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ABSTRACT

Systems interacting with the physical world operate on quantities
measured with physical units. When unit operations in a program
are inconsistent with the physical units’ rules, those systems may
suffer. Existing approaches to support unit consistency in programs
can impose an unacceptable burden on developers. In this paper, we
present a lightweight static analysis approach focused on physical
unit inconsistency detection that requires no end-user program
annotation, modification, or migration. It does so by capitalizing
on existing shared libraries that handle standardized physical units,
common in the cyber-physical domain, to link class attributes of
shared libraries to physical units. Then, leveraging rules from di-
mensional analysis, the approach propagates and infers units in
programs that use these shared libraries, and detects inconsistent
unit usage. We implement and evaluate the approach in a tool, ana-
lyzing 213 open-source systems containing +900, 000 LOC, finding
inconsistencies in 11% of them, with an 87% true positive rate for a
class of inconsistencies detected with high confidence. An initial
survey of robot system developers finds that the unit inconsisten-
cies detected by our tool are ‘problematic’, and we investigate how
and when these inconsistencies occur.
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1 INTRODUCTION

Systems that interact with the physical world operate on quantities
measured in physical units. Consider a mobile robot that perpetu-
ally perceives the world through depth sensors, lasers, cameras, and
gyroscopes, and interacts with the world through its actions. The
robot collects measurements as it senses and acts, and transforms
them into distances (meters) and angles (radians). The system also
integrates these measurements with others such as time (seconds)
to derive measures like the robot’s velocity (meters-per-second).

To operate correctly, this kind of system must adhere to both
the type semantics of the programming language and the unit
semantics of the physical world. Consider the simple code snip-
pet in Figure 1 belonging to the ‘Romeo’ robot [30]. The expres-
sion on line 191 calculates the distance between the current posi-
tion and the goal. Normally this kind of distance function would
add meters-squared to meters-squared, but this code incorrectly
adds meters to meters-squared. The code compiles without com-
plaint as both variables have the same programming type. Yet the
inconsistency in how the units are combined in the code constitutes
a fault that will go undetected by the type system, likely to manifest
later as incorrect behavior.

The consequences of such unit inconsistencies in systems inter-
acting with the physical world exhibit a range of severities, from
mild to occasionally catastrophic [31]. There does not seem to exist,
however, an authoritative estimate of how frequently unit inconsis-
tencies occur or with what severity. Still, the related work in type
systems indicates that these kinds of problems have been nagging
system developers for a long time. As early as 1978, Karr and Love-
man [16] advocated for the design of programming languages with
support for unit types.

There are four kinds of approaches to detecting unit type incon-
sistencies: full native programming language support, migration to
specialized type libraries, annotation-based approaches, and min-
ing a program for contradictory variable type usage. Specialized
language support for units is built into Fortress [1] and more
recently F# [18]. The type library boost: :units [29] offers static
checking of unit type consistency but requires code migration for
all variables involved in expressions with physical units. Anno-
tation based methods [8, 13, 15, 32] commonly use dataflow and
constraint solvers to reason about the units of unknown expres-
sions. Approaches that mine variable type usage within a program
to infer unit inconsistencies, such as UniFi [12], are annotation-free
but require the program to contain unit usages that together are
contradictory. The first three of these require system developers
to incur an annotation or migration burden, and the last requires
examples of contradictory usage to occur within a single program.
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t+ (goal.position.y - current.position.y) + (goal.position.y - current.position.y)
t+ (goal.position.z - current.position.z) + (goal.position.z - current.position.z);

“~ meters

Figure 1: Code snippet from SoftBank’s Romeo robot [30] containing a unit inconsistency detected by our tool, subsequently
acknowledged by the developers and patched. package: ros-aldebaran source: https://git.io/v6XIll, fixed source: https://git.io/v6xkH

In this work we seek to quickly detect unit inconsistencies with-
out annotation or migration burdens, and without depending on
the program to contain self-contradictory type usage. We present
an approach that requires a one-time effort of building a mapping
from attributes in shared libraries to units (instead of annotating
every program that uses the shared library). Fortunately, middle-
ware for cyber-physical systems often abstracts out commonly used
quantities with physical units into shared libraries because these
quantities are exchanged between components [19]. In addition
to the mapping, the proposed approach uses dimensional analysis,
[6] rules governing how physical quantities may be correctly com-
bined, compared, and manipulated. As our approach analyzes a
program, the mapping enables the automatic decoration of program
variables with physical units, and applies rules from dimensional
analysis to detect inconsistent usage of physical units. To keep our
approach lightweight and practical, we accept design choices that
compromise soundness and completeness. The work is contextu-
alized and inspired in part by our observations and experiences
with robotic systems where manipulating physical units is common,
usually supported by libraries, and often challenging. However, this
approach generalizes to systems that analyze, interpret, and reason
about data with physical units, ranging from embedded systems to
physical simulations of driverless cars, given that the system uses
attributes in shared libraries that specify physical units. The key
contributions of this work are:

o A novel approach for detecting unit inconsistencies in ex-
isting programs without extra effort from developers. It in-
tegrates a one-time mapping of shared libraries’ attributes
to physical units with a lightweight static approach imple-
menting dimensional analysis.

A lightweight static analysis tool implementing the ap-
proach for systems built on the Robot Operating System
(ROS).! Available at http://nimbus.unl.edu/tools.

An initial evaluation of our tool on a corpus of 213 sys-
tems containing +900, 000 LOC, wherein 24 systems (11%)
contain unit inconsistencies, with a true positive rate of
87% for a class of unit inconsistencies detected with ‘high
confidence’.

A validation of the kinds of unit inconsistencies detected
by our tool, where 56% of inconsistencies were deemed
problematic and 34% potentially problematic by surveyed
developers of such systems.

IROS is “maybe the most popular robotic middleware” [19], and has +3000 citations,
+2500 systems, and nine million package downloads/month. We chose ROS deliber-
ately for impact. An initial investigation of similar cyber-physical middleware indicates
straightforward applicability to Orocos [7], OpenRTM [2], MOOS [4], and Yarp [21].
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2 BACKGROUND AND MOTIVATING
EXAMPLES

This section presents background on the nature of physical units
and examples of unit inconsistencies. We first discuss how units
are governed by the rules of dimensional analysis.

