
Lightweight Detection of Physical Unit Inconsistencies without
Program Annotations

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum
Computer Science and Computer Engineering—University of Nebraska

Lincoln, Nebraska, USA 68588-0150
jore,carrick,elbaum@cse.unl.edu

ABSTRACT

Systems interacting with the physical world operate on quantities

measured with physical units. When unit operations in a program

are inconsistent with the physical units’ rules, those systems may

sufer. Existing approaches to support unit consistency in programs

can impose an unacceptable burden on developers. In this paper, we

present a lightweight static analysis approach focused on physical

unit inconsistency detection that requires no end-user program

annotation, modiication, or migration. It does so by capitalizing

on existing shared libraries that handle standardized physical units,

common in the cyber-physical domain, to link class atributes of

shared libraries to physical units. hen, leveraging rules from di-

mensional analysis, the approach propagates and infers units in

programs that use these shared libraries, and detects inconsistent

unit usage. We implement and evaluate the approach in a tool, ana-

lyzing 213 open-source systems containing +900, 000 LOC, inding

inconsistencies in 11% of them, with an 87% true positive rate for a

class of inconsistencies detected with high conidence. An initial

survey of robot system developers inds that the unit inconsisten-

cies detected by our tool are ‘problematic’, and we investigate how

and when these inconsistencies occur.

CCS CONCEPTS

•Sotware and its engineering→ Sotware testing and debug-

ging;

KEYWORDS

physical units; program analysis; static analysis; unit consistency;

dimensional analysis; type checking; robotic systems

ACM Reference format:

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum. 2017. Lightweight

Detection of Physical Unit Inconsistencies without Program Annotations.

In Proceedings of 26th International Symposium on Sotware Testing and

Analysis, Santa Barbara, CA, USA, July 2017 (ISSTA’17), 11 pages.

DOI: 10.1145/3092703.3092722

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permited. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’17, Santa Barbara, CA, USA

© 2017 ACM. 978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3092722

1 INTRODUCTION

Systems that interact with the physical world operate on quantities

measured in physical units. Consider a mobile robot that perpetu-

ally perceives the world through depth sensors, lasers, cameras, and

gyroscopes, and interacts with the world through its actions. he

robot collects measurements as it senses and acts, and transforms

them into distances (meters) and angles (radians). he system also

integrates these measurements with others such as time (seconds)

to derive measures like the robot’s velocity (meters-per-second).

To operate correctly, this kind of system must adhere to both

the type semantics of the programming language and the unit

semantics of the physical world. Consider the simple code snip-

pet in Figure 1 belonging to the ‘Romeo’ robot [30]. he expres-

sion on line 191 calculates the distance between the current posi-

tion and the goal. Normally this kind of distance function would

add meters-squared to meters-squared, but this code incorrectly

adds meters to meters-squared. he code compiles without com-

plaint as both variables have the same programming type. Yet the

inconsistency in how the units are combined in the code constitutes

a fault that will go undetected by the type system, likely to manifest

later as incorrect behavior.

he consequences of such unit inconsistencies in systems inter-

acting with the physical world exhibit a range of severities, from

mild to occasionally catastrophic [31]. here does not seem to exist,

however, an authoritative estimate of how frequently unit inconsis-

tencies occur or with what severity. Still, the related work in type

systems indicates that these kinds of problems have been nagging

system developers for a long time. As early as 1978, Karr and Love-

man [16] advocated for the design of programming languages with

support for unit types.

here are four kinds of approaches to detecting unit type incon-

sistencies: full native programming language support, migration to

specialized type libraries, annotation-based approaches, and min-

ing a program for contradictory variable type usage. Specialized

language support for units is built into Fortress [1] and more

recently F# [18]. he type library boost::units [29] ofers static

checking of unit type consistency but requires code migration for

all variables involved in expressions with physical units. Anno-

tation based methods [8, 13, 15, 32] commonly use datalow and

constraint solvers to reason about the units of unknown expres-

sions. Approaches that mine variable type usage within a program

to infer unit inconsistencies, such as UniFi [12], are annotation-free

but require the program to contain unit usages that together are

contradictory. he irst three of these require system developers

to incur an annotation or migration burden, and the last requires

examples of contradictory usage to occur within a single program.

341

ISSTA’17, July 2017, Santa Barbara, CA, USA John-Paul Ore, Carrick Detweiler, Sebastian Elbaum

Figure 4: Inconsistent units during addition of force and torque in distance metric. package:eband local planner source: https://git.io/v6X8T

hinder re-use. When compared to individual system developers

annotating program variables with physical units at declaration,

this approach requires a single efort that can be broadly reused to

enable unit inconsistency detection in every system that uses those

shared libraries. his approach has larger beneits at larger scales.

Overall, the purpose of mapping is to achieve the same efect as if

the entire user base of the shared libraries were to agree to apply

physical unit annotations in the shared libraries.

More formally, the mapping is a binary relation between two

sets: the set of physical atributes PHYS ATTRIB (where physical

atributes are identiied by fully qualiied names (FQNs) in the

shared libraries) and the set of unit types ut :

Rmapping ⊆ (PHYS ATTRIB × ut) (5)

Mapping Process. he mapping process involves four tasks:

• identifying shared libraries containing physical atributes.
• determining the physical unit for each physical atribute.
• inding the FQN for each physical atribute.
• encoding the mapping from FQN to physical unit in a

structured form that can be used programmatically.

he irst task, identifying the shared libraries, is a manual process

that requires knowledge or analysis of the target domain. Identify-

ing these libraries might be performed incrementally, to ind the

most commonly reused libraries within a corpus and then iden-

tifying physical atributes within that set. Or it might involve

identifying a particular physical atribute and then examining the

shared library that contains that atribute. he second task involves

determining a physical atribute’s units that might come from: 1)

knowing the physical unit at design time; 2) inding source code

comments or program documentation; 3) the class or variable name;

and, 4) examining how this variable is used in context. he third

task is simply recording the FQN for the shared class atribute. he

fourth task, encoding the mapping, involves creating a lookup table

from FQN to physical units, and choosing some structured form

that can be read by an implementation. his lookup table is an

implementation of the binary relation Rmapping.

