




was assigned a value from pose.position.x of ROS Message

type geometry msgs::Pose and therefore has the units meters,

likewise Y. During the subtraction on lines 28-29, meters is

propagated to err x and err y by assignment. Then in

line 30, err x and err y are added in a dimensionally

inconsistent way, since err x is squared while err y is not.

PhrikyUnits then reports the inconsistency type (‘Addition

of inconsistent units’), line number (30), and units involved

(m2 and m). PhrikyUnits can detect this dimensional incon-

sistency because ROS Messages provide unit information.

In terms of detection rate, we recently showed that

PhrikyUnits has an 87% true positive rate [13]. Since not all

variables containing physical units use ROS Messages (they

can use types defined by the developer), and PhrikyUnits

only recognizes those using ROS Messages, it will always

underestimate the number of dimensional inconsistencies.

Furthermore, by design, PhrikyUnits will only report incon-

sistencies when it can infer them with a high degree of

certainty (all variables involved in the inconsistency must

have an associated physical unit). For example, constants

do not have an associated physical unit, so multiplying by

a constant or unknown scalar reduces PhrikyUnits’ degree

of certainty, and PhrikyUnits will only report high-certainty

inconsistencies by default. Therefore our results are an under

approximation of the true number of dimensional inconsis-

tencies in the corpus.

III. RELATED WORK

There are several approaches to detecting or avoiding

dimensional inconsistencies in software, including tools like

Osprey [5] and UniFi [14], languages like F# [4], and

libraries like boost::units [6]. Unfortunately, both Osprey and

boost::units require annotations and Osprey only works on

Java programs. In our corpus we find boost::units in only

0.5% (18 / 3,484) of repositories, and F# is only found

in 2 repositories. UniFi works without annotations but uses

the source code itself to infer inconsistencies and therefore

requires both a correct and incorrect example within the

same file, limiting generality. Therefore for dimensional

inconsistency detection we rely on our own automatic tool

PhrikyUnits. For more information on how software analysis

is applied to robot software, see Cortesi et al. [15].

Santos et al. [16] analyzed a corpus of 50 ROS software

repositories to assess code quality based on a variety of

traditional software quality metrics. Likewise we seek to

analyze software issues within the ROS community. Unlike

their work, we analyze a much larger dataset of 3,484 repos-

itories and focus on dimensional inconsistencies because

robot software is threatened by this fault.

Ray et al. [17] studied a large-scale software corpus to

assess the frequency of particular software faults across

different programming languages. Like their work we use

GitHub as the source of our corpus, mine software reposi-

tories, and make general conclusions about software usage.

Unlike their work, we only look at C++, target ROS software,

and focus on dimensional inconsistencies.

IV. STUDY DESIGN

To address the research questions identified in Section I,

we designed a study to apply our dimensional inconsistency

and physical unit detection tool, PhrikyUnits, to a large-scale

software corpus. In this section, we describe the methodology

used to create the software corpus, and give technical details

about how PhrikyUnits counts units and inconsistencies.

A. Software Corpus

We sought to build a corpus of ROS code with physical

units specified by standard ROS message types, because

ROS messages have attributes defined to have units, and

because detecting dimensional inconsistencies requires units.

GitHub is one of the largest collections of open-source code

available and has been used as the basis of other large-scale

software studies [17]. To find ROS code with units, we used

the GitHub code search API to submit keyword queries for

each ROS message type defined at http://wiki.ros.

org/common_msgs, and extracted the repository names

from the results. In total we found 4,736 repositories that

contained search hits on ROS-related terms. Of this, 73% or

3,484 repositories contain compilable C++ code that uses the

ROS messages defined to have physical units. Within these

3,484 repositories, we found a total of 20, 843 files with

units containing 5, 950, 839 lines of C++ code as measured

using the tool CLOC (http://cloc.sourceforge.

net). To our knowledge, this is the largest scale analysis

of ROS source code to date. We provide a complete list of

repositories used in this study at our GitHub repository.

The corpus contains duplicate code (approximately 30%)

that we decided to leave in the corpus because we wanted to

assess the frequency of units in code that is re-used across

ROS developers.

B. Counting Units and ROS Class Usage

For this study, we modified PhrikyUnits to output the

units of every variable it could identify, at every point

these variables were read or written. We further modified

PhrikyUnits to track the ROS Message classes involved with

dimensional inconsistencies.

With this corpus and a tool to automatically detect dimen-

sional inconsistencies, we ran PhrikyUnits on these 20,843

files and collated the results.

V. RESULTS

In this section we begin by provide results and examining

how frequently dimensional inconsistencies are found in the

corpus. Next we examine and discuss the most frequently

used units in ROS. Finally, we examine what ROS Message

types are involved in these inconsistencies.