2.1 Background

Physical Unit Representation. Physical phenomena are quanti-
fied in terms of units, such as meters-per-second or furlongs-
-per-fortnight. More formally, units form an abelian group?, and
we extend the convention for units used by Jiang and Su [15] that
models units as types and defines a simplified unit type language:

ut ::= meter | kilogram | second | ampere | kelvin | mole | radian |
(1

The set of units we consider are the seven base units of the
International System of Units (SI) [25]. The operator ‘+* means
multiplication, unity is identity, ut~! is a unit’s inverse, and &
represents the unknown unit. We also include radian, degree, and
quaternion because they are familiar to developers, even though
they are equivalent to unity with dimensionless units meter-per-
-meter [22]. The seven base units can be combined to represent
other physical quantities and these combinations are called derived
units. For example, the Newton is the S unit of force and is a derived
unit. One Newton can be expressed in terms of its equivalent
base units, (kilogram * meter) * (second * second)™!, or
equivalently kg m s=2. The unknown unit & is useful in expressing
and tracking uncertainty in units. The grammar ut generates the
set of all possible unit assignments.
Consistent Unit Operations with Dimensional Analysis. Ev-
ery base unit in the SI system corresponds to a base dimension. For
example, the base unit meter has a base dimension of length. Other
measurements of length, like furlongs or smoots, have different
units than meter but the same dimension length. All quantities
with units have a corresponding dimension. The rules governing
how quantities with units can be manipulated is called dimensional
analysis [6, 17]. Based on dimensional analysis, we define rules
for addition, comparison, and assignment that are consistent only
when satisfying the following:
Addition/Subtraction:

degree | quaternion | candela | unity | uty * uty | ut |6

uty{+, —}uty — {consistent} & (ut; = uty) (2)
Comparison:
uti{<,>, <, >, =, #}uty — {consistent} © (ut; = utz) (3)

2 Abelian groups are finite or infinite sets with a binary operation (for units, multipli-
cation) that satisfy associativity, commutativity, closure, and have identity and inverse
elements.
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meters-per-second meters
l//pass along drive commands } .
= drive_cmds.getOrigin();getX();:

cmd_vel.linear.y = drive_cmds.getOrigin().getY();"

Figure 2: Inconsistent assignment.

package:ros-planning source:https:/git.io/v6XIV

meters-per-second radians-per-second
marker_.points[1].y = twist.linear.y;

Figure 3: Inconsistent comparison.
package:ros-teleop source:https:/git.io/v6Xld

For uty 2 € ut. Essentially, dimensional analysis specifies that you
can only add or compare quantities with the same dimension. We
extend this notion of consistency to programming languages:
Assignment:

©

This specifies that assignment is only consistent when the units
of a variable being assigned a new value are the same as the units
being assigned. Operations that violate Eqs. 2-4 are called unit
inconsistencies in this paper. We now explore three code examples
to illustrate different kinds of units inconsistencies.

(ut; « uty) — {consistent} & (ut; = uts)

2.2 Motivating Examples

The code snippet shown in Figure 2 shows an assignment in line
465 with the variable cmd_vel.linear.x being assigned the value
returned by the function drive_cmds.getOrigin().getX(). The
Figure shows unit decorations to aid understanding. Both the vari-
able and the value returned by the function have the data type
float64, but they represent quantities with different units. The
variable cmd_vel.linear is part of a structure called Twist, de-
clared in a shared library geometry_msgs, that is specified to have
units meters-per-second, while the function getX() on the right-
hand-side (RHS) returns meters. Because the specified units are
different than the units being assigned, this code does not satisfy
Eq. 4 and is therefore unit inconsistent. We call this kind of unit in-
consistency assignment of multiple units. As is, this code implicitly
converts from one unit to another. At best, this inconsistency will
make the code harder to maintain and understand. At worst, this
implicit conversion might lead to unintended system behavior.

A second example is shown in Figure 3 line 65 where system
developers compare two variables’ magnitudes. The comparison
is between twist.linear.y and twist.angular.z. The Twist
data structure is defined in geometry_msgs, a shared library. The
variable 1inear.y has units meters-per-second while the vari-
able angular.z has units radians-per-second. This comparison
does not satisfy Eq. 3 and is therefore inconsistent, and we call this
comparison of inconsistent units. The system developer might have
a reason to make this comparison, but such choices in code are
suspicious and should be conspicuously documented and justified,
especially for shared code.

Figure 4 shows a third example of unit inconsistency on line
1094 in an addition expression. This sums the squares of three
quantities: force.x, force.y, and torque.z. The problem with
this expression is that the units for force are different than the
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units for torque. Adding the square of force to the square of
torque is not consistent by Eq. 2. We call this addition of inconsis-
tent units. In the developer’s defense, this calculation might behave
as intended given input that implicitly normalizes these values.
However, adding quantities with dissimilar units is generally de-
void of physical meaning. Without explanation, this code might be
considered a bewildering hack that works on one particular system,
in one particular circumstance. If we assume this code is inten-
tional, then the unit inconsistency reveals the existence of latent
assumptions about the physical system. These assumptions hinder
code re-use, since system developers must duplicate the system and
environment or risk unintended behavior.

These examples illustrate how unit inconsistencies—multiple
units, comparison/addition of different units—can result in pro-
grams that are difficult to understand and maintain, incorrect, or
hard to reuse. These problems are discussed in more detail in our
study in Section 5 that shows these inconsistencies lurk in at least
11% of the 213 systems we analyzed.

3 APPROACH

This section describes the approach, including how we perform a
one-time mapping from class attributes in shared libraries to units,
an algorithm that utilizes this mapping to detect unit inconsisten-
cies, an analysis of the algorithm’s complexity, and a discussion of
the limitations of this approach. First, we describe requirements
guiding the design decisions that shape our approach.

3.1 Requirements

The goal is to enable fast, lightweight, low-burden, meaningful unit
inconsistency detection. More specifically, the requirements for an
approach that meets this goal include:

e run on systems that manipulate standard physical units.
e execute sufficiently fast to be part of a build process.

e impose a minimal burden on system developers.

e detect inconsistencies that can lead to real problems.

e vyield a low-enough false-positive rate to justify the value

of its findings?.

