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Abstract—Rock detachment events along roadways
pose public safety concerns but can be predicted and
safely handled using geological measurements of dis-
continuities. With modern sensing technology, these
measurements can be taken on 3D point clouds and
2D optical images that provide a high level of structural
accuracy and visual detail. Doing so allows engineers to
obtain needed data with relative ease while eliminating
the biases and hazards inherent in taking manual mea-
surements. This letter presents an approach for fusing
2D and 3D data in natural and unstructured scenes.
This includes a novel method for visualizing imagery
obtained with very different sensors to maximize their
visual similarity making registration a more tangible
task. To show the effectiveness of our registration
methodology, we evaluate measurements taken manu-
ally and digitally on rock facet and cut discontinuity
orientations in Rolla, Missouri. Our method is able
to align 2D and 3D data with an accuracy of under
2 cm. The median difference between measurements
manually obtained by a geological engineer and those
obtained with our proposed software is 3.65 degrees.

Index Terms—Terrestrial LIDAR, Discontinuities,
Orientation, Measurement, 2D-3D Registration.

I. Introduction

IN mountainous and hilly regions, roadways commonly
pass alongside tall walls of rocks. This poses many

potential obstacles and dangers for drivers, road workers,
and engineers who travel through these areas or who are
responsible for building and maintaining the road infras-
tructure [1]. Discontinuities in the rocks oftentimes cause
rock mass to break off along existing planar discontinuities
that occur either naturally or as a result of engineered rock
cutting during the road construction process [2]. By using
analytical tools, the arrangement and orientations of single
discontinuities or groups of discontinuities can actually
be used to study rock stability and predict detachment
events [2]. However, obtaining the measurements manually
tends to be slow and cumbersome and, in some cases,
dangerous because of potentially falling rock [3]. Due to
time constraints and safety concerns, they are often only
able to be employed in easily accessible locations like the
base of a slope [4]. These types of restrictions cans cause
sampling biases and inaccuracies [5]. However, modern
sensing technologies such as photographs and LIDAR
(Light Detection and Ranging) laser scans can be used
to capture data more quickly and safely than traditional
techniques [6], [7], [8].
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Measurements on photographs can provide informa-
tion about trace and discontinuity orientations on rock
faces [9]. This can be done by restricting the camera to spe-
cific locations around the rock site, having a known config-
uration between stereo cameras, or by reconstructing the
scene from a Structure from Motion (SfM) point cloud [2],
[10], [11]. While using exclusively 2D digital photographs
is a simple, economical approach, the requirement for
computing an SfM point cloud can pose a roadblock as
there is not a general solution for creating an accurate
reconstruction from every dataset [12]. Overcoming the
challenge of using a general SfM algorithm by constricting
camera movement can also eliminate flexibility in collect-
ing a full, detailed dataset.

Terrestrial LIDAR scanners can also be utilized to
provide highly accurate 3D point clouds of surfaces from
which engineers can determine 3D orientations of fractures
on irregular surfaces [13], [14], [15], [16], [17]. Planar
polygonal models can be generated from LIDAR scans
yielding 3D orientations of rock faces [18]. This approach
can be complicated by the presence of vegetation or
blasting and weathering-induced fractures which need to
be identified by sophisticated filters or with the aid of
human interaction. Many algorithms using this data semi-
automatically extract planar features from the scan, cal-
culate orientations, cluster the orientations, and present
them on a stereonet [17], [19].

Despite the abundance of information that can be ex-
tracted from 2D or 3D data separately, neither technology,
on its own, is sufficient for making measurements on both
planar and irregular surfaces. Since it is common for rocks
to contain discontinuities on both types of surfaces, we
have developed an approach for taking measurements that
improves upon existing methods by fusing photographs
and LIDAR scans to perform a single analysis using both
types of data. We show how we can use data typically
available with LIDAR scans to visualize edge and texture
properties of 3D scans that can also be easily identified in
2D photographs. By doing so, linear trace measurements
that are easily taken on a 2D photograph automatically
contain information about 3D facet orientations. Many
groups have studied directly registering 2D photographs
with 3D LIDAR scans but most are designed for urban
data and rely on identifying structural features such as
parallel and orthogonal line segments, circles, rectangles,
or repetitive pattens that can be matched across dimen-
sions [20], [21], [22], [23]. Since we cannot make the
assumption that any of these types of features will be con-
sistently available in natural imagery, we have developed
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Fig. 1. Matching edge images to 3D wireframe model. a: Planar
segmentation of 3D scan. b: Original photograph. c: Wireframe model
from same synthetic view as a. d: Canny Edge image of photograph.
e: Keypoint matches between edge images.

a scheme to focus on less constrained environments.
To summarize, our main contributions to this area

include:
• A 2D-3D registration method that works on natural,

non-urban data. We are not reliant on predictable fea-
tures such as repetitive structures, circular structures,
identifiable vanishing lines, etc.

