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Abstract—The model of a three-degree-of-freedom Wave En-
ergy Converter can be simplified as a linear time-varying system.
In this model, the heave mode parametrically excites the pitch
mode, which in turn excites the surge mode. The heave mode,
however, is independent to the other two modes when the motion
is small. The purpose of this paper is to design a controller to
maximize the energy harvested over a receding time horizon.
We also want to demonstrate that, with proper design of the
control, it is possible to exploit this nonlinear coupling between
the modes so as to harvest more energy. The controller selected is
the linear quadratic Gaussian optimal control. The prediction of
excitation forces is constructed based on the estimation where the
estimations are obtained by using extended Kalman Filter. The
prediction of excitation force is fed into the controller to compute
the time-varying linear quadratic optimal control. Constraints on
the WEC motion are accounted for in computing the control. The
results show that the energy captured by three-degree-of-freedom
Wave Energy Converter is 3.56 times the energy extracted in
heave mode only. Higher energy harvesting is demonstrated when
the linear time-varying model is used in control design.

Index Terms—Wave Energy Conversion; Surge-Heave-Pitch
control; Linear Quadratic Gaussian Controller; Time-varying
system; Wave Prediction

I. INTRODUCTION

Wave energy is one of the sustainable sources of energy
characterized by its high density [1]. The assessment of the
power density of the wave continues worldwide [2]–[5] and
shows a good potential for wave energy. Assessment and
experimental testing of Wave Energy Converters (WECs) also
continues [6]–[13]. Nowadays, a number of different WECs
have been built [14] which can extract energy from different
modes of motion. Types include the overtopping devices such
as WaveDragon [15], the pitching devices such as Pelamis [16]
and the heaving devices such as AquaBuOY [17].

Hydrodynamics and equations of motion of wave energy
converters have been studied extensively in early works [18]–
[22]. Also the efficiency of one-degree-of-freedom (1-Dof) and
two-degree-of-freedom (2-Dof) WECs are discussed in several
references. Several relatively recent studies have focused on
the control of WECs, e.g. [23]–[26], mostly for 1-Dof WECs.
For example, reference [27] uses a pseudo-spectral method to
reduce the complexity of the system through approximation.
A Model Predictive Control (MPC) is developed in [28]. The
MPC needs a wave prediction over a future horizon. A Linear

Quadratic Gaussian (LQG) controller was developed in [29]
for a linear time-invariant dynamics model WEC.

Early studies in wave energy conversion have pointed out
the advantage of harvesting wave energy from an antisym-
metric mode such as surge or pitch because the antisymmetric
radiation pattern it generates, which can potentially enhance
energy conversion for waves approaching from a certain
direction [20]. Optimum conversion requires oscillations to
maintain a certain amplitude and phase relation with respect
to the exciting force. This relationship can be challenging to
determine when multiple modes are being used for conversion.
Moreover, when motions are large enough (as expected with
control), modes such as surge, pitch, and heave become
nonlinearly coupled. This nonlinearly coupled WEC dynamic
system hinders the use of the linear control design methods.
Reference [29] presents an approximate approach for handling
such nonlinearities in WEC control design. This paper shows
that control of a WEC with heave-pitch-surge coupling at the
second order can be approached as control of a linear time-
varying system. In this model the heave mode excites the pitch
mode, which in turn is coupled with the surge mode. The
heave mode however is uncoupled to second order. This paper
presents a linear quadratic Gaussian optimal control based on
this argument. The controller proposed in this paper predict the
excitation force by the past and the current information. The
wave estimation is required to propose the controller. Compare
to the some conventional controllers which are non-causal (ex.
Complex Conjugate Control [21]), the presenting controller is
causal. This control aims at maximizing the energy harvested
over a receding time horizon. The excitation forces in the
3-DoF are estimated using an extended Kalman filter. The
optimal estimated states are used to compute the Time-Varying
LQ optimal control of the WEC. Constraints on the WEC
motion are accounted for in computing the control. The goal
of this study is to demonstrate that, with proper design of
the control, it is possible to exploit this nonlinear coupling
between the modes so as to harvest more energy.