A. Frequency of Inconsistencies

Dimensional inconsistencies in software appear in several

forms, and the most common in ROS is the ‘Multiple units

assigned to the same variable’ type, as shown in Table I. This

inconsistency represents 75% (267/357) of all inconsistencies

found by our tool, and is mostly likely to occur with meters

714



INCONSISTENCY
TYPE

COUNT UNITS
MOST FREQUENT

UNITS COUNTS

Multiple units
assigned to the same
variable

267

m 204

m s−1 171

s−1 71

quaternion 30

m2 27

radian 15

kg m s−2 4

Addition of
inconsistent units

61

m s−1 34

m 32

s−1 14

quaternion 10

m2 6

radian 5

m2 s−2 1

Comparison of
inconsistent units

29

m s−1 21

s−1 6

m 6

m2 4

m2 s−1 2

s 1

TABLE I: Dimensional Inconsistencies by Type with the

most frequently involved units. Note that multiple units can

be involved with one inconsistency.

and meters-per-second, as shown in the table. The meters-

squared associated with ‘Addition of incompatible units’ are

usually caused by improperly formed distance metrics (Eu-

clidean distances), like that shown in Fig. 1. These distance

metrics are either typos or combinations of dissimilar units,

which can behave correctly because of implicit constraints

on the values that effectively normalize the values. However,

these implicit assumptions hinder portability and might intro-

duce faults when these assumptions change. The comparison

of inconsistent units happens for a variety of reasons, but

most often involve velocities and inconsistent interactions

with time.

All inconsistency types were more likely to be caused by

interactions between simple units, such as seconds, meters,

meters-per-second, and quaternions. The more sophisticated

units (combination of three or more base units) like torque

are used less frequently in the corpus and account for an

even smaller percentage of inconsistencies, suggesting that

either the developers who work with sophisticated units are

more careful not to cause dimensional inconsistencies, or

the space for inconsistencies across those units is smaller.

Further, many inconsistencies are caused when developers

use ROS Message types contrary to their specification. This

might not manifest as incorrect behavior if these misused

data structures are used consistently, but causes confusion

when sharing or maintaining code.

Overall, these inconsistencies were detected in 211 of the

3, 484 repositories, or 6%. This 6% answers RQ1, and this

result shows that even with our underestimate, these kinds

of problems lurk in a significant number of repositories.

B. Units Used and Frequencies

Table II shows the frequency of physical units used in

ROS code. By ‘Unit Usage by ROS Msg Definition’ we

mean the number of program points where a variable has

units because it is a ROS Message attribute or the result

of a known math operator, like atan2. By ‘Unit inferred

usage by assignment‘ we mean the number of program points

where a variable has units not based on a ROS Message

definition but instead inferred by the context of the program

as the result of assignment statements and mathematical

operations. This distinction is important because it tends

to separate the units used externally in ROS Messages to

communicate between nodes from those used internally in a

ROS node during computation.

At a high level, Table II shows that simpler units are used

more frequently, in more repos and files, and used more

frequently during computations. There are some exceptions

to this overall trend, including for meters-squared, force,

torque, and radians, as we now discuss.

The radian unit, as shown in Table II, is the most common

way to represent an angle, but notice that it is used more

times as an inferred unit (21,557) than as a ROS Message

definition (159). This suggests that robot software developers

make extensive use of this representation of an angle, but that

ROS does not have a standard way to represent it within ROS

nodes. The radian’s inferred usage comes mostly from the

result of math operators such as atan2, acos or asin.

Force (kg m s−2) is only found in 4% of reposito-

ries (154/3484), but is used 2,395 times. Likewise torque

(kg m2 s−2) is found in 7% of repositories (257/3484) and

used 2,391 times. This means most ROS projects do not

measure, compute, or communicate about forces and torques,

or that many users are not using standard message types

for force and torque. However, repositories that use force

and torque perform several calculations and manipulations

on these quantities. This might suggest that < 10% of ROS

projects involve systems like robot arms, where force and

torque measurements are more common.

Meters-squared (area or pose covariance) is used by def-

inition 333 times and inferred 770 times. The inferred uses

are usually Euclidean distance metrics, while the use by defi-

nition is position covariance. Although these quantities have

the same units, they represent different kinds of quantities

and should not be combined or compared, but in this case

dimensional analysis would not detect this, because they have

the same units.

These results address RQ2, and indicate that the more

sophisticated units (like force and torque) are used in less

than 10% of repositories, and that most ROS code achieves

its goals using a combination of less complex units.

C. ROS Message Classes Most Likely to be Used with the

Wrong Units.

PhrikyUnits detects when ROS Messages are used with

units contrary to their specification, often the result of inter-

actions between two conflicting sources of unit information.

In our case, this interaction occurs because of a mismatch

between the units specified by the ROS Message type, and

the units actually assigned to the variables of the ROS

Message.

