angular rotations within vehicle limitations.

Because of the zero-order hold behavior of discrete systems,

Eq (4) has significant implications. The control system has

a strong real-time dependency - if a deadline for a new

commanded input is missed, and since KTd,φ is a constant,

the rotation angle may become unbounded. It follows that if

the discrete sampling period, Td, is too large, then the gain,

KTd,φ needs to be reduced to prevent input saturation.

In a cyber-physical UAS, the same processor executes a

multitude of computing tasks, and CPU cycles may become a

contended resource that must be allocated appropriately. Small

and infrequent delays in meeting the deadlines imposed by the

choice of sampling period may lead to a degraded quality of

service and instability, but also may be accounted for by time

redundancy [19]. While repeated or consistent timing misses

may cause an unbounded response on the UAS, committing

a larger amount of CPU-time to UAS flight performance

may degrade the performance of another important service

task (e.g. sensing, data collection). As a result, understanding

the limits and implications of sampling rate for the holistic

cyber-physical system allows us to balance these resources

over the course of a mission.

Finally, it is critical to note that a given digital control

strategy is a function of both controller design and selected

sampling period. That is, changing the sampling period, even

while holding control design variables constant, results in

a different value of KTd
, effectively re-characterizing the

controller itself [15]. The implication is that intelligently trad-

ing cyber and physical resources requires us to develop new

control techniques that account for the nonlinear relationship

between digital, linear control design and sampling rate.

IV. EXPERIMENTAL SETUP

Our simulation experiments are designed to demonstrate the

effect of varying the software control task period, or sampling

period, of flight control tasks as the UAS executes a mission

trajectory.

The nonlinear equations discussed in Section III are used to

model and simulate the flight of the quadrotor. The controller

utilizes a discrete-time linear quadratic regulator (DLQR)

strategy on the augmented linear system in Eq (3), allowing

it to drive the vehicle to a given reference point in space

and time. By varying the reference with respect to time, a

trajectory is generated for the UAS to follow as the simulation

progresses.

We choose LQR control for two reasons: 1) LQR has

a closed-form solution and is a stabilizing optimal control

algorithm with good margins of stability, thus making it

easier to compare controllers with similar performance at

different sampling rates; and 2) in finding the optimal gain,

LQR minimizes the error on the state vector, Xaug, and

the control input, U . This is particularly useful for UAS

applications where a large control input may be undesirable.

Because our objective is to isolate the relationship between

sampling rate and trajectory following performance, we use a

MATLAB-based nonlinear equation simulation with full state

feedback and do not model external disturbances or sensor

noise.

In order to simulate a discrete controller, we first discretize

the continuous-time augmented state-space equations into

their discrete-time counterparts using a fixed sampling period

Td. The new state-space matrices ΦTd
and ΓTd

are computed

from the continuous model in Eq (3), given as,

ΦTd
= eAaugTd and ΓTd

= Baug

Td
ˆ

0

eAaugtdt,

such that the equation governing the evolution of system state

in the controller at discrete time steps, k, is now,

X[k + 1] = ΦTd
X[k] + ΓTd

U [k] +BrX̃ref ,

where U [k] is the input vector to the system [15]. Note here

that X[k+1] and X[k] stem from the augmented state vector,

Xaug .

Once the system matrices are computed for a given

sampling period, we design a DLQR controller to maintain a

Parameter Value Parameter Value

g 9.80665m/s2 m 0.515 kg
Dx 0.0075 kg/s Ixx 0.0040 kgm2

Dy 0.0075 kg/s Iyy 0.0040 kgm2

Dz 0.015 kg/s Izz 0.0044 kgm2

Q 10I15×15q R 2I4×4

q = [100 100 100 100 100 100 10 10 10 1 1 1 50 50 50]
T

TABLE I: System Constants

stable hover at a given reference. Note that in the DLQR, the

gain matrix, KTd
, is specific to the sampling period Td used

to generate the ΦTd
and ΓTd

matrices [15]. This implies that

a real-time system designed with the control task executed

at a different periodicity, or under jitter or missed deadline

conditions, will result in poor performance of the controller.

