

Article

Control of Wave Energy Converters with Discrete Displacement Hydraulic Power Take-Off Units

Shangyan Zou ^{1*}, Ossama Abdelkhalik ¹

¹ Department of Mechanical Engineering, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA; ooabdelk@mtu.edu

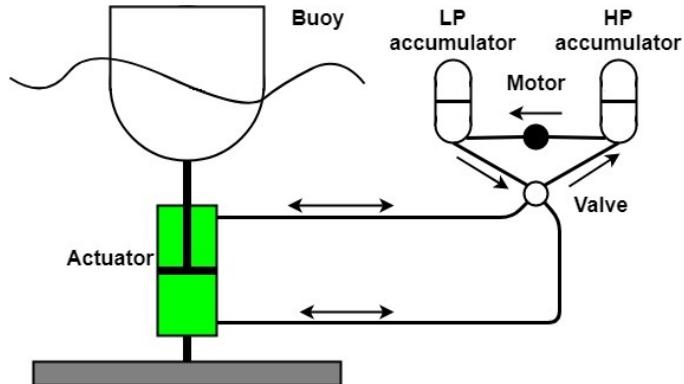
* Correspondence: szou2@mtu.edu

Academic Editor: name

Version February 7, 2018 submitted to J. Mar. Sci. Eng.; Typeset by L^AT_EX using class file mdpi.cls

Abstract: The control of an ocean WEC (WEC) impacts the harvested energy. Several control methods have been developed over the past few decades that aim to maximize the harvested energy. Many of these methods were developed based on an unconstrained dynamic model assuming an ideal PTO (PTO) unit. This study presents numerical tests and comparisons of few recently developed control methods. The testing is conducted using a numerical simulator that simulates a hydraulic PTO. The PTO imposes constraints on the maximum attainable control force and maximum stroke. In addition, a PTO has its own dynamics which may impact the performance of some control strategies.

Keywords: Wave Energy Conversion; PTO Units; Hydraulic PTO; WEC control


1. Introduction and Background

The control of ocean WECs (WECs) have received a great deal of interest over the past several decades. In recent years in particular there has been significant developments on maximizing the harvested energy from WECs from a control system analysis and design perspective. Many of these control methods were proposed for the idealistic case in the absence of stroke or force limitations, and assuming ideal PTO (PTO) units. This paper presents comparisons between some of the recently developed control methods; these simulations include a model for a hydraulic PTO, and consequently it imposes constraints on the displacement of the buoy and on the maximum possible control force. These simulations also highlight some insight regarding the needed reactive power for some of the discussed control methods. Several earlier controllers were developed in [1–3] for WECs with hydraulic PTOs. A hydraulic system was validated using AMESim in [4]. The control methods discussed in this paper are being tested using hydraulic PTOs for the first time in this paper.

This section presents a review for hydraulic PTO units. Fig. 1 is a general layout for a typical hydraulic PTO. The hydraulic system is composed by the actuator, the valve, the accumulators and the motor. The motion of the buoy will compress/decompress the chamber of the actuator and transfer the wave power to the hydraulic system. All the hydraulic systems can be mainly categorized into three groups: the constant pressure, the variable pressure, and the constant-variable pressure hydraulic systems [5,6].

1.1. Constant pressure configuration

The first configuration is constructed with a low pressure accumulator and a high pressure accumulator. This type of hydraulic system can be achieved with a simple mechanism, and the control level is low.

Figure 1. General layout for a hydraulic PTO

32 The typical configuration of a constant pressure hydraulic system is presented in detail in [7,8],
 33 using phase control. Control of the constant pressure hydraulic system is achieved by implementing
 34 auxiliary accumulators in [3]. The latching and declutching controls are demonstrated in [9] using
 35 a constant pressure hydraulic system. Additionally, a declutching control is presented in [10] for
 36 controlling a hydraulic PTO with switching on and off using a by-pass valve. The method is
 37 also tested with the SEAREV WEC with an even higher energy absorption. A detail of a single
 38 acting hydraulic PTO system with the phase control is presented in [11,12]. The hydraulic system
 39 implemented in SEAREV is presented in [13]. In reference [14], a novel model of the hydraulic
 40 PTO of the Pelamis WEC is developed that has the ability to apply reactive power for impedance
 41 matching. In reference [15], a double action WEC of an inverse pendulum is proposed. Reference
 42 [15] found that a double action PTO can supply the output power in each wave period without a
 43 large instantaneous fluctuating power. A double-acting hydraulic cylinder array is developed in [16],
 44 where the model is found to be adaptive to different sea states to achieve higher energy extraction.
 45 Reference [17] presents the optimization of a WEC hydraulic PTO for an irregular wave where the
 46 optimal damping is achieved by altering the displacement of the variable displacement hydraulic
 47 motor. Reference [18] presents a design and the testing of a hybrid WEC that obtains a higher
 48 energy absorption than a single oscillating body with a hydraulic PTO. A discrete displacement
 49 hydraulic PTO system is studied in [19] for the Wavestar WEC. An energy conversion efficiency of
 50 70% was achieved. Additionally, adjusting of the force applied by the PTO is accomplished through
 51 implementing multiple chambers.

52 1.2. Variable pressure

53 The variable pressure hydraulic system is suggested in [20–22]. In this situation, the piston
 54 is connected directly to a hydraulic motor. This system can achieve better controllability, but the
 55 fluctuation of the output power is not negligible. Two hydraulic PTO systems are compared in
 56 [23], where a constant pressure hydraulic PTO and a variable pressure hydraulic PTO systems are
 57 compared. It was shown that a variable pressure hydraulic PTO system would have a higher
 58 efficiency. The variable pressure approach was also investigated in [24], where the hydraulic motor
 59 is used in order to remove the accumulator and control the output using the generator directly. A
 60 comparison between a constant pressure system and a variable pressure system was conducted in
 61 [25]; validation was conducted using the AMESim and demonstrated a good agreement. Power
 62 smoothing was achieved in [26] by means of an energy storage.

63 1.3. Variable - Constant pressure

64 The Variable - Constant pressure hydraulic system is constructed with two parts: the variable
 65 pressure part and the constant pressure part. The variable pressure part is accomplished by a

66 hydraulic transformer. A generic oil-hydraulic PTO system, applied to different WECs, is introduced
 67 in [27]. In reference [28], a PID controller is developed and the reactive power is supplied by the
 68 hydraulic transformer (working as a Pump). A suboptimal control was suggested in [28] for practical
 69 implementation in terms of the efficiency of the PTO.

70 2. The WEC dynamics

71 In this section, the WEC dynamic model used in this paper is briefed. In this paper, the floater
 72 used in the simulations is the Wavestar absorber [9]. The floater has a single degree of freedom motion
 73 which is the pitch rotation. The geometry of the proposed absorber is depicted in Fig. 2.

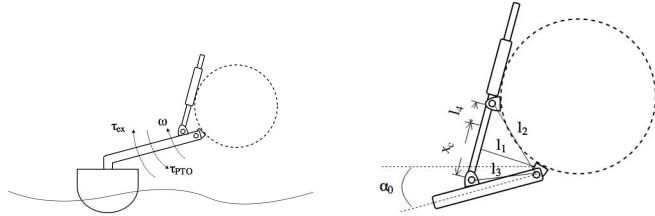


Figure 2. The geometry of the Wavestar absorber

74 The WEC dynamic model can be described based on linear wave theory as:

$$J_{rigid}\ddot{\theta} = \tau_{ex} + \tau_{res} + \tau_{rad} - \tau_G - \tau_{PTO} \quad (1)$$

75 where J_{rigid} is the moment of inertia of the rigid body. θ is the pitch rotation of the floater. τ_{ex} is the
 76 wave excitation torque acting on the buoy, τ_{res} is the restoring momentum, τ_{rad} is the radiation torque,
 77 and τ_G is the torque caused by the gravity. The PTO torque is τ_{PTO} which is applied by the hydraulic
 78 cylinder. The equation of motion can be further expanded as:

$$\ddot{\theta} = \frac{1}{J_{rigid} + J_{\infty}}(\tau_{ex} - \tau_{PTO} - K_{res}\theta - h_r * \dot{\theta}) \quad (2)$$

79 where J_{∞} is the moment of the added mass at infinite frequency, K_{res} is the coefficient of the
 80 hydro-static restoring torque, and h_r is the radiation impulse response function. In Eq. (2), the
 81 radiation torque is expanded as:

$$\tau_{rad} = -J_{\infty}\ddot{\theta} - \tilde{\tau}_{rad} \quad (3)$$

$$\tilde{\tau}_{rad} = h_r * \dot{\theta} \quad (4)$$

82 The $*$ operation is the convolution between the impulse response function and the angular
 83 velocity $\dot{\theta}$ which can be approximated by a state space model as:

$$\dot{x}_r = A_r x_r + B_r \dot{\theta} \quad (5)$$

$$\tilde{\tau}_{rad} = C_r x_r + D_r \dot{\theta} \quad (6)$$

84 where A_r , B_r , C_r and D_r are the radiation matrices which are identified from the radiation impulse
 85 response function. The excitation torque can be expressed by the convolution between the impulse
 86 response function and the wave elevation:

$$\tau_{ex} = h_{ex} * \eta \quad (7)$$

87 Hence the convolution can also be approximated by a state space model as:

$$\dot{x}_e = A_e x_e + B_e \eta \quad (8)$$

$$\tau_{ex} = C_e x_e \quad (9)$$

88 where A_e , B_e and C_e are the excitation matrices which are identified from the excitation impulse
89 response function. The parameters of the floater are listed in Table 1 in the appendix.