We pursued these requirements through a series of design and
implementation iteration cycles in which we explored the tradeoffs
between precision, recall, speed, and scalability. We now turn to
the details of the approach resulting from these iterations.

3.2 One-time Mapping from Class Attributes in
Shared Program Libraries to Units

The goal of mapping is to assign physical units to physical attributes
in shared libraries. By physical attributes we mean attributes, struc-
tures, and class function return values found in shared libraries that
represent quantities measured in physical units. Rather than anno-
tating physical attributes at the point they are defined in shared
libraries, this approach instead decouples this ‘mapping’ between
physical attributes and units from the shared libraries. By decou-
pling the relationship between shared class attributes and physical
units from the shared libraries, system developers do not need an-
notated copies of those libraries. Further, this avoids the reliance
on unit-aware type libraries, compilers, or languages—all of which

3Both Bessey and Hovemeyer et al. used < 20% as a baseline [5, 14]
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abs_new_force = sqrt(
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(kilogram-meter-per-second) squaredsiii .,
(new bubble force.wrench.force.x * new bubble force.wrench.force.x)|
(new_bubble_force.wrench.force.y * new_bubble_force.wrench.force.y)|

(kilogram-meter-squared-per-second) squared--

Figure 4: Inconsistent units during addition of force and torque in distance metric. package:eband_local_planner source: https://git.io/v6X8T

hinder re-use. When compared to individual system developers
annotating program variables with physical units at declaration,
this approach requires a single effort that can be broadly reused to
enable unit inconsistency detection in every system that uses those
shared libraries. This approach has larger benefits at larger scales.
Overall, the purpose of mapping is to achieve the same effect as if
the entire user base of the shared libraries were to agree to apply
physical unit annotations in the shared libraries.

More formally, the mapping is a binary relation between two
sets: the set of physical attributes PHYS_ATTRIB (where physical
attributes are identified by fully qualified names (FQNs) in the
shared libraries) and the set of unit types ut :

Rmapping € (PHYS_ATTRIB x ut) )

Mapping Process. The mapping process involves four tasks:

identifying shared libraries containing physical attributes.
determining the physical unit for each physical attribute.
finding the FQN for each physical attribute.

encoding the mapping from FQN to physical unit in a

structured form that can be used programmatically.

The first task, identifying the shared libraries, is a manual process
that requires knowledge or analysis of the target domain. Identify-
ing these libraries might be performed incrementally, to find the
most commonly reused libraries within a corpus and then iden-
tifying physical attributes within that set. Or it might involve
identifying a particular physical attribute and then examining the
shared library that contains that attribute. The second task involves
determining a physical attribute’s units that might come from: 1)
knowing the physical unit at design time; 2) finding source code
comments or program documentation; 3) the class or variable name;
and, 4) examining how this variable is used in context. The third
task is simply recording the FQN for the shared class attribute. The
fourth task, encoding the mapping, involves creating a lookup table
from FON to physical units, and choosing some structured form
that can be read by an implementation. This lookup table is an
implementation of the binary relation Rmapping-

Cost. The upfront effort to create the external mapping is slightly
more than applying in-line annotations to physical attributes in
shared libraries, because of the effort to encode the mapping in an
external data structure that can be used programmatically. This
additional effort is justified by the benefits mentioned above. Com-
pared to annotating attributes in shared libraries, an external map-
ping introduces no reliance on unit-aware type libraries, compilers,
or languages. When compared to annotating programs that use
shared libraries, the single effort to create the mapping is much less
than the repeated effort by every system developer to separately
annotate program variable declarations for those shared libraries.
Mapping Example. To help illustrate the mapping process, we
now provide an example instantiated within the cyber-physical
domain, specifically, with a mapping built for the Robot Operating
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System (ROS). ROS is a widely-adopted middleware to enable rapid
development in robotic systems used by both academic and profes-
sional developers, including industrial automation at Boeing [27]
and autonomous driving at BMW [26].

The first step to identifying shared libraries with physical at-
tributes in ROS was observing that ROS’s component-based ar-
chitecture defines data structures with physical units in shared
libraries so components can exchange standardized data repre-
senting sensor measurements and actuator commands. We looked
at these shared libraries and found physical attributes for navi-
gation, geometric relationships, and sensor values. The shared
library for navigation was nav_msgs, for geometric relationships
the shared library was geometry_msgs, and for sensor values the
shared library was sensor_msgs. We also determined the most
frequently used libraries across the systems we studied, identifying
additional libraries not in the standard code location of the ROS
physical libraries. This was an iterative process, first finding one
prospective shared library and then successively completing all
the steps in the mapping process for that library before finding
another shared library. Within these libraries, we found a vari-
ety of physical attributes such as geometry_msgs:Twist.linear.y,
sensor_msgs:Imu.angular_velocity_covariance, and
nav_msgs::0dometry.linear.x.

In the second step, we associate each physical attribute in the
shared libraries with units. In the case of Odometry::linear.x, the
documentation specifies this as ‘velocity in free space’. Velocity has
dimensions of length-per-time and the SI system is specified as
the default units in ROS [10], therefore we assigned to it the units
meters-per-second.

The third step of finding the FQN names of the physical at-
tributes in shared libraries was straightforward, and involved copy-
ing the full name of the shared library, along with the names of
the structures containing the physical attribute. An example is
nav_msgs::0dometry.linear.x, where nav_msgs is the shared li-
brary, and Odometry.linear.x is the structure containing the phys-
ical attribute x.

The fourth step involved creating the encoding of the mapping,
with a record or table entry for each pair of FQNs and corresponding
units for each physical attribute in the shared library. An example
of one entry is the FQN nav_msgs::0dometry.linear.x with the
physical units (meters = (seconds)™1).

We repeated this process for other physical attributes, and col-
lected a mapping of 246 total physical attributes (class attributes
or function return values) from 82 classes across 7 shared libraries.
These physical attributes mapped to 17 distinct derived units. Fi-
nally, we encoded the FQN of the physical attributes and its corre-
sponding physical unit to create the mapping.