In order to study the effect of a changing sampling period,

we perform a sweep over a range of values for Td, generating

a corresponding set of ΦTd
,ΓTd

, and KTd
matrices. Because

we are interested in a highly accurate relationship between

sampling period and trajectory following performance, we

use a fourth-order Runge-Kutta ordinary differential equation

solver, ode45 in MATLAB, to simulate the system using

the nonlinear equations in Eq (1). However, ode45 is

a continuous-time solver, unsuited to the zero-order hold

paradigm. As a result, we leverage it as part of a larger

simulation technique designed to simulate both the correct

zero-order hold behavior and corresponding transients of the

system response for each time period during which the input

is held, 0 ≤ j < m where j represents an internal ode45

time step on kTd ≤ t < (k + 1)Td. These modifications are

described as follows.

An outer loop iterates over discrete time steps, k, com-

puting and holding U [k] = −KTd
X[k] for the sampling

period duration Td. That is, U(t) = U [k], where kTd ≤

t < (k + 1)Td. Within each sampling period, U [k] is passed

and held as an input to the nonlinear system model, which

is simulated using ode45. The initial system state for each

discrete step is the final state propagated by ode45 in the

previous iteration. Because ode45 is a one-step solver, the

output from each execution of ode45 can be appended to the

previous one to put together a complete continuous system

response. This ensures that the control system follows a

discrete-time sample and hold behavior, but we also obtain the

transient response for each sampling interval. A pseudocode

for the algorithm that simulates the system for a specific

sampling period is shown in Algorithm 1.

The quadrotor model used for the simulations is based

on an Ascending Technologies Hummingbird [32], which

is a general purpose medium-sized research UAS used in

the NIMBUS Lab1. All experiments are run with the system

constants shown in Table I for the Hummingbird quadrotor

design.

V. CPS METRICS

To quantify the relationship between sampling rate and tra-

jectory following performance, we introduce several different

1http://nimbus.unl.edu

Algorithm 1: Algorithm to simulate the control of

quadrotor flight at one discrete sampling rate.

Data: Nonlinear system model, f(X),
sampling period

// initialize system constants

Td ←− sampling period
lin model ←− linearize(f(X), Td)
Q ←− 10 · I15×15 · q
R ←− 2 · I4×4

begin

ΦTd
,ΓTd

←− discretize(lin model, Td)
Kgain ←− dlqr(ΦTd

,ΓTd
)

k ←− 0
Xall = []
Xinit ←− initial state()

while kTd ≤ simulation length do

Uk ←− input vector(Xinit,Kgain)
[X1 . . . Xm] = Simulate(f(X), Td, Uk Xinit)
Xall = [Xall;X1 . . . Xm]
k ←− k + 1
Xinit ←− Xm // new initial state

end

end

CPS metrics. Each of these metrics can be computed for

a specific sampling rate and simulation, which, can then

be combined to form an explicit mathematical relationship

between sampling rate and trajectory following performance.

Although we characterize these metrics in the context of

a quadrotor UAS, they are, in principle, more generally

applicable to a broad class of cyber-physical vehicle systems.

1) Cumulative Time-Weighted State Error

In our experiments, the reference point, X̃ref , is given at

specific time intervals throughout the simulation. Therefore,

by changing the position of the reference waypoint with

respect to time, the UAS can be commanded through a desired

trajectory. We define the state error at any given time step,

k, as the squared Euclidean distance between X̃[k] (the

position states from the current state vector X[k]) and the

corresponding reference state vector at that time, X̃ref [k].
Given the reference state to which the controller must drive

the system, a cumulative time-averaged state error (CSE)

can be defined for the position state vector over the entire

mission. Weighting each state error by the simulation time

yields the following equation for cumulative time weighted

average of state error,

CSE =
1

n

n
∑

i=0

ti

∣

∣

∣
X̃(ti)− X̃ref (ti)

∣

∣

∣

2

(5)

where | · | represents Euclidean distance, X̃ is the vehicle’s

position in R
3, ti is ode45’s discretization of continuous

time (t), n is the total number of internal simulation steps,

i.e. i ∈ [0, n]. Weighting by time has the advantage of more

aggressively penalizing the state error as time progresses,

while having a smaller weight associated with initial offsets in

the system. This definition of state error as a metric for system

design captures the effectiveness of a cyber control system in

driving the state of the physical system to the reference state

within a short amount of time, and with minimal overshoot.

