

Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

Meagan E. Ankney^{1,*}, Charles R. Bacon², John W. Valley¹, Brian L. Beard¹, and Clark M. Johnson¹

¹*Department of Geoscience, University of Wisconsin-Madison, 1215 West Dayton Street, Madison WI 53706*

² *U.S. Geological Survey Volcano Science Center, 345 Middlefield Road, Menlo Park, CA 94025*

For submission to *Geochimica et Cosmochimica Acta*.

Corresponding author: Meagan E. Ankney, mankney@uakron.edu

*Present address: *Department of Geosciences, University of Akron, Akron, OH 44325*

Abstract

We report new whole rock U-Th and *in-situ* oxygen isotope compositions for partially melted (0-50 vol% melt), low- $\delta^{18}\text{O}$ Pleistocene granitoid blocks ejected during the ~7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz ($n = 111$) and plagioclase ($n = 91$) crystals, and for transects across ten quartz crystals, document zonation in quartz ($\Delta^{18}\text{O}_{\text{Core-Rim}} \leq 0.1\text{--}5.5\text{\textperthousand}$), but show homogeneity in plagioclase ($\Delta^{18}\text{O}_{\text{Core-Rim}} \leq \pm 0.3\text{\textperthousand}$). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting

caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ~1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ~10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.

Uranium-thorium isotope compositions of most granitoid blocks are in ^{238}U excess, and are in agreement with a ^{238}U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low $\delta^{18}\text{O}$ values. The sample with the highest U excess ($\geq 5.8\%$) also has the most ^{18}O isotope depletion (average $\delta^{18}\text{O}_{\text{plag}} = -4.0\text{\textperthousand}$). The granitoids are a probable assimilant and source of U excess in volcanic rocks from Mt. Mazama. Two granitoids have Th excess and low $\delta^{18}\text{O}$ values, interpreted to record leaching of U during hydrothermal alteration. A U-Th isochron based on the U excess array of the granitoids and volcanic rocks indicates that hydrothermal circulation initiated ~40–70 kyr before the climactic eruption, potentially marking the initiation of a persistent upper-crustal magma chamber. The U-Th ages are consistent with the maximum timescales inferred for hydrothermal alteration based on oxygen isotope zoning in quartz.

1 1. Introduction

2 Assessment of the timescales of pre-eruptive processes in large, upper crustal, silicic
3 magma chambers is essential to understanding the development of caldera systems and
4 prediction of future eruptions. Upper crustal processes in magma chambers associated with
5 caldera-forming eruptions are thought to occur over a variety of timescales (e.g., Allan et al.,

6 2013; Bindeman and Simakin, 2014; Saunders et al., 2010). Studies suggest that large silicic
7 magma bodies can persist in the upper crust as crystal mushes for $>10^5$ years (e.g., Bachmann et
8 al., 2007; Brown and Fletcher, 1999; Folkes et al., 2011; Simon and Reid, 2005; Vazquez and
9 Reid, 2004; Wotzlaw et al., 2013), and production of eruptible batches of magma has been
10 interpreted to involve shorter timescales of 10^3 - 10^5 yrs (e.g., Allan et al., 2013; Bindeman and
11 Simakin, 2014; Wotzlaw et al., 2013, 2014, 2015). Some recent studies, however, suggest that
12 remobilization and final assembly of large scale silicic magma chambers might occur on more
13 rapid timescales of decades to centuries prior to eruption (e.g., de Silva et al., 2008; Druitt et al.,
14 2012; Saunders et al., 2010; Wark et al., 2007).

15 Ejecta of the caldera-forming eruption of Mt. Mazama (Crater Lake) include a minor
16 component of granitoid blocks (as large as 4 m.) that are interpreted to represent the wall rocks
17 of the magma chamber, and hence offer a view of a shallow silicic magma chamber that is
18 potentially distinct from that recorded in phenocrysts. Compositions and ages of the granitoids
19 indicate they are plutonic remnants of Pleistocene dacite and rhyodacite magmas at Mt. Mazama
20 (Bacon, 1992; Bacon and Lowenstern, 2005; Bacon et al., 2000). In this paper, we present an
21 analysis of the temperature and hydrothermal history recorded in the granitoids using U-Th
22 disequilibria and *in situ* oxygen isotope measurements. We propose that the most recent isotopic
23 shifts in the granitoids reflect important thermal events in the growing magma chamber during
24 the final buildup to the caldera-forming eruption. Our approach of using wall-rock samples to
25 understand the development of the climactic magma chamber provides an “outside in” view that
26 is complementary to that provided by phenocrysts in the magma chamber.

27 **2. Geologic background and prior oxygen isotope studies**

28 Crater Lake caldera was formed by the climactic eruption of Mt. Mazama ca. 7.7 ka, and
29 is one of only three Quaternary calderas in the Cascades (Bacon and Lanphere, 2006; Hildreth,
30 1996, 2007). The climactic eruption reflects ~ 50 km 3 of primarily rhyodacitic magma that vented
31 as pumice and ash. Other components of the climactic ejecta include andesitic scoria that has
32 either relatively high incompatible (designated as high-Sr or “HSr” units) or comparatively low
33 incompatible (designated as low-Sr or “LSr” units) element contents (terminology of Bacon and
34 Druitt, 1988), mafic cumulates, and, of interest to this study, granitoid blocks that are interpreted
35 to have been derived from the walls of the magma chamber. The granitoids are found in all
36 deposits of the climactic eruption, but are concentrated in lithic breccia deposited within a few
37 kilometers of the caldera during the later stages of the climactic eruption. Rare granitoid
38 xenoliths are also found in preclimactic dacites and rhyodacites erupted from ~ 7.8 ka to 70 ka
39 (Bacon et al., 1994), but these were not analyzed in this study. Collectively, they consist mainly
40 of granodiorite, with minor quartz diorite, aplite, granite, diabase, and granophyre. Hereafter we
41 will use the terms “granitoids” or “granitoid blocks” to refer to all varieties of felsic plutonic
42 blocks at Crater Lake.

43 The granitoid blocks are interpreted to have experienced variable amounts of subsolidus
44 exchange with meteoric hydrothermal fluids and, in many cases, were partially melted (Bacon,
45 1992; Bacon et al., 1989, 1994). Zircon geochronology indicates that the granitoids reflect
46 crystallization of plutonic bodies between ~ 300 ka and 20 ka (Bacon and Lowenstern, 2005).
47 Ages of zircons cluster around three time periods at 50–70 ka, ~ 110 ka, and ~ 200 ka, each of
48 which corresponds to a period of dacitic volcanism at Mt. Mazama (Bacon and Lowenstern,
49 2005). The granitoids and related rocks are considered to represent the non-erupted portions of
50 the magma chamber(s) that produced the dacites.

51 Granitoid blocks from the climactic eruption show partial melting up to 50 vol.%, as
52 indicated by the presence of intergranular high-silica rhyolite glass that represents quenched melt
53 (Bacon, 1992). The absence of granitoids that experienced >50% partial melting, which is above
54 the threshold for the onset of plastic flow (Arzi, 1978; Bacon et al., 1989; Marsh, 1981), likely
55 reflects disaggregation and assimilation by the climactic magma (Bacon, 1992; Bacon et al.,
56 1989). Fe-Ti oxides in partially melted samples that are in contact with intergranular glass are
57 thought to have re-equilibrated with the melt and give Fe-Ti oxide equilibration temperatures of
58 755° C to 1006° C (Bacon, 1992). Many of the oxide temperatures exceed those obtained for
59 oxide phenocrysts in the rhyodacite and later-erupted andesitic scoria and mafic cumulates
60 (examples of the latter that lack ilmenite may have been hotter still), suggesting that granitoid
61 blocks may have been from the walls of the deeper portions of the chamber, consistent with the
62 higher concentration of blocks in later products of the caldera-forming eruption (Bacon, 1992;
63 Druitt and Bacon, 1989). Fe-Ti oxides in nonmelted samples, and those not in contact with glass
64 in partially melted samples or are present as mineral inclusions, give temperatures of 689° C to
65 834° C, and probably document initial crystallization conditions (Bacon, 1992).

66 Previous work on bulk mineral separates of plagioclase, quartz, and glass from granitoid
67 blocks found in deposits of the climactic eruption and in preclimactic rhyodacite/dacite lavas
68 demonstrates a wide range in oxygen isotope compositions, with $\delta^{18}\text{O}$ values ($\delta^{18}\text{O} =$
69 $[(^{18}\text{O}/^{16}\text{O})_{\text{sample}}/(^{18}\text{O}/^{16}\text{O})_{\text{standard}} - 1] \times 1000$) where the standard is VSMOW) that range from
70 $\delta^{18}\text{O}_{\text{plag}} = +6.5\text{\textperthousand}$ to $-3.4\text{\textperthousand}$, $\delta^{18}\text{O}_{\text{quartz}} = +8.0\text{\textperthousand}$ to $-2.2\text{\textperthousand}$, and $\delta^{18}\text{O}_{\text{glass}} = +4.1\text{\textperthousand}$ to $+2.9\text{\textperthousand}$
71 (Bacon et al., 1989, 1994). The majority of the granitoid blocks have $\delta^{18}\text{O}$ values that are
72 considerably lower than those expected for mantle-derived magmas. Bacon et al. (1989) interpret
73 the low- $\delta^{18}\text{O}$ values to reflect exchange with Pleistocene meteoric hydrothermal fluids followed

74 by high-temperature exchange during heating \pm partial melting. Hydrothermal circulation is
75 thought to have initiated between 70 and 27 ka, based on the presence of a granitoid clast that
76 has “normal” $\delta^{18}\text{O}$ values in the dacite of Pumice Castle erupted at 70 ka (Bacon et al., 1994).
77 The presence of low- $\delta^{18}\text{O}$ glass in the partially melted blocks indicates that oxygen isotope
78 exchange between meteoric waters and the plutonic bodies occurred prior to melting. The
79 relatively wide range in $\delta^{18}\text{O}$ values, $\sim 10\text{\textperthousand}$, measured in the granitoids presumably records a
80 range of water/rock mass ratios (Bacon et al., 1989).

81 Oxygen isotope fractionation between bulk quartz, plagioclase, and glass separates is
82 consistent with high-temperature re-equilibration of the granitoids during heating \pm partial
83 melting (Bacon et al., 1989). Quartz-plagioclase fractionation tends to decrease with increasing
84 Fe-Ti oxide temperatures (755-1006 °C for oxides that re-equilibrated during partial melting),
85 which in turn correlates with increasing percent melting (Bacon et al., 1989; Bacon, 1992). The
86 range in Fe-Ti oxide temperatures is thought to relate to storage depth; the granitoids that
87 equilibrated to higher temperatures were likely located in the deepest, hottest portions of the
88 walls of the magma chamber. Alternatively, the range in temperatures may reflect proximity of
89 the blocks to the magma chamber, in which case lower temperatures may be indicative of storage
90 farther back in the walls of the chamber.

