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Abstract— Children with severe motor impairments require
the use of assistive devices to perform activities of daily
living. Brain-machine interfaces are not suited for children
due to various factors such as surgical risks. In this paper,
we present a non-invasive body-machine interface where upper
body movements are recorded by wireless inertial measurement
units (IMUs) and used to control a robot arm. We develop a
novel approach, called the virtual body model (VBM), which
allows for control of high number of degrees-of-freedom (DOF).
Our results show that participants could use the VBM to control
up to five DOFs of a robot arm, and perform a pick-and-place
task. Even with minimal training, trajectories of the end effector
were smooth and positioning was accurate. These results show
the potential of this safe, non-invasive approach to control high
DOFs in children.

NOMENCLATURE

BMI : Brain Machine Interface

BoMI : Body Machine Interface

DOF : Degree of Freedom

PCA : Principal Components Analysis

VBM : Virtual Body Model

I. INTRODUCTION

The 2010 American Census estimates that approximately

2,000,000 children under 15 years of age have a disability of

some kind, and that 15% of these children need some form

of assistance when performing activities for daily living [1].

Assistive devices for movement and mobility are a critical

need for these children since they not only facilitate senso-

rimotor development but promote psychosocial development

by enabling interaction with peers.

One critical challenge in the use of assistive devices is

that there is a tremendous diversity in the types of devices

(e.g., wheelchair, robot arm, computer) and children have to

learn to control these devices using many different interfaces

(e.g., joysticks, head arrays, specialized mouse). In view

of this challenge, there has been a push for designing a

general-purpose human-machine interface that can be used

to ‘control’ a variety of assistive devices. This is especially

critical for children with severe motor impairments who may

be limited in their ability to use device-specific interfaces.

There are two types of general-purpose interfaces that are

commonly used: Brain-Machine Interface (BMI) and Body-

Machine Interface (BoMI). BMIs [2]–[7] require sensors
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to be implanted internally or applied externally to obtain

brain signals and have many disadvantages for their use

by children. First, BMIs do not take advantage of the

body’s movement repertoire; this makes them suitable mainly

for conditions where there is almost a complete loss of

movement, which is atypical in children. Second, invasive

BMIs, where electrodes are physically implanted in the

brain, involve risks of surgery, a potential for infection,

and a limited life of electrodes. This makes the technology

unsustainable for use in children who have several decades

of life ahead of them. To our knowledge, only one study

has tested an invasive BMI and this was done in children

with epilepsy who already needed surgery [8]. Finally, non-

invasive BMIs such as Electroencephalogram (EEG), where

brain signals are measured from the scalp, have low signal-

to-noise ratios, making them slow to operate. There has

been some work in children where EEG has been used to

drive a video game [9], but none on movement control.

From a daily user’s perspective, current EEG technology is

cumbersome (a typical 64-channel EEG requires at least 20-

30 minutes of preparation, using gel to get good, reliable

signals). Dry electrode EEG setups (which circumvent some

of these challenges) have been improving rapidly and are

easier to use, but are not comfortable for prolonged use in

children for daily activities.

BoMIs refer to interfaces that rely on movements of the

user. For users with severe motor impairments, BoMIs have

been designed to capture movements of the upper body using

inertial measurement units (IMUs). Such BoMIs are better

suited for children since they are non-invasive, robust, and

do not disrupt natural communication while the interface is

being used. The feasibility of BoMIs have been demonstrated

in adults with spinal cord injury in low degree-of-freedom

(DOF) tasks [10], [11] and for assistive devices [12], [13]

but there are significant theoretical and practical challenges

that have to be addressed before BoMIs can be successfully

used by children, and used for high-DOF tasks. To overcome

these challenges, some of which will be discussed in Section

II, a new BoMI will be introduced in this paper. This

BoMI, which will enable children without limbs control an

assistive device, uses a Virtual Body Model (VBM) to map

and project the upper body movements of the user onto

a pre-defined set of anatomically distinct motion patterns.

These projections can be used to control the individual

DOFs of an assistive device, such as a robot manipulator.

Section III describes the VBM and a set of anatomically

distinct motion patterns of the human upper body. Section
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IV describes the algorithm used to map and project the user

movements onto the anatomically distinct motion patterns.