90 3. The Hydraulic PTO system

91 In this paper, the Discrete Displacement Cylinder (DDC) Hydraulic system is used to apply the
92 PTO torque. A simplified illustration for this system is shown in Fig. 3. More details about the DDC
93 hydraulic system can be found in reference [19].

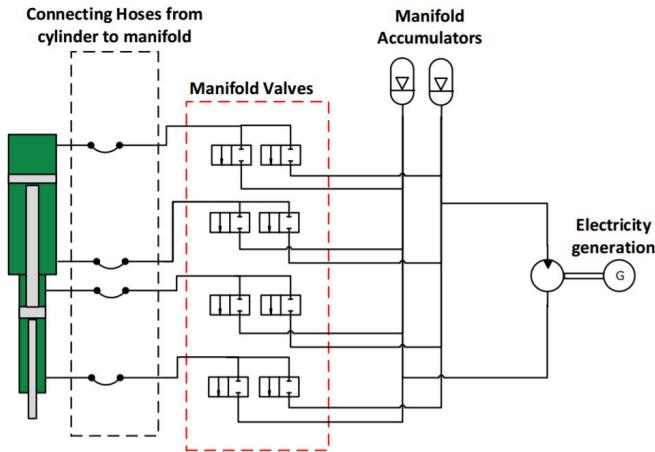


Figure 3. The layout of the DDC hydraulic system

94 As shown in Fig. 3, the DDC hydraulic system is mainly composed of the actuator/cylinder, the
95 manifold valves, the manifold accumulators, and the generator. The PTO torque is computed as the
96 product of the cylinder force and the moment arm:

$$\tau_{PTO} = F_c l_1 \quad (10)$$

97 where the moment arm can be expressed as:

$$l_1 = \frac{l_2 l_3 \sin(\theta - \alpha_0)}{x_c + l_4} \quad (11)$$

$$x_c = -l_4 + \sqrt{-2l_2 l_3 \cos(\theta - \alpha_0) + (l_2^2 + l_3^2)} \quad (12)$$

98 3.1. The hydraulic cylinder

The actuator force F_c is generated by the hydraulic cylinder and it can be computed as:

$$\tilde{F}_c = -p_{A1}A1 + p_{A2}A2 - p_{A3}A3 + p_{A4}A4 \quad (13)$$

$$F_c = \tilde{F}_c - F_{fric} \quad (14)$$

99 where p_{Ai} is the pressure of the i th chamber and A_i is the area of the piston. F_{fric} is the cylinder friction
100 force. The dynamics of the chamber pressure can be described by the flow continuity equation:

$$\dot{p}_{A1} = \frac{\beta(p_{A1})}{A1(x_{c,max} - x_c) + V_{0,A1}} (Q_{A1} - v_c A1) \quad (15)$$

$$\dot{p}_{A2} = \frac{\beta(p_{A2})}{A2x_c + V_{0,A2}} (Q_{A2} + v_c A2) \quad (16)$$

$$\dot{p}_{A3} = \frac{\beta(p_{A3})}{A3(x_{c,max} - x_c) + V_{0,A3}} (Q_{A3} - v_c A3) \quad (17)$$

$$\dot{p}_{A4} = \frac{\beta(p_{A4})}{A4x_c + V_{0,A4}} (Q_{A4} + v_c A4) \quad (18)$$

where $V_{0,A1}$, $V_{0,A2}$, $V_{0,A3}$ and $V_{0,A4}$ are the volumes of the connecting hoses of different chambers. $x_{c,max}$ is the maximum stroke of the cylinder. x_c and v_c are the position and velocity of the piston respectively which are defined positive down. $\beta(p_{Ai})$ is the effective bulk modulus of the fluid based on different pressure which is assumed to be constant in this study. Additionally, Q_{Ai} is the flow from the connecting hose to i th chamber. The cylinder friction is expressed as:

$$F_{fric} = \begin{cases} \tanh(av_c) | \tilde{F}_c | (1 - \eta_c), & \text{if } F_c v_c > 0 \\ \tanh(av_c) | \tilde{F}_c | (\frac{1}{\eta_c} - 1) & \text{otherwise} \end{cases} \quad (19)$$

where a is the coefficient used to smooth the friction curve versus velocity. η_c is a constant efficiency of the cylinder.

3.2. The hoses

The hoses connected between the cylinder and the manifold valves are modeled as:

$$\dot{Q}_{out} = \frac{(p_1 - p_2) A_{hose} - p_f(Q_{out}) A_{hose}}{\rho l_{hose}} \quad (20)$$

$$\dot{p}_1 = \frac{(Q_{in} - Q_{out}) \beta}{A_{hose} l_{hose}} \quad (21)$$

where Q_{in} and Q_{out} are the fluid flows in and out the hose, p_1 and p_2 are the pressures of the inlet and outlet of the hose respectively, A_{hose} is the area of the hose, l_{hose} is the length of the hose, ρ is the fluid density, and $p_f(Q_{out})$ is the pressure drop across the hose. The pressure drop across a straight pipe/hose can be modeled as:

$$p_\lambda = \frac{0.3164 l_{hose} \rho}{2 Re^{0.25} d_{hose}} \frac{Q_{out} | Q_{out} |}{(0.25 d_{hose}^2 \pi)^2} (0.5 + 0.5 \tanh(\frac{2300 - Re}{100})) + \frac{128 \nu \rho l_{hose} Q_{out}}{\pi d_{hose}^4} (0.5 + 0.5 \tanh(\frac{-2300 + Re}{100})) \quad (22)$$

where ν is the kinematic viscosity of the fluid. Re represents the Reynold number which can be computed as:

$$Re = \frac{v_{out} d_{hose}}{\nu} \quad (23)$$

Eq. (22) combines the pressure loss of the laminar flow and the turbulent flow by the hyperbolic-tangent expression. Consequently, a continuous transition of the pressure loss between the laminar and turbulent flow can be created. When the Reynold number is less than 2200, $(0.5 + 0.5 \tanh(\frac{2300 - Re}{100}))$ is close to zero which means the pressure drop is contributed by the laminar flow. On the other hand, when the Reynold number is greater than 2400, $(0.5 + 0.5 \tanh(\frac{-2300 + Re}{100}))$

is close to zero which means the pressure drop is contributed by the turbulent flow. Another source of pressure drop is the the fitting losses which can be computed as:

$$p_\zeta = \zeta \frac{\rho}{2} Q_{out} | Q_{out} | \frac{1}{(0.25d_{hose}^2 \pi)^2} \quad (24)$$

where ζ is the friction coefficient for a given fitting type. Finally, the total resistance in the hose with n line pieces and m fittings can be computed as:

$$p_f(Q_{out}) = p_{\lambda,1}(Q_{out}) + \dots + p_{\lambda,n}(Q_{out}) + p_{\zeta,1}(Q_{out}) + \dots + p_{\zeta,m}(Q_{out}) \quad (25)$$

In this paper, the pressure loss of the hoses is modeled as:

$$p_f(Q_{out}) = p_\lambda(Q_{out}) + p_{\zeta,M}(Q_{out}) + p_{\zeta,C}(Q_{out}) \quad (26)$$

where $p_{\zeta,M}$ represents the fitting resistance which considers the internal pressure drops in the manifold and $p_{\zeta,C}$ represents the cylinder inlet loss.