91 The presence of granitoid blocks in deposits of the caldera-forming eruption and their
92 bulk mineral/glass oxygen isotope compositions provide evidence for upper crustal assimilation
93 by the magma chamber at Crater Lake. Rhyodacites erupted from the climactic magma chamber
94 have bulk $\delta^{18}\text{O}$ values for plagioclase of +6.0 to +6.5‰. These are $\sim 0.5\text{--}1\text{\textperthousand}$ lower than
95 expected values, which, when taken into consideration with other trace-element, isotopic, and

96 petrographic data, are suggestive of up to ~25% assimilation of low- $\delta^{18}\text{O}$, upper crustal material
97 for an assimilant with a $\delta^{18}\text{O}_{\text{plag}}$ value of +5.0‰ (Bacon et al., 1989, 1994).

98 **3. Petrology of the sample suite**

99 Samples of granitoid blocks selected for this study were collected during geologic
100 mapping of the Mt. Mazama region (Bacon, 2008). All of the samples have been analyzed for
101 major- and trace-element geochemistry. Five were analyzed with X-ray fluorescence (XRF) and
102 instrumental neutron activation analysis (INAA) by Bruggman et al. (1987), and the remaining
103 two were analyzed via inductively coupled plasma optical emission spectrometry (ICP-OES) and
104 inductively coupled plasma mass spectrometry (ICP-MS) by Activation Laboratories Ltd.
105 (ActLabs) for this study. Six of the seven samples analyzed are granodiorite and the remaining
106 sample is aplite. The samples represent the full range of partial melting observed in the
107 granitoids from 0 to 50 vol.%. Plagioclase (≤ 6 mm diameter in nonmelted samples) display
108 oscillatory zoning and range in composition from An₁₃ to An₆₇ (Bacon, 1992). Cores tend to be
109 $\leq \text{An}_{50}$ and are typically more calcic than rims. Quartz (≤ 1.5 mm in nonmelted samples) grew in
110 the interstitial space surrounding the plagioclase and is accompanied by alkali feldspar and sodic
111 plagioclase crystals, commonly in granophyric intergrowths (Bacon, 1992).
112 Cathodoluminescence (CL) images of the quartz crystals reveal magmatic growth zoning, as well
113 as evidence for alteration and heating in the form of overgrowths, healed cracks, and dark,
114 possibly recrystallized zones. Other minerals include hypersthene, augite, hornblende, biotite,
115 magnetite, ilmenite, apatite, and zircon (Bacon, 1992). Zircons analyzed in this study have
116 SHRIMP ^{238}U - ^{230}Th model ages of ~110–200 ka (sample 1627) and ~27 ka (sample 1995), and
117 span nearly the full range of crystallization ages represented by the granitoids and associated
118 antecrustic zircons (Bacon and Lowenstern, 2005).

119 **4. Analytical methods**120 *4.1 In situ oxygen isotope analysis*

121 To prepare the granitoids for *in situ* oxygen isotope analysis, rock chips of six samples
122 were cut using a thin diamond saw blade and were cast in 2.5 cm diameter epoxy plugs. Two
123 grains of UWQ-1, a well-characterized quartz reference standard for SIMS oxygen isotope
124 analysis (Kelly et al., 2007), were embedded with epoxy in shallow, <2 mm holes drilled near the
125 center of each sample round. The 2.5 cm rounds were polished using a procedure outlined by
126 Heck et al. (2011) to minimize sample surface relief, which is key to obtaining accurate and
127 precise isotope ratio analyses via SIMS (Kita et al., 2009, 2011). Zircon grain mounts that were
128 previously used for *in situ* U-Th isotope analyses (Bacon and Lowenstern, 2005; Bacon et al.,
129 2000) were used for oxygen isotope analysis by SIMS in this study. These mounts include
130 zircons from nonmelted sample 1627 and minimally melted sample 1995 (<2% melt). We note
131 that targeting zircons only from nonmelted to minimally melted samples avoids the potential for
132 dissolution of zircon rims during partial melting of the granitoids. To prepare the zircon mounts
133 for SIMS analysis, 4 to 5 grains of KIM-5, a well-characterized zircon reference standard
134 (Valley, 2003), were embedded near the center of the mounts. The samples were then re-polished
135 following the procedure above.

136 Samples were imaged in preparation for SIMS analysis with a Hitachi S-3400N scanning
137 electron microscope (SEM) using secondary electron (SE), back-scattered electron (BSE), and
138 cathodoluminescence (CL) imaging. Spot analyses to confirm the identity of mineral phases
139 were performed using Energy-Dispersive X-ray Spectroscopy (EDS) at an accelerating voltage
140 of 15 keV, a working distance of 10 mm, and Thermo Scientific NORAN System SIX software.

141 The samples were also imaged by SEM after SIMS analysis to evaluate the ion probe pits for the
142 presence of inclusions, cracks, or other irregularities.

143 *In situ* oxygen isotope analyses of cores and rims of plagioclase, quartz, and zircon
144 (Table A1 in Appendix A) were performed on the CAMECA IMS-1280 secondary ion mass
145 spectrometer (SIMS) at the WiscSIMS Laboratory at the University of Wisconsin-Madison
146 Department of Geoscience. In addition, detailed core to rim transects were measured across a
147 total of ten quartz crystals in a nonmelted granitoid and four of the partially melted granitoids.

148 Analysis spots were selected based on detailed SE, BSE, and CL images with the goal of
149 avoiding cracks, inclusions, and other defects in the crystal surface. Because increased
150 uncertainty can be introduced by instrumental mass bias (“XY effect”, Kita et al., 2009), the
151 spots, which are approximately 10 to 20 μm in diameter, were placed within 8 mm of the center
152 of the sample round (Peres et al., 2013). Instrumental mass fractionation (IMF or bias) and drift
153 were monitored and corrected by performing 4–5 analyses of the UWQ-1 quartz standard in the
154 granitoid sample rounds and the KIM-5 zircon standard in the zircon grain mounts before and
155 after every 10–15 analyses of unknowns. A detailed description of this bracketing method can be
156 found in Valley and Kita (2009). Precision (2SD) for the unknown analyses were calculated
157 based on the standard deviation of the bracketing standard analyses collected before and after
158 each group of unknowns. To determine instrumental bias correction factors for plagioclase,
159 measurements of $\delta^{18}\text{O}$ were collected in homogenous plagioclase standards of known oxygen
160 isotope compositions and then used to generate a calibration curve relative to the UWQ-1 quartz
161 standard (Valley and Kita, 2009). Because instrumental bias varies with anorthite (An) content,
162 correction factors were determined for plagioclase standards with a range of An content, from
163 An₀ to An₉₀ (see Appendix C). To apply this correction to plagioclase in the samples, An content

164 was measured for the SIMS analysis spots using a CAMECA SX51 and Probe for Windows
165 software in the Eugene Cameron Electron Microprobe Lab at the University of Wisconsin-
166 Madison Department of Geoscience. All $\delta^{18}\text{O}$ values are reported relative to VSMOW.

167 *4.2 U-Th isotopes*

168 Samples selected for U-Th isotope analysis include the six granodiorites analyzed for
169 oxygen isotopes as described above and an additional granitic aplite sample. Aliquots of ~125–
170 200 mg of powdered whole rock were dissolved and processed to separate U and Th using
171 methods described in Wende et al. (2015). Precise measurements of U-series isotope ratios were
172 made on a Micromass *Isoprobe* MC-ICP-MS at the University of Wisconsin-Madison’s TIMS-
173 ICP Lab, Department of Geoscience, following methods of Ankney et al. (2013) and Jicha et al.
174 (2009). Uranium and Th cuts of each sample were prepared for isotopic analysis and analyzed as
175 described in Ankney et al. (2013). External precision, reproducibility, and accuracy of Th and U
176 isotope measurements were monitored through analyses of spiked and nonspiked rock standards
177 (AGV-2, BCR-2) and U and Th standard solutions (IRMM-035, IRMM-036, NBL-114, U-500).
178 For Th isotope analysis, a second-order polynomial correction ($R^2 > 95\%$) based on the
179 $\delta^{232}\text{Th}/^{230}\text{Th}$ values (the measured $^{232}\text{Th}/^{230}\text{Th}$ relative to IRMM) and total ion intensity was
180 applied to the data. Thirty-seven analyses of IRMM-035 yielded a $^{232}\text{Th}/^{230}\text{Th}$ ratio of $87,817 \pm$
181 0.39% , 42 analyses of IRMM-036 yielded a $^{232}\text{Th}/^{230}\text{Th}$ ratio of $326,784 \pm 0.80\%$, 11 analyses of
182 BCR-2 yielded a $^{232}\text{Th}/^{230}\text{Th}$ ratio of $211,331 \pm 0.72\%$, and 13 analyses of AGV-2 yielded a
183 $^{232}\text{Th}/^{230}\text{Th}$ ratio of $196,292 \pm 0.69\%$. These measured values are indistinguishable from
184 consensus values given by Sims et al. (2008). U-Th concentrations and isotopic compositions for
185 the rock standards are given in Table 1.

186 **5. Results**

187 *5.1. Oxygen isotope results*

188 *In situ* oxygen isotope analysis of core to rim variations in plagioclase and quartz reveal
189 distinct variations between these minerals (Table A1 in Appendix A). Cores and rims of
190 plagioclase (n=91) are homogeneous within analytical uncertainty ($\leq 0.3\text{\textperthousand}$; Fig. 1A). Oxygen
191 isotope analyses in quartz cores and rims (n=111), however, show that quartz in both nonmelted
192 and partially melted granitoids is typically zoned, where the difference in $\delta^{18}\text{O}$ values between
193 core and rim ($\Delta^{18}\text{O}_{\text{core-rim}}$) can be up to $5.5\text{\textperthousand}$, although most are significantly smaller ($\leq \sim 0.5\text{\textperthousand}$)
194 (Fig. 1B). Core-to-rim transects measured across ten quartz grains ($\Delta^{18}\text{O}_{\text{core-rim}}$ from $0.6 \pm 0.3\text{\textperthousand}$
195 to $5.5 \pm 0.3\text{\textperthousand}$) reveal oxygen isotope zoning profiles in which $\delta^{18}\text{O}$ values constantly drop from
196 the cores towards the rims (see Fig. 2 and Figs. B1-B9 in Appendix B). Transects measured at
197 multiple orientations across crystals in nonmelted sample 1627 reveal fairly symmetrical zoning
198 patterns with respect to the $\delta^{18}\text{O}$ values measured for the rims and the slope of oxygen isotope
199 profiles within individual crystals (Figs. B1-B3 in Appendix B). In partially melted samples,
200 $\delta^{18}\text{O}$ values measured at multiple points around the rim of individual crystals are also typically
201 the same and do not vary beyond the analytical uncertainty of the SIMS measurements (Fig. 2
202 and Figs. B4-B9 in Appendix B). Importantly, embayment of the rims by melting typically does
203 not appear to truncate the measured profiles, and steeper oxygen isotope profiles are measured
204 parallel to the direction of melting (Fig. 2).