Cost. he upfront efort to create the external mapping is slightly

more than applying in-line annotations to physical atributes in

shared libraries, because of the efort to encode the mapping in an

external data structure that can be used programmatically. his

additional efort is justiied by the beneits mentioned above. Com-

pared to annotating atributes in shared libraries, an external map-

ping introduces no reliance on unit-aware type libraries, compilers,

or languages. When compared to annotating programs that use

shared libraries, the single efort to create the mapping is much less

than the repeated efort by every system developer to separately

annotate program variable declarations for those shared libraries.

Mapping Example. To help illustrate the mapping process, we

now provide an example instantiated within the cyber-physical

domain, speciically, with a mapping built for the Robot Operating

System (ROS). ROS is a widely-adopted middleware to enable rapid

development in robotic systems used by both academic and profes-

sional developers, including industrial automation at Boeing [27]

and autonomous driving at BMW [26].

he irst step to identifying shared libraries with physical at-

tributes in ROS was observing that ROS’s component-based ar-

chitecture deines data structures with physical units in shared

libraries so components can exchange standardized data repre-

senting sensor measurements and actuator commands. We looked

at these shared libraries and found physical atributes for navi-

gation, geometric relationships, and sensor values. he shared

library for navigation was nav msgs, for geometric relationships

the shared library was geometry msgs, and for sensor values the

shared library was sensor msgs. We also determined the most

frequently used libraries across the systems we studied, identifying

additional libraries not in the standard code location of the ROS

physical libraries. his was an iterative process, irst inding one

prospective shared library and then successively completing all

the steps in the mapping process for that library before inding

another shared library. Within these libraries, we found a vari-

ety of physical atributes such as geometry msgs::Twist.linear.y,

sensor msgs::Imu.angular velocity covariance, and

nav msgs::Odometry.linear.x.

In the second step, we associate each physical atribute in the

shared libraries with units. In the case of Odometry::linear.x, the

documentation speciies this as ‘velocity in free space’. Velocity has

dimensions of length-per-time and the SI system is speciied as

the default units in ROS [10], therefore we assigned to it the units

meters-per-second.

he third step of inding the FQN names of the physical at-

tributes in shared libraries was straightforward, and involved copy-

ing the full name of the shared library, along with the names of

the structures containing the physical atribute. An example is

nav msgs::Odometry.linear.x, where nav msgs is the shared li-

brary, and Odometry.linear.x is the structure containing the phys-

ical atribute x.

he fourth step involved creating the encoding of the mapping,

with a record or table entry for each pair of FQNs and corresponding

units for each physical atribute in the shared library. An example

of one entry is the FQN nav msgs::Odometry.linear.x with the

physical units (meters ∗ (seconds)−1).

We repeated this process for other physical atributes, and col-

lected a mapping of 246 total physical atributes (class atributes

or function return values) from 82 classes across 7 shared libraries.

hese physical atributes mapped to 17 distinct derived units. Fi-

nally, we encoded the FQN of the physical atributes and its corre-

sponding physical unit to create the mapping.

he efort to build the mapping for ROS was aided by the fact

that two of the co-authors are proicient ROS users. Overall, we

344

Lightweight Detection of Physical Unit Inconsistencies without Program Annotations ISSTA’17, July 2017, Santa Barbara, CA, USA

completed the core mapping for ROS within 3-4 days. An initial

investigation of similar cyber-physical middleware like Orocos [7],

OpenRTM [2], MOOS [4], and Yarp [21] indicates that a mapping

for these domains would require a similar efort.

Again note that this mapping is a one-time efort per shared

library that then enables unit inconsistency detection in all systems

that build on these shared libraries.

We now present an algorithm for unit inconsistency detection

utilizing this mapping.

3.3 Algorithm for Lightweight Detection of
Unit Inconsistencies

his section describes the algorithm LightweightDetectUnit-

Inconsistency (Algorithm 1), that uses the mapping described

in Sec. 3.2. Some functions of Algorithm 1 that require further

explanation are described in the text below.

As iting our requirements, this approach seeks the simplest

analysis still capable of detecting meaningful unit inconsistencies.

Our analysis is semi-low-sensitive (a simpliied forward datalow),

path-insensitive, context-insensitive, and intra-procedural. Note

that although the analysis is intra-procedural, for some function

calls the approach can determine the units of the return value

because of the order the functions are analyzed. In these cases, the

approach applies the units returned by the function at its call point.

A datalow analysis is oten deined using states, a transfer func-

tion, a latice, and a join operation. he states represent knowledge

at entry/exit points of blocks, a transfer function calculates changes

to the state during that block, the latice represents all possible

abstract states arranged in a power-set hierarchy, and the join func-

tion calculates the state at the entry to a block by ‘joining’ the

states that low into that block in the control low graph. In con-

trast, our analysis has only one single state, State , that enters and

exits every statement. State is a set of tuples representing vari-

able unit assignments, {(var , {units}), ...} where var ∈ VAR, the

set of program variables and {units} ⊂ ut , the unit type language

of Equation 1. A power-set latice representation of the abstract

state is a poor it because physical units form an abelian group, and

therefore we instead use a unit type language (Equation 1). State-

ments are analyzed sequentially without regard to control low. At

a program point, the units of a variable in State are the union of:

1) any units speciied by the mapping because the variable is of

a type that belongs to a shared library and represents a physical

class atribute; 2) previous unit assignments. he transfer function

from before a statement (the ‘in’ state) to ater the statement (the

‘out ’ state) is the union of: 1) the previous state; 2) the evaluation

of the units resulting from the RHS expression of assignment and

return statements. Since there is only one state, the join operation

is unnecessary.