3.3. The directional valves

The two-way two-position directional valves are used in this model. The flow across the valve can be described by the orifice equation:

$$Q_v = \text{sign}(\Delta p) C_d A_v(\alpha) \sqrt{\frac{2}{\rho} |\Delta p|} \quad (27)$$

where Δp is the pressure difference cross the valve, C_d is the discharge coefficient and $A_v(\alpha)$ is the opening area which can be computed as:

$$A_v(\alpha) = \alpha A_0 \quad (28)$$

$$\dot{\alpha} = \begin{cases} \frac{1}{t_v}, & \text{if } u_v = 1 \\ -\frac{1}{t_v}, & \text{if } u_v = 0 \end{cases} \quad (29)$$

$$0 \leq \alpha \leq 1 \quad (30)$$

where A_0 is the maximum opening area of the valve. In this paper, a total of 8 valves are used to control the actuator force.

3.4. The pressure accumulators

The accumulators in the DDC system are used as pressure sources and also for energy storage. The dynamics of the pressure accumulator can be modeled as [19]:

$$\dot{p}_{acc} = \frac{Q_{acc} + \frac{1}{1+\frac{R}{C_v}} \frac{V_g}{T} \frac{1}{\tau_a} (T_w - T)}{\frac{V_{a0} - V_g + V_{ext}}{\beta} + \frac{1}{1+\frac{R}{C_v}} \frac{V_g}{p_{acc}}} \quad (31)$$

$$\dot{V}_g = -Q_{acc} + \dot{p}_{acc} \frac{V_{a0} - V_g + V_{ext}}{\beta} \quad (32)$$

$$\dot{T} = \frac{1}{\tau_a} (T_w - T) - \frac{RT}{C_v V_g} \dot{V}_g \quad (33)$$

138 where p_{acc} is the pressure of the accumulator, Q_{acc} is the inlet flow to the accumulator, R is the ideal
 139 gas constant, C_v is the gas specific heat at constant volume, T_w is the wall temperature, τ_a is the
 140 thermal time constant, β is the bulk modulus of the fluid in the pipeline volume V_{ext} , V_{a0} is the
 141 size of the accumulator, V_g is the gas volume, and T is the gas temperature. Hence the state of the
 142 accumulator contains the pressure, the gas volume and the gas temperature. Initially, the state can be
 143 specified based on the standard gas law:

$$V_g = \frac{T}{T_0} \frac{p_{a0}}{p_a} V_{a0} \quad (34)$$

144 where p_{a0} is the pre-charged pressure of the gas at the temperature T_0 .

145 *3.5. The hydraulic motor*

146 For the system presented in this paper, there are 4 chambers and 2 different pressures: the
 147 high pressure and the low pressure. The hydraulic motor is connected between the high pressure
 148 accumulator and the low pressure accumulator. The flow of the hydraulic motor can be modeled as:

$$Q_M = D_w \omega_M - \Delta p C_{Q1} \quad (35)$$

where D_w is the displacement of the hydraulic motor, which is constant for a fixed displacement
 motor, Δp is the pressure across the motor, C_{Q1} is the coefficient of the flow loss of the motor, and ω_M
 is the rotational speed of the motor which is defined as:

$$\omega_M = \frac{p_{avg,exp} \psi}{p_H k_{gen} D_M} \quad (36)$$

where $p_{avg,exp}$ is the expected average power output, p_H is the pressure of the high pressure
 accumulator, k_{gen} is the number of generators, D_M is the total motor displacement, and ψ is a
 coefficient for the motor speed control to prevent the high pressure from depletion or saturation
 which is formulated as:

$$k = \frac{4}{(p_{H,max} - p_{H,min})} \quad (37)$$

$$\psi = \begin{cases} k(p_H - p_{H,min}), & \text{if } p_H > p_{H,min} \\ 0, & \text{otherwise} \end{cases} \quad (38)$$

To achieve the desired motor speed introduced in Eq. (36), the generator torque control need to
 be included. In this paper, the generator and inverter are not modeled and the desired motor speed
 is assumed achievable. The power in the hydraulic motor can be computed as:

$$P_M = \Delta p Q_M \quad (39)$$

149 This completes the modeling of DDC hydraulic system; the control algorithm is introduced in
 150 the next section.

151 **4. The control algorithm**

152 Two parts will be presented in this section: the control method for the buoy and the force
 153 shifting algorithm for controlling the valves. The control method for controlling the buoy computes
 154 a reference value for the control force at each time step. This reference control force is then used as an
 155 input to the PTO, and the actual control force that results from the PTO is computed using the force
 156 shifting algorithm. Each of the two parts is detailed below.

157 *4.1. The buoy control method*

Several control methods will be tested in this paper using a simulator that simulates the PTO unit. Some of these controller were originally developed for heave control. It is relatively straightforward, however, to extend a control method from the heave motion to the pitch motion. For example, the Singular Arc (SA) control method [29] can be used to compute the control torque as follows:

$$\tau_{PTO}(s) = \frac{N(s)}{D(s)} \quad (40)$$

where:

$$\begin{aligned} N(s) &= (J_{total}s^2 + (C_r(sI + A_r)^{-1}B_r - D_r)s \\ &\quad + K_{res})\tau_{ex}(s) \\ D(s) &= s(C_r(sI + A_r)^{-1}B_r - C_r(sI - A_r)^{-1}B_r \\ &\quad - 2D_r) \end{aligned} \quad (41)$$

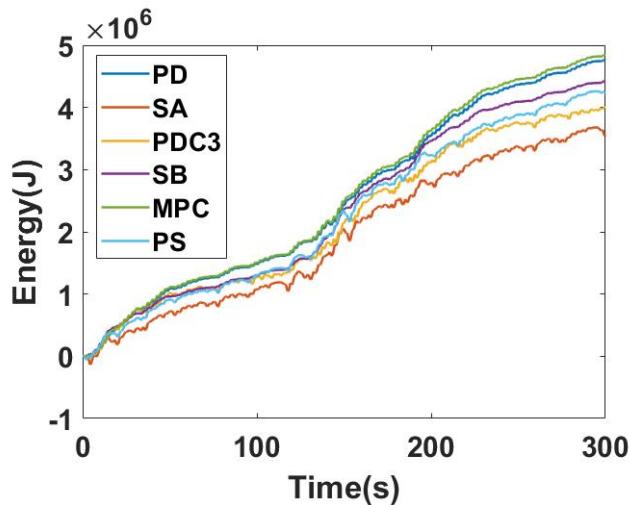
where the excitation torque can be expressed as Fourier Series expansion:

$$\tau_{ex} = \sum_{i=1}^n \Re(\tau_{c,ex}(\omega_i)\eta(\omega_i)e^{i(-\omega_i t + \phi_i)}) \quad (42)$$

158 An inverse Laplace transformation is then applied to the SA control to obtain the control in the time
 159 domain. The required information to compute the control is the time t , the excitation torque coefficient
 160 $\tau_{c,ex}$, the wave frequency vector $\vec{\omega}$ and the time domain phase shift vector $\vec{\phi}$.

A reference control method is the feedback Proportional-Derivative (PD) control. The PD control takes the form:

$$\tau_{PTO} = K\theta + B\dot{\theta} \quad (43)$$


161 where K is the proportional gain and B is the derivative gain.

162 In addition to the above two control methods, simulated in this paper are the Model Predictive
 163 Control (MPC) [30], the shape-based (SB) control [31], a proportional-derivative complex conjugate
 164 control (PDC3) [32], and the pseudo-spectral control (PS) [33]. Each one of these methods is well
 165 documented in the literature, so the details of each control methods is avoided in this paper.

166 In the original developments, the SA control and the PDC3 control compute a control force that is
 167 equivalent to the complex conjugate control (C3) and hence the maximum possible harvested energy
 168 in the linear domain. However, the C3 does not account for constraints on the buoy displacement.
 169 In fact, since the C3 criteria is to resonate the buoy with the excitation force, the motion of the buoy
 170 always violates displacement constraints when controlled using the SA and PDC3 controls. On the
 171 other hand, the MPC, SB, and PS control methods compute a control force, in an optimal sense, taking
 172 displacement constraints into account. Figure 4 shows a simulation for 5 minutes for the above six
 173 control methods when a constraint on the buoy displacement is assumed. The simulation parameters
 174 are detailed in Section 5. This simulation does not account for the PTO dynamics and it is here
 175 presented to highlight the impact of including the PTO in the simulations in Section 5. As can be
 176 seen from Figure 4, among the six control methods, the MPC and PD controls performed best, then
 177 the SB method, then the PS, and then the PDC3 and SA methods. The two methods (SA and PDC3)
 178 that perform best without displacement constraints actually perform the least when accounting for
 179 the constraints.