Section V describes the experimental hardware and presents

preliminary experimental results. Concluding remarks are

provided in Section VI.

II. LIMITATIONS OF CURRENT BOMIS

BoMIs currently use the Principal Component Analysis

(PCA) approach to processing sensor signals. PCA has been

widely used as a dimensionality reduction technique to

describe how the nervous system coordinates a large number

of DOFs in the human body [14], [15]. In studies of hand

and finger coordinations that examined how people grasp a

large number of everyday objects (e.g., apple, comb, frying

pan, toothpick, etc), it was found that the first two principal

components were sufficient to account for 80-85% of the

variance in the data [14]. These results have been used as

evidence to support that the nervous system simplifies control

of a large number of DOFs by linking them into a smaller

number of ‘movement primitives’ or ‘synergies’ [16], [17].

Although PCA works well in describing the coordination

between high DOFs, there are two limitations when it is

used for control of a high-DOF task. First, PCA yields

principal components in descending order of their variance

(eigenvalues). This means that while the first couple of DOFs

are easy to control, additional DOFs, which are associated

with higher principal components, are difficult to control.

Second, PCA looks for directions of maximum variance, and

enforces components to be mutually orthogonal. This can

become disadvantageous from a control standpoint because:

(i) the components can be linear combinations of motions at

several joints, making it harder to control motions along these

directions independently; (ii) the components become ‘less

intuitive’ since they may not correspond to distinct anatom-

ical motions. For example, when using PCA to control a

3-DOF task, learning was significantly longer (2-4 times

longer) compared to 1 or 2-DOF tasks [18]. These limitations

motivate the development of an ‘intuitive’ BoMI that can be

used to control a multi-DOF robot arm and its grasper. Fall

et al. [19] developed an intuitive BOMI using the head as

a virtual joystick; the virtual joystick was used to control

three-DOFs and shoulder movements were used to toggle

between multiple sets of DOFs. The BoMI developed in this

paper relies on the VBM (discussed in the next section) to

create an unambiguous ‘body language’ that can be used to

control the robot DOFs and perform a meaningful task.

III. THE VBM AND A SET OF

ANATOMICALLY DISTINCT MOTION PATTERNS

A. The Finite Element VBM

The VBM is a finite element model of the upper body

of the human user, comprised of the head, neck and torso.

Since our objective has been to enable a user without limbs

to control an assistive device, the arms were not included

in the model. The VBM models the upper body without

using articulated joints, relying completely on deformation

due to the application of external forces. Figure 1 shows
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Fig. 1. VBM dimensions: head width �1, distance from top of the head to
base of the neck �2, shoulder span �3, torso height �4, length from under
arm to waist �5, width of waist �6, chest span �7, torso thickness �8, neck
thickness and width �9, and height of the lower portion of the head �10.

an example VBM, defined by the dimensional parameters

�i, i = 1,2, · · ·10. These parameters will be chosen based

on measurements of the upper body dimensions of the

user. For the sake of simplicity, the VBM was assumed

to be isotropic, but more accurate models may vary the

material property to reflect different levels of mobility of

different parts of the upper body of the user. To obtain a 3D

mesh, the VBM was created with the commercial software

ANSYS using tetrahedral elements. The number of elements

were automatically chosen by the software, and the nodes,

comprised of the vertices of all the tetrahedral elements, were

assumed to have three DOFs in the inertial xyz Cartesian

coordinate system. Assuming the total number of nodes to

be n, the displacements of the i-th node to be (uxi,uyi,uzi),
and the external forces acting on the i-th node along the x, y,

z directions to be ( fxi, fyi, fzi), the linear elastic relationship

between the forces and displacements can be expressed as

follows

F = KU (1)

where

F �
[

fx1 fy1 fz1 · · · fxn fyn fzn

]T

U �
[

ux1 uy1 uz1 · · · uxn uyn uzn

]T

and K is the 3n×3n stiffness matrix, which can be obtained

using standard finite element methods. Since the VBM aims

to replicate the movement of the human user, we rewrite

Eq.(1) as

U =CF, C � K−1 (2)

where C is the compliance matrix and can be computed from

K off-line.
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B. A Set of Five Anatomically Distinct Motion Patterns and