II. PROBLEM SET-UP

A. Wave model

In this paper, the Bretschneider spectrum [30], [31] is used.
This spectrum has the form:
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Where ωp is the peak frequency of a given wave, and Hs

is the significant height of the wave.

B. Dynamic Model

The dimensions of the buoy used in this paper are shown
in Fig. 1. The presenting buoy has a mass of 858.4 kg,
a volume of 0.8578 m3 and a diagonal inertia matrix of
[83.932 , 83.932 , 137.5252] kg.m2. The total height of the
buoy is 0.7294 m while the height of the cylindrical part is
0.38 m which has a radius of 0.8604 m. The Mean Water
Level is defined at z = 0 m.

Fig. 1: The dimensions of the buoy

Since the conical part of the buoy will make the dynamics
more complex, in deriving the equation of motion, a cylindrical
shape is assumed. Additionally, to keep the assumption valid,
the motion of the buoy will be constrained to remain in the
cylindrical part. In other words, the conical part of the buoy
will be always fully submerge in the water. Fig. 2 shows a
side view of the buoy. In the figure, d1, d3 and θ5 represents
the surge, heave, and pitch motion respectively. The radius of
the buoy is denoted as R, the mass of the buoy is denoted
as m. h denotes the height between the center of gravity and
the bottom of the buoy. The two nodes G and B denote the
center of gravity and center of buoyancy respectively. For the
sake of demonstrating the derivation of the dynamics, the buoy
shown in the figure is not at the equilibrium point. The buoy
is at some moment with certain surge, heave and pitch motion.
Hence, in the figure, the center of gravity is not co-located with
the center of buoyancy. In this paper, the assumption made is
the three-degree-of-freedom motion can be controlled directly.
Since this paper focus on presenting the optimal control theory,
the development of the Power take-off system is beyond the
scope of this paper.

The heave motion is uncoupled from the surge and pitch
motion [32]. So the heave motion can be expressed as blow
(neglecting the high order terms):

Fig. 2: Geometry of a 3-DoF cylindrical Buoy; MWL is the mean
water level

(
m+m33

∞
)
d̈3 + b3ḋ3 +K3d3

= F 3
e + F 3

rad + u3 (2)

where K3 = ρgπR2 and m is the mass of the rigid body,
m33
∞ represents the added mass of heave mode. The total mass

which is the summation of m and m33
∞ can be denoted as

M3. b3 is the coefficient of viscous damping. F 3
e , F 3

rad and
u3 represents the excitation force, radiation force and control
force in heave mode. While the surge and pitch motion can
be expressed in matrix format:

[M ]~̈x+ [C]~̇x+ [K]~x = ~Fe + ~Frad + ~u (3)

where the excitation force vector is ~Fe = [F 1
e , F

5
e ]
T , the

control force vector is ~u = [u1 , u5]
T which is also the Power

take-off (PTO) force. The radiation damping force vector
is ~Frad = [F 1

rad , F
5
rad]

T . The radiation damping force can
be approximated by a state space model instead of using
convolution integral [33].

~̇xr = Ar~xr +Br~̇x
~Frad = Cr~xr

Where Ar, Br, Cr matrices can be computed from the
radiation impulse response function.

In Eq.(3) the matrix [M ] is:

[M ] =

[
m+m11

∞ m15
∞

I51∞ I5 + I55∞

]
,

the matrix [C] is:

[C] =

[
b1 0
0 b5

]
,



and the matrix [K] is:

[K] =

[
Kmoor 0

0 K55

]
,

where Kmoor is the mooring stiffness in surge direction.
K55 is the pitch restoring coefficient which has a constant
part and a time-varying part. So we can express K55 as:

K55 = Kc +Kp(t) (4)

where the constant part Kc = πρgR2

4

(
R2 + 2h2

)
and the

time-varying part Kp(t) = πρgR2hd3. So in the equation of
motion of surge and pitch, the heave motion influence the time
varying stiffness. This phenomenon is known as parametric
excitation [34]. All the coefficients of hydrodynamics and
hydrostatics are computed from the open source software
NEMOH [35] which implements a boundary element method.

