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Abstract— Children with severe motor impairments require
the use of assistive devices to perform activities of daily
living. Brain-machine interfaces are not suited for children
due to various factors such as surgical risks. In this paper,
we present a non-invasive body-machine interface where upper
body movements are recorded by wireless inertial measurement
units (IMUs) and used to control a robot arm. We develop a
novel approach, called the virtual body model (VBM), which
allows for control of high number of degrees-of-freedom (DOF).
Our results show that participants could use the VBM to control
up to five DOFs of a robot arm, and perform a pick-and-place
task. Even with minimal training, trajectories of the end effector
were smooth and positioning was accurate. These results show
the potential of this safe, non-invasive approach to control high
DOFs in children.

NOMENCLATURE
BMI : Brain Machine Interface
BoMI : Body Machine Interface
DOF : Degree of Freedom
PCA : Principal Components Analysis
VBM : Virtual Body Model

I. INTRODUCTION

The 2010 American Census estimates that approximately
2,000,000 children under 15 years of age have a disability of
some kind, and that 15% of these children need some form
of assistance when performing activities for daily living [1].
Assistive devices for movement and mobility are a critical
need for these children since they not only facilitate senso-
rimotor development but promote psychosocial development
by enabling interaction with peers.

One critical challenge in the use of assistive devices is
that there is a tremendous diversity in the types of devices
(e.g., wheelchair, robot arm, computer) and children have to
learn to control these devices using many different interfaces
(e.g., joysticks, head arrays, specialized mouse). In view
of this challenge, there has been a push for designing a
general-purpose human-machine interface that can be used
to ‘control’ a variety of assistive devices. This is especially
critical for children with severe motor impairments who may
be limited in their ability to use device-specific interfaces.

There are two types of general-purpose interfaces that are
commonly used: Brain-Machine Interface (BMI) and Body-
Machine Interface (BoMI). BMIs [2]-[7] require sensors
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to be implanted internally or applied externally to obtain
brain signals and have many disadvantages for their use
by children. First, BMIs do not take advantage of the
body’s movement repertoire; this makes them suitable mainly
for conditions where there is almost a complete loss of
movement, which is atypical in children. Second, invasive
BMIs, where electrodes are physically implanted in the
brain, involve risks of surgery, a potential for infection,
and a limited life of electrodes. This makes the technology
unsustainable for use in children who have several decades
of life ahead of them. To our knowledge, only one study
has tested an invasive BMI and this was done in children
with epilepsy who already needed surgery [8]. Finally, non-
invasive BMIs such as Electroencephalogram (EEG), where
brain signals are measured from the scalp, have low signal-
to-noise ratios, making them slow to operate. There has
been some work in children where EEG has been used to
drive a video game [9], but none on movement control.
From a daily user’s perspective, current EEG technology is
cumbersome (a typical 64-channel EEG requires at least 20-
30 minutes of preparation, using gel to get good, reliable
signals). Dry electrode EEG setups (which circumvent some
of these challenges) have been improving rapidly and are
easier to use, but are not comfortable for prolonged use in
children for daily activities.

BoMIs refer to interfaces that rely on movements of the
user. For users with severe motor impairments, BoMIs have
been designed to capture movements of the upper body using
inertial measurement units (IMUs). Such BoMIs are better
suited for children since they are non-invasive, robust, and
do not disrupt natural communication while the interface is
being used. The feasibility of BoMIs have been demonstrated
in adults with spinal cord injury in low degree-of-freedom
(DOF) tasks [10], [11] and for assistive devices [12], [13]
but there are significant theoretical and practical challenges
that have to be addressed before BoMIs can be successfully
used by children, and used for high-DOF tasks. To overcome
these challenges, some of which will be discussed in Section
II, a new BoMI will be introduced in this paper. This
BoMI, which will enable children without limbs control an
assistive device, uses a Virtual Body Model (VBM) to map
and project the upper body movements of the user onto
a pre-defined set of anatomically distinct motion patterns.
These projections can be used to control the individual
DOFs of an assistive device, such as a robot manipulator.
Section III describes the VBM and a set of anatomically
distinct motion patterns of the human upper body. Section
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IV describes the algorithm used to map and project the user
movements onto the anatomically distinct motion patterns.
Section V describes the experimental hardware and presents
preliminary experimental results. Concluding remarks are
provided in Section VI.