Overview. Algorithm 1 takes as input a program P and relation

Rmapping from Sec. 3.2. During the loop in lines 5-10, the algorithm

processes each program statement once. It detects unit inconsisten-

cies in two ways: 1) within a statement for addition/comparison

inconsistencies; and 2) by analyzing variables in the inal version

of State for multiple unit assignments to one variable.

Preprocess. In line 4, the algorithm preprocesses program P by

constructing a context-insensitive call graph (without alias analysis)

and performing a reverse topological sort, to analyze functions

Algorithm 1 Lightweight physical unit inconsistency detection

over program P

Input: Program P and unit mapping Rmapping.

Output: Set of unit inconsistencies.

1: function LightweightDetectUnitInconsistency(P, Rmapping)

2: U I ← ∅ ◃ Unit Inconsistencies

3: State ← ∅

4: sor tedFunctions ← Preprocess(P)

5: for f unction ∈ sor tedFunctions do

6: for statement ∈ f unction do

7: DecorateWithUnits(statement, State, Rmapping)

8: EvaluateExpressions(statement)

9: U I ← U I ∪ DetectExpInconsistency(statement)

10: State ← State ∪ TransferFunction(statement)

11: U I ← U I ∪ DetectMultipleUnitInconsistencies(State)

12: return U I

13: function TransferFunction(statement)

14: newUnits ← getRHSUnits(statement)

15: if newUnits = ∅ then

16: return ∅

17: if isAssignment(statement) then

18: return {(getLHSVar(statement), newUnits)}

19: else if isReturn(statement) then

20: return {(f unctionName, newUnits)}

21: return ∅

botom-up. If the call graph contains a cycle, an edge of the cycle

is removed from the call graph until no cycles are found. If the

topological sort yields a partial order, the approach breaks ties

arbitrarily and examines only the irst ordering for simplicity. he

output is an ordered list of functions.

DecorateWithUnits. In line 7, this function traverses a state-

ment’s Abstract Syntax Tree (AST) and applies unit decorations

to variables, when possible. We assume the existence of a relation

between the set of program variables VAR and the set of physical

atributes PHYS ATTRIB:

RtypeOf ⊆ (VAR × PHYS ATTRIB) (6)

his relation is commonly provided by a compiler front end, and

in our tool this is provided by CPPCheck [20]. Using the composi-

tion of this relation with the mapping from Eq. 5 we have:

RunitsOf ≡ (Rmapping ◦ RtypeOf) ⊆ (VAR × ut) (7)

Where RunitsOf is the composition of the relations in Eq. 5 and

Eq. 6 linking program variables to units.

Program variables can be decorated with units from either a

prior assignment statement listed in State or when the variable’s

type is found in RunitsOf . he function DecorateWithUnits irst

checks for units in State and if no units are found, checks RunitsOf .

If neither structure yields units, then the variable is decorated with

δ , the unknown unit. An example of unit decoration using RunitsOf
is shown in the doted boxed of Figure 5. hese variables can be

decorated because their variable type belongs to the shared library

geometry msgs that declares a class WrenchStamped with physi-

cal class atributes included in Rmapping. he composed relation

RunitsOf connects variable force.x to the units kg m s−2.

345

ISSTA’17, July 2017, Santa Barbara, CA, USA John-Paul Ore, Carrick Detweiler, Sebastian Elbaum

EvaluateExpressions. his function visits a statement’s AST and

atempts to resolve the units of expressions using the unit resolution

rules shown in Table 1. It works from the leaves up, matching

expressions to unit resolution rules and decorating the interior

nodes of the AST with units. It continues to apply unit resolution

rules in a loop until no changes are made. hese rules apply when

variables or expressions with units are combined and manipulated.

Note an important diference between the rule for multiplication

and the one for addition: during multiplication, if one operand has

known units but the other is δ , the unknown unit, we pessimistically

assume the result is unknown; during addition, if one operand is

known and the other is δ , we optimistically assume the result is the

known unit. he reason multiplication is pessimistic is that there is

only one way for multiplication to yield the same units, and many

ways for the result to be diferent. Multiplication only yields the

same units when multiplied by a scalar with unity as the unit, and

assuming that every unknown variable involved in multiplication

is a scalar leads to many false positives. he reason addition is

optimistic is that the resulting sum must have the same units as

the known operand or be inconsistent, and we cannot conclude the

sum is inconsistent because δ is unknown.

An example of how the function EvaluateExpressions works

is shown in Figure 5. he units in the doted boxes were applied

in DecorateWithUnits, and the three multiplications near the

botom of the AST match the multiplication rule in Table 1. By

the multiplication rule, we add the exponents of the units of the

operands, yielding the unit decorations on the three ‘∗’ symbols.

Next, the rules match the ‘+’ symbol up the tree, and apply the

addition resolution rule, yielding the union of the operands’ units.

his function continues to apply unit resolution rules until no more

changes can be made. his function only adds additional unit deco-

rations and does not detect unit inconsistency in the expressions,

which happens in the next function.

DetectExpInconsistency. his function applies the unit consis-

tency tests from Eq. 2 (addition) and Eq. 3 (comparison) to expres-

sions within a single statement. his function scans a statement’s

AST looking for inconsistencies like those in Figures 1,3,4, and 5.

he example in Figure 5 shows an unit inconsistency detected while

evaluating an addition expression.

As shown in Table 1, the unit inconsistency detection has a

‘conidence’ that can be either high or low if the expression contains

δ , the unknown unit. Figure 5 shows the detection of inconsistent

addition of kg2m2s−4 to kg2m4s−4 with high conidence.

TransferFunction. he transfer function in this analysis can only

add new information to the state, and only for assignment or return

statements. For assignment statements, the function getRHSunits

at line 14 simply returns the units decorating the ‘=’, and otherwise

returns the empty set. In line 10, State is updated as the union of

State and the output of TransferFunction.

DetectMultipleUnitInconsistencies. Scanning State at line 11

of Algorithm 1 can reveal assignment of multiple units inconsisten-

cies. his kind of inconsistency comes from two sources 1) variables

assigned units contrary to their speciication in the Rmapping; and 2)

variables assigned diferent units at diferent points in the program.