2) Translational Bounds

The ability to place bounds on maximum offsets from a

desired trajectory is useful in planning mission objectives and

helps to identify worst case flight envelopes and failure states.

As the controller responds to commanded target waypoints,

this metric of maximum state error (MSE) determines the

farthest point the UAS reached from the ideal desired

trajectory line connecting two successive target waypoints,

L = X̃ref,next(ti)− X̃ref,prev(ti),

MSE = max

(

|L× (X̃ref,prev(ti)− X̃(ti))|

|L|

)

. (6)

This metric is used to set a standard for mission success

which hinges on whether or not the UAS remained within a

desired maximum distance from the given path throughout

execution and could be used to determine possible failure

states in order to invoke a contingency control strategy.

3) Control Effort

For a quadrotor UAS, minimization of control effort is

essential for decreasing power and energy demands thereby

preventing possible damage to components and potentially

increasing vehicle endurance.

To analyze the control effort of the system, we compute

the time-averaged control effort (CE) over all simulation time

as follows:

CE =
1

n

n
∑

i=0

|U(ti)|
2
ti, (7)

where U(ti) = U [k] = const. on kTd ≤ ti < (k + 1)Td. As

before, weighting the value of the control effort with the

simulation time rewards the natural response of the system to

a reference step, which, generally would require less control

effort as error is reduced. This metric is also proportional

to the energy consumed for propulsion and is approximately

proportional to total energy consumed in a system where

propulsion dominates energy resources.

In part, this metric is motivated by the mathematical real-

ization that a controller with higher gains may more quickly

converge to the reference state by generating larger control

inputs for a shorter amount of time (without saturating). This

metric favors such a controller, as compared to one which

applies smaller inputs for a longer duration, thus, taking

longer to converge.

Intuitively, we expect each of these metrics to increase

as the sampling period is increased. That is, with longer

sampling periods there should be higher state error, a higher

control effort (CE), and a typically larger maximum deviation

from the ideal trajectory.

VI. RESULTS

We now present the results of several important test cases

representing various scenarios we regularly find in our UAS

missions.

A. Traditional Disturbance Rejection Experiment

We begin by first characterizing the performance of the

controller in rejecting a disturbance represented by an initial

non-zero attitude angle. This represents a traditional control

system performance metric - evaluating a step response. At

time t = 0, the system is initialized at the origin of the inertial

space p = (0, 0, 0) with φ = 0.2 rad and other components

of the state vector set to zeros.
Figure 2a shows the progression of φ for different sampling

rates as the controller brings the system to a stable hover at

the origin. As expected, a higher sampling period results in

a longer settling time and larger overshoot.
Although DLQR is a stabilizing controller, it stabilizes the

linear approximation of the nonlinear system. However, the

stable region of a closed-loop nonlinear system changes with

the sampling period [33]. As a result, there are states that may

exceed the bounds on disturbances from which the DLQR

controller can recover. We hypothesize this is the case for the

DLQR controller designed and operated at a 1.0 s sampling

period in Figure 2a. The initial condition 0.2 rad exceeds the

region of stability for the DLQR controlled nonlinear system.

The control input required to reject the disturbance is shown

with different sampling rates in Figure 2b. We note that for

high sampling rates, as anticipated, the control input changes

in a much smoother fashion, but the maximum control effort

required is higher. For lower sampling rates, however, the

maximum control effort is smaller in magnitude, and the

system takes longer to settle.