II. LIMITATIONS OF CURRENT BOMIS

BoMIs currently use the Principal Component Analysis
(PCA) approach to processing sensor signals. PCA has been
widely used as a dimensionality reduction technique to
describe how the nervous system coordinates a large number
of DOFs in the human body [14], [15]. In studies of hand
and finger coordinations that examined how people grasp a
large number of everyday objects (e.g., apple, comb, frying
pan, toothpick, etc), it was found that the first two principal
components were sufficient to account for 80-85% of the
variance in the data [14]. These results have been used as
evidence to support that the nervous system simplifies control
of a large number of DOFs by linking them into a smaller
number of ‘movement primitives’ or ‘synergies’ [16], [17].

Although PCA works well in describing the coordination
between high DOFs, there are two limitations when it is
used for control of a high-DOF task. First, PCA yields
principal components in descending order of their variance
(eigenvalues). This means that while the first couple of DOFs
are easy to control, additional DOFs, which are associated
with higher principal components, are difficult to control.
Second, PCA looks for directions of maximum variance, and
enforces components to be mutually orthogonal. This can
become disadvantageous from a control standpoint because:
(i) the components can be linear combinations of motions at
several joints, making it harder to control motions along these
directions independently; (ii) the components become ‘less
intuitive’ since they may not correspond to distinct anatom-
ical motions. For example, when using PCA to control a
3-DOF task, learning was significantly longer (2-4 times
longer) compared to 1 or 2-DOF tasks [18]. These limitations
motivate the development of an ‘intuitive’ BoMI that can be
used to control a multi-DOF robot arm and its grasper. Fall
et al. [19] developed an intuitive BOMI using the head as
a virtual joystick; the virtual joystick was used to control
three-DOFs and shoulder movements were used to toggle
between multiple sets of DOFs. The BoMI developed in this
paper relies on the VBM (discussed in the next section) to
create an unambiguous ‘body language’ that can be used to
control the robot DOFs and perform a meaningful task.

III. THE VBM AND A SET OF
ANATOMICALLY DISTINCT MOTION PATTERNS

A. The Finite Element VBM

The VBM is a finite element model of the upper body
of the human user, comprised of the head, neck and torso.
Since our objective has been to enable a user without limbs
to control an assistive device, the arms were not included
in the model. The VBM models the upper body without
using articulated joints, relying completely on deformation
due to the application of external forces. Figure 1 shows
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Fig. 1. VBM dimensions: head width ¢;, distance from top of the head to
base of the neck (>, shoulder span (3, torso height (4, length from under
arm to waist (s, width of waist /g, chest span /7, torso thickness (g, neck
thickness and width {9, and height of the lower portion of the head /.

an example VBM, defined by the dimensional parameters
li, i=1,2,---10. These parameters will be chosen based
on measurements of the upper body dimensions of the
user. For the sake of simplicity, the VBM was assumed
to be isotropic, but more accurate models may vary the
material property to reflect different levels of mobility of
different parts of the upper body of the user. To obtain a 3D
mesh, the VBM was created with the commercial software
ANSYS using tetrahedral elements. The number of elements
were automatically chosen by the software, and the nodes,
comprised of the vertices of all the tetrahedral elements, were
assumed to have three DOFs in the inertial xyz Cartesian
coordinate system. Assuming the total number of nodes to
be n, the displacements of the i-th node to be (uxi,u),i,uzi),
and the external forces acting on the i-th node along the x, y,
z directions to be (fxi, fyi, fzi), the linear elastic relationship
between the forces and displacements can be expressed as
follows

F=KU (1)
where
T
Fé[ fxl fyl le fxn fyn fzn ]
UZE[ ug uy uy Ug Uy Uz ]T

and K is the 3n x 3n stiffness matrix, which can be obtained
using standard finite element methods. Since the VBM aims
to replicate the movement of the human user, we rewrite
Eq.(1) as

U =CF, c2k! (2)

where C is the compliance matrix and can be computed from
K oft-line.
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B. A Set of Five Anatomically Distinct Motion Patterns and
Associated Forces