When State contains multiple units for a variable this function

reports inconsistencies with either low or high conidence, based

on the presence of δ in a variable’s units. his function reports high

Figure 5: Example of a statement’s AST from the code

in Figure 4 with the shared class fully qualiied name

WrenchStamped::wrench omitted for simplicity. Figure shows

unit decoration of variables by the relation RunitsOf (dotted

boxes), and evaluation of expressions’ units toward the root

by unit resolution rules in Table 1 (solid boxes).

conidence if at least two units without δ are assigned to a program

variable.

3.4 Termination and Complexity

Preprocessing requires a linear pass over the program to construct

the context-insensitive call graph, and topologically sorting the call

graph isO (|V | + |E |) with a worst caseO (|E2 |) when detecting and

removing cycles. he loop in lines 5-10 analyzes each statement

once and is linear in the size of the input program AST. Decorating

a statement’s variables with units, evaluating expressions, detecting

expression unit inconsistencies, and the transfer function are linear

in the size of a statement’s AST. Ater the loop, detecting multiple

unit inconsistencies requires a linear scan of State , and State is as

large as the number of program variables. Puting it all together,

the worst case for the algorithm is quadratic in time and space.

Termination is guaranteed because the while loop within Evalu-

ateExpressions applies unit resolution rules at most h times where

h is the height of a statement’s AST.

3.5 Limitations

While designed to be as fast and lightweight as possible while

detecting useful inconsistencies, this design has limitations in ap-

plicability, soundness, and completeness. he mapping process

can only apply units to physical atributes that are identiied and

correctly assigned units beforehand, and the number of program

variables that can be labeled with unit information might be lim-

ited, bounding applicability. his approach is unsound because it

includes infeasible sets of variable-unit assignments in State as it

ignores control low. his approach is incomplete because State

misses some variable-unit assignments in loops and because it is

not path-sensitive. Also, as described, the approach is semi-low-

sensitive and intra-procedural, only supports the mapped libraries,

346

Lightweight Detection of Physical Unit Inconsistencies without Program Annotations ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 1: Unit resolution rules used in Algorithm 1 function EvaluateExpressions on line 8, and the inconsistency rules are

used to detect addition/comparison inconsistencies in function DetectExpInconsistency on line 9.

EXPRESSION CONDITION RESULT INCONSISTENT CONFIDENCE

ut1 {∗, ÷}ut2 ut3 =add/subtract exponents of ut1 and ut2
ut1 {∗, ÷}δ ut1 ∗ δ (pessimistic)

ut1 {+, −}ut2 ut1 = ut2 ut1
ut1 {+, −}ut2 ut1 ! ut2 ut1 ∪ ut2 Yes, by Eq. 2 high

ut1 {+, −}δ ∗ ut2 ut1 ! ut2 ut1 ∪ δ ∗ ut2 Yes, by Eq. 2 low

ut1 {+, −}δ ut1 (optimistic)

pow (ut1, n) n ∈ R multiple each ut1 exponent by n

sqr t (ut1) divide each ut1 exponent by 2

sqr t (δ) δ

ut1 {<, >, ≥, ≤, !}ut2 ut1 = ut2 none

ut1 {<, >, ≥, ≤, !}ut2 ut1 ! ut2 none Yes, by Eq. 3 high

ut1 {<, >, ≥, ≤, !}δ ∗ ut2 ut1 ! ut2 none Yes, by Eq. 3 low

ut1 {<, >, ≥, ≤, !}δ none

{f loor, ceil, (f)abs }(ut1) ut1
{min,max }(ut1, ut2) ut1 ∪ ut2
{min,max }(ut1, δ) ut1

(Boolean) ? ut1 : ut2 ut1 ∪ ut2 (ternary operator)

and does not handle complex dynamic concerns like dynamic dis-

patch, pointers, or Standard Template Library data structures. Fur-

ther, the approach does not atempt symbolic analysis that could

reason about statements like (UNIT
n) (−n) . We expect to keep ex-

amining these design decisions, interleaving the incorporation of

stronger analyses with an assessment of their impact in the overall

cost-efectiveness and performance of the approach.

4 PROTOTYPE IMPLEMENTATION

Our implementation detects unit inconsistencies in C++ code writ-

ten for ROS.he architecture follows the approach, is implemented

in 3300 lines of python, and can be run from the command-line.

Our tool utilizes CPPCheck as a C++ preprocessor and parser

[20], invoked with default parameters and includes directories:

cppcheck --dump -I ../include myfile.cpp. he dump op-

tion generates an XML ile containing: 1) every program statement

as a separate abstract syntax tree; 2) a token list; and 3) a symbol

database including functions, variables, classes, and all scopes. CP-

PCheck can explore multiple compilation conigurations (diferent

#define values), but in the reported results we only consider the

default system coniguration.

We use a visitor patern in each statement’s AST to apply units

and evaluate expressions with unit resolution rules. During im-

plementation, we realized that radian and quaternion require

special handling: during multiplication, radian and quaternion

act as unity since their units are meters-per-meter; during ad-

dition, they are ‘coherent units of measure’ [22], meaning that

they cannot be added to a dissimilar unit, even though they are

dimensionless.

An example inconsistency message for the code in Figure 4 reads:

Addition of inconsistent units on line 1094 with high

confidence. Attempting to add kg2m2s−4 to kg2m4s−4. We

consolidate error messages to report only the irst unit inconsis-

tency for a particular variable.

Table 2: ROS Open-Source Repositories

CORPUS SOURCE # of REPOSITORIES

Total ROS.org “Indigo” Projects Links 2416

Live Git Repos 649 of 2416

Git REPOS with C++ FILES 436 of 649

REPOS with C++ FILES AND ROS UNITS 213 of 436

We provide our prototype as a sotware artifact that can be

downloaded from htp://nimbus.unl.edu/tools.