180 *4.2. The force shifting algorithm*

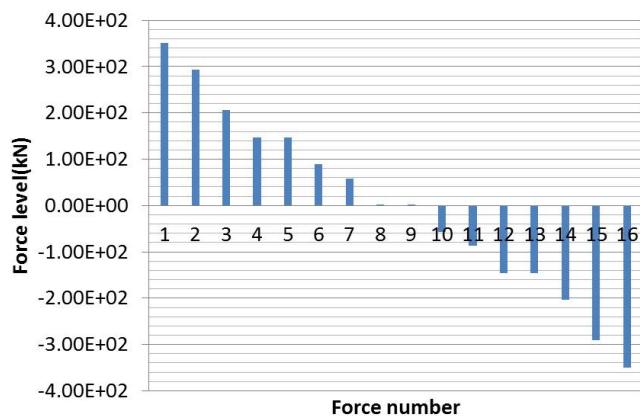

181 The force shifting algorithm (FSA) is introduced in this section. The FSA used in this paper has
 182 the following algorithm:

Figure 4. When accounting for displacement constraints, some unconstrained methods harvest less energy

$$\{F_c(t) = \vec{F}[k] \mid k = \arg \min |F_{ref}(t) - \vec{F}[k]| \} \quad (44)$$

183 where F_{ref} is the reference control force (computed for instance using one of the six control
 184 methods described above), \vec{F} is the vector of the possible discrete values for the force. With different
 185 permutations of valves openings, it is possible to produce different levels of constant forces as shown
 186 in Fig. 5, where it is assumed here that $p_H = 200$ bar and $p_L = 20$ bar. The FSA selects the discrete
 187 force level that is closest to the reference control force. It is noted here that the discrete force changes
 over time due to the fluctuation of the pressures in the accumulators.

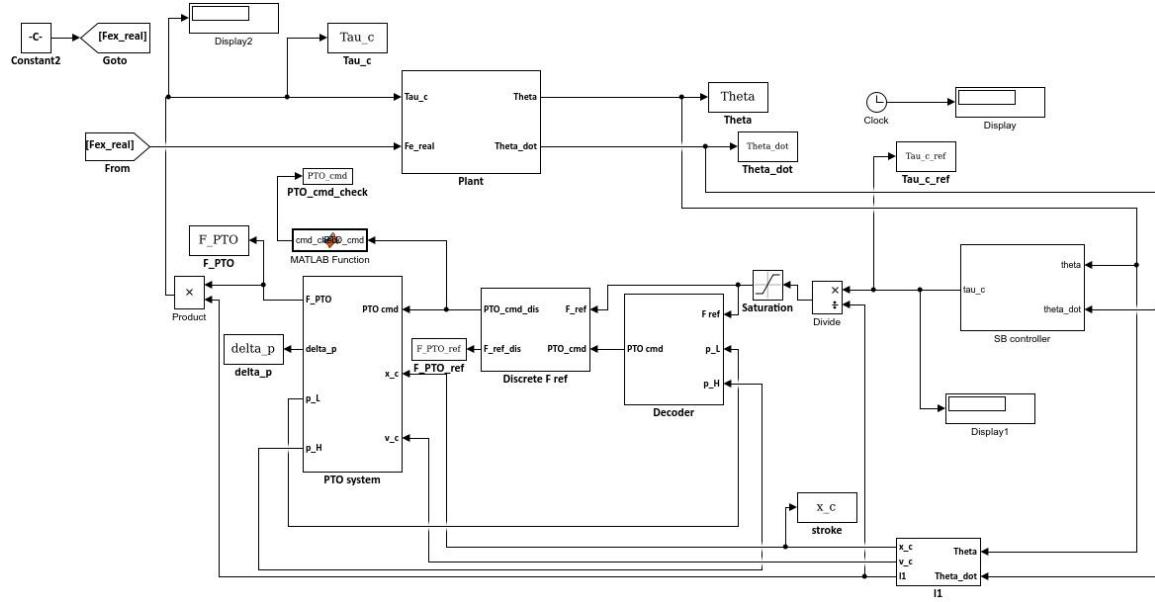


Figure 5. An example for all discrete possible values for a PTO force

188

189 5. Simulation Tool

190 A tool for simulating the dynamics of the WEC including the motion dynamics, the
 191 hydrodynamics/hydrostatic forces calculations, and the PTO hardware model was developed in
 192 MathWorks Simulink®. The detailed Simulink model of the wave energy conversion system is
 193 shown in Fig. 6. The Plant block simulates the dynamics of the buoy. The PTO block simulates all the
 194 equations of the valves, hoses, and accumulators. The Decoder and 'Discrete F ref' blocks simulate
 195 the discrete force shifting algorithm. As can be seen in the figure, the excitation force is an input that is

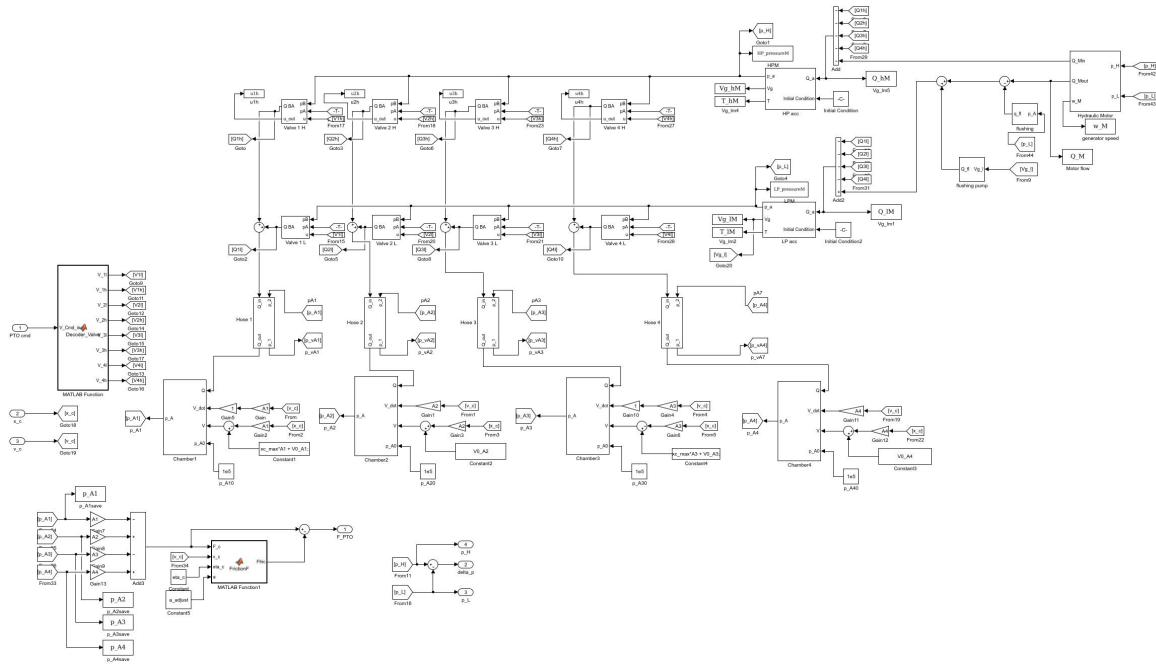
Figure 6. The Simulink model of the wave energy conversion system

196 computed outside the Plant block. The control force is computed in the block 'SB controller'. Despite
 197 the name, six different controllers were tested in the 'SB controller' block. The detailed Simulink
 198 model of the hydraulic system is shown in Fig. 7, this model is inside the PTO block in Fig. 6.