205 *In situ* oxygen isotope analyses of cores and rims of zircons (n=26) for two of the
206 samples analyzed in this study (nonmelted sample 1627 and minimally melted sample 1995) give
207 $\delta^{18}\text{O}$ values from $5.2 \pm 0.2\text{\textperthousand}$ (rim) to $6.0 \pm 0.3\text{\textperthousand}$ (rim) (Table A1 in Appendix A, Fig. B11 in
208 Appendix B), which are consistent with “normal” magmatic $\delta^{18}\text{O}$ for zircon, i.e., similar to
209 values in high temperature equilibrium with the mantle (Valley, 2003).

210 *5.2. U-Th isotope results*

211 The majority of whole-rock granitoid samples analyzed in this study display U-Th
212 disequilibrium with ^{238}U excess (Fig. 3) and define a trend that coincides with U-Th isotope
213 compositions measured in pre-climactic and climactic rhyodacites and dacites and LSr scoria
214 erupted during the climactic eruption (Fig. 4, Ankney et al., 2013). Activity ratios of
215 ($^{230}\text{Th}/^{232}\text{Th}$) were corrected for the ingrowth of ^{230}Th since the time of eruption using an age of
216 7.7 ka, as this represents the minimum possible age of the granitoids and any glass (quenched
217 melt) present in them. We note that ages of 20 ka to 200 ka are proposed as possible
218 crystallization ages for the granitoids based on U-Th zircon geochronology (Bacon and
219 Lowenstern, 2005). The maximum U excess recorded in the granitoids ranges from 5.8% to
220 8.8%, based on ages of 7.7 ka and 50 ka, respectively. Because the granitoids have exchanged
221 with hydrothermal fluids, it is possible that additional ingrowth of ^{230}Th may have occurred from
222 decay of excess ^{234}U (i.e., $(^{234}\text{U}/^{238}\text{U}) > 1$) added via hydrothermal fluids, which could skew the
223 apparent ages of the granitoids by up to 30 kyr (see Ankney et al., 2013). We note, however, that
224 these calculations represent a maximum effect of ^{234}U excess in hydrothermally altered rocks,
225 and that Villemant et al. (1996) indicate that ($^{234}\text{U}/^{238}\text{U}$) ratios can be unaffected by interaction
226 with hydrothermal systems, even in samples that have strong enrichments in ^{238}U relative to
227 ^{230}Th due to interaction with hydrothermal fluids (e.g., Sturchio et al., 1987). We therefore
228 suggest that ^{234}U excess did not have a significant effect on the ($^{230}\text{Th}/^{232}\text{Th}$) ratio of the
229 granitoids, especially because they have relatively small U excesses.

230 Two of the samples (1627 and 432) analyzed in this study plot in ^{230}Th -excess in Fig. 3.
231 Sample 1627 is a nonmelted granodiorite that has $\geq 5.6\%$ Th-excess, based on a minimum
232 ($^{230}\text{Th}/^{232}\text{Th}$) correction age of 7.7 ka. We note that CL images of quartz in this sample reveal a

233 large network of annealed fractures and CL-dark zones (Fig. B10 in Appendix B). Sample 432 is
234 a partially melted granitic aplite that has $\geq 3.0\%$ Th-excess. Its major- and trace-element
235 compositions indicate that it is significantly more differentiated than the granodiorites, and it has
236 no eruptive equivalent at Mt. Mazama (Bacon, 1992).

237 **6. Discussion**

238 Given the very low $\delta^{18}\text{O}$ values of meteoric water in the region (present day: $\sim -14\text{\textperthousand}$
239 VSMOW, Thompson et al., 1987), oxygen isotopes are particularly sensitive tracers of upper
240 crustal processes associated with growth of the climactic chamber at Mt. Mazama (Bacon et al.,
241 1989, 1994). Based on prior U-Th isotope studies at Crater Lake (Ankney et al., 2013), U-series
242 isotopes provide constraints on the timing of upper crustal hydrothermal interaction. In our
243 discussion below, we first use models of oxygen diffusion under hydrothermal conditions and the
244 U-Th isotope composition of the granitoids to assess the timing of hydrothermal circulation
245 associated with the climactic magma chamber. We then use oxygen isotope diffusion models to
246 examine timescales of partial melting in the granitoids in an attempt to understand the origin of
247 the most highly melted granitoids in the context of the climactic magma chamber as envisaged
248 by Druitt and Bacon (1989).

249 *6.1. Evidence for two stages of oxygen isotope exchange in wall rocks at Mt. Mazama*

250 *In situ* measurements of oxygen isotope compositions in plagioclase, quartz, and zircon
251 crystals in this study provide a record of a minimum of two stages of oxygen isotope exchange
252 that affected the granitoid wall rocks surrounding the climactic magma chamber at Mt. Mazama
253 (Fig. 4). We propose that these stages can be distinguished based on differences observed in the
254 oxygen isotope zonation and fractionation measured in nonmelted or incipiently melted samples
255 relative to those containing significant proportions of melt. An initial, subsolidus exchange stage

256 can be inferred from the presence of zircon crystals with mantle-like $\delta^{18}\text{O}$ values in nonmelted
257 sample (1627) and minimally melted sample 1995 (<2% melt), which indicates that the parent
258 magmas did not originally have unusually low $\delta^{18}\text{O}$ values (see Fig. B11 in Appendix B).
259 Lowering of $\delta^{18}\text{O}$ values in plagioclase and quartz in these samples therefore requires oxygen
260 isotope exchange after the granitoids initially crystallized, as was suggested by Bacon et al.
261 (1989). Hereafter, we refer to this subsolidus exchange as Exchange Stage 1 and interpret the
262 resulting low $\delta^{18}\text{O}$ values in plagioclase and quartz to reflect hydrothermal circulation of low-
263 $\delta^{18}\text{O}$ meteoric waters, which seems likely to have occurred through fluid flow along grain
264 boundaries and fast grain boundary diffusion (e.g., Eiler et al., 1992). Exchange Stage 1 is best
265 represented by the $\delta^{18}\text{O}$ zonation observed across core to rim transects in quartz in sample 1627
266 (Fig. 4). This sample is nonmelted and is therefore least likely to have been affected by
267 significant (i.e., measurable via SIMS) high temperature exchange during later heating that
268 resulted in partial melting of most granitoid samples. Moreover, the $\Delta^{18}\text{O}_{\text{qtz-plag}}$ fractionation
269 (using quartz rims) of $\sim 1.4\text{\textperthousand}$ measured for this sample is consistent with exchange at subsolidus
270 temperatures of $\sim 500\text{--}700\text{ }^{\circ}\text{C}$ (e.g., Chiba et al., 1989; Matthews et al., 1983) and thus under
271 hydrothermal conditions.

272 Two lines of evidence suggest that a second stage of oxygen isotope exchange took place
273 during heating and melting of the granitoid blocks, defined here as Exchange Stage 2. First,
274 $\Delta^{18}\text{O}_{\text{qtz-plag}}$ and $\Delta^{18}\text{O}_{\text{qtz-glass}}$ fractionations are significantly smaller at $\sim 0.5\text{--}0.9\text{\textperthousand}$ (using quartz
275 rims) in the melted samples relative to those in the nonmelted sample (1627), indicating
276 additional oxygen isotope exchange at high temperatures (e.g., Bindeman and Valley, 2002).
277 Second, petrographic evidence exists in the partially melted granitoids for the influence of
278 melting on oxygen isotope profiles. Melting at the edges of the crystals generally does not

279 truncate the measured diffusion profiles. Where melting preferentially affected one side of a
 280 crystal, we observe shortening and steepening of the diffusion profiles (Figs. 2 and 4). In the few
 281 cases where melting does appear to truncate the oxygen isotope gradients measured in quartz,
 282 this may be a result of melting and diffusion processes occurring concurrently and at different
 283 rates. Importantly, the preservation of diffusion profiles indicates that partial melting of the
 284 granitoid blocks was relatively rapid and thus occurred closely in time to the climactic eruption.
 285 This is quantified in Section 6.3.

286 The homogeneity in $\delta^{18}\text{O}$ values in the plagioclase cores and rims in both the nonmelted
 287 and partially melted granitoid blocks indicates that complete oxygen isotope diffusional
 288 relaxation occurred in plagioclase prior to the climactic eruption. Given the fact that oxygen
 289 diffusion coefficients for plagioclase at the temperatures of the climactic magma chamber are 5
 290 to 30 times larger (i.e., faster) than those of quartz (Elphick et al., 1988; Giletti et al., 1978), re-
 291 equilibration for plagioclase the size of crystals in the granitoids is expected except under very
 292 short timescales ($<<10^2$ years).

293 *6.2 Timescales for hydrothermal exchange (Exchange Stage 1)*

294 *6.2.1 Parameters for modeling hydrothermal exchange (Exchange Stage 1)*

295 The presence of oxygen isotope zonation in quartz allows us to place constraints on the
 296 timescales of both hydrothermal exchange (Exchange Stage 1) and partial melting (Exchange
 297 Stage 2) of the granitoid blocks. To determine the amount of time (t_{hydro}) required to generate the
 298 measured profiles created during Exchange Stage 1 in the nonmelted sample, we reproduced the
 299 oxygen isotope zonation across each transect using a spherical model given by equation 6.18
 300 from Crank (1975):

$$301 \frac{C - C_1}{C_0 - C_1} = 1 + \frac{2a}{\pi r} \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin \frac{n\pi r}{a} e^{(-\frac{Dn^2\pi^2 t}{a^2})} \quad (\text{Eq. 1})$$

302 where C is the composition at distance r (measured from center) in a sphere, C_1 is the initial
 303 composition, C_0 is the composition at the sphere's surface, a is the radius, D is a diffusion
 304 coefficient (discussed below), and t is time. This equation is for a simplified case of diffusion in
 305 a sphere where the isotopic composition of the diffusing element (e.g., $^{18}\text{O}/^{16}\text{O}$) remains constant
 306 at the surface of the sphere (Crank, 1975). We note that this assumes that the nonmelted sample
 307 did not undergo any high-temperature exchange in association with heating by the climactic
 308 magma chamber during Exchange Stage 2 before being erupted. It is unlikely that this
 309 assumption is completely correct, but, as noted previously, the amount of diffusive exchange
 310 during Exchange Stage 2 might have been small and not detected along measured traverses in
 311 sample 1627. Equation 1 was also used to generate estimated Exchange Stage 1 profiles for the
 312 partially melted samples, which are in turn used as initial conditions for Exchange Stage 2.