5 EVALUATION

he goal of the evaluation is to assess the ability of the tool to detect

unit inconsistencies that may cause problems for real systems. To

achieve that goal we employ a methodology that captures two

perspectives: 1) we examine the results of running our tool on a

corpus of publicly available robotic systems and then hand-label

the results as True and False Positives; and 2) we conduct a small

survey of robotic system researchers to gauge whether they deem

the unit inconsistencies detected by our tool to be ‘problematic.’

Finally we discuss threats to validity.

5.1 Analysis of Robotic Sotware Corpus

To evaluate the efectiveness of our tool we exercised it on a wide

range of publicly available robotic sotware, speciically systems

designed to work with the robotic middleware ROS.

he maintainers of ROS publish a list of public sotware reposito-

ries using ROS in academic and industrial robots. he list, published

at htp://www.ros.org/browse/list.php, includes projects at various

stages of development, and for a wide variety of purposes: mobile

robot navigation, collision detection libraries for robotic arms, dri-

vers for depth cameras, control sotware for lying robots—a diverse

set.

Table 2 shows statistics about this corpus. At the time we gath-

ered this corpus, there were 2416 projects linked from the ‘Indigo’

version of ROS. Of these 2416 links, 649 were linked to live Git repos-

itories. ROS supports C++, Python, and a few projects with LISP

347

ISSTA’17, July 2017, Santa Barbara, CA, USA John-Paul Ore, Carrick Detweiler, Sebastian Elbaum

and Java, but the majority are in C++, so we focused on those. Of

the 649 live Git repositories, 436 contained C++ iles. Of these 436,

we found 213 repositories with systems containing shared libraries

with physical atributes. For this initial work, we proceed with

all ROS geometry, navigation, transform, sensor, and time li-

braries. he list of the 213 systems with GitHub download links

and version numbers is available at htp://nimbus.unl.edu/tools.

Scale and Speed. We ran our tool on 213 systems containing ROS

physical units, analyzing 934,124 non-blank non-commented lines

of C/C++ as reported by CLOC [9]. Analyzing all systems took

108 minutes (61 minutes to parse the iles with CPPCheck and 47

minutes to perform our analysis), with an average analysis time

of 31 seconds per system, when running on a MacBook Pro (‘early

2015’) with a 2.9 GHz Intel uad Core i5 processor, and 16GB of

memory. We only utilized a single core during evaluation, although

this could be easily parallelized since the iles and analysis are

independent.

Efectiveness. We individually examined each inconsistency re-

ported by the tool, reviewing the source code surrounding each

reported line, and labeled each one as either ‘True Positive’ (TP)

or ‘False Positive’ (FP). Note that labeling inconsistencies as TP

or FP lets us calculate precision, but the number of ‘False Nega-

tives’ (FN) is unknown and therefore we cannot calculate recall.

his labeling process required several rounds of iterations as the

analysis of some inconsistencies led us to question and re-analyze

previous labels. he process converged towards the recognition of

TP caused by addition/comparison of inconsistent units and assign-

ment of multiple unit inconsistencies. We observe that multiple

unit inconsistencies have distinct causes: 1) variable re-use (like

temp variables); 2) disagreement between the units deined in the

mapping (from the documentation) and the actual units used; 3)

the previous two combined—variables with units from the map-

ping used as temporary variables. We currently do not distinguish

between these causes but believe they could be separated auto-

matically by observing whether the units come directly from the

mapping and whether they are assigned only one kind of unit in

the program.

Our results are summarized in Table 3. he overall TP rate, com-

puted as TP% = 100 ∗ TP/(TP + FP), for ‘high conidence’ unit

inconsistencies is 87.0%. his includes the three types, variables

assigned multiple units, addition of inconsistent units, and compar-

ison of inconsistent units. As we noted earlier, for one of the cases

where we contacted the authors of the code for clariication, shown

in Figure 1, the inconsistency was acknowledged as a fault and

developers patched the code immediately ater our inquiry. Within

the ‘high conidence’ TP, we found a TP rate of 84.6% for variables

assigned multiple units. he False Positives with ‘high conidence’

all detect redundant implementations of vector cross-products and

outer-products that are already provided by the ROS API, where

meters-squared intentionally equals meters. Figure 6 contains

one such case in line 90, which is frequently used and deemed cor-

rect by system developers. In general, our tool handles vectors like

any other quantity and detects inconsistent addition, comparison,

and assignment. We believe we could modify the tool to detect and

ignore this special case, but we would have to be careful not to

blind our tool to unintentional assignments of meters-squared to

meters, therefore for now we accept these kinds of FP.

Figure 6: False positive during cross-product.

package:pr2-navigation source:https://git.io/v6xS7

Figure 7: False positive with constant.

package:crazylie ros source:https://git.io/v6x7T

he overall TP rate for ‘low conidence’ unit inconsistencies is

37.45%, with about 50% more low conidence TP (64) than high

conidence TP (40). he low TP rate is caused mainly by the large

number of variables and constants with implicit units not found

in the mapping. Figure 7 shows an example of a constant with

implicit units. he constant 10000 in line 104 is part of a expres-

sion with units δ ∗ seconds that is then assigned tom thrust . he

units assigned at line 104 low to the usage ofm thrust in an as-

signment statement on line 106. Since the units for msg.linear.z

are meters-per-second and it is assigned units of δ∗ seconds,

our tool reports a low conidence unit inconsistency. In this case,

the source of the FP is the constant 10000. Constants are basically

devoid of units and we plan to assess them in more detail in the

future.