The effort to build the mapping for ROS was aided by the fact
that two of the co-authors are proficient ROS users. Overall, we
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completed the core mapping for ROS within 3-4 days. An initial
investigation of similar cyber-physical middleware like Orocos [7],
OpenRTM [2], MOOS [4], and Yarp [21] indicates that a mapping
for these domains would require a similar effort.

Again note that this mapping is a one-time effort per shared
library that then enables unit inconsistency detection in all systems
that build on these shared libraries.

We now present an algorithm for unit inconsistency detection
utilizing this mapping.

3.3 Algorithm for Lightweight Detection of
Unit Inconsistencies

This section describes the algorithm LIGHTWEIGHTDETECTUNIT-
INCONSISTENCY (Algorithm 1), that uses the mapping described
in Sec. 3.2. Some functions of Algorithm 1 that require further
explanation are described in the text below.

As fitting our requirements, this approach seeks the simplest
analysis still capable of detecting meaningful unit inconsistencies.
Our analysis is semi-flow-sensitive (a simplified forward dataflow),
path-insensitive, context-insensitive, and intra-procedural. Note
that although the analysis is intra-procedural, for some function
calls the approach can determine the units of the return value
because of the order the functions are analyzed. In these cases, the
approach applies the units returned by the function at its call point.

A dataflow analysis is often defined using states, a transfer func-
tion, a lattice, and a join operation. The states represent knowledge
at entry/exit points of blocks, a transfer function calculates changes
to the state during that block, the lattice represents all possible
abstract states arranged in a power-set hierarchy, and the join func-
tion calculates the state at the entry to a block by ‘joining’ the
states that flow into that block in the control flow graph. In con-
trast, our analysis has only one single state, State, that enters and
exits every statement. State is a set of tuples representing vari-
able unit assignments, {(var, {units}), ...} where var € VAR, the
set of program variables and {units} C ut, the unit type language
of Equation 1. A power-set lattice representation of the abstract
state is a poor fit because physical units form an abelian group, and
therefore we instead use a unit type language (Equation 1). State-
ments are analyzed sequentially without regard to control flow. At
a program point, the units of a variable in State are the union of:
1) any units specified by the mapping because the variable is of
a type that belongs to a shared library and represents a physical
class attribute; 2) previous unit assignments. The transfer function
from before a statement (the ‘in’ state) to after the statement (the
‘out’ state) is the union of: 1) the previous state; 2) the evaluation
of the units resulting from the RHS expression of assignment and
return statements. Since there is only one state, the join operation
is unnecessary.

Overview. Algorithm 1 takes as input a program P and relation
Rmapping from Sec. 3.2. During the loop in lines 5-10, the algorithm
processes each program statement once. It detects unit inconsisten-
cies in two ways: 1) within a statement for addition/comparison
inconsistencies; and 2) by analyzing variables in the final version
of State for multiple unit assignments to one variable.

Preprocess. In line 4, the algorithm preprocesses program P by
constructing a context-insensitive call graph (without alias analysis)
and performing a reverse topological sort, to analyze functions
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Algorithm 1 Lightweight physical unit inconsistency detection
over program P

Input: Program P and unit mapping Rmapping.
Output: Set of unit inconsistencies.
1: function LIGHTWEIGHTDETECTUNITINCONSISTENCY(P, Rmapping)
2: Ul <0 > Unit Inconsistencies
State < 0
sortedFunctions < PREPROCESS(P)
for function € sortedFunctions do
for statement € function do
DECORATEWITHUNITS(statement, State, Rmapping)
EVALUATEEXPRESSIONS(statement)
UI <« UI U DETECTEXPINCONSISTENCY(statement)
State « State U TRANSFERFUNCTION(statement)

10:
11:
12:

UI « UI U DETECTMULTIPLEUNITINCONSISTENCIES(State)
return U]

13: function TRANSFERFUNCTION(statement)

14: newUnits « GETRHSUNITS(statement)

15: if newUnits = () then

16: return 0

17: if ISASSIGNMENT(statement) then

18: return {(GETLHSVAR(statement), newUnits)}
19: else if ISRETURN(statement) then

20: return {(functionName, newUnits)}

21: return 0

bottom-up. If the call graph contains a cycle, an edge of the cycle
is removed from the call graph until no cycles are found. If the
topological sort yields a partial order, the approach breaks ties
arbitrarily and examines only the first ordering for simplicity. The
output is an ordered list of functions.

DecorateWithUnits. In line 7, this function traverses a state-
ment’s Abstract Syntax Tree (AST) and applies unit decorations
to variables, when possible. We assume the existence of a relation
between the set of program variables VAR and the set of physical
attributes PHYS_ATTRIB:

Reypeof € (VAR X PHYS_ATTRIB) (6)

This relation is commonly provided by a compiler front end, and
in our tool this is provided by CPPCheck [20]. Using the composi-
tion of this relation with the mapping from Eq. 5 we have:

Runitsof = (Rmapping o Rtypeof) C (VAR X ut)

™)

Where Ry,itsof is the composition of the relations in Eq. 5 and
Eq. 6 linking program variables to units.

Program variables can be decorated with units from either a
prior assignment statement listed in State or when the variable’s
type is found in R itsof- The function DECORATEWITHUNITS first
checks for units in State and if no units are found, checks R,itsof-
If neither structure yields units, then the variable is decorated with
d, the unknown unit. An example of unit decoration using Rynitsof
is shown in the dotted boxed of Figure 5. These variables can be
decorated because their variable type belongs to the shared library
geometry_msgs that declares a class WrenchStamped with physi-
cal class attributes included in Ryapping. The composed relation

Runitsof connects variable force. x to the units kg m s™2.
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EvaluateExpressions. This function visits a statement’s AST and
attempts to resolve the units of expressions using the unit resolution
rules shown in Table 1. It works from the leaves up, matching
expressions to unit resolution rules and decorating the interior
nodes of the AST with units. It continues to apply unit resolution
rules in a loop until no changes are made. These rules apply when
variables or expressions with units are combined and manipulated.