In this section we define a set of five anatomically distinct
motion patterns of the human upper body that can be used
to control four DOFs of a robot end-effector and one DOF
of the grasper in the end-effector. The anatomically distinct
motion patterns should be selected such that the mapping
between the upper body movements of the user and the
movements of the end-effector in the inertial coordinate
system 1is intuitive. Furthermore, the user should be able
to produce these motion patterns repeatedly, independently
as well as simultaneously, and with relative ease. The five
distinct motion patterns that were selected are described
below with the help of the VBM in Fig.2:

1) Torso flexion and extension - This motion can be
produced in the VBM by applying the single force Py,
as shown in Fig.2 (b). Since the virtual body bends
forward in the x direction by angle ¢, this motion will
be mapped to the translational movement of the end-
effector in the x direction.

2) Torso lateral flexion - This motion can be produced in
the VBM by applying the single force P>, as shown in
Fig.2 (c). Since the virtual body bends laterally in the
y direction by angle 3, this motion will be mapped to
the translational movement of the end-effector in the y
direction.

3) Torso rotation - This motion can be produced in the
VBM by applying the couple shown in Fig.2 (d). Since
the virtual body rotates about the z axis by angle v, this
motion will be mapped to the translational movement
of the end-effector in the z direction following the
notion of screw theory.

4) Neck lateral flexion - This motion can be produced in
the VBM by applying the couple shown in Fig.2 (e).
Since the head rotates about the x axis by angle 0, this
motion will be mapped to the rotational movement of
the end-effector about the x axis.

5) Scapular protraction and retraction - This motion can
be produced by the set of three equilibriating forces
shown in Fig.2 (e). This motion of the virtual body
will be mapped to opening and closing motion of the
grasper.

It is clear from the above discussion that although the
vector F' in Eq.(2) has dimension 3n, all but 9 entries will
have zero values. This is true because P; and P> are both
applied at a single node on the VBM, P; and P; are both
applied at 2 nodes, and forces proportional to Ps are applied
at 3 nodes.

C. Virtual Sensors on the VBM

We assume that there are k virtual sensors placed on the
VBM, where k is the number of IMUs placed on the upper
body of the user. The locations of the virtual sensors are
chosen to closely match those of the IMUs. The VBM is
comprised of tetrahedral elements and each virtual sensor
is placed on the triangular face of a tetrahedral element

that lies on the surface of the VBM - see Fig.3. The
deformation of the VBM will be captured by the virtual
sensors; for each sensor, this deformation can be quantified
by the displacements of the three nodes of the triangular face
on which the sensor is affixed. Since there are k sensors,
each sensor is associated with 3 nodes, and each node has
3 displacements, we are interested in 9k elements of the U
vector in Eq.(2); let U define this vector. It is clear from this
discussion and the discussion in the last section that Eq.(2)
can be truncated to a form where the C matrix is of dimension
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Fig. 2. (a) Undeformed configuration of the VBM, (b), (c), (d), and (¢) show
five deformed configurations of the VBM corresponding to five anatomically
distinct motion patterns of the upper body. The five anatomically distinct
motion patterns are: (b) torso flexion and extension, (c) torso lateral flexion,
(d) torso rotation, (e) neck lateral flexion, and (f) scapular protraction and
retraction.
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9k x 9. Among the 9 entries of F, only five are independent;
therefore, Eq.(2) can be further simplified to the form

U=Cp, P[P P P, P, P5|" (3

where C is a matrix of dimension 9% x 5.

IV. PROJECTING USER MOVEMENTS ONTO
ANATOMICALLY DISTINCT MOTION PATTERNS

To project the user movements onto anatomically distinct
motion patterns, we adopt the following two-step procedure:

1) We will use the measurements from the IMUs to
determine how the VBM should deform such that it
replicates the movement of the user.

2) We will compute the forces P, i=1,2,---,5, such that
the error between the deformation of the VBM due to
application of the forces and the desired deformation,
obtained from step 1, is minimized.

Each force P,, i=1,2,---,5, obtained in step 2 can be viewed
as a projection of the movement of the user onto the different
anatomically distinct motion patterns, defined earlier. This is
true because each one of these anatomically distinct motion
patterns can only be generated by one of these forces.