5.2 Survey

We conducted a survey to obtain an initial assessment of whether

these kinds of unit inconsistencies are problematic to robotic sot-

ware developers. Speciically, some unit inconsistencies, like vari-

able reuse and using a physical atribute to store a quantity against

its speciication, might be poor programming style, but also might

not warrant a high-priority bug report. herefore we wanted to

assess the severity of these kinds of inconsistencies. Our survey

instrument consists of eight questions, each showing a code exam-

ple similar to those in Figures 2-4, drawn from unit inconsistencies

detected by our tool. For each code example, we asked “Is the unit

inconsistency on line [X] problematic (e.g., cause failures, increase

cost of maintenance, make code more diicult to understand, or in-

troduce interoperability problems)?”, with a choice of responses:

‘yes’, ‘maybe’, and ‘no’. Ater each question, the respondents could

add an open-ended explanation. he order of the questions was

randomized for each respondent.

he target population for our survey included either heads of

academic robotics research labs or their senior research associates.

hese labs publish regularly in top robotic conferences and use

ROS extensively. We sent our survey to ten labs and received ten

responses from six of the labs. We recognize the sample population

size is small and may not generalize, but at this stage of the work

we wanted quick, initial feedback before atempting a larger, more

nuanced study that might be justiied in the future.

348

Lightweight Detection of Physical Unit Inconsistencies without Program Annotations ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 3: Classiication of unit inconsistencies found by our tool. Note: this table presents precision and not recall, because

recall requires false negatives (FN) that are unknown in our corpus.

High Conidence Low Conidence

INCONSISTENCY TYPE TP FP TP% TP FP TP%

TOTAL 40 6 87.0% 64 107 37.4%

ASSIGNMENT OF MULTIPLE UNITS 33 6 84.6% 55 83 39.9%

ADDITION OF INCONSISTENT UNITS 5 0 100% 9 20 31.0%

COMPARISON INCONSISTENT UNITS 2 0 100% 0 4 0%

Table 4: Summary of survey responses to whether unit in-

consistencies found by our tool are ‘problematic.’

uestion # YES MAYBE NO

1 6 2 2

2 8 1 1

3 3 5 2

4 9 0 1

5 6 3 1

6 (Figure 2) 2 8 0

7 (Figure 4) 7 3 0

8 4 5 1

TOTALS 45 27 8

% 56% 34% 10%

Our results are shown in detail in Table 4. Overall, 56% of re-

sponses indicate that ‘yes’, these unit inconsistencies are problem-

atic. he ‘yes’ responses included explanations from ‘he addition

of diferent units means nothing in real world’ to ‘just bad program-

ming.’ his its with our assessment that many unit inconsistencies

require atention or at least special explicit justiication.

he ‘maybe’ responses (34%) included explanations, such as ‘If

the angular radius is unity, then OK, otherwise could lead to error’,

identifying a special case when the code could be correct, or ‘I don’t

know when you’d like to compute this.’ Several ‘maybe’ responses

indicated the possibility of a special circumstance when the unit

inconsistency might not be problematic. In these cases our tool

indicates a possible constraint on the circumstances under which

the code behaves correctly, and for the unit inconsistencies detected

by our tool, these special circumstances were never mentioned in

the code comments, to our knowledge.

Of ‘no’ responses (not problematic), half came from one respon-

dent (4 of 8), who explained: ‘he problem I see is that the proposed

method will get hung up in hacks that actually are workable solutions

and it might be impossible for the average coder to ix these issues.’ We

contend that detecting ‘workable’ ‘hacks’ is still valuable, especially

for junior developers lacking the hard-earned experience necessary

to recognize them in the irst place.

uestions 6 and 7 from Table 4 of the survey are also presented

in this work as Figure 2 and 4. Notice for question 6 that most

respondents said ‘maybe’, and this code example shows unit in-

consistency by assignment to a data type with a diferent physical

unit speciication, which is perhaps more an issue of code main-

tenance and reuse since it only uses a technically incorrect data

container. However in question 7 (Figure 4) most respondents said

‘yes problematic’, and this code example contains addition of incon-

sistent units, which is perhaps more concerning because it might

be incorrect. We believe that identifying both of these kinds of unit

inconsistencies has value to system developers.

At the end of the survey we let respondents write an open-ended

‘overall’ feedback to these kinds of unit inconsistencies. he most

critical respondent stated ‘Overall a lot of unit inconsistencies will

happen for control or optimization reasons and sometimes … cannot

be avoided,’ while the most laudatory stated ’his tool is amazing!

At the very worst, it ind out questionable programming practice that

needs additional documentation. Most of the time, it inds bugs or

hacky heuristics.’

Overall, is spite of the limited size our population, and that this

population does not represent industrial system developers, most

responses airm our assertion that the kinds of unit inconsistencies

detected by this approach are problematic.

5.3 hreats to Validity

Self-labeling. One signiicant threat to the validity of our indings

is our reliance on self-labeled TP and FP. For high conidence TP,

it was relatively easy to see when and how the physical units are

inconsistent, and for high conidence FP there were only a few

mathematical corner cases like the cross and outer vector product

that required careful consideration but we ended up conident about

those classiications. Low conidence FPs were more straightfor-

ward to identify and oten were atributable to a single variable

with unknown units, such as the code example in Figure 7. Low con-

idence TPs were more time consuming to identify because these

unit inconsistencies involved partial information, and we assumed

the low-conidence inconsistencies were FP until proven to be a TP.

We mitigated the previous threat to internal validity by review-

ing the results multiple times and discussing examples with other

system developers, and ultimately by combining the analysis of

the code corpus with the preliminary survey. he respondents clas-

siied most examples as either ‘yes’ or ‘maybe’ problematic, and

provided many compelling justiications for their responses. To a

large degree, these responses matched our expectations, but clearly

further study is needed to beter understand the larger body of

inconsistencies found.

False Negatives. We cannot measure recall because the number of

false negatives in the sotware corpus is unknown, but we intend to

address this threat by seeding faults to beter evaluate our approach.

To our knowledge, there exists no dataset of labeled physical unit

inconsistencies, although this work identiies an initial set of TP.

Cost-efectiveness. We recognize that this approach’s cost efec-

tiveness will vary across systems depending at least partly on the

extent of physical unit usage, their degree of manipulation, and

their standardization. Still, we argue that this threat to external

validity is mitigated by the fact that most physical systems regularly

349

ISSTA’17, July 2017, Santa Barbara, CA, USA John-Paul Ore, Carrick Detweiler, Sebastian Elbaum

incorporate sensors and actuators that utilize standardized middle-

ware libraries shared across platforms, all using some convention

for data structures containing physical units.