Note an important difference between the rule for multiplication
and the one for addition: during multiplication, if one operand has
known units but the other is §, the unknown unit, we pessimistically
assume the result is unknown; during addition, if one operand is
known and the other is §, we optimistically assume the result is the
known unit. The reason multiplication is pessimistic is that there is
only one way for multiplication to yield the same units, and many
ways for the result to be different. Multiplication only yields the
same units when multiplied by a scalar with unity as the unit, and
assuming that every unknown variable involved in multiplication
is a scalar leads to many false positives. The reason addition is
optimistic is that the resulting sum must have the same units as
the known operand or be inconsistent, and we cannot conclude the
sum is inconsistent because § is unknown.

An example of how the function EVALUATEEXPRESSIONS works

is shown in Figure 5. The units in the dotted boxes were applied
in DECORATEWITHUNITS, and the three multiplications near the
bottom of the AST match the multiplication rule in Table 1. By
the multiplication rule, we add the exponents of the units of the
operands, yielding the unit decorations on the three “+* symbols.
Next, the rules match the ‘+” symbol up the tree, and apply the
addition resolution rule, yielding the union of the operands’ units.
This function continues to apply unit resolution rules until no more
changes can be made. This function only adds additional unit deco-
rations and does not detect unit inconsistency in the expressions,
which happens in the next function.
DetectExpInconsistency. This function applies the unit consis-
tency tests from Eq. 2 (addition) and Eq. 3 (comparison) to expres-
sions within a single statement. This function scans a statement’s
AST looking for inconsistencies like those in Figures 1,3,4, and 5.
The example in Figure 5 shows an unit inconsistency detected while
evaluating an addition expression.

As shown in Table 1, the unit inconsistency detection has a
‘confidence’ that can be either high or low if the expression contains
&, the unknown unit. Figure 5 shows the detection of inconsistent
addition of kg?m?s™ to kg2m*s™* with high confidence.
TransferFunctlon. The transfer function in this analysis can only
add new information to the state, and only for assignment or return
statements. For assignment statements, the function GETRHSUNITS
at line 14 simply returns the units decorating the ‘=", and otherwise
returns the empty set. In line 10, State is updated as the union of
State and the output of TRANSFERFUNCTION.
DetectMultipleUnitInconsistencies. Scanning State at line 11
of Algorithm 1 can reveal assignment of multiple units inconsisten-
cies. This kind of inconsistency comes from two sources 1) variables
assigned units contrary to their specification in the Ryapping; and 2)
variables assigned different units at different points in the program.

When State contains multiple units for a variable this function
reports inconsistencies with either low or high confidence, based
on the presence of § in a variable’s units. This function reports high
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— [{kg m s-2,kg n? s-7}|

/ \ I{kg m s2,kg m? S'Z}I

abs_new_force sqrt

\ |{kg2 m2 s-4, kgZ m* s-4} |
unit inconsistency
urlng addition
_ |{kg2 AT

force X ‘force

Dox [kgZm2 54| Cw [kg? mf s

Figure 5: Example of a statement’s AST from the code
in Figure 4 with the shared class fully qualified name
WrenchStamped::wrench omitted for simplicity. Figure shows
unit decoration of variables by the relation R,;tsof (dotted
boxes), and evaluation of expressions’ units toward the root
by unit resolution rules in Table 1 (solid boxes).

confidence if at least two units without § are assigned to a program
variable.

3.4 Termination and Complexity

Preprocessing requires a linear pass over the program to construct
the context-insensitive call graph, and topologically sorting the call
graph is O(|V| + |E|) with a worst case O(|E?|) when detecting and
removing cycles. The loop in lines 5-10 analyzes each statement
once and is linear in the size of the input program AST. Decorating
a statement’s variables with units, evaluating expressions, detecting
expression unit inconsistencies, and the transfer function are linear
in the size of a statement’s AST. After the loop, detecting multiple
unit inconsistencies requires a linear scan of State, and State is as
large as the number of program variables. Putting it all together,
the worst case for the algorithm is quadratic in time and space.

Termination is guaranteed because the while loop within Evaru-
ATEEXPRESSIONS applies unit resolution rules at most h times where
h is the height of a statement’s AST.

3.5 Limitations

While designed to be as fast and lightweight as possible while
detecting useful inconsistencies, this design has limitations in ap-
plicability, soundness, and completeness. The mapping process
can only apply units to physical attributes that are identified and
correctly assigned units beforehand, and the number of program
variables that can be labeled with unit information might be lim-
ited, bounding applicability. This approach is unsound because it
includes infeasible sets of variable-unit assignments in State as it
ignores control flow. This approach is incomplete because State
misses some variable-unit assignments in loops and because it is
not path-sensitive. Also, as described, the approach is semi-flow-
sensitive and intra-procedural, only supports the mapped libraries,
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Table 1: Unit resolution rules used in Algorithm 1 function EVALUATEEXPRESSIONS on line 8, and the inconsistency rules are
used to detect addition/comparison inconsistencies in function DETECTEXPINCONSISTENCY on line 9.

EXPRESSION CONDITION RESULT INCONSISTENT | CONFIDENCE
uty {*x, +luty uts =add/subtract exponents of ut; and ut,
uty{x, +}6 uty * 8 (pessimistic)
uty {+, —luty ut; = uty uty
uty {+, —}uty uty # uty uty U uty Yes, by Eq. 2 high
uty{+, —}6 x uty uty # uty ut; US *uty Yes, by Eq. 2 low
uti{+, —}8 ut; (optimistic)
pow(uty, n) neR multiple each u#; exponent by n
sqrt(uty) divide each ut; exponent by 2
sqrt(5) 1)
uti{<, >, >, <, #juty uty = uty none
uti{<, >, 2, <, #lub uty # uty none Yes, by Eq. 3 high
uti{<, >, 2, <, #}6 * uty ut] # uty none Yes, by Eq. 3 low
ut {<, >, 2, <, #}6 none
{floor, ceil, (f)abs}(uty) uty
{min, max}(uty, uty) uty Uuty
{min, max}(uty, 6) uty
(Boolean) ? uty : ut uty U uty (ternary operator)

and does not handle complex dynamic concerns like dynamic dis-
patch, pointers, or Standard Template Library data structures. Fur-
ther, the approach does not attempt symbolic analysis that could
reason about statements like (UNIT")(-")_ We expect to keep ex-
amining these design decisions, interleaving the incorporation of
stronger analyses with an assessment of their impact in the overall
cost-effectiveness and performance of the approach.