C. Wave forecasting

To implement the LQG controller we need to predict the ex-
citation force. The wave excitation force can be approximated
by Fourier Series:

F̂e =
n∑
i=1

(Ai cos(ωit) +Bi sin(ωit)) (5)

where n represents the number of Fourier terms used to
approximate the excitation force. Since in our problem the
surge and pitch motion is excited by heave motion, two
Kalman filters are built to estimate the states: one for the
coupled motion (surge and pitch), and one for the heave
motion. Although we can combine those two Kalman filters
into one, separating them reduces the computational cost.
They are still coupled because the heave motion excites the
surge and pitch motion. So the current estimation of heave
displacement will be fed into a Kalman filter to estimate
the states of surge and pitch. In Fig. 3, the Kalman Filter

Fig. 3: The flow chart of LQG optimal controller

1 estimates the states of heave motion. The state vector

for Kalman Filter 1 is x̂h = [d3, ḋ3, ~x
3
r,
~A3, ~B3, ~w3]T .

The states estimated by Kalman Filter 2 are x̂c =
[d1, θ5, ḋ1, θ̇5, ~x

c
r, ~A

1, ~B1, ~A5, ~B5, ~w1, ~w5]T , where ~Aj ,
~Bj , and ~wj represent the coefficients and frequencies of cosine
and sine functions, respectively, in the excitation force Fourier
expansion. The superscript of those parameters j can be 1,
3 and 5 which denotes the surge, heave and pitch motion
respectively. The subscript h denotes the states of the heave
motion, c denotes the states of the coupled motion.

The equations of motion of the dynamic system described
in Eq. (3) and Eq. (2) can be written as a state space model.
Let the first part of the states of Kalman Filter 1 be xh =
[d3, ḋ3, ~x

3
r]
T . Also define xc = [d1, θ5, ḋ1, θ̇5, ~x

c
r]
T . Hence

the equations of motion can be written as:

ẋh(t) = F 3(t)xh(t) +G3(t)u3(t) + c3(t) (6)

ẋc(t) = F c(t)xc(t) +Gc(t)uc(t) + cc(t) (7)

where

F 3(t) =

 0 1 0
− 1
M3K3 − 1

M3 b3 − 1
M3C

3
r

0 B3
r A3

r

 (8)

G3 =

 0
1
M3

0

 (9)

c3(t) =

 0
1
M3

0

 F̂ 3
e (10)

and,

F c(t) =


[
0 0
0 0

] [
1 0
0 1

] [
0
0

]
−[M ]−1[K] −[M ]−1[C] −[M ]−1Cr[

0 0
]

Br Ar

 (11)

Gc =


[
0 0
0 0

]
[M ]−1[
0 0

]
 (12)

cc(t) =


[
0 0
0 0

]
[M ]−1[
0 0

]
[F̂ 1

e

F̂ 5
e

]
(13)

The F̂e represents the estimation of excitation force. In this
paper, a short-term prediction for excitation force will be
needed to compute the control. The sea states are assumed
to be steady within this short period. Hence, the dynamics of
the states for estimating the excitation force are:

~̇A = 0 (14)

~̇B = 0 (15)



~̇w = 0 (16)

where ~A = [ ~A1, ~A3, ~A5]T , ~B = [ ~B1, ~B3, ~B5]T , ~w =
[~w1, ~w3, ~w5]T .