313 Our diffusion models are primarily controlled by experimentally determined values of
 314 diffusion coefficients (D) for oxygen self-diffusion (volume diffusion), which is likely the rate-
 315 limiting step in isotopic exchange for these samples (e.g., Bacon et al., 1994; Valley, 2001). To
 316 calculate timescales for diffusion in quartz during Exchange Stage 1, we used diffusion
 317 coefficients determined for hydrothermal conditions ($P_{\text{H}_2\text{O}} = 100 \text{ MPa}$) by Dennis (1984),
 318 commensurate with the hydrothermal environment required to lower the $\delta^{18}\text{O}$ values of the
 319 samples from the presumed magmatic values indicated by zircon oxygen isotope compositions
 320 and typical zircon-melt oxygen isotopic fractionation (e.g., Bindeman and Valley, 2002).
 321 Diffusion coefficients for exchange during Exchange Stage 1 were then adjusted for different
 322 temperatures using the Arrhenius relation:

$$323 \quad D = D_0 e^{-E/RT} \quad (\text{Eq. 2})$$

324 where D_0 is the pre-exponential factor (cm^2/s or m^2/s , determined experimentally), E is the
325 activation energy (J/mol , determined experimentally), R is the gas constant ($8.3143 \text{ J/K}^*\text{mol}$),
326 and T is temperature (K). A range of temperatures of $400\text{--}700 \text{ }^\circ\text{C}$ was considered for Exchange
327 Stage 1, which produces considerable variability in the t_{hydro} needed to model the measured
328 profiles. Reproducing the $\delta^{18}\text{O}$ value measured for the core of a crystal in nonmelted sample
329 1627 requires a $t_{\text{hydro}} = \sim 10^3$ yrs at $700 \text{ }^\circ\text{C}$ and $t_{\text{hydro}} > 2 \times 10^6$ yrs at $400 \text{ }^\circ\text{C}$ (Fig. 5). At
330 temperatures of $<\sim 510 \text{ }^\circ\text{C}$, modeled times are too long based on the maximum age of the
331 granitoids determined by zircon geochronology ($\sim 300 \text{ ka}$, Bacon and Lowenstern, 2005) or the
332 maximum age for the onset of Exchange Stage 1 of $\sim 70 \text{ ka}$ based on the presence of a “normal”
333 $\delta^{18}\text{O}$ granitoid in eruptive products of that age (Bacon et al., 1994); we therefore restrict our
334 discussion below of modeling using temperatures of $> 510 \text{ }^\circ\text{C}$.

335 The amount of time required to produce the oxygen isotope gradients measured in quartz
336 in this study is also dependent on the crystal size (diffusion distance, a) and the initial (C_1) and
337 surface (C_0) $\delta^{18}\text{O}$ values (Valley, 2001). For our models, we set the diffusion distance (a) equal
338 to the core-to-rim distance for each transect that we measured, which ranged from $\sim 100\text{--}450 \mu\text{m}$.
339 We note that this may underestimate t_{hydro} for Exchange Stage 1 in the partially melted samples,
340 as the crystals are expected to be smaller than they were prior to melting. To evaluate this, the
341 relation between t_{hydro} and crystal size at $510 \text{ }^\circ\text{C}$ is plotted in Fig. 6, which typically increases
342 with increasing crystal diameter. Exceptions to this are several crystals found in partially melted
343 samples 1023 and 1995 (Q6 in 1023 and Q7 in 1995, Fig. 6) that require relatively long
344 timescales for Exchange Stage 1 despite their smaller size. These crystals have anomalously low
345 $\delta^{18}\text{O}$ values in their cores (i.e., they require longer t_{hydro} to produce) that were likely lowered by
346 diffusion during Exchange Stage 2, as discussed below. It is also important to note that the range

347 of t_{hydro} calculated for single samples could be a result of the three-dimensional orientation or
348 shape of the quartz crystals in the sample mount. Our models are limited by measuring transects
349 for a single, two-dimensional cross section of each quartz crystal and thus actual distances to the
350 rim of each grain could have been less than the distance given in Fig. 6.

351 Initial values (C_1) for the quartz were assumed to be +8.0‰, which is in high-temperature
352 equilibrium with zircon in these samples at magmatic temperatures. For the nonmelted sample, a
353 re-equilibrated (rim) $\delta^{18}\text{O}$ value (C_0) was estimated by extrapolating the measured profiles to a
354 distance of zero from the rim along the core-to-rim transverse. The re-equilibrated $\delta^{18}\text{O}$ values
355 (C_0) for quartz for Exchange Stage 1 in the partially melted samples were calculated by adding
356 1.4‰, a value based on the average $\Delta^{18}\text{O}_{\text{qtz-plag}}$ fractionation measured for the nonmelted sample,
357 to the average $\delta^{18}\text{O}$ value measured for plagioclase in each sample. This assumes that the
358 plagioclase crystals were homogenized to their current oxygen isotope composition during
359 hydrothermal exchange in Exchange Stage 1, and were not significantly affected by subsequent
360 high-temperature exchange during Exchange Stage 2. This assumption is probably an
361 oversimplification, as it is likely that the $\delta^{18}\text{O}$ values for plagioclase were somewhat lower
362 and/or the plagioclase crystals were zoned like the quartz prior to melting. Importantly, we note
363 that the C_0 values and modeled oxygen isotope profiles for Exchange Stage 1 for the partially
364 melted samples must be distinct from the nonmelted sample because the $\delta^{18}\text{O}$ values for quartz
365 and plagioclase in nonmelted sample 1627 are too low to be used to represent Exchange Stage 1
366 in partially melted sample 1023 (Fig. 7a). For our models, Exchange Stage 1 diffusion in the
367 partially melted samples was presumed to have progressed until the $\delta^{18}\text{O}$ value in the core of
368 each crystal matched either the maximum value measured for the core or the estimated C_0 for
369 that sample (Fig. 7b). This approach gives a maximum t_{hydro} for each transect, as it assumes that

370 the cores were not affected by subsequent diffusion during Exchange Stage 2, and, in
371 conjunction with the variable C_0 values, produces modeled Exchange Stage 1 oxygen isotope
372 profiles that vary between samples (blue curves in Fig. 8). A summary of temperature and
373 initial/re-equilibration conditions used for each sample is given in Table 2.

374 *6.2.2 Diffusion model results: timescales for hydrothermal exchange (Exchange Stage 1)*

375 The timescales for Exchange Stage 1 for specific samples vary depending on their
376 oxygen isotope profiles and the oxygen isotope composition measured in plagioclase (Fig. 8), as
377 noted above. Self-diffusion models for oxygen isotope zonation measured in quartz transects
378 predict that hydrothermal exchange (Exchange Stage 1) in the nonmelted sample could have
379 occurred over a period of \sim 1000 yrs to \sim 63,000 yrs prior to the caldera-forming eruption at
380 temperatures of 700 °C to 510 °C, as constrained by transects measured across the largest quartz
381 grain from nonmelted granitoid sample 1627. In the partially melted samples, models suggest
382 that Exchange Stage 1 occurred over a period of \sim 150 yrs (700 °C, sample 1326) to \sim 99,000 yrs
383 (510 °C, sample 1995) prior to partial melting. Shorter times calculated for the partially melted
384 samples relative to the nonmelted sample may be the result of shortening of core to rim distances
385 during partial melting. Samples for which we calculated times longer than 63,000 yrs include
386 those in Fig. 6 that require anomalously long times for Exchange Stage 1 despite their relatively
387 small diameters. This means that it is likely more appropriate to assume that the cores of these
388 samples did not reach their current $\delta^{18}\text{O}$ values during Exchange Stage 1, but were affected by
389 additional oxygen isotope exchange during Exchange Stage 2. We note that this is necessary to
390 explain the low $\delta^{18}\text{O}$ values we measure for sample 1995, which is interpreted as the plutonic
391 equivalent to rhyodacites erupted \sim 27 ka (Bacon and Lowenstern, 2005) and would require that
392 hydrothermal exchange occurred over timescales of less than \sim 20,000 yrs.

393 6.2.3 ^{238}U enrichment and the hydrothermal history of the climactic magma chamber

394 The combination of U-Th and oxygen isotope data also allows us to evaluate the source
395 and age of U enrichment in the granitoids, particularly as it relates to the hydrothermal system
396 that was associated with the growing upper crustal magma chamber at Mt. Mazama. Here, we
397 further explore the proposal of Ankney et al. (2013) that U enrichment in the granitoids reflects
398 exchange with hydrothermal fluids, a scenario that has been recognized at other caldera settings,
399 including at Long Valley, Valles, Timber Mountain, and Yellowstone (Bindeman et al., 2006;
400 Sturchio et al., 1987; Sturchio et al., 1986; Wollenberg et al., 1995), as well as more generally in
401 arc volcanic systems (e.g., Villemant et al., 1996; Zellmer et al., 2014). Uranium enrichment via
402 meteoric fluid flow has also been documented for the Idaho Batholith, where the greatest
403 enrichment in fluid-mobile elements, including U, occurred in portions of the batholith that had
404 the greatest lowering of δD and $\delta^{18}\text{O}$ values (Criss and Taylor Jr., 1983; Gosnold, 1987).

405 At Mount Mazama, ^{238}U -excess is more common than ^{230}Th excess (Ankney et al., 2013).
406 This is in contrast to other Cascade volcanoes for which U-excess is observed in less than 15%
407 of samples analyzed for U-Th isotopes (Bennett et al., 1982; Jicha et al., 2009; Mitchell and
408 Asmerom, 2011; Newman et al., 1986; Volpe, 1992; Volpe and Hammond, 1991; Wende et al.,
409 2015). Typically, U excess in arc settings is attributed to U addition from dehydration of the
410 subducting slab and fluid fluxing of the mantle wedge, reflecting the fluid-mobile nature of U
411 (e.g., Turner et al., 2003). In the Cascades, U enrichment due to interaction with subduction
412 fluids is thought to be less pronounced than in most other arcs, considering the relatively hot and
413 dry nature of the subduction zone (Blackwell et al., 1990; Harry and Green, 1999; Hildreth,
414 2007; Van Keken et al., 2002; Wilson, 1988). In a previous study, Ankney et al. (2013) proposed
415 that U excess documented in lavas and pyroclastic rocks erupted from the climactic magma

416 chamber of Mt. Mazama was generated by assimilation of an upper crustal component that was
417 enriched in U through interaction with hydrothermal fluids. The new U-Th isotope data
418 measured in the granitoids in this study support that interpretation, because the $\delta^{18}\text{O}$ values of the
419 granitoids have all been lowered from their primary magmatic oxygen isotope compositions, and
420 the granitoids generally fall along a U excess array that is similar to that defined by the
421 preclimactic and climactic dacites and rhyodacites (Fig. 3). Importantly, five of the analyzed
422 granitoids have ^{238}U excesses equal to or greater than any of the dacites or rhyodacites
423 previously analyzed for U-Th isotopes. Sample 452, in particular, has the highest U excess yet
424 measured in a dacite or rhyodacite rock at Mt. Mazama and also has the lowest $\delta^{18}\text{O}$ value
425 measured in this study.