199 The parameters of the dynamic model of the wavestar used in the simulations in this paper are
 listed in Table 1.

Table 1. Model parameters for the Wavestar

Symbol	Value	Unit
J_{tot}	3.8×10^6	kg m^2
K_{res}	14×10^6	Nm/rad
The transfer function $H_r(s)$		
(b_0, b_1, \dots, b_5)	*	
(a_0, a_1, \dots, a_5)	**	
The transfer function $H_{ex}(s)$		
(b_0, b_1)	***	
(a_0, a_1, \dots, a_4)	****	
$* = (0.0001, 0.0144, 0.624, 8.16, 13.1, 1.44) \times 10^6$		
$** = (0.001, 0.0906, 1.67, 6.31, 13.3, 9.18)$		
$*** = (5.4, 270) \times 10^4$		
$**** = (0.036, 0.39, 1.5, 2.6, 1.6)$		


200

201 5.1. Wave model

Irregular waves are simulated in this study using the stochastic Pierson-Moskowitz Spectrum. The spectral density is defined as:

$$S(\omega) = \frac{5H_{m0}^2}{\omega_p \omega_n^5} e^{-\frac{5}{4\omega_n^4}} \quad (45)$$

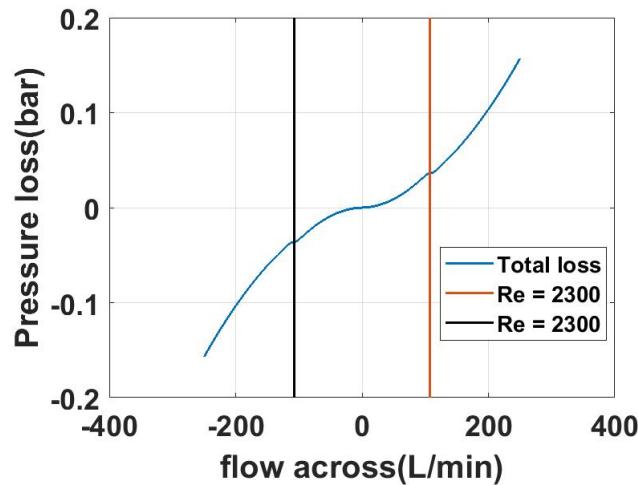

202 where $\omega_n = \omega / \omega_p$, ω_p is the peak frequency and H_{m0} is the significant height of the wave. The wave
 203 used in the simulation has a significant height of 1.75 m and a peak period 5.57 s.

Figure 7. The Simulink model of the hydraulic PTO system

5.2. The system losses

The system losses are computed in this study. The system losses include the pressure loss of the hoses, the flow loss of the generator and the friction of the cylinder. The pressure loss is shown in Fig. 8, in which the vertical line represents the transition between the laminar flow and the turbulent flow when the Reynold number is $Re = 2300$, for each of the two possible directions of the fluid flow. The amount of the flow loss and the friction force of the cylinder are shown in Fig. 9 and Fig. 10. All the system parameters used in the simulations in this paper are listed in Table 2.

Figure 8. The pressure loss of the hose which has 1m length and 3.81×10^{-2} m diameter with different flow rate across the hose.

Table 2. The data used in the simulation of overall WEC system

Symbol	Value	Unit
Length of the arms		
l_2	3	m
l_3	2.6	m
l_4	1.6	m
Length of the hoses C2M		
l_{A1}	1	m
l_{A2}	1	m
l_{A3}	1	m
l_{A4}	1	m
Diameter of the hoses C2M		
d_{A1}	1.5	in
d_{A2}	1.5	in
d_{A3}	1.5	in
d_{A4}	1.5	in
Maximum stroke		
$x_{c,max}$	3	m
Area of the chambers		
A_1	113.4×10^{-4}	m^2
A_2	32.55×10^{-4}	m^2
A_3	80.85×10^{-4}	m^2
A_4	162.75×10^{-4}	m^2
Max Area of the valves		
A_{01}	1.6×10^{-4}	m^2
A_{02}	1.6×10^{-4}	m^2
A_{03}	1.6×10^{-4}	m^2
A_{04}	1.6×10^{-4}	m^2
Accumulator size		
V_{a0}	100×10^{-3}	m^3
Pressure drop coef		
ζ_M	1.3	
ζ_C	1	
Specific time constant S		
τ_l	23	s
τ_h	34	s
Initial Pressure of the accumulators		
$p_{a,l}$	20	bar
$p_{a,h}$	130	bar
Initial angle		
α_0	1.0821	rad
Control parameters		
K	-9.16×10^6	Nm/rad
B	4.4×10^6	Nms/rad
Valve opening time		
t_v	30×10^{-3}	s
Wall temperature		
T_w	50	°C
Ideal gas constant		
R	276	J/kg/K
Gas specific heat at constant volume		
C_v	760	J/kg/K
Motor displacement		
D_w	100	cc/rev
Flow loss coefficient		
C_{Q1}	5.4×10^{-12}	$\text{m}^3/\text{s}/\text{Pa}$
Fluid bulk modulus		
β	1.5×10^9	Pa

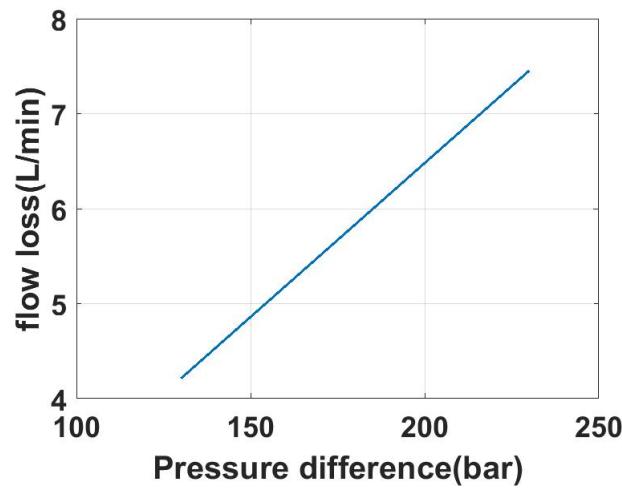


Figure 9. The flow loss of the generator

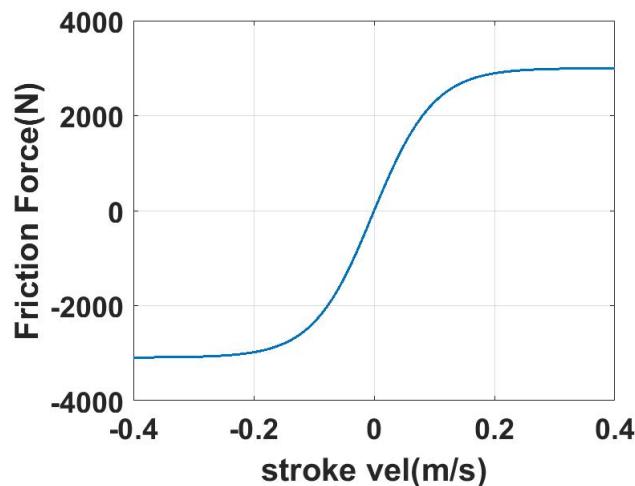
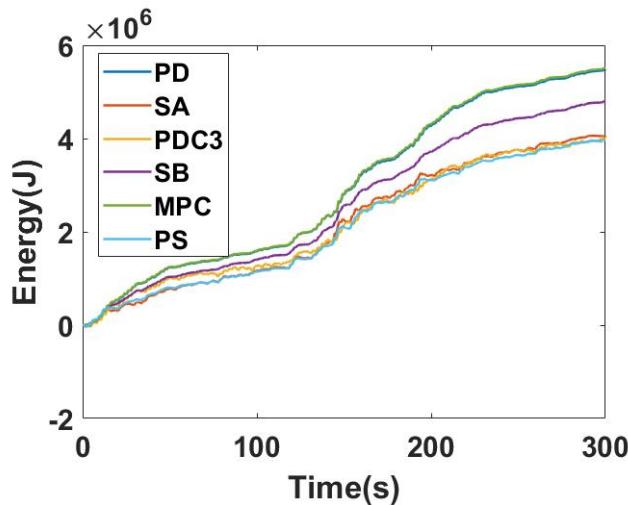



Figure 10. The friction force of the cylinder with different velocities when the cylinder force is 100 kN.

211 6. Simulation Results

212 The above Simulink tool is used to simulate the performance of the above six control methods.
 213 The energy extracted by method is shown in Fig. 11. In this simulation, there is limitations on the
 214 maximum stroke and the maximum control force. In addition, the PTO dynamics are simulated. The
 215 maximum control force in the cylinder in the simulations presented in this paper is assumed to be
 216 215 kN. The maximum allowable displacement in the simulations presented in this paper is assumed
 217 to be 1.2 m. As can be shown in Fig. 11, the MPC and PD control methods harvest the highest energy
 218 level compared to the other methods. The SB method comes next. The SA, PDC3, and the PS control
 219 methods come next, and the three of them perform about the same. Comparing Fig. 11 to Fig. 4 we
 220 can see that by including the PTO model, the performance of the SA method improved slightly while
 221 the performance of the PS degraded slightly and as a result the three methods PS, SA, and PDC3
 222 perform about the same. The performance of the MPC, PD, and SB control methods actually slightly
 223 improved when the PTO model is included.