B. Trajectory Following Experiments

We now assess the controller’s performance in following a

single, straight line trajectory by driving the vehicle to a

point p = (x1, y1, z1) in space, starting from a stable hover

at the origin. The commanded reference is held constant

throughout the length of the simulation so that the controller

causes the vehicle to go to, and hover at, p. In the following

subsections, we use this test to analyze the various metrics

defined previously.
Finally, to asses complex trajectory following performance

we develop trajectories consisting of reference waypoints

and issue commands to the vehicle to follow. We design the

framework such that a new waypoint might be made available

at any time instant, whether the vehicle has reached its current

waypoint or not. Therefore, if several distant waypoints arrive

in quick succession, it is not necessary that the vehicle would

ever reach any single one of them. This design decision was

based on a cyber-physically co-regulated and co-optimized

UAS a mission planner that could decide that reaching each

waypoint in a complex trajectory may be subjugated by the

desire to conserve resources by allowing for less aggressive

control at the expense of precision.
Figure 3 shows the path taken by the UAS as it follows five

commanded waypoints in space. The effect of a low sampling

rate is clear for certain course legs, most notably the first and

the last ones. This becomes less predictable as the simulation

progresses. For instance, for three consecutive waypoints

pi, pj and pk, if the angle between the two consecutive

waypoints, pipj and pjpk, is obtuse, then it is possible

(a) Rejecting an initial roll angle of φ = 0.2 radians for different sampling
rates.

(b) Rolling torque, τφ, generated by the controller at different sampling rates
in order to bring the vehicle to a stable hover.

Fig. 2: Disturbance rejection on the roll axis at different sampling rates. A higher sampling rate results in higher controller gains and more aggressive
control. Lower sampling rates result in a more narrow control input operating range, but the response also takes longer to converge to the reference state.
Note that the response for 1 kHz (blue) is nearly identical to the 100 Hz plot, and is obscured by it.

Fig. 3: The paths taken by the UAS as it follows five commanded waypoints
in space at different sampling rates of the controller.

that the vehicle undershoots the waypoint pj and is then

better poised to reach pk. Because DLQR is a stabilizing

controller, as long as the states of the vehicle remain within

the region of stability of the closed-loop nonlinear system, the

controller will always recover. As a result, contrary to the step

response in Figure 2a, where initial conditions were beyond

the disturbance limits that ensure stability, in Figure 3 the

vehicle successfully navigates the trajectory, although with

reduced performance. If design of the control system includes

similarly large sampling period, a more rigorous mathematical

characterization of the bounds on disturbances and regions

of stability, similar to [33], is needed.

C. Characterizing the Relationship Between Trajectory Fol-

lowing Performance and Sampling Period

We now demonstrate the relationship between trajectory

following performance of our UAS and the sampling period

of the software control task using the metrics we discussed

in Section V.

Fig. 4: Variation in the controller gain and the H2 norm of the discretized
system across different sampling periods.

Variation of Gain and H2-norm

We noted in Eq (4) that for a larger sampling period, the

gain of the system should decrease. Since we have multiple

elements in the input vector, we quantify the control gain here

as the L2-norm of the KTd
matrix. Another useful analysis

tool is the H2-norm, which represents the energy of the

output of the system [18]. This tool can be used to identify

potentially destabilizing intermediate sampling periods of the

system if the H2-norm is infinite at a given sampling period.

We perform a sweep on a wide range of sampling periods

and plot the variation in the controller gain and the H2-norm

of the system in Figure 4. Much like the analysis in [12],

gain decreases with sampling period.

In our case, where the DLQR design parameters remain

constant as we change sampling period, analysis of the gain

vs. sampling period curve in Figure 4 can be used to select the

lowest feasible sampling period of control as long as motor

saturation is not reached. In practice, however, sampling rate

will most likely be limited by constraints in the cyber system

(i.e. how much processing time can be devoted to control

computation).