426 The U excess array measured in the granitoids and in volcanic rocks from Mt. Mazama
427 suggests that U enrichment occurred \sim 40–75 kyrs prior to the climactic eruption (i.e., \sim 48–83
428 ka), based on calculations by Ankney et al. (2013) for volcanic rocks and the relations in Fig. 3.
429 The beginning of hydrothermal circulation may be associated with voluminous dacite eruptions
430 at Mt. Mazama that occurred around 70 ka (Bacon and Lanphere, 2006), and we suggest that this
431 records when a persistent upper crustal magma chamber had been developed, which would
432 supply a large shallow heat source to support a hydrothermal envelope. The U-excess timescale
433 for Exchange Stage 1 overlaps with that calculated using the oxygen diffusion models discussed
434 in section 6.2.1 above, and allows us to put further constraints on the range of t_{hydro} and
435 temperature conditions for Exchange Stage 1. A minimum age of \sim 48 ka for the onset of
436 hydrothermal circulation would require temperatures of $<\sim$ 525 °C for the nonmelted sample.
437 Assuming a maximum age of \sim 70 ka per the discussion in section 6.2.1, we can then propose a
438 fairly narrow range of temperatures for Exchange Stage 1 from \sim 510–525 °C. This is consistent

439 with the $\Delta^{18}\text{O}_{\text{qtz-plag}}$ fractionation (using quartz rims) of $\sim 1.4\text{\textperthousand}$ measured for nonmelted sample
440 1627.

441 Although the correlation between U excesses and low $\delta^{18}\text{O}$ values broadly supports the
442 model of Ankney et al. (2013), two issues must be addressed. The first is that timescales of >40
443 kyrs are too long to explain the U excess and low- $\delta^{18}\text{O}$ values measured in partially melted
444 sample 1995, which zircon geochronology indicates probably had crystallized by ~ 30 ka (Bacon
445 and Lowenstern, 2005). The presence of zircons with “normal” magmatic $\delta^{18}\text{O}$ values in this
446 sample implies that the other minerals in this rock must have experienced subsolidus oxygen
447 isotope exchange during Exchange Stage 1, which can occur at timescales of <20 kyrs according
448 to modeling in section 6.2.2. The U-Th isotope composition of sample 1995, however, is within
449 error of compositions measured for possible volcanic equivalents by Ankney et al. (2013), which
450 have U excesses that they attribute to assimilation of U-enriched upper crust. We therefore
451 suggest that sample 1995 may have, in part, acquired its U excess from assimilation of earlier
452 granitoids. This is permissible given the higher Fe-Ti oxide temperatures measured for the likely
453 volcanic equivalent of sample 1995 (854 °C, Druitt and Bacon, 1989) relative to those indicated
454 for the original crystallization conditions of earlier granitoids (689–834 °C, Bacon, 1992). The
455 second issue is two granitoid samples that plot in Th excess (Fig. 3) that have low $\delta^{18}\text{O}$ values. If
456 our model for U-enrichment due to hydrothermal circulation is correct, presumably through U
457 leaching from other rocks, it is in fact not surprising that some granitoids are in Th excess (as
458 are, presumably, some country rocks). Extensive interaction with hydrothermal fluids that
459 leached U may account for the high abundance of possible alteration features observed in CL
460 images of quartz in sample 1627 (Fig. B10 in Appendix B), which has the largest Th excess (Fig.
461 3) relative to others analyzed in this study.

462 6.3 Timescales for partial melting (Exchange Stage 2)

463 6.3.1 Parameters for modeling oxygen isotope exchange during partial melting (Exchange Stage
464 2)

465 In the partially melted samples, models of high temperature exchange during partial
466 melting (Exchange Stage 2) were calculated by applying Equation 1 to the initial profiles from
467 Exchange Stage 1 discussed in section 6.2.2 (Fig. 7b, Table 2). Determining appropriate
468 diffusion coefficients for modeling Exchange Stage 2 was more challenging relative to Exchange
469 Stage 1, because the water contents that existed during melting of the granitoids are difficult to
470 constrain. Oxygen self-diffusion coefficients for quartz vary dramatically depending on the
471 presence of water (e.g., Farver and Yund, 1991). Diffusion coefficients for oxygen diffusion
472 determined in anhydrous studies, where experiments involve exchange with dry- $^{18}\text{O}_2$ gas (e.g.,
473 Dennis, 1984), are several orders of magnitude smaller than those measured for oxygen diffusion
474 determined for hydrothermal (wet) conditions, where experiments are typically performed at a
475 pressure of water ($P_{\text{H}_2\text{O}}$) of 100 MPa (e.g., Dennis, 1984; Giletti and Yund, 1984; Sharp et al.,
476 1991). Because the granitoids at Mt. Mazama underwent exchange with hydrothermal fluids
477 during Exchange Stage 1, and contain abundant aqueous fluid inclusions in quartz and feldspar,
478 water activity may have been high during melting, although the melts evidently were not water-
479 saturated, especially in samples with higher melt fractions (Bacon, 1992; Bacon et al., 1994).
480 Moreover, Fe-Ti oxide geothermometry and water contents of glass suggest that partial melting
481 occurred without introduction of a vapor phase (Bacon, 1992). We therefore calculated high-
482 temperature diffusion profiles and timescales (t_{melt}) for Exchange Stage 2 in the partially melted
483 samples using diffusion coefficients for quartz for both anhydrous (Dennis, 1986) and
484 hydrothermal conditions (Dennis, 1984). At temperatures of \sim 850–1000 °C, these values of D

485 require $t_{melt} = \sim 1500\text{--}90,000$ years (anhydrous) and $t_{melt} \geq \sim 1$ year (hydrothermal). We suggest
486 that the actual diffusion coefficients for the granitoids during partial melting likely fall
487 somewhere in between values determined for anhydrous and hydrothermal conditions as there
488 would have been some water dissolved in melts, and we therefore favor values from Farver and
489 Yund (1991), who measured rates of oxygen self-diffusion in quartz over a range of $P_{\text{H}_2\text{O}}$ from 5-
490 350 MPa. It is important to note that addition of only a small amount of water ($P_{\text{H}_2\text{O}} = 5$ MPa)
491 increases the diffusion coefficient for quartz relative to an anhydrous value by at least two orders
492 of magnitude. Additional parameters and results for models using diffusion coefficients for
493 Exchange Stage 2 where $P_{\text{H}_2\text{O}} = 5$ MPa, which is appropriate given the low water content of the
494 partial melts of the Crater Lake granitoids (<1 wt.%), are discussed in detail below.

495 Diffusion coefficients for Exchange Stage 2 were adjusted for different temperatures on a
496 sample-specific basis using Equation 2. Farver and Yund (1991) do not give D_0 and E for the
497 variable $P_{\text{H}_2\text{O}}$ experiments, so in order to scale diffusion coefficients with temperature for partial
498 melting, we back-calculated the pre-exponential factor using the experimental temperature of
499 700 °C and an activation energy of 138 KJ/mol, which is equal to an experimental value for
500 quartz determined by Dennis (1984). We note that this value for E is relatively low in
501 comparison to most others found in the experimental literature (e.g., Dennis, 1984; Farver, 2010;
502 Farver and Yund, 1991; Giletti and Yund, 1984; Sharp et al., 1991), so it provides a conservative
503 estimate of the increase in diffusion coefficients with increasing temperature. Temperatures
504 equal to Fe-Ti oxide temperatures determined by Bacon (1992) for re-equilibrated oxides in
505 contact with glass were used to calculate diffusion coefficients for quartz in the partially melted
506 granitoids, with the exception of sample 1995 for which there are no oxide temperatures
507 available. For this sample, we assumed a temperature of 900 °C, which is a moderate value for a

508 partially melted granitoid and is reasonable given its $\Delta^{18}\text{O}_{\text{qtz-plag}}$ fractionation (for quartz rims) of
509 0.7‰.

510 The amount of time (t_{melt}) required for Exchange Stage 2 can also vary based on the
511 extent of oxygen isotope exchange that is presumed to have occurred during Exchange Stage 1.
512 As noted above in section 6.2.1, the initial (C_1) profiles for the partially melted samples were
513 calculated assuming that the core of each crystal reached its current value during Exchange Stage
514 1. Values for C_0 during partial melting were estimated based on appropriate high-temperature
515 equilibrium values with glass (bulk values from Bacon et al., 1989) and/or plagioclase. This
516 gives maximum possible ages for Exchange Stage 1, and therefore results in minimum ages for
517 Exchange Stage 2. Maximum ages for Exchange Stage 2 can be calculated by assuming the
518 quartz crystals were unaffected by oxygen isotope exchange during Exchange Stage 1, i.e., they
519 had no oxygen isotope zonation present prior to partial melting and were in equilibrium with
520 zircon ($\delta^{18}\text{O}_{\text{qtz}} = +8.0\text{\textperthousand}$). We calculate maximum ages of $t_{melt} = \sim 30\text{--}840$ years for the partially
521 melted samples, which, although longer than those discussed below, do not markedly change our
522 interpretations of the high temperature (Exchange Stage 2) history of the granitoids with respect
523 to the growing climactic magma chamber.