Generality. Similarly, we recognize that we built the mapping for

a particular robotic domain, namely ROS, but other mappings to a

variety of middleware systems would help validate the generality

of the approach. We are currently exploring other middleware, and

will likely next target Orocos [7], OpenRTM [2], MOOS [4], and

Yarp [21]. Still, ROS is by far the most commonly adopted robotic

middleware, and has a growing user base.

Comparison to Other Tools. A further threat to external validity

is that we do not directly compare our tool to other unit inconsis-

tency detection tools. We do discuss these and other approaches

in related work. A practical empirical challenge is that other tools

target diferent languages [12], require annotation [15], or code

migration [29]. One way to address this threat would be to compile

a benchmark of unit inconsistencies, but that is beyond the scope

of this efort.

6 RELATED WORK

In this section we continue a discussion of related work started in

Section 1, where we identiied several kinds of approaches for unit

inconsistency detection.

Since the late 1970s, researchers have proposed programming

language extensions and tool support to enable unit consistency

checks, such as work by Gehani [11], who proposed extending

Pascal, Hilinger’s Ada package [13], Wand and O’Keefe’s simply-

typed lambda calculus [34], Novak’s workwith unit conversion [23],

Delt’s extension for Java [33], Roşu’s and Feng dynamic approach

in C [28], Umrigar’s compiler [32], Antoniu’s spreadsheet checker

XeLda [3], Jiang and Su’s unit annotations in Osprey [15], and

Schabel andWatanabe’s boost::units for C++ [29]. More recently,

unit consistency as envisioned by Kennedy [17] has been built into

F#. his implementation seems to fully realize unit consistency, but

does not appear to have been widely adopted4. Like this work, we

detect inconsistent units during addition and assignment, but unlike

this work our approach works without requiring extra annotations

which oten lower the barriers for tool adoption. Like these eforts

we are concerned with unit consistency, but unlike these systems

we are not proposing language extensions but rather seeking to

leverage one mapping efort to enable unit inconsistency detection

without requiring developers to modify their programs.

One of the more similar eforts is the tool UniFi [12] that infers

dimensions automatically by mining a program for contradictory

variable type usage, much in the same manner as Lackwit [24], but

applied to unit inconsistency detection. Like those tools, we propa-

gate an abstract type through assignment and detect inconsistent

usage. Unlike their work we apply abstract types from outside the

program and can detect inconsistencies without requiring the pro-

gram to contain contradictory variable type usage. For example, our

tool can detect the addition of inconsistent units in Figure 4 even

if these variables were used only once in this program, whereas

UniFi would not detect this inconsistency.

4Assessing levels and rates of tool adoption is diicult in a large and diverse com-
munity. However, we note that not one system among the 213 we explored uses any
programming languages with unit support like F#, and only 3 use the boost:units
library extension requiring annotation.

7 CONCLUSIONS

In this paper we presented a novel approach to detect physical unit

inconsistencies in programs including cyber-physical, scientiic

computing, and embedded systems. he approach detects useful

inconsistencies without modifying the program or shared libraries

with annotations.

he approach is unique in that the mapping from physical at-

tributes to units enables unit inconsistency detection without anno-

tation, and also unique in that it favors speed over precision while

still detecting meaningful unit inconsistencies. We implemented

the approach in a prototype tool and evaluated it on a corpus of 213

systems, detecting inconsistencies in more than 11% of the systems.

he tool has an 87% true positive rate for a class of inconsistencies

it can detect with high conidence, and a preliminary survey of

developers analyzing the tool’s indings provides encouragement

for further development and study.

In the future, we will pursue several research avenues. First, with

the given approach and toolset in place, we are well positioned

to detect many more types of unit inconsistency. One kind of

inconsistencies that we have started to examine consists of those

where the resulting units are not deined in SI. For example, in one

of the systems we analyzed we found resulting units like (meters,

1.5)which does not have a real physical meaning. Although having

such units seems odd, we need to investigate whether they warrant

enough atention to take action. Second, as is common with this

class of static analysis approaches, we will atempt to optimize the

soundness, precision, and performance tradeofs. In particular, we

will explore improving path sensitivity, interprocedural analysis,

and extending the scope of analysis since we have seen cases where

they could reduce the number of false positives and move some of

the indings from low to high conidence. his may require us to

integrate the approach with richer analysis frameworks. hird, we

intend to analyze the signiicance of these kinds of inconsistencies:

their impact on systems at runtime, how much developer time is

consumed with alternate methods such as manual unit annotations

including constants, and the root causes of these inconsistencies.

Fourth, we will extend the tool to other common cyber-physical

libraries by introducing additional mappings, which will let us

evaluate a larger number of systems. From an empirical perspective,

we will also perform a more extensive survey of the tool indings,

and submit more of the indings to developers’ for evaluation. Last,

we would like to move beyond the detection of inconsistencies, to

providing recommendations on how to ix the unit inconsistencies.

ACKNOWLEDGEMENTS

We deeply appreciate the time and input from members of he

Robotics Institute at Carnegie Mellon University,he Correll Lab

at the University of Colorado, he Dunbabin Lab at ueensland

University of Technology, the NIMBUS lab at the University of

Nebraska-Lincoln, the Autonomous Space Robotics Laboratory

at the University of Toronto, and the Robotics Algorithms & Au-

tonomous Systems Lab at Virginia Tech. the RAAS Lab at Virginia

Tech. his work was supported in part by NSF awards #1638099

and #1526652, USDA-NIFA #2013-67021-20947, and USDA-NIFA

#2017-67021-25924

350

Lightweight Detection of Physical Unit Inconsistencies without Program Annotations ISSTA’17, July 2017, Santa Barbara, CA, USA

REFERENCES
[1] Eric Allen, David Chase, Joe Hallet, Victor Luchangco, Jan-Willem Maessen,

Sukyoung Ryu, Guy L Steele Jr, Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund,
and others. 2005. he Fortress language speciication. Sun Microsystems 139
(2005), 140.