Fig. 5: The change in average trajectory tracking error and the maximum
deviation from the trajectory for a single leg (step response) as the sampling
period changes.

The high-gain operation of the controller at small sampling

periods can potentially saturate the actuators, thereby violating

the assumption that the thrust and torques on each of the

axes are independently controllable. Knowing the matrix KTd

designed for a specific Td, and a given state vector X(t) at

time t, we can check for saturation:

U(t) = −KTd
X(t) ≤ Umax

where Umax is determined appropriately using maximum

rotor thrust from system specifications [32].

State Error

We introduced the cumulative time-weighted state error (CSE)

and defined it as a metric to characterize the performance of a

controller over a trajectory leg. Observing the traversed paths

in Figure 3, we expect this metric to increase in magnitude

as the sampling period increases. The maximum deviation

from the trajectory leg is also expected to increase, as the

sampling period becomes longer, due to the sample and hold

nature of control. The trend in these two metrics is captured

first in Figure 5 representing a single trajectory leg from the

origin to a waypoint (i.e. a step response), as a function of

sampling period. In Figure 6 we again show the trend in these

two metrics, but this time for the entire trajectory shown in

Figure 3. While the tracking errors for a step response follow

a smooth trend as sampling period varies, the tracking errors

for the trajectory (and similarly control effort) do not. We

speculate this is a result of internal resolution changes and

numerical error in MATLAB’s ode45 solver coupled with

effects previously discussed in regard to path geometry in

which the vehicle may find itself poised differently in regards

to reaching a newly generated target waypoint.

Control Effort

Using our control effort metric, CE (Eq. (7)), as the sampling

period increases, we expect the value of CE to increase since

the controller will operate at a lower gain, but for a longer

amount of time. However, it is important to note that the

magnitude of the maximum control input generated by the

controller will now be smaller as in Figure 2b.

We accumulate the time-weighted control effort expended

over a given mission for various sampling rates and plot

Fig. 6: The change in average trajectory tracking error and the maximum
deviation from the trajectory in Figure 3 as the sampling period changes.

Fig. 7: The increase in time-weighted average control effort metric against
increasing sampling periods for a step response and for the trajectory in
Figure 3.

the trend, in Figure 7, against the sampling period for the

controller as it drives the vehicle to a stable hover at a single

waypoint (blue plot) and also as it drives the vehicle through

the entire trajectory (red plot).

VII. DISCUSSION OF RESULTS

To develop a cyber-physical UAS, we must consider both

limitations in cyber resources and performance expectations

of the physical system. Our results capture this trade-off

and imply that control analysis must go beyond traditional

controller performance assessment and include trajectory

following performance in order to trade off resources at

each level of the autonomy architecture.

Intuitively, a controller designed to operate at a higher

sampling period may cause undesired overshoots in the system

state because the dynamics of the system act faster than

appropriate control signals are generated. Additionally, the

control effort (CE metric) increases, implying the system

may need to spend more energy over a longer period of

time, though with smaller power requirements. The benefit,

however, is the increased availability of computing resources

for other tasks (vision, data collection, sensing, etc.).

Choosing lower sampling periods allows for the selection

of a higher-gain controller resulting in increased precision and

the ability to conduct more aggressive maneuvers. Unfortu-

Circle Square Spiral

Rate(Hz) 1k 500 100 50 10 2 1k 500 100 50 10 2 1k 500 100 50 10 2

CSE 0.681 0.682 0.686 0.691 0.734 1.057 0.517 0.517 0.520 0.523 0.554 0.827 3.582 3.590 3.608 3.632 3.850 5.433

MSE 0.375 0.375 0.374 0.374 0.373 0.390 0.310 0.310 0.310 0.309 0.303 0.296 0.985 0.985 0.985 0.985 0.985 0.985

CE 0.0021 0.0021 0.0021 0.0022 0.0027 0.0203 0.0247 0.0247 0.0251 0.0255 0.0309 0.2368 0.1200 0.1201 0.1204 0.1216 0.1548 0.1570

TABLE II: Table summarizing the trend in the proposed metrics for different trajectories.

nately, this trade off results in large control inputs which may

adversely affect mechanical actuators. For the cyber system,

a smaller sampling period adversely affects the schedulability

of additional tasks that the system must perform, particularly

aperiodic tasks which are often scheduled in available slack

time in the cyber system [11].