Associated Forces

In this section we define a set of five anatomically distinct

motion patterns of the human upper body that can be used

to control four DOFs of a robot end-effector and one DOF

of the grasper in the end-effector. The anatomically distinct

motion patterns should be selected such that the mapping

between the upper body movements of the user and the

movements of the end-effector in the inertial coordinate

system is intuitive. Furthermore, the user should be able

to produce these motion patterns repeatedly, independently

as well as simultaneously, and with relative ease. The five

distinct motion patterns that were selected are described

below with the help of the VBM in Fig.2:

1) Torso flexion and extension - This motion can be

produced in the VBM by applying the single force P1,

as shown in Fig.2 (b). Since the virtual body bends

forward in the x direction by angle α , this motion will

be mapped to the translational movement of the end-

effector in the x direction.

2) Torso lateral flexion - This motion can be produced in

the VBM by applying the single force P2, as shown in

Fig.2 (c). Since the virtual body bends laterally in the

y direction by angle β , this motion will be mapped to

the translational movement of the end-effector in the y

direction.

3) Torso rotation - This motion can be produced in the

VBM by applying the couple shown in Fig.2 (d). Since

the virtual body rotates about the z axis by angle γ , this

motion will be mapped to the translational movement

of the end-effector in the z direction following the

notion of screw theory.

4) Neck lateral flexion - This motion can be produced in

the VBM by applying the couple shown in Fig.2 (e).

Since the head rotates about the x axis by angle δ , this

motion will be mapped to the rotational movement of

the end-effector about the x axis.

5) Scapular protraction and retraction - This motion can

be produced by the set of three equilibriating forces

shown in Fig.2 (e). This motion of the virtual body

will be mapped to opening and closing motion of the

grasper.

It is clear from the above discussion that although the

vector F in Eq.(2) has dimension 3n, all but 9 entries will

have zero values. This is true because P1 and P2 are both

applied at a single node on the VBM, P3 and P4 are both

applied at 2 nodes, and forces proportional to P5 are applied

at 3 nodes.

C. Virtual Sensors on the VBM

We assume that there are k virtual sensors placed on the

VBM, where k is the number of IMUs placed on the upper

body of the user. The locations of the virtual sensors are

chosen to closely match those of the IMUs. The VBM is

comprised of tetrahedral elements and each virtual sensor

is placed on the triangular face of a tetrahedral element

that lies on the surface of the VBM - see Fig.3. The

deformation of the VBM will be captured by the virtual

sensors; for each sensor, this deformation can be quantified

by the displacements of the three nodes of the triangular face

on which the sensor is affixed. Since there are k sensors,

each sensor is associated with 3 nodes, and each node has

3 displacements, we are interested in 9k elements of the U

vector in Eq.(2); let Ū define this vector. It is clear from this

discussion and the discussion in the last section that Eq.(2)

can be truncated to a form where the C matrix is of dimension
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Fig. 2. (a) Undeformed configuration of the VBM, (b), (c), (d), and (e) show
five deformed configurations of the VBM corresponding to five anatomically
distinct motion patterns of the upper body. The five anatomically distinct
motion patterns are: (b) torso flexion and extension, (c) torso lateral flexion,
(d) torso rotation, (e) neck lateral flexion, and (f) scapular protraction and
retraction.
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9k×9. Among the 9 entries of F , only five are independent;

therefore, Eq.(2) can be further simplified to the form

Ū = C̄P, P �
[

P1 P2 P3 P4 P5

]T
(3)

where C̄ is a matrix of dimension 9k× 5.

IV. PROJECTING USER MOVEMENTS ONTO

ANATOMICALLY DISTINCT MOTION PATTERNS

To project the user movements onto anatomically distinct

motion patterns, we adopt the following two-step procedure:

1) We will use the measurements from the IMUs to

determine how the VBM should deform such that it

replicates the movement of the user.

2) We will compute the forces Pi, i = 1,2, · · · ,5, such that

the error between the deformation of the VBM due to

application of the forces and the desired deformation,

obtained from step 1, is minimized.