224 Another important result to examine is the output mechanical power at the actuator and the
 225 output power from the generator. These two quantities are compared in Fig. 12. From the figure we
 226 can tell that the power absorbed in the generator side is much smoother than the power extracted

Figure 11. The energy extracted accounting for displacement and force constraints and including the hydraulic system dynamics model

227 by actuator. The hydraulic accumulators act as power capacitor for energy storage resulting in
 228 this relatively smooth power profile at the generator output. As can be seen in the figure also, the
 229 actuator power includes reactive power; these are the times at which the actuator power is negative.
 230 At these times, the PTO actually pumps power into the ocean through the actuator. The generator
 231 output power does not have any reactive power confirming that all the reactive power come from the
 232 accumulators.

The efficiency of the system is defined as:

$$\eta_c = \frac{P_{gen}}{P_{actuator}} \quad (46)$$

233 The efficiency depends on the control method. For example, in this test case, the efficiency of the SB
 234 controller is 80.15%, for the MPC it is 72.58%, for the PS it is 67.34%, for the SA it is 64.36%, and for
 235 the PD controller it is 71.76%, over 300 seconds.

236 In the context of comparing the performance of different control methods, it is important to
 237 highlight one significant difference between them that emanates from the theory behind each control
 238 method. Each of the MPC, SB and PS control methods requires wave prediction; that is wave
 239 information (or excitation force) is needed over a future horizon at each time step in the simulation.
 240 In the simulations in this paper, this future horizon is assumed to be 0.6 seconds for the SB and MPC
 241 control methods, and is assumed to be 60 seconds for the PS control. Wave prediction is assumed
 242 perfect in these simulations. Non-perfect wave prediction would affect the results obtained using
 243 these methods. The PD, SA, and PDC3 control methods do not need future wave prediction.

244 This simulation tool also provides detailed operation information that are useful to characterize
 245 different components in the system. For example, the generator speed is computed in the simulation,
 246 and is shown in Fig. 13. As shown in the figure, the speed is oscillating around 1200 RPM.

247 To present detailed plots for the response of the buoy, only one control method is selected as a
 248 sample to avoid excessive number of figures in the paper. The SB method is selected here to present
 249 the detailed WEC response in this section. The angular displacement of the buoy is shown in Fig. 14;
 250 the maximum angular displacement is about 10 degrees and it is below 5 degrees most of the time.
 251 The angular velocity of the buoy is shown in Fig. 15. The cylinder force and the PTO torque are
 252 shown in Fig. 16 and 17, respectively. Both the reference and actual values are plotted in each of
 253 the two figures. As can be seen in Fig. 16, the control force is below the force limit of 215 kN. The
 254 accumulator pressure is shown in Fig. 18. The high pressure is oscillating around 100 bar, while

255 the low pressure is stable around 20 bar. The chamber pressure is shown in Fig. 19. Significant
 256 fluctuations can be observed when the hydraulic system is extracting energy. This is necessary to be
 257 able to track the reference control command effectively. Yet, those fluctuations may be reduced by
 258 increasing the valve opening area or including relief valves.

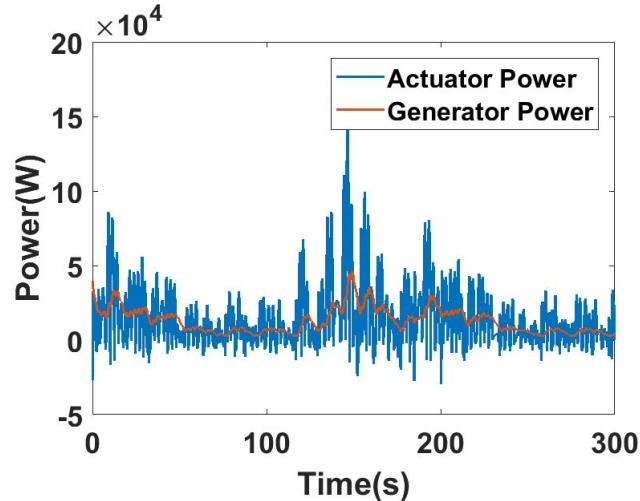
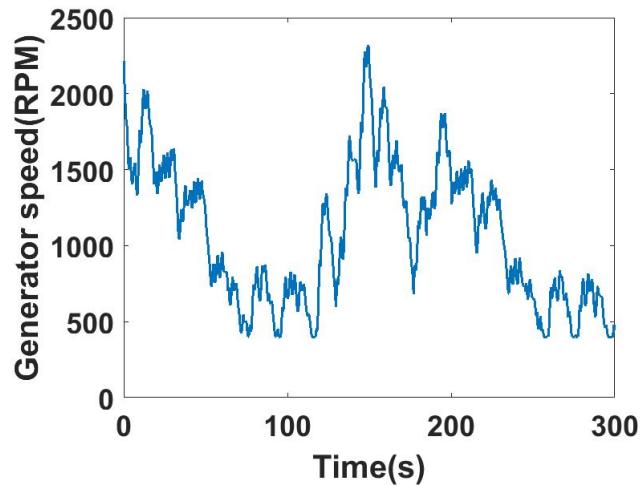
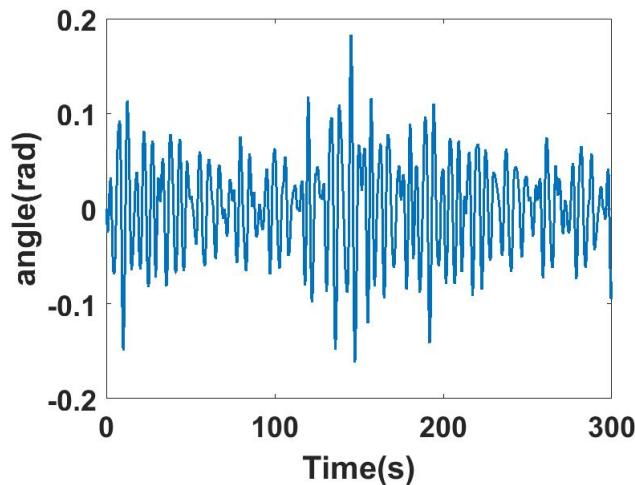
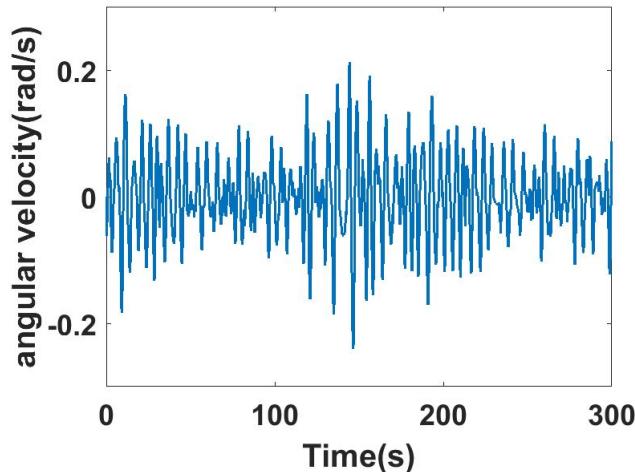


Figure 12. The Power extracted by the actuator and the generator


Figure 13. The generator speed

259 7. Discussion

260 In this paper, different recent control methods are tested using a simulation tool that simulates
 261 a hydraulic PTO system. In a theoretical test (where PTO is assumed to track reference control
 262 command ideally and in the absence of all constraints,) the SA controller has the best performance
 263 in terms of energy extraction. Yet the performance of the SA controller with the hydraulic system
 264 model included is the worst among the tested six control methods. To get more insight into this
 265 phenomenon, consider Table. 3 that presents data for three controllers (SA, PD, and PDC3) in the
 266 theoretical test case. As can be seen in Table. 3, the energy extracted by the PD controller in this
 267 theoretical test is about 60% of that of the SA controller. However, the buoy maximum displacement
 268 associated with the SA control is significantly higher than that of the PD control (almost three times
 269 higher) which makes it more difficult to achieve. Similarly, the maximum control force required by

Figure 14. The rotational angle

Figure 15. The angular velocity

270 the SA control is significantly higher than that of the PD control which means a PTO might not be
 271 able to track the command force at all times when using a SA control, while it is more likely to track a
 272 command force generated using a PD control. The data of the PDC3 control in Table. 3 also highlights
 273 that the PDC3 control in this test case generates about the same level of average power; yet at higher
 274 displacement range and higher force capability. This indicates that including a model for the PTO
 275 would result in favorable performance for the PD control compared to the PDC3. To highlight the
 276 impact of the PTO model on the performance of the different control strategies, consider Table. 4.
 277 The data are presented for all the six control methods. As can be seen from Table. 4, all the control
 278 methods reached the maximum possible control capacity allowable by the PTO. Since this maximum
 279 control force is well below that needed by the SA in Table. 3, the amount of harvested energy in this
 280 practical case is significantly less than the one computed in the theoretical case (13.49 W compared to
 281 35.11 W in average power). The drop in energy harvested using the PD control however is less since
 282 the maximum force needed theoretically was as high as that of the SA. The displacement of the PDC3
 283 reached the maximum displacement allowable by the WEC (1.2 m.) This is expected since the PDC3
 284 tends to increase the displacement and hence it would reach a limit imposed by the WEC system.