524 *6.3.3 Diffusion model results: timescales for partial melting (Exchange Stage 2)*

525 The onset of melting (Exchange Stage 2) in the partially melted granitoids is predicted by
526 our models to have occurred at a minimum of ~10 to 200 years prior to the climactic eruption of
527 Mt. Mazama (Fig. 8). We propose that the age for Exchange Stage 2 represents the timing of a
528 temperature increase of the climactic magma chamber, likely due to the addition of heat and
529 volume from the injection of the final batches of mafic recharge magma into the chamber prior to
530 the caldera-forming eruption. Timescales of 10s to 100s of years prior to the climactic eruption

531 are consistent with the final preclimactic rhyodacite eruptions of Llao Rock at ~7.9 ka and
532 Cleetwood at ~7.7-7.8 ka (Bacon and Lanphere, 2006). Iron-titanium oxide temperatures and
533 stratigraphic relations imply that the higher-temperature, partially melted granitoids were derived
534 from the deeper walls of the climactic magma chamber, suggesting that they were likely situated
535 in close proximity to recharge magma and associated mafic cumulates (Bacon, 1992; Druitt and
536 Bacon, 1989). Compositions and textures of enclaves in the Llao Rock and Cleetwood lavas, and
537 of scoria in climactic ejecta are supportive of injection of multiple batches of recharge magma
538 into the chamber during the final buildup to the climactic eruption (Bacon and Druitt, 1988;
539 Druitt and Bacon, 1989). The isotopic and trace-element composition of HSr enclaves found in
540 the Llao Rock rhyodacite differs from those found in the Cleetwood rhyodacite, suggesting that
541 they interacted with different batches of recharge magma (Bacon and Druitt, 1988; Bacon et al.,
542 1994). Moreover, some plagioclase phenocrysts found in HSr scoria from the climactic eruption
543 have compositions and disequilibrium textures (spongy, corroded) that are consistent with
544 injection of hotter, HSr recharge magma into the cumulate pile below convecting rhyodacite
545 magma within the climactic magma chamber (Druitt and Bacon, 1989). Based on these lines of
546 evidence, melting of the granodiorites, and high-temperature oxygen isotope exchange
547 (Exchange Stage 2) within a conductive thermal boundary surrounding the magma chamber,
548 seems likely to record the timing of these or similar recharge events.

549 The timescales calculated for oxygen isotope exchange for partial melting can be tested
550 against Fe-Ti oxide re-equilibration timescales for the granitoid blocks based on the spherical
551 model for diffusion of Crank (1975) and diffusion coefficients for Ti calculated from equation 21
552 of Aragon et al. (1984) (Fig. 9). Bacon (1992) indicates that the timing of Fe-Ti oxide re-
553 equilibration in the partially melted samples represents a minimum time for the duration of

554 melting in the granitoids. He suggests that melting initiated hundreds of years prior to the
555 caldera-forming eruption, based on calculations of diffusion of Ti in titanomagnetite (the rate-
556 limiting step in oxide re-equilibration, Aragon et al., 1984) for the lowest temperature partially
557 melted granitoid block (755-785 °C) and the largest magnetite crystals (200 µm). The times
558 required for isothermal homogenization of the largest magnetites (200 µm) for our samples range
559 from 200 to 10 years and are consistent with times calculated for oxygen isotope exchange in the
560 quartz, assuming a $P_{H_2O} = 5$ MPa (Fig. 9). In the two samples that contain the highest vol.% melt,
561 the Fe-Ti oxide times are at the lower end or below the range of the oxygen isotope exchange.
562 This may suggest that the Fe-Ti oxides re-equilibrated early during heating ± partial melting of
563 the granitoids, and then were stored at high temperatures for some period of time prior to
564 eruption.

565 La Tourrette et al. (1991) determined minor and trace element concentrations in Fe-Ti
566 oxides, zircon, and glass in three partially melted granodiorite samples from Crater Lake. They
567 found no difference in Zr concentration in glass <100 µm and >500 µm from zircon in sample
568 1326, but reported Zr concentrations in two higher-melt-fraction samples, 1038 and one not
569 analyzed in our study, that were significantly higher near zircon than >500 µm away. Assuming
570 that the measured Zr differences reflect diffusion away from zircon dissolving in low- H_2O
571 rhyolitic melt, the Zr data were interpreted to suggest that the samples could have been partially
572 molten for 800 to 8000 yrs. The times predicted by diffusion models for oxygen isotopes in
573 quartz are probably a more accurate representation of the onset and duration of melting prior to
574 eruption than those based on Fe-Ti oxide homogeneity or Zr gradients in glass, especially
575 because the preservation of diffusion profiles in quartz provides robust constraints on the
576 diffusion models.

577 **7. An “outside in” view of the magma chamber at Mt. Mazama**

578 Oxygen and U-Th isotopes measured in the granitoid wall rocks allow us to characterize
579 the environment of the magma chamber at Mt. Mazama, from the early hydrothermal envelope to
580 recharge leading up to the caldera-forming eruption (Fig. 10). Exchange Stage 1, which includes
581 hydrothermal circulation and U enrichment of the granitoids, likely initiated between 48 and 70
582 ka, based on the eruptive history of evolved Mazama magmas (Bacon et al., 1989; Bacon and
583 Lanphere, 2006), U-Th data for volcanic rocks (Ankney et al., 2013), and new oxygen and U-Th
584 isotope data for the granitoid wall rocks. At ~27 ka, the first preclimactic rhyodacite eruptions
585 occurred (Bacon and Lanphere, 2006), which are thought to have marked the establishment of
586 the large, silicic upper crustal magma chamber that eventually fed the caldera-forming eruption
587 at Mt. Mazama (Bacon and Druitt, 1988). A portion of the rhyodacite magma associated with
588 these eruptions is interpreted to have crystallized at the margins of the growing climactic magma
589 chamber (Bacon and Lowenstern, 2005), as represented in this study by granitoid sample 1995,
590 which has a U-Th zircon age of ~30 ka and contains zircon crystals that have younger nominal
591 model ages (Bacon and Lowenstern, 2005). Notably, we measured low- $\delta^{18}\text{O}$ values in quartz and
592 plagioclase for this sample, indicating that the hydrothermal envelope was capable of producing
593 significant changes in oxygen isotope compositions over periods of 10^3 to 10^4 years, and as
594 recently as the Last Glacial Maximum (Fig. 10).

595 Eruption of the Llao Rock rhyodacite at ~7.9 ka brought an end to a >10 kyr period of
596 repose in silicic eruptive activity at Mt. Mazama (Bacon and Lanphere, 2006). It was followed
597 shortly by eruption of the Cleetwood rhyodacite at ~7.7–7.8 ka and the climactic eruption at 7.7
598 ka. Oxygen isotope exchange timescales, as well as high Fe-Ti oxide temperatures, indicate that
599 Exchange Stage 2, heating and partial melting of the granitoid rocks, began as little as ~ 10^1 to

600 10^2 years prior to the caldera-forming eruption. We suggest that these timescales correlate with a
601 temperature increase at the magma-wall rock interface in response to mafic recharge (Fig. 10).
602 The recharge magmas, which pooled at the base of the large volume of accumulated rhyodacite
603 magma, or also were injected into the mafic cumulate pile deeper in the chamber (Druitt and
604 Bacon, 1989), provided the heat required to partially melt granitoid wall rocks. This may have
605 contributed to destabilization of the upper part of the magma chamber, possibly leading to the
606 caldera-forming eruption.

607 **8. Conclusions**

608 This study documents shifts in the oxygen and U-Th isotope compositions of granitoid
609 wall rocks in response to thermal events in the climactic magma chamber of Mt. Mazama,
610 including the onset and duration of hydrothermal circulation, as well as heating due to recharge
611 leading up to the caldera-forming eruption. Timescales for U enrichment measured in the
612 granitoids and models of oxygen isotope exchange in nonmelted to minimally melted samples
613 suggest that hydrothermal exchange associated with the climactic magma chamber initiated ~ 48 -
614 70 ka and was capable of producing core-rim zonation in quartz in 10^3 to 10^4 years (Exchange
615 Stage 1). In partially melted granitoids, models indicate that zoning in quartz developed rapidly
616 over timescales of 10^1 to 10^2 years (Exchange Stage 2). Although our models envision these
617 isotopic shifts as the result of a two-stage process, we stress that it is more likely that they
618 developed over a minimum of two stages, including hydrothermal and partial melting processes.
619 Importantly, our results add to a growing body of evidence that destabilization of large silicic
620 magma chambers via recharge may occur within decades preceding caldera-forming eruptions
621 (e.g., Druitt et al., 2012; Michaut and Jaupart, 2006; Saunders et al., 2010; Wark et al., 2007).

622 The unique “outside in” view of this process provided is distinct from the record that may be
 623 preserved (or perhaps be absent) in the phenocrysts in juvenile erupted magma.

624 **Acknowledgments**

625 We thank Kouki Kitajima, Brian Hess, Jim Kern, Mike Spicuzza, Noriko Kita and others
 626 in the WiscSIMS Laboratory at the University of Wisconsin-Madison Department of Geoscience
 627 for their assistance in preparing and analyzing samples for oxygen isotope ratios. Mike Spicuzza
 628 assisted in oxygen isotope analysis by laser fluorination. We also thank John Fournelle and Phil
 629 Gopon for help in imaging and analyzing samples via SEM and EPMA. Additionally, we
 630 acknowledge Allison Wende for her assistance with U-Th isotope analyses. This manuscript
 631 benefited from thoughtful reviews by Kathryn Watts, Ilya Bindeman, Georg Zellmer, and Paul
 632 Tomascak, as well as editing by James Day. This work was supported by National Science
 633 Foundation Grant No. EAR-1144937, as well as the National Science Foundation Graduate
 634 Research Fellowship program under Grant No. DGE-0718123. WiscSIMS is partly supported by
 635 NSF-EAR-1053466, -1355590.

References

Allan, A.S.R., Morgan, D.J., Wilson, C.J.N. and Millet, M.-A. (2013) From mush to eruption in centuries: assembly of the super-sized Oruanui magma body. *Contributions to Mineralogy and Petrology* 166, 143-164.

Ankney, M.E., Johnson, C.M., Bacon, C.R., Beard, B.L. and Jicha, B.R. (2013) Distinguishing lower and upper crustal processes in magmas erupted during the buildup to the 7.7 ka climactic eruption of Mount Mazama, Crater Lake, Oregon, using ^{238}U - ^{230}Th disequilibria. *Contributions to Mineralogy and Petrology* 166, 563-585.

Aragon, R., McCallister, R.H. and Harrison, H.R. (1984) Cation diffusion in titanomagnetites. *Contributions to Mineralogy and Petrology* 85, 174-185.

Arzi, A.A. (1978) Critical phenomena in the rheology of partially melted rocks. *Tectonophysics* 44, 173-184.

Bachmann, O., Oberli, F., Dungan, M.A., Meier, M., Mundil, R. and Fischer, H. (2007) ^{40}Ar / ^{39}Ar and U-Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: Evidence for an extended crystallization history. *Chemical Geology* 236, 134-166.

Bacon, C.R. (1989) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. *Geochimica et Cosmochimica Acta* 53, 1055-1066.

Bacon, C.R. (1992) Partially melted granodiorite and related rocks ejected from Crater Lake caldera, Oregon. *Transactions of the Royal Society of Edinburgh, Earth Sciences* 83, 27-47.