Each force Pi, i= 1,2, · · · ,5, obtained in step 2 can be viewed

as a projection of the movement of the user onto the different

anatomically distinct motion patterns, defined earlier. This is

true because each one of these anatomically distinct motion

patterns can only be generated by one of these forces.

To replicate the movement of the user by the VBM in

step 1, we note that the upper body movements of the user

will be sensed by the set of k IMUs. Each IMU is tared

after placement and provides the data for computation of the

rotation matrix R that maps a vector from the undeformed

configuration to the deformed configuration. We use this

information to determine the desired orientation of unit

vectors in the local neighborhood of each virtual sensor. If

a j, b j, and c j denote the three specific nodes of the VBM

associated with the j-th virtual sensor, ζ j,orig and η j,orig

define the unit vectors in the initial undeformed configuration

(see Fig.3), and R j denotes the rotation matrix obtained from

the j-th IMU, the desired unit vectors ζ j,des and η j,des can

z

y

x

a tetrahedral element of the VBM

η j,orig

ζ j,orig

virtual sensor

a j

b j

c j

Fig. 3. Placement of the j-th virtual sensor, j ∈ {1,2, · · · ,k}, on the
triangular face of a tetrahedral element of the VBM. The nodes of the
triangular element are marked as aj , bj and c j ; aj is arbitrarily selected as
the base node and ζ j,orig and η j,orig are unit vectors from the base node to
the other two nodes in the initial undeformed configuration.

be obtained using the relations

ζ j,des = R j ζ j,orig, η j,des = R j η j,orig, j = 1,2, · · · ,k
(4)

To determine the forces P in step 2, we start with the

initial guess P= 0. Equation (3) indicates that there exists an

implicit functional description of the unit vectors as follows

Y = g(P), Y �
[

ζ1 η1 · · · · · · ζk ηk

]T

The Jacobian of the vector function is computed numerically

and the Newton-Raphson method is used along with the

method of least-squares [20] to estimate P as follows

P = (JT J)−1JT (Ydes −Yorig), J �

[
∂g

∂P

]
(5)

In the above equation, J is the Jacobian matrix and Ydes and

Yorig are defined as

Ydes �
[

ζ1,des η1,des · · · · · · ζk,des ηk,des

]T

Yorig �
[

ζ1,orig η1,orig · · · · · · ζk,orig ηk,orig

]T

The forces P obtained from Eq.(5) are the projections of the

movement of the user onto the different anatomically distinct

motion patterns, as discussed earlier in this section.

V. EXPERIMENTAL VALIDATION

A. Experimental Hardware

The experimental hardware is comprised of the Kinova

JACO 3 Fingers robot arm (see Fig.4) and a set of k = 5

wireless IMUs manufactured by YOST Labs. The robot arm

has 7 DOFs including the grasper DOF. In our experiments, 5

DOFs were used: these include three-dimensional translation

in the Cartesian space of the end-effector, wrist rotation, and

opening and closing of the grasper. The IMUs (35 mm × 60

mm × 15 mm) were mounted on a vest and a cap worn by

the user (see Fig.5); an adult without impairment was chosen

as the user for experimental verification of the BoMI.

Fig. 4. The Kinova JACO 3 Finger robot.
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B. VBM of the User

The adult user was a college-aged male with no impair-

ment. Based on the measurements of his upper body, the

VBM dimensions were chosen as follows

�1 = 16.0 �2 = 32.0 �3 = 47.5 �4 = 52.0 �5 = 42.0

�6 = 35.0 �7 = 41.5 �8 = 16.0 �9 = 6.0 �10 = 12.0

where the units are centimeters. A 3D mesh of the VBM was

generated using tetrahedral elements in ANSYS; it resulted

in 883 elements and n = 283 nodes. The Young’s modulus

and Poisson’s ratio of the VBM were chosen as

E = 4000 MPa ν = 0.33

Five virtual sensors were placed on the VBM at locations

that closely matched those of the 5 IMUs on the user. The

number and location of the IMUs placed on the user were

determined through trial and error.

(a) (b)

Fig. 5. Five IMUs attached to the cap and vest of the user are circled in
the (a) front and (b) back views of the user: three are located on the vest
and the other two are placed on the top and back of the cap.