4 PROTOTYPE IMPLEMENTATION

Our implementation detects unit inconsistencies in C++ code writ-
ten for ROS. The architecture follows the approach, is implemented
in 3300 lines of python, and can be run from the command-line.

Our tool utilizes CPPCheck as a C++ preprocessor and parser
[20], invoked with default parameters and includes directories:
cppcheck --dump -I ../include myfile.cpp. The dump op-
tion generates an XML file containing: 1) every program statement
as a separate abstract syntax tree; 2) a token list; and 3) a symbol
database including functions, variables, classes, and all scopes. CP-
PCheck can explore multiple compilation configurations (different
#define values), but in the reported results we only consider the
default system configuration.

We use a visitor pattern in each statement’s AST to apply units
and evaluate expressions with unit resolution rules. During im-
plementation, we realized that radian and quaternion require
special handling: during multiplication, radian and quaternion
act as unity since their units are meters-per-meter; during ad-
dition, they are ‘coherent units of measure’ [22], meaning that
they cannot be added to a dissimilar unit, even though they are
dimensionless.

An example inconsistency message for the code in Figure 4 reads:
Addition of inconsistent units on line 1094 with high
confidence. Attempting to add kgZm?s™* to kg?mis™*. We
consolidate error messages to report only the first unit inconsis-
tency for a particular variable.

Table 2: ROS Open-Source Repositories

CORPUS SOURCE # of REPOSITORIES
Total ROS.org “Indigo” Projects Links 2416

Live Git Repos 649 of 2416

Git REPOS with C++ FILES 436 of 649
REPOS with C++ FILES AND ROS UNITS 213 of 436

We provide our prototype as a software artifact that can be
downloaded from http://nimbus.unl.edu/tools.

5 EVALUATION

The goal of the evaluation is to assess the ability of the tool to detect
unit inconsistencies that may cause problems for real systems. To
achieve that goal we employ a methodology that captures two
perspectives: 1) we examine the results of running our tool on a
corpus of publicly available robotic systems and then hand-label
the results as True and False Positives; and 2) we conduct a small
survey of robotic system researchers to gauge whether they deem
the unit inconsistencies detected by our tool to be ‘problematic’
Finally we discuss threats to validity.

5.1 Analysis of Robotic Software Corpus

To evaluate the effectiveness of our tool we exercised it on a wide
range of publicly available robotic software, specifically systems
designed to work with the robotic middleware ROS.

The maintainers of ROS publish a list of public software reposito-
ries using ROS in academic and industrial robots. The list, published
at http://www.ros.org/browse/list.php, includes projects at various
stages of development, and for a wide variety of purposes: mobile
robot navigation, collision detection libraries for robotic arms, dri-
vers for depth cameras, control software for flying robots—a diverse
set.

Table 2 shows statistics about this corpus. At the time we gath-
ered this corpus, there were 2416 projects linked from the ‘Indigo’
version of ROS. Of these 2416 links, 649 were linked to live Git repos-
itories. ROS supports C++, Python, and a few projects with LISP
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and Java, but the majority are in C++, so we focused on those. Of
the 649 live Git repositories, 436 contained C++ files. Of these 436,
we found 213 repositories with systems containing shared libraries
with physical attributes. For this initial work, we proceed with
all ROS geometry, navigation, transform, sensor, and time li-
braries. The list of the 213 systems with GitHub download links
and version numbers is available at http://nimbus.unl.edu/tools.
Scale and Speed. We ran our tool on 213 systems containing ROS
physical units, analyzing 934,124 non-blank non-commented lines
of C/C++ as reported by CLOC [9]. Analyzing all systems took
108 minutes (61 minutes to parse the files with CPPCheck and 47
minutes to perform our analysis), with an average analysis time
of 31 seconds per system, when running on a MacBook Pro (‘early
2015’) with a 2.9 GHz Intel Quad Core i5 processor, and 16GB of
memory. We only utilized a single core during evaluation, although
this could be easily parallelized since the files and analysis are
independent.

Effectiveness. We individually examined each inconsistency re-
ported by the tool, reviewing the source code surrounding each
reported line, and labeled each one as either ‘True Positive’ (TP)
or ‘False Positive’ (FP). Note that labeling inconsistencies as TP
or FP lets us calculate precision, but the number of ‘False Nega-
tives’ (FN) is unknown and therefore we cannot calculate recall.
This labeling process required several rounds of iterations as the
analysis of some inconsistencies led us to question and re-analyze
previous labels. The process converged towards the recognition of
TP caused by addition/comparison of inconsistent units and assign-
ment of multiple unit inconsistencies. We observe that multiple
unit inconsistencies have distinct causes: 1) variable re-use (like
temp variables); 2) disagreement between the units defined in the
mapping (from the documentation) and the actual units used; 3)
the previous two combined—variables with units from the map-
ping used as temporary variables. We currently do not distinguish
between these causes but believe they could be separated auto-
matically by observing whether the units come directly from the
mapping and whether they are assigned only one kind of unit in
the program.

Our results are summarized in Table 3. The overall TP rate, com-
puted as TP% = 100 = TP/(TP + FP), for ‘high confidence’ unit
inconsistencies is 87.0%. This includes the three types, variables
assigned multiple units, addition of inconsistent units, and compar-
ison of inconsistent units. As we noted earlier, for one of the cases
where we contacted the authors of the code for clarification, shown
in Figure 1, the inconsistency was acknowledged as a fault and
developers patched the code immediately after our inquiry. Within
the ‘high confidence’ TP, we found a TP rate of 84.6% for variables
assigned multiple units. The False Positives with ‘high confidence’
all detect redundant implementations of vector cross-products and
outer-products that are already provided by the ROS API, where
meters-squared intentionally equals meters. Figure 6 contains
one such case in line 90, which is frequently used and deemed cor-
rect by system developers. In general, our tool handles vectors like
any other quantity and detects inconsistent addition, comparison,
and assignment. We believe we could modify the tool to detect and
ignore this special case, but we would have to be careful not to
blind our tool to unintentional assignments of meters-squared to
meters, therefore for now we accept these kinds of FP.
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. Z;
pl.x * p2.y — pl.y * p2.Xx;