[2] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. 2008. A sotware platform
for component based RT-system development: OpenRTM-Aist. In International
Conference on Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 87–98.

[3] Tudor Antoniu, Paul A Steckler, Shriram Krishnamurthi, Erich Neuwirth, and
Mathias Felleisen. 2004. Validating the unit correctness of spreadsheet programs.
In Proceedings of the 26th International Conference on Sotware Engineering. IEEE
Computer Society, 439–448.

[4] Michael R Benjamin, Henrik Schmidt, Paul M Newman, and John J Leonard. 2010.
Nested autonomy for unmanned marine vehicles with MOOS-IvP. Journal of
Field Robotics 27, 6 (2010), 834–875.

[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, ScotMcPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to ind bugs in the real world. Commun.
ACM 53, 2 (2010), 66–75.

[6] Percy Williams Bridgman. 1922. Dimensional Analysis. Yale University Press.
[7] Herman Bruyninckx. 2001. Open robot control sotware: the OROCOS project.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, Vol. 3. IEEE, 2523–2528.

[8] Satish Chandra andhomas Reps. 1999. Physical type checking for C. In ACM
SIGSOFT Sotware Engineering Notes, Vol. 24. ACM, 66–75.

[9] Al Danial. 2016. Count Lines Of Code. (2016). htps://github.com/AlDanial/cloc
[10] Open Source Robotics Foundation. 2010 (accessed 27 July 2016). ROS Enhancement

Proposal 103. htp://www.ros.org/reps/rep-0103.html
[11] Narain Gehani. 1977. Units of measure as a data atribute. Computer Languages

2, 3 (1977), 93–111.
[12] Sudheendra Hangal andMonica S Lam. 2009. Automatic dimension inference and

checking for object-oriented programs. In Proceedings of the 31st International
Conference on Sotware Engineering. IEEE Computer Society, 155–165.

[13] Paul N Hilinger. 1988. An Ada package for dimensional analysis. ACM Transac-
tions on Programming Languages and Systems (TOPLAS) 10, 2 (1988), 189–203.

[14] David Hovemeyer, Jaime Spacco, and William Pugh. 2005. Evaluating and tuning
a static analysis to ind null pointer bugs. In ACM SIGSOFT Sotware Engineering
Notes, Vol. 31. ACM, 13–19.

[15] Lingxiao Jiang and Zhendong Su. 2006. Osprey: a practical type system for
validating dimensional unit correctness of C programs. In Proceedings of the 28th
international conference on Sotware engineering. ACM, 262–271.

[16] Michael Karr and David B Loveman III. 1978. Incorporation of units into pro-
gramming languages. Commun. ACM 21, 5 (1978), 385–391.

[17] Andrew Kennedy. 1996. Programming languages and dimensions. Number 391.
PhDhesis, University of Cambridge.

[18] Andrew Kennedy. 2010. Types for units-of-measure: heory and practice. In
Central European Functional Programming School. Springer, 268–305.

[19] Gergely Magyar, Peter Sinčák, and Zoltán Krizsán. 2015. Comparison study of
robotic middleware for robotic applications. In Emergent Trends in Robotics and
Intelligent Systems. Springer, 121–128.

[20] Daniel Marjamäki. 2013 (accessed 1 February 2017). Cppcheck: a tool for static
C/C++ code analysis. htp://cppcheck.sourceforge.net/

[21] Giorgio Meta, Paul Fitzpatrick, and Lorenzo Natale. 2006. YARP: Yet another
robot platform. International Journal of Advanced Robotic Systems 3, 1 (2006), 8.

[22] IM Mills, Barry N Taylor, and AJ hor. 2001. Deinitions of the units radian,
neper, bel and decibel. Metrologia 38, 4 (2001), 353.

[23] Gordon S. Novak. 1995. Conversion of units of measurement. IEEE Transactions
on Sotware Engineering 21, 8 (1995), 651–661.

[24] Robert O’Callahan and Daniel Jackson. 1997. Lackwit: A program understanding
tool based on type inference. In In Proceedings of the 19th International Conference
on Sotware Engineering. Citeseer.

[25] International Bureau of Weights, Measures, Barry N Taylor, and Ambler homp-
son. 2001. he international system of units (SI). (2001).

[26] Open Source Robotic Foundation. 2016. Automated Driving
with ROS at BMW. (2016). htp://www.osrfoundation.org/
michael-aeberhard-bmw-automated-driving-with-ros-at-bmw

[27] ROS Industrial Consortium. 2016. Current Members - ROS Industrial. (2016).
htp://rosindustrial.org/ric/current-members

[28] Grigore Rosu and Feng Chen. 2003. Certifying measurement unit safety policy.
In Automated Sotware Engineering, 2003. Proceedings. 18th IEEE International
Conference on. IEEE, 304–309.

[29] Mathias Christian Schabel and Steven Watanabe. 2008. Boost. Units 1, 0 (2008),
2003–2010.

[30] SotBank. 2016. Romeo, the research robot from Aldebaran. (2016). htp:
//projetromeo.com

[31] Arthur G Stephenson, Daniel R Mulville, Frank H Bauer, Greg A Dukeman, Peter
Norvig, LS LaPiana, PJ Rutledge, D Folta, and R Sackheim. 1999. Mars climate
orbiter mishap investigation board phase I report, 44 pp. NASA, Washington, DC
(1999).

[32] Zerksis D Umrigar. 1994. Fully static dimensional analysis with C++. ACM
SIGPLAN Notices 29, 9 (1994), 135–139.

[33] André Van Delt. 1999. A Java extension with support for dimensions. Sotware
Prac. Experience 29, 7 (1999), 605–616.

[34] Mitchell Wand and Patrick O’Keefe. 1991. Automatic Dimensional Inference.. In
Computational Logic-Essays in Honor of Alan Robinson. 479–483.

351