However, from the above results, the state error and control

effort of the system follow a relatively flat curve as sampling

period increases up to a range of approximately 0.02 s - 0.1 s.

Therefore, in our idealized, no-noise simulation environment,

the sampling rate of control can be lowered to this range

without incurring a significant cost in state error or control

effort. This illustrates the opportunity for savings in cyber

resources while sampling at 0.02 s versus 0.002 s provided

we can design appropriate controllers that are robust to noise

and disturbances.

Table II summarizes the trend in the above metrics for select

sampling periods as the vehicle moves along several more

complex trajectories. We consider three additional trajectories

(a circle, a square, and a spiral) and compute the same

metrics across the entire mission. Once again, large changes

in error do not occur until the sampling rate reaches a range

of approximately 0.02 s - 0.1 s. Also note that the values

calculated for each of these evaluation metrics depend largely

on the geometry of the trajectory and how it is defined. That

is, following a more complex trajectory, or one defined by a

higher number of waypoints, especially those consisting of

smooth curves, may result in unique results. This suggests the

importance of a high level CPS trajectory planner and CPS

controller that is able to dynamically adjust resources, thus

enabling higher precision following of complex trajectories

and reducing resources for following simpler ones.

Utilization metric

In a UAS there exists a set of computational tasks to which

a scheduler must allocate appropriate resources to ensure

computing deadlines are met. This task set may contain

tasks with non-deterministic execution times, varying logical

priority, sporadic, aperiodic, and other periodic tasks [11].

For example, a UAS executing a camera-based surveillance

mission might have computationally intensive vision process-

ing algorithms, guidance and navigation tasks, and a top-level

planner in addition to the on-board state-estimation, sensor

fusion, and attitude stabilization algorithms. To complicate

this further, there may also be aperiodic tasks with quick

deadlines that are triggered by a user input from a ground

station. In such a scenario, it is critical to ensure that task

priorities and deadlines in the real-time schedule be set

correctly and perform predictably, but it is also an opportunity

Fig. 8: CPU utilization and availability for different tasks, assuming that the
attitude controller has a worst case execution time of 0.2 ms.

to dynamically adjust task priorities and deadlines depending

on the environment, system performance, and mission context.

In this context, it is useful to examine resource utilization

of the control task in the real-time system as a metric for

cyber performance analysis. The utilization of the ith real-

time task is computed as utili = ei/pi, where ei and pi
are execution time and the period of the task [11]. The total

resource utilization is then the summation over all tasks. Since

ei is difficult to know beforehand, it is usually substituted

with the worst-case execution time (WCET) [34]. Given two

processes with similar CPU requirements, the one with a

larger period will have smaller CPU utilization. This drives

efforts towards developing on-demand controllers that can

guarantee performance even at higher sampling periods. This

frees up cyber resources, which, the scheduler might allocate

to other tasks in the system. As an example, in a hover, the

likelihood of running into a stationary object is low. This

may be an opportunity to turn off a laser scanner and reduce

the priority and task period of the corresponding sensor task,

thus, freeing up cyber resources for communicating collected

data to a ground station. Figure 8 shows the decrease in

CPU utilization for the attitude control loop of our UAS

as sampling period increases, thereby accommodating other

tasks which may have larger WCETs.

VIII. CONCLUSIONS

Control and real-time computing are coupled by implementing

control laws on a digital device requiring the periodic

execution of a task. Characterizing this coupling and the

performance of the system allows us to design planning

algorithms that trade off cyber and physical resources and

ensure predictable performance. In this paper, we have

investigated and quantified the effects of varying sampling

periods of a controller on a quadrotor UAS as it follows

various trajectories. This provides a mathematical relationship

for developing a cyber-physical planning algorithm that

trades off cyber and physical resources for improved mission

performance.