To replicate the movement of the user by the VBM in
step 1, we note that the upper body movements of the user
will be sensed by the set of £ IMUs. Each IMU is tared
after placement and provides the data for computation of the
rotation matrix R that maps a vector from the undeformed
configuration to the deformed configuration. We use this
information to determine the desired orientation of unit
vectors in the local neighborhood of each virtual sensor. If
aj, bj, and c; denote the three specific nodes of the VBM
associated with the j-th virtual sensor, Z_ijorig and 1 orig
define the unit vectors in the initial undeformed configuration
(see Fig.3), and R; denotes the rotation matrix obtained from
the j-th IMU, the desired unit vectors C jdes and 1) des can

a tetrahedral element of the VBM
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Fig. 3. Placement of the j-th virtual sensor, j € {1,2,--- ,k}, on the
triangular face of a tetrahedral element of the VBM. The nodes of the
triangular element are marked as a;, b; and c;; a; is arbitrarily selected as
the base node and {j orig and 1; orig are unit vectors from the base node to
the other two nodes in the initial undeformed configuration.

be obtained using the relations
:RjCj,origa j=12,--k

“)

To determine the forces P in step 2, we start with the

initial guess P = 0. Equation (3) indicates that there exists an

implicit functional description of the unit vectors as follows

G M }T

The Jacobian of the vector function is computed numerically
and the Newton-Raphson method is used along with the
method of least-squares [20] to estimate P as follows

Cj,des Mj.des = Rj nj,origa

Y = g(P), YE[ 4 m

P= (JTJ)il-]T(Ydes —Yorig)a -]é {3}%] (5)

In the above equation, J is the Jacobian matrix and Yges and
Yorig are defined as

T
Ck,des TMk.des ]

T
Ck,orig nk,orig ]

Yies = [ Cides M1 des

Yorig £ [ Cl,orig nl,orig

The forces P obtained from Eq.(5) are the projections of the
movement of the user onto the different anatomically distinct
motion patterns, as discussed earlier in this section.

V. EXPERIMENTAL VALIDATION

A. Experimental Hardware

The experimental hardware is comprised of the Kinova
JACO 3 Fingers robot arm (see Fig.4) and a set of k =5
wireless IMUs manufactured by YOST Labs. The robot arm
has 7 DOFs including the grasper DOF. In our experiments, 5
DOFs were used: these include three-dimensional translation
in the Cartesian space of the end-effector, wrist rotation, and
opening and closing of the grasper. The IMUs (35 mm x 60
mm X 15 mm) were mounted on a vest and a cap worn by
the user (see Fig.5); an adult without impairment was chosen
as the user for experimental verification of the BoMI.

N

4

Fig. 4. The Kinova JACO 3 Finger robot.
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B. VBM of the User

The adult user was a college-aged male with no impair-
ment. Based on the measurements of his upper body, the
VBM dimensions were chosen as follows

01 =160 (=320 (3=475 {(4=52.0 (5=420
le =350 (7=415 (l3=160 l9=6.0 (10=12.0

where the units are centimeters. A 3D mesh of the VBM was
generated using tetrahedral elements in ANSYS; it resulted
in 883 elements and n = 283 nodes. The Young’s modulus
and Poisson’s ratio of the VBM were chosen as

E = 4000 MPa v=0.33

Five virtual sensors were placed on the VBM at locations
that closely matched those of the 5 IMUs on the user. The
number and location of the IMUs placed on the user were
determined through trial and error.

Fig. 5. Five IMUs attached to the cap and vest of the user are circled in
the (a) front and (b) back views of the user: three are located on the vest
and the other two are placed on the top and back of the cap.

C. Robot Control with User-in-the-Loop

A block diagram of the robot control system with user-in-
the loop is shown in Fig.6. The user picks a target location
for the robot end-effector and determines the error relative
to the current location. To eliminate the error, the user
moves the upper body using the pre-defined anatomically
distinct motion patterns proportional to the error. The VBM
replicates the movement of the user based on measurements
obtained from the IMU sensors. The VBM outputs the forces
P,i=1,2,--- 5, which are the estimates of the anatomically
distinct motion patterns generated by the user. These forces
are mapped to desired velocities of the end-effector which
are tracked by the internal controller of the robot.