Figure 6: False positive during cross-product.

package:pr2-navigation source:https://git.io/v6xS7

JREIILY secondssssn,,

+= 10000 *
geometry_msgs::Twist msg; .

meters—per—second

Figure 7: False positive with constant.

package:crazyflie_ros source:https://git.io/v6x7T

The overall TP rate for ‘low confidence’ unit inconsistencies is
37.45%, with about 50% more low confidence TP (64) than high
confidence TP (40). The low TP rate is caused mainly by the large
number of variables and constants with implicit units not found
in the mapping. Figure 7 shows an example of a constant with
implicit units. The constant 10000 in line 104 is part of a expres-
sion with units § * seconds that is then assigned to m_thrust. The
units assigned at line 104 flow to the usage of m_thrust in an as-
signment statement on line 106. Since the units for msg.linear.z
are meters-per-second and it is assigned units of % seconds,
our tool reports a low confidence unit inconsistency. In this case,
the source of the FP is the constant 10000. Constants are basically
devoid of units and we plan to assess them in more detail in the
future.

5.2 Survey

We conducted a survey to obtain an initial assessment of whether
these kinds of unit inconsistencies are problematic to robotic soft-
ware developers. Specifically, some unit inconsistencies, like vari-
able reuse and using a physical attribute to store a quantity against
its specification, might be poor programming style, but also might
not warrant a high-priority bug report. Therefore we wanted to
assess the severity of these kinds of inconsistencies. Our survey
instrument consists of eight questions, each showing a code exam-
ple similar to those in Figures 2-4, drawn from unit inconsistencies
detected by our tool. For each code example, we asked “Is the unit
inconsistency on line [X] problematic (e.g., cause failures, increase
cost of maintenance, make code more difficult to understand, or in-
troduce interoperability problems)?”, with a choice of responses:
‘yes’, ‘maybe’, and ‘no’. After each question, the respondents could
add an open-ended explanation. The order of the questions was
randomized for each respondent.

The target population for our survey included either heads of
academic robotics research labs or their senior research associates.
These labs publish regularly in top robotic conferences and use
ROS extensively. We sent our survey to ten labs and received ten
responses from six of the labs. We recognize the sample population
size is small and may not generalize, but at this stage of the work
we wanted quick, initial feedback before attempting a larger, more
nuanced study that might be justified in the future.
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Table 3: Classification of unit inconsistencies found by our tool. Note: this table presents precision and not recall, because
recall requires false negatives (FN) that are unknown in our corpus.

High Confidence | Low Confidence
INCONSISTENCY TYPE TP | FP | TP% | TP | FP | TP%
TOTAL 40 | 6 87.0% | 64 | 107 | 37.4%
ASSIGNMENT OF MULTIPLE UNITS 33 | 6 | 84.6% | 55 | 83 | 39.9%
ADDITION OF INCONSISTENT UNITS | 5 0 100% 9 20 | 31.0%
COMPARISON INCONSISTENT UNITS | 2 0 100% 0 4 0%

Table 4: Summary of survey responses to whether unit in-
consistencies found by our tool are ‘problematic’

Question # | YES | MAYBE | NO
1 6 2 2
2 8 1 1
3 3 5 2
4 9 0 1
5 6 3 1
6 (Figure 2) | 2 8 0
7 (Figure 4) | 7 3 0
8 4 5 1
TOTALS 45 27 8
% 56% 34% 10%

Our results are shown in detail in Table 4. Overall, 56% of re-
sponses indicate that ‘yes’, these unit inconsistencies are problem-
atic. The ‘yes’ responses included explanations from ‘The addition
of different units means nothing in real world’ to just bad program-
ming.’ This fits with our assessment that many unit inconsistencies
require attention or at least special explicit justification.

The ‘maybe’ responses (34%) included explanations, such as If
the angular radius is unity, then OK, otherwise could lead to error’,
identifying a special case when the code could be correct, or Tdon’t
know when you’d like to compute this.’ Several ‘maybe’ responses
indicated the possibility of a special circumstance when the unit
inconsistency might not be problematic. In these cases our tool
indicates a possible constraint on the circumstances under which
the code behaves correctly, and for the unit inconsistencies detected
by our tool, these special circumstances were never mentioned in
the code comments, to our knowledge.

Of ‘no’ responses (not problematic), half came from one respon-
dent (4 of 8), who explained: ‘The problem I see is that the proposed
method will get hung up in hacks that actually are workable solutions
and it might be impossible for the average coder to fix these issues.” We
contend that detecting ‘workable’ ‘hacks’ is still valuable, especially
for junior developers lacking the hard-earned experience necessary
to recognize them in the first place.

Questions 6 and 7 from Table 4 of the survey are also presented
in this work as Figure 2 and 4. Notice for question 6 that most
respondents said ‘maybe’, and this code example shows unit in-
consistency by assignment to a data type with a different physical
unit specification, which is perhaps more an issue of code main-
tenance and reuse since it only uses a technically incorrect data
container. However in question 7 (Figure 4) most respondents said
‘yes problematic’, and this code example contains addition of incon-
sistent units, which is perhaps more concerning because it might
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be incorrect. We believe that identifying both of these kinds of unit
inconsistencies has value to system developers.

At the end of the survey we let respondents write an open-ended
‘overall’ feedback to these kinds of unit inconsistencies. The most
critical respondent stated ‘Overall a lot of unit inconsistencies will
happen for control or optimization reasons and sometimes ... cannot
be avoided,” while the most laudatory stated "This tool is amazing!
At the very worst, it find out questionable programming practice that
needs additional documentation. Most of the time, it finds bugs or
hacky heuristics.’

Overall, is spite of the limited size our population, and that this
population does not represent industrial system developers, most
responses affirm our assertion that the kinds of unit inconsistencies
detected by this approach are problematic.