D. The Jacobian Matrices

To implement the Extended Kalman Filter, we need to
construct the Jacobian matrices from the nonlinear system.
The partial derivatives are computed for Eq. (6), Eq. (7) and
Eqs. (14) to (16). To write the partial derivatives in matrix
format, the matrices are defined:

φc =

[
φ1c φ1s 0 0
0 0 φ5c φ5s

]
(17)

φh =
[
φ3c φ3s

]
(18)

Dc
φ =

[
D1 0
0 D5

]
(19)

Dh
φ = D3 (20)

where

φjc =
[
cos(ωj1t)... cos(ω

j
nt)
]

φjs =
[
sin(ωj1t)... sin(ω

j
nt)
]

j = 1, 3, 5 (21)

where D1, D3 and D5 are row vectors which contains n
elements. The kth component of Dj vectors can be expressed
as:

Dj
k = −Ajk sin(ω

j
kt)t+Bjk cos(ω

j
kt)t

j = 1, 3, 5

k = 1, ..., n (22)

F c(t) =


F c(t)

0 0 0 0 0 0
[M ]−1φc [M ]−1Dc

φ

0 0 0 0 0 0


0 0
...
0 0


(23)

In this paper, it is assumed that the displacement and
velocity will be measured for each of the surge, pitch and
heave motions. For the coupled motion we have:

ycm =
[
d1, θ5, ḋ1, θ̇5

]
+ vc(t) (24)

where vc(t) ∼ N(0, Qc(t)) which is assumed to be white
noise with normal distribution. So the Jacobian matrix of the
output model of surge and pitch motion is:

H c(t) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (25)

Similarly, the Jacobian matrices of Heave motion can be
derived:

Fh(t) =


Fh(t)

0 0 0
1
M3φ

h 1
M3D

h
φ

0 0 0


0 0
...
0 0


(26)

H h(t) =

[
1 0 0 0 0
0 1 0 0 0

]
(27)

The output model of heave is:

yhm =
[
d3, ḋ3

]
+ vh(t) (28)

where vh(t) ∼ N(0, Qh(t)) is the measurement noise of
heave motion which is also assumed to be white noise.

III. TIME-VARYING LQG CONTROL

The optimal control problem is split into two parts. The first
part is the LQ optimal controller which computes the control
assuming the availability of the estimated states; this parts
requires, as input, the wave prediction and the estimation of
the states. The second part is a LQ optimal estimator which
generates the estimation and prediction.

A. The LQ control law

The energy captured by the WEC is defined as:

E =

∫ Tend

0

(u1(t)ḋ1 + u3(t)ḋ3 + u5(t)θ̇5)dt (29)

So we can define the Lagrangian for surge and pitch motion
as:

Lc = (uc)TW cxc +
1

2
(uc)TRcuc (30)

where the matrices W and R are selected as:

W c =


0 0
0 0
1 0
0 1
0 0

 (31)

Rc =

[
ε1 0
0 ε5

]
(32)

The Lagrangian can be written in the following convex
format:

Lc =
1

2
(xc)T (Qc −W c(Rc)−1(W c)T )xc+

1

2
(uc + (Rc)−1(W c)Txc)TRc(uc + (Rc)−1(W c)Txc) (33)

If we do not included any constraint for the states of surge
and pitch, the state penalty matrix is set as Qc = [0]. Let



us define Ac1 = (Qc − W c(Rc)−1(W c)T ), Bc1 = Rc and
Uc

1 = (uc + (Rc)−1(W c)Txc). The dynamics can also be
written as:

ẋc(t) = F c1 (t)x
c(t) +Gc(t)Uc

1(t) + cc(t) (34)

where F c1 = F c(t)−Gc(Rc)−1(W c)T . The Riccati equation
and its auxiliary equation can be solved as:

Ṡc + ScF c1 (t) +F c1 (t)
TSc − ScGc(Bc1)

−1(Gc)TSc +Ac1 = ~0
(35)

k̇c + F c1 (t)
T kc − ScGc(Bc1)

−1(Gc)T kc + Sccc(t) = ~0 (36)

Since there is no constraint on the final conditions, then
the final conditions of the Riccati and Auxiliary equations
are Sc(tf ) = ~0, kc(tf ) = ~0. These two equations can be
propagated backward to get the time history of the optimal
feedback gain. The optimal control law is:

Uc
1
∗ = −(Bc1)