D. Experimental Results

The BoMI was used to control the Kinova robot arm
to pick and place a plastic water bottle. Starting from its
initial position, the end-effector was required to reach the
first target location, where the water bottle is located. The

target
configuration
(+

User Body | IMU VBM P End-effector
Movements | data Velocity Mapping

desired

end-effector Robot

Internal Controller

velocities

configuration

Fig. 6. Block diagram of robot control system with user-in-the loop.
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Fig. 7. End-effector trajectory in Cartesian coordinates during user trial.

end-effector was then required to grasp the bottle, pick it
up, and deliver it to the second target location. The user,
seated approximately 50 cms from the base of the robot and
facing in the positive x direction, was given several practice
runs before the actual trial. The total time for practice was
approximately 30 minutes. Figure 7 shows the trajectory of
the end-effector and Fig.8 shows the x, y, z positions of the
end-effector, wrist rotation angle, and grasper configuration
as a function of time. The results of the user trial is described
below with the help of Figs.7 and Fig.8:

e From 7 =0.0 s to t; =7.0 s, the BoMI was used to ro-
tate the wrist to achieve “ready-to-grasp” configuration
- see Fig.8. During this time period, the end-effector

Y NN NN

Iy 5] 15 1y 4

0.5

03

X position grasper - closed

02f === 120
/ \
0.1 . . / \ )
wrist rotation / N

o1t ] / v

y position / \

wrist rotation angle (deg)

Z position \
02f

x, y, z coordinates of end-effector (m)

grasper

-0.4

30 40 50
time (s)

Fig. 8. Variation of Cartesian coordinates of the end-effector, wrist rotation,
and grasper configuration with time for the user trial.

3881



position did not change significantly.

e From t{ =7.0 s to t, = 25.2 s, the BoMI was used
to move the end-effector to the location of the water
bottle along the trajectory shown in Fig.7. It can been
seen from Fig.8 that x, y, z positions of the end-effector
changed during this time period.

e From 1, =25.2 s to t3 =31.1 s, the BoMI was used to
grasp the water bottle; the grasper was originally in its
open configuration - see Fig.8.

e From 13 =31.1 s to t4 = 50.0 s, the BoMI was used to
move the water bottle to its desired location; during this
time, the grasper remained closed.

e From 74, =50.0 s to t5 = 56.6 s, the BoMI was used to
release the water bottle.

The entire task took the user 56.6 s to complete. The
smooth trajectory in Fig.7 suggests that the user was able to
approach the target configurations without having to make
adjustments. Since the user had the opportunity to practice
only a few times before the trial, we expect the time required
for the task to decrease with more practice. In this regard, it
should be mentioned that limits were placed on the maximum
velocity of the robot for safety.

As supplemental material, we have uploaded a video clip
of the user trial.

VI. CONCLUSION

A new Body-Machine Interface (BoMI) was presented in
this paper. It relies on the construction of the Virtual Body
Model (VBM), which is a finite element model of the upper
body of the user, for transformation of body-mounted sen-
sor signals into pre-defined, anatomically distinct motions.
These anatomically distinct motions can be generated both
independently and simultaneously. By mapping them to the
individual degrees-of-freedom (DOF) of an assistive device,
such as robot arm, the BoMI can be used to control the
device and perform a meaningful task using upper body
movements. Compared to Principal Components Analysis
(PCA) based methods that have been used in prior BoMIs,
the VBM method allows for control of higher number of
DOFs and makes the BoMI intuitive to use. This ability
to provide intuitive control may be especially important for
learning in children as it reduces the computational burden.
For experimental validation of the BoMI, a college-aged male
was recruited to perform a pick-and-place task involving five
DOFs using a robot arm. The experimental results show that
the user, after a few practice runs, was able to perform the
task with relative ease. The time required for performing the
task was also reasonable considering the fact that limits were
placed on the maximum velocity of the robot to ensure safety.
Future studies will focus on developing the interface further
for tasks requiring higher DOFs and examine the ability of
children to learn to use the interface quickly.
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