• A registration method that does not make assump-
tions about relative camera positions to the scanner
or the scene itself. This provides more flexibility in
data collection.

• Software to accurately and easily select areas of a 3D
point cloud without extensive user training and/or
specialized software or equipment. We accomplish this
by using both 2D and 3D data. Taking measurements
directly on 3D data poses many usability issues[24],
[25].

II. Data Acquisition and Pre-Processing
We used Leica C10 HDS and ScanStation II LIDAR

scanners to collect 3D scans of the rocky walls alongside
roadways in Rolla, MO. Both scanners have a positional
accuracy of 6mm, a distance accuracy of 4 mm, and
a resolution of less than 1 mm. The vertical rock cuts
scanned are within an area of 30x6 m. Throughout our
paper, the data obtained with the C10 HDS scanner is

a. b.

c. d.

e.

Fig. 2. Matching gradient images to 3D reflectivity images. a: 3D
scan colored with reflectivity information shown from the perspective
of a synthetic camera. b: Original photograph. c: Gradient magnitude
of reflectivity image. d: Gradient magnitude of photograph. e: Key-
point matches between gradient magnitude images.

a. b.

Fig. 3. Views of our 3D registration results on Scan 1 (a) and Scan
2 (b).

referred to as Scan 1 (S1) and that obtained with the
ScanStation II is referred to as Scan 2 (S2).

We create synthetic cameras throughout the scene and
use their pose information to visualize a variety of perspec-
tives of each LIDAR scan. Synthetic cameras are placed at
regularly spaced intervals and are rotated through differ-
ent orientations and focused with different focal lengths as
described in [26]. We visualize and color the 3D scan using
the techniques described in Section III and project this
information down onto the 2D synthetic camera planes to
create different images of the scan.

During our 2D-3D registration stage, we are primarily
interested in the planar, rocky portions of the data. To
focus on these areas, we use a RANSAC-based (Random
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TABLE I
Feature Repeatability

— Harris SIFT Pseudo Corners
S1 - Wireframe 0.089611 0.609874 0.465327
S2 - Wireframe 0.0785308 0.331122 0.273513
S1 - Reflectivity 0.157935 0.546956 0.368575
S2 - Reflectivity 0.181783 0.373471 0.358221

Sample Consensus) segmentation algorithm similar to the
one described in [18] to find 3D planes and segment rock
faces from vegetation and the ground plane. The result of
this is shown in Figure 1 a.

III. 2D-3D Registration
In order to register an image with the LIDAR range

scan, we find a set of correspondences between each
photograph and synthetic views. To accomplish this, we
visualize two different properties of the LIDAR data that
are also captured in photographs.

The first type of information we extract and visualize is
a set of 3D edges from which we can create a wireframe
model, as seen in Figure 1. Our wireframe model em-
phasizes the geometrically intrinsic, lighting independent
edges contained in a LIDAR scan which are also visible in
edge images of photographs. During our 3D segmentation
stage, we identify planar regions in the scan and compute
the normal for each planar segment. We can use this
information to create front-facing views of each individual
plane by rotating the plane to lay along the x-y plane
and using a synthetic camera pointing down the z-axis.
We identify edges of this view using the Canny Edge
algorithm [27].

The second technique we use for registration matches
texture patterns visible via the laser’s reflectivity values.
Time-of-flight LIDAR scanners use a laser beam to scan
an area and measure the time it takes for the laser to leave
the scanner, hit a surface, and reflect back to the scanner
in order to determine the depth of the point hit. The power
of the returned beam contains some information about the
type of surface struck. If a surface absorbs a large portion
of the laser, only a small percentage of the original laser
beam will be returned and a lower reflectivity value will
be stored and vice versa. The returned value is also influ-
enced by a number of factors including angle of incidence,
distance to target, and atmospheric conditions [28], but
the overall trend of reflectivity values tells us something
about the changing surface texture found in a scene [29].
By visualizing the range of these values, we can create
images that catch very similar texture variations to those
seen in normal photographs as shown in Figure 2.