C. Robot Control with User-in-the-Loop

A block diagram of the robot control system with user-in-

the loop is shown in Fig.6. The user picks a target location

for the robot end-effector and determines the error relative

to the current location. To eliminate the error, the user

moves the upper body using the pre-defined anatomically

distinct motion patterns proportional to the error. The VBM

replicates the movement of the user based on measurements

obtained from the IMU sensors. The VBM outputs the forces

Pi, i= 1,2, · · · ,5, which are the estimates of the anatomically

distinct motion patterns generated by the user. These forces

are mapped to desired velocities of the end-effector which

are tracked by the internal controller of the robot.

D. Experimental Results

The BoMI was used to control the Kinova robot arm

to pick and place a plastic water bottle. Starting from its

initial position, the end-effector was required to reach the

first target location, where the water bottle is located. The
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Fig. 6. Block diagram of robot control system with user-in-the loop.
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Fig. 7. End-effector trajectory in Cartesian coordinates during user trial.

end-effector was then required to grasp the bottle, pick it

up, and deliver it to the second target location. The user,

seated approximately 50 cms from the base of the robot and

facing in the positive x direction, was given several practice

runs before the actual trial. The total time for practice was

approximately 30 minutes. Figure 7 shows the trajectory of

the end-effector and Fig.8 shows the x, y, z positions of the

end-effector, wrist rotation angle, and grasper configuration

as a function of time. The results of the user trial is described

below with the help of Figs.7 and Fig.8:

• From t0 = 0.0 s to t1 = 7.0 s, the BoMI was used to ro-

tate the wrist to achieve “ready-to-grasp” configuration

- see Fig.8. During this time period, the end-effector
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Fig. 8. Variation of Cartesian coordinates of the end-effector, wrist rotation,
and grasper configuration with time for the user trial.
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position did not change significantly.

• From t1 = 7.0 s to t2 = 25.2 s, the BoMI was used

to move the end-effector to the location of the water

bottle along the trajectory shown in Fig.7. It can been

seen from Fig.8 that x, y, z positions of the end-effector

changed during this time period.

• From t2 = 25.2 s to t3 = 31.1 s, the BoMI was used to

grasp the water bottle; the grasper was originally in its

open configuration - see Fig.8.

• From t3 = 31.1 s to t4 = 50.0 s, the BoMI was used to

move the water bottle to its desired location; during this

time, the grasper remained closed.

• From t4 = 50.0 s to t5 = 56.6 s, the BoMI was used to

release the water bottle.

The entire task took the user 56.6 s to complete. The

smooth trajectory in Fig.7 suggests that the user was able to

approach the target configurations without having to make

adjustments. Since the user had the opportunity to practice

only a few times before the trial, we expect the time required

for the task to decrease with more practice. In this regard, it

should be mentioned that limits were placed on the maximum

velocity of the robot for safety.

As supplemental material, we have uploaded a video clip

of the user trial.

VI. CONCLUSION

A new Body-Machine Interface (BoMI) was presented in

this paper. It relies on the construction of the Virtual Body

Model (VBM), which is a finite element model of the upper

body of the user, for transformation of body-mounted sen-

sor signals into pre-defined, anatomically distinct motions.

These anatomically distinct motions can be generated both

independently and simultaneously. By mapping them to the

individual degrees-of-freedom (DOF) of an assistive device,

such as robot arm, the BoMI can be used to control the

device and perform a meaningful task using upper body

movements. Compared to Principal Components Analysis

(PCA) based methods that have been used in prior BoMIs,

the VBM method allows for control of higher number of

DOFs and makes the BoMI intuitive to use. This ability

to provide intuitive control may be especially important for

learning in children as it reduces the computational burden.

For experimental validation of the BoMI, a college-aged male

was recruited to perform a pick-and-place task involving five

DOFs using a robot arm. The experimental results show that

the user, after a few practice runs, was able to perform the

task with relative ease. The time required for performing the

task was also reasonable considering the fact that limits were

placed on the maximum velocity of the robot to ensure safety.

Future studies will focus on developing the interface further

for tasks requiring higher DOFs and examine the ability of

children to learn to use the interface quickly.
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