Bacon, C.R. (2008) Geologic map of Mount Mazama and Crater Lake caldera, Oregon: U.S. Geological Survey Scientific Investigations Map 2832, 4 sheets, scale 1:24,000, p. 45 p. pamphlet.

Bacon, C.R., Adami, L.H. and Lanphere, M.A. (1989) Direct evidence for the origin of low-¹⁸O silicic magmas: quenched samples of a magma chamber's partially-fused granitoid walls, Crater Lake, Oregon. *Earth and Planetary Science Letters* 96, 199-208.

Bacon, C.R. and Druitt, T.H. (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. *Contributions to Mineralogy and Petrology* 98, 224-256.

Bacon, C.R., Gunn, S.H., Lanphere, M.A. and Wooden, J.L. (1994) Multiple isotopic components in Quaternary volcanic rocks of the Cascade arc near Crater Lake, Oregon. *Journal of Petrology* 35, 1521-1556.

Bacon, C.R. and Lanphere, M.A. (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. *Geological Society of America Bulletin* 118, 1331-1359.

Bacon, C.R. and Lowenstern, J.B. (2005) Late Pleistocene granodiorite source for recycled zircon and phenocrysts in rhyodacite lava at Crater Lake, Oregon. *Earth and Planetary Science Letters* 233, 277-293.

Bacon, C.R., Persing, H.M., Wooden, J.L. and Ireland, T.R. (2000) Late pleistocene granodiorite beneath Crater Lake caldera, Oregon, dated by ion microprobe. *Geology* 28, 467-470.

Bennett, J.T., Krishnaswami, S., Turekian, K.K., Melson, W.G. and Hopson, C.A. (1982) The uranium and thorium decay series nuclides in Mt. St. Helens effusives. *Earth and Planetary Science Letters* 60, 61-69.

Bindeman, I. and Simakin, A.G. (2014) Rhyolites—Hard to produce, but easy to recycle and sequester: Integrating microgeochemical observations and numerical models. *Geosphere* 10, 930-957.

Bindeman, I.N., Schmitt, A.K. and Valley, J.W. (2006) U-Pb zircon geochronology of silicic tuffs from the Timber Mountain/Oasis Valley caldera complex, Nevada: rapid generation of large volume magmas by shallow-level remelting. *Contributions to Mineralogy and Petrology* 152, 649-665.

Bindeman, I.N. and Valley, J.W. (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. *Contributions to Mineralogy and Petrology* 144, 185-205.

Blackwell, D.D., Steele, J.L. and Kelley, S. (1990) Heat flow in the state of Washington and thermal conditions in the Cascade range. *Journal of Geophysical Research* 95, 19495-19516.

Brown, S.J.A. and Fletcher, I.R. (1999) SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for >250 k.y. magma residence times. *Geology* 27, 1035-1038.

Bruggman, P.E., Bacon, C.R., Aruscavage, P.J., Lerner, R.W., Schwarz, L.J. and Stewart, K.C. (1987) Chemical analyses of rocks and glass separates from Crater Lake National Park and vicinity, Oregon. U.S. Geological Survey Open-File Report 87-57, 38.

Chiba, H., Chacko, T., Clayton, R.N. and Goldsmith, J.R. (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: Application to geothermometry. *Geochimica et Cosmochimica Acta* 53, 2985-2995.

Crank, J. (1975) *The Mathematics of Diffusion*. Clarendon Press, Oxford.

Criss, R.E. and Taylor Jr., H.P. (1983) An $^{18}\text{O}/^{16}\text{O}$ and D/H study of Tertiary hydrothermal systems in the southern half of the Idaho batholith. *Geological Society of America Bulletin* 94, 640-663.

de Silva, S.L., Salas, G. and Schubring, S. (2008) Triggering explosive eruptions: The case for silicic magma recharge at Huaynaputina, southern Peru. *Geology* 36, 387-390.

Dennis, P.F. (1984) Oxygen self-diffusion in quartz under hydrothermal conditions. *Journal of Geophysical Research* 89, 4047-4057.

Dennis, P.F. (1986) Oxygen self diffusion in quartz. NERC.

Druitt, T.H. and Bacon, C.R. (1989) Petrology of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon. *Contributions to Mineralogy and Petrology* 101, 245-259.

Druitt, T.H., Costa, F., Deloule, E., Dungan, M.A. and Scaillet, B. (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. *Nature* 482, 77-82.

Eiler, J.M., Baumgartner, L.P. and Valley, J.W. (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. *Contributions to Mineralogy and Petrology* 112, 543-557.

Elphick, S.C., Graham, C.M. and Dennis, P.F. (1988) An ion probe study of anhydrous oxygen diffusion in anorthite: a comparison with hydrothermal data and some geological implications. *Contributions to Mineralogy and Petrology* 100, 490-495.

Farver, J.R. (2010) Oxygen and hydrogen diffusion in minerals. *Reviews in Mineralogy & Geochemistry* 72, 447-507.

Farver, J.R. and Yund, R.A. (1991) Oxygen diffusion in quartz: dependence on temperature and water fugacity. *Chemical Geology* 90, 55-70.

Folkes, C.B., de Silva, S.L., Schmitt, A.K. and Cas, R.A.F. (2011) A reconnaissance of U-Pb ages in the Cerro Galán system, NW Argentina: Prolonged magma residence, crystal recycling, and crustal assimilation. *Journal of Volcanology and Geothermal Research* 206, 136-147.

Giletti, B.J., Semet, M.P. and Yund, R.A. (1978) Studies in diffusion-III. Oxygen in feldspars: an ion microprobe determination. *Geochimica et Cosmochimica Acta* 42, 45-57.

Giletti, B.J. and Yund, R.A. (1984) Oxygen diffusion quartz. *Journal of Geophysical Research* 89, 4039-4046.

Gosnold, W.D. (1987) Redistribution of U and Th in shallow plutonic environments. *Geophysical Research Letters* 14, 291-294.

Harry, D.L. and Green, N.L. (1999) Slab dehydration and basalt petrogenesis in subduction systems involving very young oceanic lithosphere. *Chemical Geology* 160, 309-333.

Heck, P., Huberty, J., Kita, N.T., Ushikubo, T., Kozdon, R. and Valley, J.W. (2011) SIMS analyses of silicon and oxygen isotope ratios for quartz from Archean and Paleo-proterozoic banded iron formations. *Geochimica et Cosmochimica Acta* 75, 5879-5891.

Hildreth, W. (1996) Kulshan caldera: A Quaternary subglacial caldera in the North Cascades, Washington. *Geological Society of America Bulletin* 108, 786-793.

Hildreth, W. (2007) Quaternary magmatism in the Cascades-geologic perspectives. U.S. Geological Survey Professional Paper 1744, 125.

Jicha, B.R., Johnson, C.M., Hildreth, W., Beard, B.L., Hart, G.L., Shirey, S.B. and Singer, B.S. (2009) Discriminating assimilants and decoupling deep- vs. shallow-level crystal records at Mount Adams using ^{238}U - ^{230}Th disequilibria and Os isotopes. *Earth and Planetary Science Letters* 277, 38-49.

Kelly, J., Fu, B., Kita, N.T. and Valley, J.W. (2007) Optically continuous silcrete quartz cements of the St. Peter Sandstone: High precision oxygen isotope analysis by ion microprobe. *Geochimica et Cosmochimica Acta* 71, 3812-3832.

Kita, N.T., Huberty, J.M., Kozdon, R., Beard, B.L. and Valley, J.W. (2011) High-precision SIMS oxygen, sulfur and iron stable isotope analyses of geological materials: accuracy, surface topography and crystal orientation. *Surface and Interface Analyses* 43, 427-431.

Kita, N.T., Ushikubo, T., Fu, B. and Valley, J.W. (2009) High precision SIMS oxygen isotope analysis and the effect of sample topography. *Chemical Geology* 264, 43-57.

La Tourrette, T.Z., Burnett, D.S. and Bacon, C.R. (1991) Uranium and minor-element partitioning in Fe-Ti oxides and zircon from partially melted granodiorite, Crater Lake, Oregon. *Geochimica et Cosmochimica Acta* 55, 457-469.

Marsh, B.D. (1981) On the crystallinity, probability of occurrence, and rheology of lava and magma. *Contributions to Mineralogy and Petrology* 78, 85-98.

Matthews, A., Goldsmith, J.R. and Clayton, R.N. (1983) Oxygen isotope fractionation involving pyroxenes: The calibration of mineral-pair geothermometers. *Geochimica et Cosmochimica Acta* 47, 645-654.

Michaut, C. and Jaupart, C. (2006) Ultra-rapid formation of large volumes of evolved magma. *Earth and Planetary Science Letters* 250, 38-52.

Mitchell, E.C. and Asmerom, Y. (2011) U-series isotope systematics of mafic magmas from central Oregon: Implications for fluid involvement and melting processes in the Cascade arc. *Earth and Planetary Science Letters* 312, 378-389.

Newman, S., Macdougall, J.D. and Finkel, R.C. (1986) Petrogenesis and ^{230}Th - ^{238}U disequilibrium at Mt. Shasta, California, and in the the Cascades. *Contributions to Mineralogy and Petrology* 93, 195-206.

Peres, P., Kita, N.T., Valley, J.W., Fernandes, F. and Schumacher, M. (2013) New sample holder geometry for high precision isotope analyses. *Surface and Interface Analyses (SIMS Proceedings)* 45, 553-556.

Saunders, K.E., Morgan, D.J., Baker, J.A. and Wysoczanski, R.J. (2010) The magmatic evolution of the Whakamaru supereruption, New Zealand, constrained by a microanalytical study of plagioclase and quartz. *Journal of Petrology* 51, 2465-2488.

Sharp, Z.D., Giletti, B.J. and Yoder Jr., H.S. (1991) Oxygen diffusion rates in quartz exchanged with CO₂. *Earth and Planetary Science Letters* 107, 338-348.

Simon, J.I. and Reid, M.R. (2005) The pace of rhyolite differentiation and storage in an 'archetypical' silicic magma system, Long Valley, California. *Earth and Planetary Science Letters* 235, 123-140.

Sims, K.W.W., Gill, J., Dosseto, A., Hoffman, D.L., Lundstrom, C.C., Williams, R.W., Ball, L., Tollstrup, D., Turner, S., Prytulak, J., Glessner, J.J.G., Standish, J.J. and Elliott, T. (2008)

An inter-laboratory assessment of the thorium isotopic composition of synthetic and rock reference materials. *Geostandards and Geoanalytical Research* 32, 65-91.