We visualize our 2D photographs so that the same prop-
erties that are emphasized in the wireframe and reflectivity
images are also in focus. 2D Canny edges match the 3D
wireframe edges and gradient patterns in photographs
match reflectivity image gradients. Figures 1 and 2 show
how applying these techniques cause the 2D and 3D data
to look much more similar than they do in their original

TABLE II
2D Match Measurements

— # Matches # Inliers Precision Avg. Error
S1 - Wireframe 38.600 23.600 0.611 1.47209
S2 - Wireframe 57.385 35.615 0.621 1.93076
S1 - Reflectivity 71.800 68.000 0.947 1.83038
S2 - Reflectivity 100.385 75.846 0.756 2.29397

S1 - All 110.4 77.800 0.705 1.90642
S2 - All 154.077 90.385 0.586 2.19393

forms. In 3D, we use the planar segmentation information
to focus on rocky areas in the scan. To focus on similar
areas in the 2D data we identify line segments in the 2D
images using the Line Segment Detector method [30]. Only
features that are close to these line segments are used in
the matching stage.

To actually match keypoints, we extract SIFT (Scale-
Invariant Feature Transform) [31] features on both types
of imagery and compare HOG (Histogram of Gradients)
of the surrounding neighborhoods. This allows us to find
areas that have either similar arrangements of edges in
the wireframe and 2D edges image or similar gradient
patterns in the reflectivity images and photographs. To
ensure that corresponding keypoints are described with
patches containing the same content and based in the
same coordinate system, we extract patches at multiple
scales surrounding each corner and orient them so that
the dominant gradient direction of the patch points down
the x-axis [32]. These keypoint matches are then used
to estimate the camera projection matrix relating the
photograph to the 3D scan using the six-point algorithm
with Direct Linear Transform [33] and RANSAC.

IV. Experiments
We selected a vertical rock cut along the outer road

adjacent to Highway 144 in Rolla, Missouri as our study
site. There are two main areas we focus on in our eval-
uation. The first set of tests explores the design choice
and accuracy of our 2D-3D registration pipeline. A high
degree of accuracy is necessary for our registration pipeline
to be of use for geological engineers to take digital mea-
surements. The goal of our second group of tests is to see
if rock measurements obtained by a trained engineer using
traditional techniques are equivalent to the measurements
obtained with our method, demonstrating the usefulness
of our program.

For our 2D-3D registration evaluation, we broke down
each test by looking at how well we were able to match
the synthetic wireframe images to the Canny edge version
of the photographs and the laser reflectivity images to the
gradient version of the photographs. To show the benefit
of using both types of data, we also looked at the accuracy
of using matches from both types of image pairs combined.

For all of our 2D tests, we manually obtained a ground
truth homography relating each image pair. We used
this matrix to measure the repeatability of extracted 2D
features and the accuracy of our 2D matches. For the 3D
tests, we have a set of photographs obtained by the LIDAR
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Fig. 4. Vertical rock cuts with manual measurements from Scan
1 (a.) and Scan 2 (b.) in Rolla showing traces (aqua, dark green,
yellow, white, red lines) and facets (blue, light green, red and
yellow outlines). Trace measurements are displayed in the format
of “plunge/trend” and facet measurements are in the format “dip
direction/dip angle”.

scanner used to collect Scan 1. The camera position in
relation to the 3D point cloud is known for each of
these photographs from data provided by the scanner. We
matched the photographs from the scanner to the 3D data
using both our pipeline and this ground truth information
and compared the results.

The first test on our 2D-3D registration pipeline looks
at our design choice of extracting SIFT features from our
synthetic images and processed photographs for matching.
We also considered using Harris Corners and Pseudo
Corners [32], two other feature detectors that are generally
well suited to images containing prominent lines. We
measured how repeatable different types of features are
between the image pairs being matched. Repeatability
scores quantify what percentage of features extracted in
one image have corresponding features extracted from a
second image. As shown in Table I, SIFT features are more
repeatable across our entire dataset.