We also introduced new metrics that quantify both the

physical and cyber performance of a quadrotor UAS following

a reference trajectory. The results provide us with a means for

developing a higher-level CPS planner that computes coupled

cyber-physical trajectories and reference commands for a

low-level reactive cyber-physical control strategy. The results

also serve as a pointer to the awareness for considering

timing requirements while designing control laws. This

characterization is a step toward the development of a

cyber-physical UAS architecture that incorporates cyber and

physical resources at every layer of the architecture to improve

performance, efficiency, and robustness.

Future work will focus on the development a cyber-physical

control strategy robust to noise and disturbances. We are also

preparing to conduct flight experiments on our quadrotor

UAS with accompanying analysis under similar trajectory

tests to verify our results.

IX. ACKNOWLEDGMENTS

This work was supported in part by NSF award #1638099

and NSF award #IIA-1539070.

REFERENCES

[1] W. Heemels, K. H. Johansson, and P. Tabuada, “An introduction to
event-triggered and self-triggered control,” in Decision and Control

(CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012, p.
32703285.

[2] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the 47th

Design Automation Conference. ACM, 2010, pp. 731–736.

[3] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,” Automatic Control,

IEEE Transactions on, vol. 57, no. 5, pp. 1291–1297, 2012.

[4] E. Bini and G. M. Buttazzo, “The optimal sampling pattern for linear
control systems,” Automatic Control, IEEE Transactions on, vol. 59,
no. 1, p. 7890, Jan. 2014.

[5] K. Kowalska and M. Mohrenschildt, “An approach to variable time
receding horizon control,” Optimal Control Applications and Methods,
vol. 33, no. 4, p. 401414, 2012.

[6] J. M. Bradley and E. M. Atkins, “Coupled cyber-physical system
modeling and coregulation of a CubeSat,” IEEE Transactions on

Robotics, vol. 31, no. 2, p. 443456, Apr. 2015.

[7] ——, “Toward continuous state-space regulation of coupled cyber-
physical systems,” Proceedings of the IEEE, vol. 100, no. 1, p. 6074,
Jan. 2012.

[8] R. Murphy, Introduction to AI Robotics. MIT press, 2000.

[9] R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory

and Practice. Princeton University Press, 2012.

[10] L. H. Keel and S. P. Bhattacharyya, “Stability margins and digital
implementation of controllers,” in Digital Controller Implementation

and Fragility. Springer, 2001, pp. 13–24. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-1-4471-0265-6 2

[11] J. Liu, Real-Time Systems. Prentice Hall, 2000, lCCB: 99051522.

[12] F. Zhang, K. Szwaykowska, W. Wolf, and V. Mooney, “Task scheduling
for control oriented requirements for cyber-physical systems,” in Real-

Time Systems Symposium, 2008. IEEE, 2008, p. 4756.

[13] N. Wiener, Cybernetics or Control and Communication in the Animal

and the Machine. MIT press, 1965, vol. 25.

[14] “Cyber-Physical Systems (CPS) (nsf17529) — NSF - National
Science Foundation.” [Online]. Available: https://www.nsf.gov/pubs/
2017/nsf17529/nsf17529.htm

[15] G. F. Franklin, M. L. Workman, and D. Powell, Digital Control of

Dynamic Systems. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA, 1998.

[16] N. S. Nise, Control systems engineering, 6th ed. John Wiley and
Sons, 2011.

[17] D. Gurdan, J. Stumpf, M. Achtelik, K. M. Doth, G. Hirzinger, and
D. Rus, “Energy-efficient autonomous four-rotor flying robot controlled
at 1 kHz,” in Proceedings 2007 IEEE International Conference on

Robotics and Automation, Apr. 2007, pp. 361–366.
[18] S. L. Osburn and D. S. Bernstein, “An exact treatment of the

achievable closed-loop H2 performance of sampled-data controllers:
From continuous-time to open-loop,” Automatica, vol. 31, no. 4, p.
617620, 1995.