Sturchio, N.C., Binz, C.M. and Lewis III, C.H. (1987) Thorium-uranium disequilibrium in a geothermal discharge zone at Yellowstone. *Geochimica et Cosmochimica Acta* 51, 2025-2034.

Sturchio, N.C., Muehlenbachs, K. and Seitz, M.G. (1986) Element redistribution during hydrothermal alteration of rhyolite in an active geothermal system: Yellowstone drill cores Y-7 and Y-8. *Geochimica et Cosmochimica Acta* 50, 1619-1631.

Thompson, J.M., White, L.D. and Nathenson, M. (1987) Chemical analyses of waters from Crater Lake, Oregon, and nearby springs, U.S. Geological Survey Open-File Report, p. 16.

Turner, S., Bourdon, B. and Gill, J. (2003) Insights into magma genesis at convergent margins from U-series isotopes, in: Bourdon, B., Henderson, G.M., Lundstrom, C.C., Turner, S.P. (Eds.), *Uranium-series geochemistry. Reviews in Mineralogy and Geochemistry*, pp. 255-315.

Valley, J.W. (2001) Stable isotope thermometry at high temperatures. *Reviews in Mineralogy & Geochemistry* 43, 365-413.

Valley, J.W. (2003) Oxygen isotopes in zircon. *Reviews in Mineralogy & Geochemistry* 53, 343-385.

Valley, J.W. and Kita, N.T. (2009) *In situ* oxygen isotope geochemistry by ion microprobe. *MAC Short Course: Secondary Ion Mass Spectrometry in the Earth Sciences* 41, 19-63.

Van Keken, P.E., Kiefer, B. and Peacock, S.M. (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. *Geochemistry Geophysics Geosystems* 3, 1056.

Vazquez, J.A. and Reid, M.R. (2004) Probing the accumulation history of the voluminous Toba magma. *Science* 305, 991-994.

Villemant, B., Boudon, G. and Komorowski, J.-C. (1996) U-series disequilibrium in arc magmas induced by water-magma interaction. *Earth and Planetary Science Letters* 140, 259-267.

Volpe, A.M. (1992) ^{238}U - ^{230}Th - ^{226}Ra disequilibrium in young Mt. Shasta andesites and dacites. *Journal of Volcanology and Geothermal Research* 53, 227-238.

Volpe, A.M. and Hammond, P.E. (1991) ^{238}U - ^{230}Th - ^{226}Ra disequilibria in young Mount St. Helens rocks: time constraint for magma formation and crystallization. *Earth and Planetary Science Letters* 107, 475-486.

Wark, D., Hildreth, W., Spear, F.S., Cherniak, D.J. and Watson, E.B. (2007) Pre-eruption recharge of the Bishop magma system. *Geology* 35, 235-238.

Wende, A.M., Johnson, C.M. and Beard, B.L. (2015) Tracing changes in mantle and crustal influences in individual cone-building stages at Mt. Shasta using U-Th and Sr isotopes. *Earth and Planetary Science Letters* 428, 11-21.

Wilson, D.S. (1988) Tectonic history of the Juan de Fuca Ridge over the last 40 million years. *Journal of Geophysical Research* 93, 11863-11876.

Wollenberg, H.A., Flexser, S. and Smith, A.R. (1995) Mobility and depositional controls of radioelements in hydrothermal systems at the Long Valley and Valles calderas. *Journal of Volcanology and Geothermal Research* 67, 171-186.

Wotzlaw, J.-F., Bindeman, I., Watts, K.E., Schmitt, A.K., Caricchi, L. and Schaltegger, U. (2014) Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes. *Geology* 42, 807-810.

Wotzlaw, J.-F., Bindeman, I.N., Stern, R.A., D'Abzac, F.-X. and Schaltegger, U. (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. *Nature Scientific Reports* 5, 14026.

Wotzlaw, J.-F., Schaltegger, U., Frick, D.A., Dungan, M.A., Gerdes, A. and Günther, D. (2013) Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption. *Geology* 41, 867-870.

Zellmer, G.F., Freymuth, H., Cembrano, J.M., Clavero, J.E., Veloso, E.A.E. and Sielfeld, G.G. (2014) Altered mineral uptake into fresh arc magmas: insights from U-Th isotopes of samples from Andean volcanoes under differential crustal stress regimes, in: Gómez-Tuena, A., Straub, S.M., Zellmer, G.F. (Eds.), *Orogenic Andesites and Crustal Growth*. Geological Society, London, Special Publications, pp. 185-208.

Figure Captions

Fig. 1. $\delta^{18}\text{O}$ (‰ VSMOW) values for minerals in partially melted granodiorites from the climactic deposits of Mt. Mazama, Crater Lake, Oregon. The solid line indicates a 1:1 relation and the dotted lines denote the average 2SD of the *in situ* oxygen isotope analyses (0.3‰). Averages are shown for crystals in which multiple core and/or rim points were measured. A complete set of core and rim points is plotted in Fig. B12 of Appendix B. *A.* $\delta^{18}\text{O}$ values for plagioclase cores relative to rims. Plagioclase crystals typically have no significant core to rim zonation in their oxygen isotope compositions, and, where zonation does exist, there is no discernable pattern with respect to a systematic direction of change in $\delta^{18}\text{O}$ toward the rim. *B.* $\delta^{18}\text{O}$ values for quartz cores relative to rims. Quartz cores tend to be heavier relative to rims (typically $\Delta^{18}\text{O}_{\text{core-rim}} \leq 0.5\text{‰}$), with a maximum $\Delta^{18}\text{O}_{\text{core-rim}}$ fractionation of 5.5‰ in sample 452 (7% melt).

Fig. 2. Transects measured via SIMS shown across a cathodoluminescence (CL) image of quartz crystal (Q1) in partially melted granitoid 1023. An estimated outline of the original crystal margins is shown, as well as preferential shortening of measured profiles along the top edge by melting. The horizontal transect across the right half of the grain is plotted in Fig. 8D. Images of transects measured across additional crystals are shown in Figs. B1-B9 of Appendix B.

Fig. 3. U-Th isotope data for the granitoids analyzed in this study and previously published data for Mt. Mazama. $(^{230}\text{Th}/^{232}\text{Th})_0$ ratios for the colored circles were age-corrected using a baseline age of 7.7 ka (the climactic eruption), which is the minimum possible age for the granitoids. The black circles represent the Th isotope compositions if an age of 50 or 100 ka is assumed. Comparing the results from the granitoids to earlier work on eruptive units by Ankney et al. (2013) suggests that U-Th ages of ~7.7–50 ka provide the best fit for the existing Crater Lake data for the volcanic component, and this U-Th age range is inferred for the granitoids measured in this study. The black line represents the 40–75 kyr isochron of Ankney et al. (2013). Colors of symbols match those in Fig. 1.

Fig. 4. Schematic diagram showing the results of diffusion during both Exchange Stage 1 (hydrothermal) and Exchange Stage 2 (partial melting). The crystal shown for Exchange Stage 1 is from nonmelted sample 1627 and the crystal for Exchange Stage 2 is from partially melted

sample 1023. For simplicity, only the core and rim values are shown on the image of each crystal. Complete measured transects are available in Fig. B3 of Appendix B for sample 1627 and Fig. 2 for sample 1023.

Fig. 5. Variability in t_{hydro} needed to reproduce the $\delta^{18}\text{O}$ value in the core of nonmelted sample 1627 at temperatures of 400–700 °C, where $\delta^{18}\text{O}_{\text{igneous}}$ represents the oxygen isotope composition in the core prior to Exchange Stage 1 and $\delta^{18}\text{O}_{\text{hydro}}$ represents the oxygen isotope composition following Exchange Stage 1.

Fig. 6. Variability in t_{hydro} relative to crystal diameter for temperatures of 510 °C and 700 °C. Maps of transects measured across individual crystals are available in Appendix B.

Fig. 7. A) $\delta^{18}\text{O}$ values for the cores (measured) vs. re-equilibrated $\delta^{18}\text{O}$ (rim) values (calculated) for Exchange Stage 1 in the nonmelted and partially melted samples. Representative error bars (average 2SD = $\pm 0.3\text{\textperthousand}$) have been included for one crystal in sample 1627. *B)* Schematic diagram of the two-stage model for producing the oxygen isotope profiles in the partially melted granitoids. The green line represents the initial igneous $\delta^{18}\text{O}$ value (C_1). Blue curve represents the oxygen isotope profile after Exchange Stage 1 and the red curve, Exchange Stage 2.

Fig. 8. Modeled diffusion profiles for five SIMS transects in quartz. The blue dotted lines show modeled profiles for hydrothermal exchange (Exchange Stage 1) and the red dotted lines show profiles calculated for high-temperature exchange during partial melting (Exchange Stage 2). Average precision for SIMS values of $\delta^{18}\text{O}$ are $0.3\text{\textperthousand}$ (2SD) and are plotted for one spot in each transect. The modeled diffusion profiles are calculated for a spherical model of Crank (1975) and diffusion coefficients for quartz where $P_{\text{H}_2\text{O}} = 100 \text{ MPa}$ (hydrothermal; Dennis, 1984) and $P_{\text{H}_2\text{O}} = 5 \text{ MPa}$ (Farver and Yund, 1991). SIMS data taken from a transect in quartz in sample 1627 (*A*), a transect in sample 1995 (*B*), a transect in sample 452 (*C*), a transect in sample 1326 (*D*), and two transects in 1023 (*E–F*), to represent the range of oxygen isotope exchange timescales observed at Mt. Mazama.

Fig. 9. Comparison of oxygen diffusion timescales for Exchange Stage 2 for the SIMS transects in quartz (this study, squares) and Ti diffusion timescales in magnetite from Fe-Ti oxide thermometry (triangles) of Bacon (1992). Parameters used to calculate the timescales are described in the text. Fe-Ti oxide temperatures are from Bacon (1992). *denotes the inclusion of Fe-Ti oxide data for sample 450 from Bacon (1992), which represents the lowest temperature partially melted sample found at Mt. Mazama.

Fig. 10. Summary of the thermal and fluid history of the granitoid blocks ejected during the climactic eruption, and changes in their U-Th and oxygen isotope compositions, throughout the buildup to the caldera-forming eruption at 7.7 ka. A detailed summary of the processes depicted here can be found in the text. The timescales indicated are based on modeling of U-enrichment via hydrothermal fluids and oxygen isotope exchange and Fe-Ti oxide re-equilibration due to heating and partial melting. We note that temperature increases and associated heating, partial melting, and assimilation of the wall rocks of the climactic chamber likely occurred throughout the time period depicted here, but partial melting of the blocks analyzed in this study apparently

did not occur until 10^1 – 10^2 years prior to the caldera-forming eruption. Figure is modified from Druitt and Bacon (1989).