−1(Gc)Tλc (37)

Finally the expression of the control force can be obtained
after transforming back Uc

1
∗ to get:

uc∗ = −((Bc1)
−1(Gc)TSc(t)+

(Bc1)
−1(W c)T )xc(t)− (Bc1)

−1(Gc)T kc(t) (38)

A similar approach can be developed for the heave control
to get:

uh
∗
= −((Bh1 )

−1(Gh)TSh(t)+

(Bh1 )
−1(Wh)T )xh(t)− (Bh1 )

−1(Gh)T kh(t) (39)

where

W c =

01
0

 (40)

Bh1 = Rc = ε3 (41)

B. The LQ optimal estimator

As indicated in Fig. 3, two Kalman Filters are implemented
to generate estimation. The procedure of updating the estima-
tion is introduced here.

1. Initialization:
x̂(t0) = x̂0 (42)

P0 = E(x̃(t0)x̃(t0)
T ) (43)

2. Compute Current Kalman Gain based on current estima-
tion:

Kk = P−k H T
k (x̂−k )(Hk(x̂

−
k )P

−
k H T

k (x̂−k ) +Rk)
−1 (44)

3. Update the estimation:

x̂+
k = x̂−k +Kk(ỹk − h(x̂−k ))

P+
k = (I −KkHk(x̂

−
k ))P

−
k (45)

The propagation of the state error covariance matrix can be
carried out using the equation:

Ṗ (t) = F (t)P (t) + P (t)FT (t) + G (t)Q(t)G T (t) (46)

Once the estimation of the states at a current time is available,
Eq. (5) can be used for predicting the excitation force for a
future short period.

IV. SIMULATION RESULTS

A Bretschneider spectrum wave is assumed in all the
simulations, with a significant height of 0.5 m and a peak
period of 1.5708 s. The wave is generated using contains
1260 frequencies ranging from 0.01 to 12.6. The control
update rate in the simulation is set to be 50 Hz. The details
for the performance of LQG controller will be presented in
Section. IV-B, while the method to compute the initial guess
will be addressed in Section. IV-A. The Capture Width Ratio
(CWR) is the criteria used for assessing the performance. The
CWR can be computed by [36]:

The buoy described in Section. II is used in the simulation.

CWR =
pm
Dpw

(47)

where pm is the mean absorbed power, D is the charac-
teristic dimension of the buoy which is selected to be the
diameter of the cylindrical part of the buoy, and pw is the
energy transport which can be computed as [37]:

pw =
1

2
ρg2

∫ ∞
0

S(ω)

ω
dω (48)

Additionally, the key parameters for the simulation are
summarized in Table. I.

TABLE I: Summarize of the key parameters for the simulation
m (kg) 858.4

I5 (kg.m2) 83.932
h (m) 0.3647
R (m) 0.8604

Kmoor (N/m) 126.6462
b1 (N.s/m) 156.4364
b3 (N.s/m) 253.9528
b5 (N.m.s) 37.0737

ε1 5× 10−6

ε3 5× 10−6

ε5 8× 10−5

A. Initialization

The estimation algorithm described in Section. III-B uses on
a finite number of frequencies to construct the Fourier Series
expansion of the excitation force. Because of the computa-
tional cost, a few number frequencies is used in the estimator.
A Least Square (LS) method is used here to initialize each
of the ~A, ~B and ~ω vectors. Let the fundamental frequency be
w0 = 2π

Tw
, where Tw is the size of the window for initialization.

Eq. (17) and Eq. (18) are the basis functions which will be
used in the LS method where wjk = kwj0. The k represents the



number of cosine and sine functions in the estimator. There are
two parameters to be selected, one is the number of frequencies
k, and the other is the size of the LS window Tw. Fig. 4 is
used to demonstrate the impact of k on the computational cost
and energy absorption. The corresponding operating time of
the WEC is 30 s. Based on Fig. 4, k = 18 is selected for all
the numerical tests which requires 0.0958 s to compute each
control.