After the 2D-2D matching stage of our pipeline, we also
evaluated the accuracy of our keypoint matches based on
HOG descriptions using our ground truth homographies.
In Table II, we report the average number of matches
obtained, the average number of inliers, the average match
precision, and the average symmetrical transfer error of
the matches [34]. We broke down these tests by reporting
match results for just the wireframe to edge images, just
the reflectivity to gradient images, and all of the matches
combined. We can see that we tend to obtain a high
percentage of correct matches with very low errors.

Finally, to show the error of our 2D-3D registration, we

TABLE III
Plunge and Trend (Traces) - Manual measurements vs.
LIDAR Viewer measurements Scan 1 (S1) and Scan 2 S2)

Line Color Manual Plunge Manual Trend Software Plunge Software Trend
S1 - Blue 70 293 65 273
S1 - Blue 66 293 70 273
S1 - Blue 60 293 51 273
S1 - Blue 60 293 61 285
S1 - Blue 60 293 59 275
S1 - Green 77 113 73 126
S1 - Green 78 113 76 121
S1 - Green 77 113 74 137
S1 - Green 76 113 75 123
S1 - Yellow 2 113 1 117
S1 - Yellow 3 113 1 102
S1 - Yellow 3 113 1 110
S2 - Red 9 77 10.4 82.7
S2 - Red 11 73 14.5 73.2
S2 - Red 3 80 1.6 85.2
S2 - Red 14 95 15.0 95.2
S2 - Blue 82 157 78.2 159.8
S2 - Green 5 110 5.3 105.1
S2 - Green 12 110 9.5 106.0
S2 - Green 5 104 4.4 104.3
S2 - White 84 275 82.2 264.8

TABLE IV
Dip and Dip Direction (Facets) - Manual measurements vs.

LIDAR Viewer measurements Scan 1 (S1) and Scan 2 S2)

Plane Color Manual Dip Direction Manual Dip Software Dip Direction Software Dip
S1 - Blue 315 70 337 74
S1 - Green 71 81 101 76
S1 - Yellow 157.6 2.9 160 3.2
S1 - Red 222 70 235 81.2
S2 - Yellow 83 16 86.1 19.3
S2 - Blue 83 18 81.2 23.2
S2 - Red 77 28 86.0 27.0
S2 - Green 88 17 86.3 18.3

registered the photographs of Scan 1 with the 3D point
cloud using only the matches obtained with the wireframe
images, only the matches obtained with the reflectivity
images, and using the two sets together. Using just the
wireframe images, just the reflectivity, and both combined
we have average errors of 0.6611 cm, 1.1142 cm, and 0.6496
cm respectively. Visual results of our 2D-3D registration
are shown in Figure 3.

A geological engineer took manual measurements using
a Brunton compass of various facets and traces on the rock
cuts corresponding to the features that are highlighted
in Figure 4. We selected the same lines and planes on
2D images using our software and compared them to
the manually collected values. The actual measurements
produced by our software were taken on the areas of the
3D scans corresponding to the selected areas on the pho-
tographs. Sets of plunge and trend measurements obtained
manually and by our program are shown in Table III and
a comparison of dip and dip direction results is shown in
Table IV. We can see from these charts that the software
and geological engineer’s measurements of both facets and
traces is consistent. The average difference between the
measurements manually obtained by engineers and those
produced with our program is 3.65 degrees.

V. Conclusion
Being able to measure discontinuities amongst rock faces

is a necessary task for geological engineers to predict and
handle potential rock failures. However, traditional ap-
proaches for obtaining these measurements can suffer from
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sampling biases and be hazardous for engineers as they
traverse hard-to-access and unstable rock faces. In this
letter, we have proposed a method for using photographs
and LIDAR scans to acquire these same measurements in
a safer and more uniform capacity. We have focused on
the fusion of these two data sources since photographs
are simple to interact with and provide high resolution
visual cues and LIDAR scans contain highly accurate 3D
structural information. Registering these data sources is a
difficult task since they are inherently different visually
and numerically. To overcome these obstacles, we have
presented a method for visualizing the common features of
both data sources so that similar features can be extracted
from both dimensions and matched. Our experimental
results have shown that we can both accurately align 2D
and 3D data and use this fusion to provide measurements
very similar to those manually collected by engineers.
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