715





To help identify the ROS classes most likely to be

used together inconsistently, we plotted the pairs of ROS

Message classes involved in inconsistencies in Fig. 4. Note

that this figure would not show dimensional inconsisten-

cies such as those from Fig. 1 because that inconsistency

only involved units that originated from one ROS Mes-

sage class, geometry msgs::Pose. This figure shows an edge

drawn between classes to indicate a pairwise inconsistent

interaction. For example, the inconsistent usage shown in

Fig. 2 results in a edge between geometry msgs::Twist and

geometry msgs::Pose. Some ROS Messages types have two

subtypes, stamped and unstamped, which are identical other

than a timestamp attribute. Fig. 4 combines stamped and

unstamped messages for simplicity.

As shown in Fig. 4, usage of geometry msgs::Twist ac-

counts for 41% (148/357) of all inconsistent ROS Message

usage, and is used most frequently in combination with

tf:Pose and tf::Vector3. Also note the inconsistencies between

tf::Vector3 and nav msgs::Odometry, that often happen with

the velocity portion of Odometry, much in the same way as

happens with Twist.

D. Limitations

Note that the reported frequencies of inconsistencies is a

conservative underestimate, because not all variables have

units associated to them by ROS Message types or by

assignment, and further because of the limitations of this kind

of software analysis technique, as discussed in Section IV.

PhrikyUnits runs in < 3 seconds on most files but we

observed slower performance on very large auto-generated

inverse kinematics files (> 50MB). Since these files contain

almost no unit information from ROS Messages, to accelerate

the analysis, we skipped them.

VI. PRACTICAL IMPLICATIONS

Use standardized ROS units. Our study found that stan-

dardized ROS units are used in 70% (3,484/4,736) of the

accessed repositories, with units related to position, time,

and velocity making the bulk of the units we identified

(they are 2.4 times more common than the rest of the

units combined). As mentioned, the usage estimate is an

under-approximation, as many declared variables containing

physical units do not employ the standardized ROS units.

For example, we found that variables named ‘time’ and

‘duration’ are defined with type ros::Time or ros::Duration

in 39% (4,123/10,530) of the instances those variable names

are used, otherwise they do not have standardized ROS units

that could be leveraged by our dimensional analysis. Not

using standardized units negatively impacts reuse, making

code comprehension more difficult, and undermining the

application of tools like PhrikyUnits that can help to detect

dimensional inconsistencies.

Run an automated checker to detect physical unit in-

consistencies in code. Even a lightweight inconsistency

detection tool like PhrikyUnits, which requires no additional

effort for code annotation or migration, can detect certain

physical unit inconsistencies with high confidence. On a

MacBook Pro (‘Early 2015’) 2.9 GHz Intel i5 with 16GB

of memory, it can analyze approximately 150 lines of code

per second, its operation is trivially parallelizable, and it can

be easily integrated as part of standard building processes.

So, even for practitioners that have been hesitant to invest in

code annotations or specialized libraries usage, there is little

reason not to run a tool like PhrikyUnits.

Avoid common anti-patterns. Since geometry msgs::Twist

is the most misused ROS Message type, we performed an

additional analysis of how Twist is used by ROS developers.

We modified PhrikyUnits to track assignments made to

variables of type Twist. Twist has 6 attributes: 3 linear veloc-

ity components x, y, z and three angular velocity components

x, y, z. For every Twist message in the corpus, we tracked

which of these 6 attributes were written during programs,

and the results are shown in Table III.

twist.linear. twist.angular.

USAGE TOTAL COUNT x y z x y z

2-D
2,591

1,172 X X

1,101 X X X

planar
201 X

117 X

3-D 1,534
1213 X X X X X X

169 X X X X

152 X X X

TABLE III: Usage of geometry msgs::Twist showing major-

ity of 2D planar usage of a 3D structure. A ‘X‘ indicates an

attribute was written, and a blank means the attribute was

never written. Table does not show read-only instances.

As shown in Table III, Twist is mostly used for 2-D planar

robots (2-D in this case means that the program never writes

to attribute linear.z). This usage is not inconsistent in itself,

since Twist is intentionally overloaded to mean either 2-D

or 3-D velocities (Euclidean dimensions). However, many of

these instances also use angular.z to store the heading, not

angular velocity as intended. Further, we have observed Twist

being often used not as a velocity but as a kind of ‘delta’, as

shown in Figure 5. As shown in the figure, developers add

the content of Twist directly to Pose. PhrikyUnits detects this

dimensional inconsistency because the units do not match.

Overall, Table III shows that Twist is used in many different

and sometimes inconsistent ways, making it difficult for

others consuming such messages to correctly interpret what

Twist means. This might indicate the need to revisit the

overload of the structure of this message.

VII. CONCLUSION

In this work we provided a characterization of the usage

of physical units and the manipulations that are deemed

dimensionally inconsistent in the code of robotic systems.

We collected a corpus of 5.9M lines of ROS C++ code

that uses ROS Messages representing physical quantities

and we tailored a fully automated software analysis tool,

PhrikyUnits, to assist in the unit recognition and in the

detection of dimensional inconsistencies related to the unit

usage.

717