[19] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin, “QoS negotiation
in real-time systems and its application to automated flight control,”
Computers, IEEE Transactions on, vol. 49, no. 11, pp. 1170–1183,
2000.

[20] F. Xia, L. Ma, J. Dong, and Y. Sun, “Network QoS management in
cyber-physical systems,” in Embedded Software and Systems Symposia,

2008. ICESS Symposia’08. International Conference on. IEEE, 2008,
p. 302307.

[21] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. of the IEEE, vol. 95, no. 1, p.
138162, 2007.

[22] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of networked
control systems,” IEEE Control Systems Magazine, vol. 21, no. 1, p.
8499, 2001.

[23] X. Cao, P. Cheng, J. Chen, and Y. Sun, “An online optimization
approach for control and communication codesign in networked cyber-
physical systems,” Industrial Informatics, IEEE Transactions on, vol. 9,
no. 1, pp. 439–450, 2013.

[24] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-
triggered control for discrete-time systems,” in American Control

Conference (ACC), 2010. IEEE, 2010, pp. 4719–4724.
[25] K. J. Åström and B. M. Bernhardsson, “Comparison of Riemann and

Lebesgue sampling for first order stochastic systems,” in Decision and

Control, 2002, Proceedings of the 41st IEEE Conference on, vol. 2.
IEEE, 2002, p. 20112016.

[26] P. Castillo, P. Albertos, P. Garcia, and R. Lozano, “Simple real-time
attitude stabilization of a quad-rotor aircraft with bounded signals,” in
Proceedings of the 45th IEEE Conference on Decision and Control,
Dec. 2006, pp. 1533–1538.

[27] J. F. Guerrero-Castellanos, N. Marchand, A. Hably, S. Lesecq, and
J. Delamare, “Bounded attitude control of rigid bodies: Real-time
experimentation to a quadrotor mini-helicopter,” Control Engineering

Practice, vol. 19, no. 8, pp. 790 – 797, 2011.
[28] J. F. Guerrero-Castellanos, J. J. Téllez-Guzmán, S. Durand, N. Marc-

hand, and J. U. Alvarez-Muñoz, “Event-triggered nonlinear control for
attitude stabilization of a quadrotor,” in Unmanned Aircraft Systems

(ICUAS), 2013 International Conference on, May 2013, pp. 584–591.
[29] Corona-Sánchez, J. J. and Rodrı́guez-Cortés, H., “Experimental real-

time validation of an attitude nonlinear controller for the quadrotor
vehicle,” in Unmanned Aircraft Systems (ICUAS), 2013 International

Conference on, May 2013, pp. 453–460.
[30] S. Seghour, M. Bouchoucha, and H. Osmani, “From integral back-

stepping to integral sliding mode attitude stabilization of a quadrotor
system: Real time implementation on an embedded control system
based on a dspic µc,” in Mechatronics (ICM), 2011 IEEE International

Conference on, Apr. 2011, pp. 154–161.
[31] R. Beard, “Quadrotor dynamics and control rev 0.1,” Tech. Rep., 2008.

[Online]. Available: http://scholarsarchive.byu.edu/cgi/viewcontent.cgi?
article=2324&context=facpub

[32] “AscTec Research UAVs.” [Online]. Available: http://www.asctec.de/
en/uav-uas-drones-rpas-roav/asctec-hummingbird/

[33] T.-T. Lee and S.-H. Lee, “Discrete optimal control with eigenvalue
assigned inside a circular region,” IEEE Transactions on Automatic

Control, vol. 31, no. 10, pp. 958–962, October 1986.
[34] R. Wilhelm, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat,

P. Stenström, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, and R. Heckmann, “The worst-
case execution-time problem - overview of methods and survey of
tools,” ACM Transactions on Embedded Computing Systems, vol. 7,
no. 3, pp. 1–53, Apr. 2008.