Fig. 4: The computational cost of simulation and the energy absorp-
tion from different number of frequencies

The window size Tw also needs to be selected to get a good
initial guess. Fig. 5 shows the energy absorption for different
sizes of the window when k = 18. From Fig. 5, Tw = 25 s is
selected.

Fig. 5: The energy absorption from different size of window

B. The performance of LQG controller

In this section, the performance of LQG controller will be
presented. The total simulation time extends to 200 s. The
motion is constrained; the constraint for the surge is 1 m, and
for the pitch is 1 rad. Since the Mean Water Level is defined
at z = 0 m, to keep the conical part of the buoy always be
submerge in the water and to constrain the buoy floating on
the water without fully sinking, the maximum heave motion
is constrained to be 0.2 m. Fig. 6 shows the wave elevation

at different frequencies of Bretschneider wave. The absorbed
energy is shown in Figs. 7– 9. Fig. 7 compares between the
energy absorption using LQG controller and energy absorption
using LQ controller. The latter represents the ideal situation
when we assume we have perfect knowledge of the wave.
The energy captured by LQG controller is around 61.6%
of the energy captured by LQ controller. In Fig. 8 made
the comparison between the energy captured by the system
with parametric excitation model and the system with a linear
model that does not account for parametric excitation. The
system without parametric excitation means the heave motion
does not excite the surge and pitch motions. In Fig. 8 the
total energy captured by the system with parametric excitation
is 3.2 × 104 J compared to 2.899 × 104 J that is the
energy captured by the system without parametric excitation.
In Fig. 9, the energy captured by surge, heave, and pitch are
1.101×104 J , 0.899×104 J and 1.199×104 J respectively. So
the total energy is 3.56 times the energy captured by heave
motion only. Note that it can be shown that the maximum
ratio between the total energy and heave energy is 3 when the
system is linear and in the absence of viscous damping.

Fig. 6: The wave elevation

C. The test of different sea states

To validate the performance of the LQG controller, the
controller is tested with different sea states. Those different sea
states have the same significant height of 0.5 m, but different
peak period which varies from 6 s to 12 s. Fig. 10 shows
the power extraction decreases from 108.18 W to 30.71 W
when the peak period of the wave increases. Detailedly, the
CWR of the case when the buoy interacts with the wave has
a peak period of 7 s is 0.0665. Compared to the CWR of
the wave which has a small peak period, the CWR presented
in this section is significantly lower. For a long peak period
wave, the energy contains in the wave increase significantly.
To absorb the energy in the wave, a larger motion of the buoy
is required. Moreover, based on the proposed shape, most of
the energy contains in the heave mode when the peak period is
high. However, the heave is substantially constrained to keep



Fig. 7: The total extracted energy

Fig. 8: The total extracted energy

Fig. 9: The energy extracted from surge, heave and pitch motion

the motion feasible. Consequently, the energy extracted from
a long peak period wave is small due to the constraint. Since
the energy contains in the wave is more, but the absorbed

energy is less, the CWR is much lower than the CWR for a
low peak period wave. Additionally, the energy extracted from
three modes when the peak period of the wave is 7 s decreases
2.05 times the energy extracted from heave-only mode. As we
mentioned in this section, most of the energy contains in the
heave mode when the peak period is high. So the energy ratio
between three modes and heave only mode decreases.

Fig. 10: The average power extraction under different sea states
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CONCLUSION

For a three-degree-of-freedom (3-Dof) WEC, a time-varying
Linear Quadratic Gaussian (LQG) controller is developed. For
the control purpose, a prediction for the excitation force is
made based on the estimation of its parameters in Fourier
Series expansion. The controller is tested with a small point
absorber with the surge, heave and pitch motion. The key
findings of this paper are: first, a WEC with 3-Dof actuation
capability can extract more energy than three folds of the
energy extracted from heave motion only. Second, the energy
extracted from the system with parametric excitation is more
than that extracted with a model that does not account for
parametric excitation. Finally, the previous conclusions are still
valid when we have only estimates of the excitation force.
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