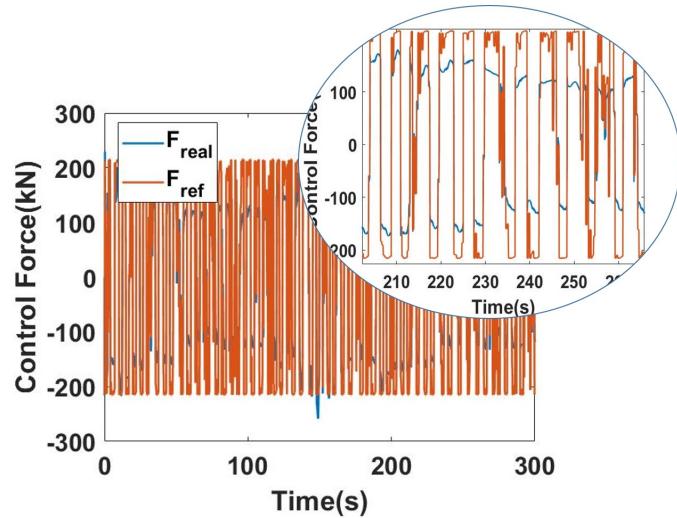


Figure 16. The cylinder force

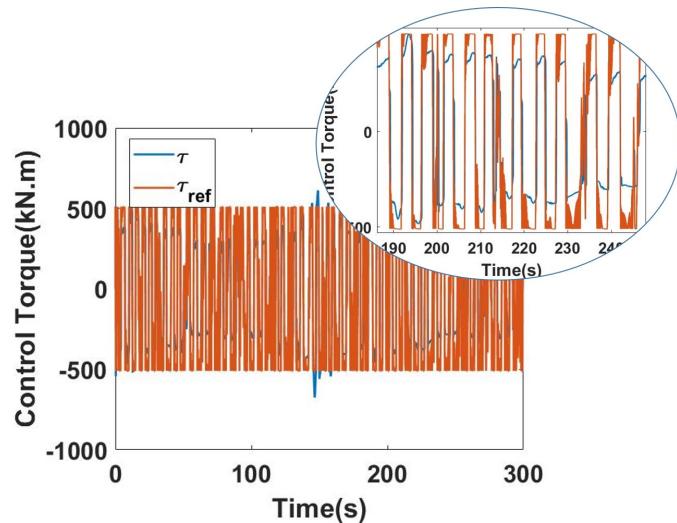


Figure 17. The PTO torque

Table 3. Capacity requirement of the controllers without hydraulic system

Symbol	Value	Unit
The SA controller		
$F_{PTO,max}$	3705	kN
$x_{c,max} - x_{c,min}$	3.2	m
P_{ave}	35.11	W
The PD controller		
$F_{PTO,max}$	1119	kN
$x_{c,max} - x_{c,min}$	1.1	m
P_{ave}	21.00	W
The PDC3 controller		
$F_{PTO,max}$	1404	kN
$x_{c,max} - x_{c,min}$	1.6	m
P_{ave}	21.08	W

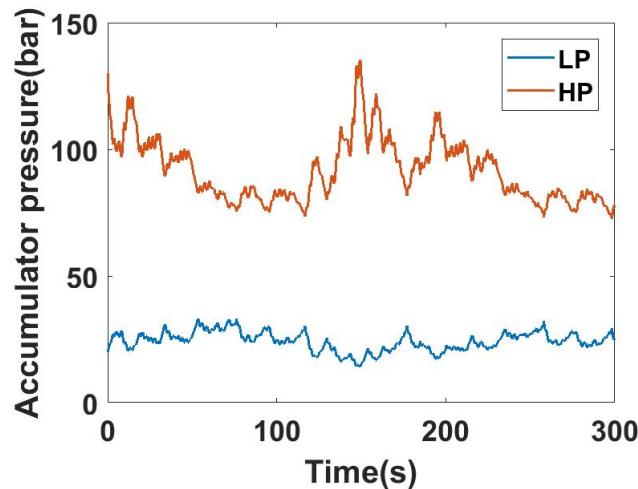


Figure 18. The pressure of the accumulator

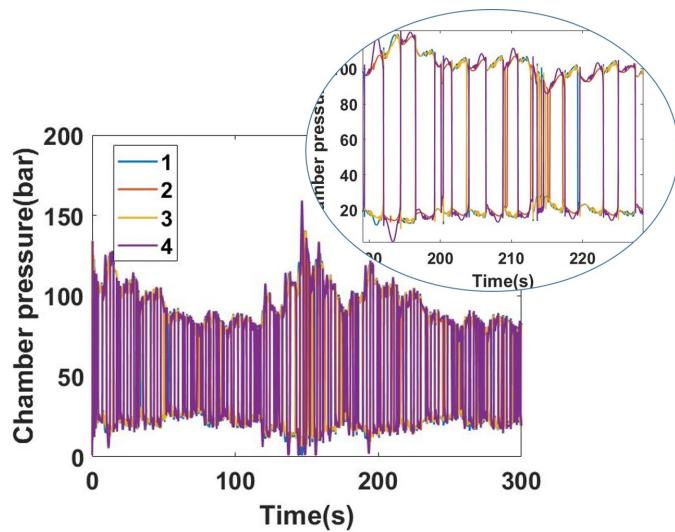


Figure 19. The chamber pressure

285 8. Conclusion

286 The main conclusion of this paper is that a controller that is optimal in a theoretical analysis
 287 might not be optimal when tested in a practical test environment. In particular, this paper sheds light
 288 on considerations that need to be accounted for in designing a control method for WEC systems.
 289 The first of these considerations is the limitation of the maximum possible PTO control force. This
 290 limitation impacts methods such as the singular arc control which is a control method developed in
 291 an optimal sense using classical optimal control theory. The second consideration is the limitation due
 292 to the maximum possible displacement of the WEC system. This limitation impacts the optimality of
 293 some control methods such as the multi-resonant proportional derivative control that is derived in
 294 an optimal sense to satisfy the complex conjugate criterion. Another consideration is the capability of
 295 the PTO to track the control command. The hydraulic PTO presented in this paper produces discrete
 296 levels of control forces and hence the dynamics of this PTO need to be accounted for in designing a
 297 control system for practical energy harvesting.

298 **Acknowledgments:** This material is based upon work supported by the National Science Foundation under
 299 Grant Number 1635362.

Table 4. Capacity requirement of the controllers with hydraulic system

	Symbol	Value	Unit
The SA controller			
	$F_{PTO,max}$	215	kN
	$x_{c,max} - x_{c,min}$	0.96	m
	P_{ave}	13.49	W
The PD controller			
	$F_{PTO,max}$	215	kN
	$x_{c,max} - x_{c,min}$	1.1	m
	P_{ave}	18.26	W
The PDC3 controller			
	$F_{PTO,max}$	215	kN
	$x_{c,max} - x_{c,min}$	1.2	m
	P_{ave}	13.32	W
The SB controller			
	$F_{PTO,max}$	215	kN
	$x_{c,max} - x_{c,min}$	0.8	m
	P_{ave}	16.02	W
The MPC controller			
	$F_{PTO,max}$	215	kN
	$x_{c,max} - x_{c,min}$	1.1	m
	P_{ave}	18.37	W
The PS controller			
	$F_{PTO,max}$	215	kN
	$x_{c,max} - x_{c,min}$	0.90	m
	P_{ave}	13.22	W

300 Author Contributions: Shangyan Zou and Ossama Abdelkhalik designed the study and analyzed the data.
301 Shangyan Zou wrote the paper and Ossama Abdelkhalik revised the paper.