5.3 Threats to Validity

Self-labeling. One significant threat to the validity of our findings
is our reliance on self-labeled TP and FP. For high confidence TP,
it was relatively easy to see when and how the physical units are
inconsistent, and for high confidence FP there were only a few
mathematical corner cases like the cross and outer vector product
that required careful consideration but we ended up confident about
those classifications. Low confidence FPs were more straightfor-
ward to identify and often were attributable to a single variable
with unknown units, such as the code example in Figure 7. Low con-
fidence TPs were more time consuming to identify because these
unit inconsistencies involved partial information, and we assumed
the low-confidence inconsistencies were FP until proven to be a TP.
We mitigated the previous threat to internal validity by review-
ing the results multiple times and discussing examples with other
system developers, and ultimately by combining the analysis of
the code corpus with the preliminary survey. The respondents clas-
sified most examples as either ‘yes’ or ‘maybe’ problematic, and
provided many compelling justifications for their responses. To a
large degree, these responses matched our expectations, but clearly
further study is needed to better understand the larger body of
inconsistencies found.
False Negatives. We cannot measure recall because the number of
false negatives in the software corpus is unknown, but we intend to
address this threat by seeding faults to better evaluate our approach.
To our knowledge, there exists no dataset of labeled physical unit
inconsistencies, although this work identifies an initial set of TP.
Cost-effectiveness. We recognize that this approach’s cost effec-
tiveness will vary across systems depending at least partly on the
extent of physical unit usage, their degree of manipulation, and
their standardization. Still, we argue that this threat to external
validity is mitigated by the fact that most physical systems regularly
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incorporate sensors and actuators that utilize standardized middle-
ware libraries shared across platforms, all using some convention
for data structures containing physical units.

Generality. Similarly, we recognize that we built the mapping for
a particular robotic domain, namely ROS, but other mappings to a
variety of middleware systems would help validate the generality
of the approach. We are currently exploring other middleware, and
will likely next target Orocos [7], OpenRTM [2], MOOS [4], and
Yarp [21]. Still, ROS is by far the most commonly adopted robotic
middleware, and has a growing user base.

Comparison to Other Tools. A further threat to external validity
is that we do not directly compare our tool to other unit inconsis-
tency detection tools. We do discuss these and other approaches
in related work. A practical empirical challenge is that other tools
target different languages [12], require annotation [15], or code
migration [29]. One way to address this threat would be to compile
a benchmark of unit inconsistencies, but that is beyond the scope
of this effort.

6 RELATED WORK

In this section we continue a discussion of related work started in
Section 1, where we identified several kinds of approaches for unit
inconsistency detection.

Since the late 1970s, researchers have proposed programming
language extensions and tool support to enable unit consistency
checks, such as work by Gehani [11], who proposed extending
Pascal, Hilfinger’s Ada package [13], Wand and O’Keefe’s simply-
typed lambda calculus [34], Novak’s work with unit conversion [23],
Delft’s extension for Java [33], Rosu’s and Feng dynamic approach
in C [28], Umrigar’s compiler [32], Antoniu’s spreadsheet checker
XeLda [3], Jiang and Su’s unit annotations in Osprey [15], and
Schabel and Watanabe’s boost : :units for C++ [29]. More recently,
unit consistency as envisioned by Kennedy [17] has been built into
Fi#. This implementation seems to fully realize unit consistency, but
does not appear to have been widely adopted*. Like this work, we
detect inconsistent units during addition and assignment, but unlike
this work our approach works without requiring extra annotations
which often lower the barriers for tool adoption. Like these efforts
we are concerned with unit consistency, but unlike these systems
we are not proposing language extensions but rather seeking to
leverage one mapping effort to enable unit inconsistency detection
without requiring developers to modify their programs.

One of the more similar efforts is the tool UniFi [12] that infers
dimensions automatically by mining a program for contradictory
variable type usage, much in the same manner as Lackwit [24], but
applied to unit inconsistency detection. Like those tools, we propa-
gate an abstract type through assignment and detect inconsistent
usage. Unlike their work we apply abstract types from outside the
program and can detect inconsistencies without requiring the pro-
gram to contain contradictory variable type usage. For example, our
tool can detect the addition of inconsistent units in Figure 4 even
if these variables were used only once in this program, whereas
UniFi would not detect this inconsistency.

4 Assessing levels and rates of tool adoption is difficult in a large and diverse com-
munity. However, we note that not one system among the 213 we explored uses any
programming languages with unit support like F#, and only 3 use the boost:units
library extension requiring annotation.
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7 CONCLUSIONS

In this paper we presented a novel approach to detect physical unit
inconsistencies in programs including cyber-physical, scientific
computing, and embedded systems. The approach detects useful
inconsistencies without modifying the program or shared libraries
with annotations.

The approach is unique in that the mapping from physical at-
tributes to units enables unit inconsistency detection without anno-
tation, and also unique in that it favors speed over precision while
still detecting meaningful unit inconsistencies. We implemented
the approach in a prototype tool and evaluated it on a corpus of 213
systems, detecting inconsistencies in more than 11% of the systems.
The tool has an 87% true positive rate for a class of inconsistencies
it can detect with high confidence, and a preliminary survey of
developers analyzing the tool’s findings provides encouragement
for further development and study.

In the future, we will pursue several research avenues. First, with
the given approach and toolset in place, we are well positioned
to detect many more types of unit inconsistency. One kind of
inconsistencies that we have started to examine consists of those
where the resulting units are not defined in SI. For example, in one
of the systems we analyzed we found resulting units like (meters,
1.5) which does not have a real physical meaning. Although having
such units seems odd, we need to investigate whether they warrant
enough attention to take action. Second, as is common with this
class of static analysis approaches, we will attempt to optimize the
soundness, precision, and performance tradeoffs. In particular, we
will explore improving path sensitivity, interprocedural analysis,
and extending the scope of analysis since we have seen cases where
they could reduce the number of false positives and move some of
the findings from low to high confidence. This may require us to
integrate the approach with richer analysis frameworks. Third, we
intend to analyze the significance of these kinds of inconsistencies:
their impact on systems at runtime, how much developer time is
consumed with alternate methods such as manual unit annotations
including constants, and the root causes of these inconsistencies.
Fourth, we will extend the tool to other common cyber-physical
libraries by introducing additional mappings, which will let us
evaluate a larger number of systems. From an empirical perspective,
we will also perform a more extensive survey of the tool findings,
and submit more of the findings to developers’ for evaluation. Last,
we would like to move beyond the detection of inconsistencies, to
providing recommendations on how to fix the unit inconsistencies.
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