302 Conflicts of Interest: The authors declare no conflict of interest.

303 Bibliography

- 304** 1. António, F.d.O.; Justino, P.A.; Henriques, J.C.; André, J.M. Reactive versus latching phase control of a
305 two-body heaving wave energy converter. *Control Conference (ECC), 2009 European. IEEE*, 2009, pp.
306 3731–3736.
- 307** 2. Bacelli, G.; Ringwood, J.V.; Gilloteaux, J.C. A control system for a self-reacting point absorber wave
308 energy converter subject to constraints. *IFAC Proceedings Volumes* **2011**, *44*, 11387–11392.
- 309** 3. Ricci, P.; Lopez, J.; Santos, M.; Ruiz-Minguela, P.; Villate, J.; Salcedo, F.; others. Control strategies for
310 a wave energy converter connected to a hydraulic power take-off. *IET renewable power generation* **2011**,
311 *5*, 234–244.
- 312** 4. You-Guan, Y.; Guo-fang, G.; Guo-Liang, H. Simulation technique of AMESim and its application in
313 hydraulic system [J]. *Hydraulics Pneumatics & Seals* **2005**, *3*, 28–31.
- 314** 5. Ferri, F.; Kracht, P. Implementation of a Hydraulic Power Take-Off for wave energy applications.
315 *Recuperado de http://www. sdwed. civil. aau. dk/digitalAssets/97/97533_d4 2013*, *7*.
- 316** 6. Plummer, A.; Cargo, C. Power Transmissions for Wave Energy Converters: a Review. *8th International
317 Fluid Power Conference (IFK)*. University of Bath, 2012.
- 318** 7. Antonio, F.d.O. Modelling and control of oscillating-body wave energy converters with hydraulic power
319 take-off and gas accumulator. *Ocean engineering* **2007**, *34*, 2021–2032.
- 320** 8. António, F.d.O. Phase control through load control of oscillating-body wave energy converters with
321 hydraulic PTO system. *Ocean Engineering* **2008**, *35*, 358–366.
- 322** 9. Hansen, R.H. *Design and control of the powertake-off system for a wave energy converter with
323 multiple absorbers*; Videnbasen for Aalborg UniversitetVBN, Aalborg UniversitetAalborg University, Det
324 Teknisk-Naturvidenskabelige FakultetThe Faculty of Engineering and Science.

325 10. Babarit, A.; Guglielmi, M.; Clément, A.H. Declutching control of a wave energy converter. *Ocean*
326 *Engineering* **2009**, *36*, 1015–1024.

327 11. Eidsmoen, H. Tight-moored amplitude-limited heaving-buoy wave-energy converter with phase control.
328 *Applied Ocean Research* **1998**, *20*, 157–161.

329 12. Eidsmoen, H. Simulation of a slack-moored heaving-buoy wave-energy converter with phase control
330 **1996**.

331 13. Josset, C.; Babarit, A.; Clément, A. A wave-to-wire model of the SEAREV wave energy converter.
332 *Proceedings of the institution of mechanical engineers, Part M: Journal of Engineering for the Maritime*
333 *Environment* **2007**, *221*, 81–93.

334 14. Henderson, R. Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis
335 wave energy converter. *Renewable energy* **2006**, *31*, 271–283.

336 15. Zhang, D.; Li, W.; Ying, Y.; Zhao, H.; Lin, Y.; Bao, J. Wave energy converter of inverse pendulum
337 with double action power take off. *Proceedings of the Institution of Mechanical Engineers, Part C: Journal*
338 *of Mechanical Engineering Science* **2013**, *227*, 2416–2427.

339 16. Antolín-Urbaneja, J.C.; Cortés, A.; Cabanes, I.; Estensoro, P.; Lasa, J.; Marcos, M. Modeling innovative
340 power take-off based on double-acting hydraulic cylinders array for wave energy conversion. *Energies*
341 **2015**, *8*, 2230–2267.

342 17. Cargo, C.; Hillis, A.; Plummer, A. Optimisation and control of a hydraulic power take-off unit for a wave
343 energy converter in irregular waves. *Proceedings of the Institution of Mechanical Engineers, Part A: Journal of*
344 *Power and Energy* **2014**, *228*, 462–479.

345 18. Sun, K.; Ge, W.; Luo, L.; Liang, H.; Xu, C.; Leng, J.; Yuan, Z.; Huang, H. Research on the hydraulic power
346 take-off unit of a hybrid wave energy converter. *OCEANS 2016-Shanghai. IEEE*, 2016, pp. 1–4.

347 19. Hansen, R.H.; Kramer, M.M.; Vidal, E. Discrete displacement hydraulic power take-off system for the
348 wavestar wave energy converter. *Energies* **2013**, *6*, 4001–4044.

349 20. Hansen, R.H.; Andersen, T.O.; Pedersen, H.C. Model based design of efficient power take-off systems
350 for wave energy converters. *12th Scandinavian International Conference on Fluid Power, SICFP 2011.*
351 Tampere University Press, 2011, pp. 35–49.

352 21. Kamizuru, Y. *Development of hydrostatic drive trains for wave energy converters*; Shaker, 2014.

353 22. Hals, J.; Taghipour, R.; Moan, T. Dynamics of a force-compensated two-body wave energy converter in
354 heave with hydraulic power take-off subject to phase control. *Proceedings of the 7th European Wave and*
355 *Tidal Energy Conference, Porto, Portugal*, 2007, pp. 11–14.

356 23. Costello, R.; Ringwood, J.; Weber, J. Comparison of two alternative hydraulic PTO concepts for wave
357 energy conversion. *Proceedings of the 9th European wave and tidal energy conference (EWTEC). School*
358 *of Civil Engineering and the Environment, University of Southampton*, 2011.

359 24. Kamizuru, Y.; Liermann, M.; Murrenhoff, H. Simulation of an ocean wave energy converter using
360 hydraulic transmission.

361 25. Penalba, M.; Sell, N.P.; Hillis, A.J.; Ringwood, J.V. Validating a wave-to-wire model for a wave energy
362 converter—Part I: The Hydraulic Transmission System. *Energies* **2017**, *10*, 977.

363 26. Schlemmer, K.; Fuchshumer, F.; Böhmer, N.; Costello, R.; Villegas, C. Design and control of a hydraulic
364 power take-off for an axi-symmetric heaving point absorber. *Proceedings of the Ninth European Wave*
365 *and Tidal Energy Conference, Southampton*, 2011.

366 27. Gaspar, J.F.; Calvário, M.; Kamarlouei, M.; Soares, C.G. Power take-off concept for wave energy converters
367 based on oil-hydraulic transformer units. *Renewable Energy* **2016**, *86*, 1232–1246.

368 28. Sánchez, E.V.; Hansen, R.H.; Kramer, M.M. Control performance assessment and design of optimal
369 control to harvest ocean energy. *IEEE Journal of Oceanic Engineering* **2015**, *40*, 15–26.

370 29. Zou, S.; Abdelkhalik, O.; Robinett, R.; Bacelli, G.; Wilson, D. Optimal control of wave energy converters.
371 *Renewable Energy* **2017**, *103*, 217–225.

372 30. Hals, J.; Falnes, J.; Moan, T. Constrained Optimal Control of a Heaving Buoy Wave-Energy Converter.
373 *Journal of Offshore Mechanics and Arctic Engineering* **2011**, *133*, 1–15.

374 31. Abdelkhalik, O.; Robinett, R.; Zou, S.; Bacelli, G.; Coe, R.; Bull, D.; Wilson, D.; Korde, U. On the control
375 design of wave energy converters with wave prediction. *Journal of Ocean Engineering and Marine Energy*
376 **2016**, *2*, 473–483.

377 32. Song, J.; Abdelkhalik, O.; Robinett, R.; Bacelli, G.; Wilson, D.; Korde, U. Multi-resonant feedback control
378 of heave wave energy converters. *Ocean Engineering* **2016**, *127*, 269 – 278.

379 33. Herber, D.R.; Allison, J.T. Wave energy extraction maximization in irregular ocean waves using
380 pseudospectral methods. ASME 2013 International Design Engineering Technical Conferences and
381 Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013,
382 pp. V03AT03A018–V03AT03A018.

383 © 2018 by the authors. Submitted to *J. Mar. Sci. Eng.* for possible open access publication under the terms and
384 conditions of the Creative Commons Attribution license (<http://creativecommons.org/licenses/by/4.0/>)