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We present a synthesis of the trace element chemistry in melt on the surface Canada
Glacier, Taylor Valley, McMurdo Dry Valleys (MDV), Antarctica (~78°S). The MDV is
largely ice-free. Low accumulation rates, strong winds, and proximity to the valley
floor make these glaciers dusty in comparison to their inland counterparts. This study
examines both supraglacial melt streams and cryoconite holes. Supraglacial streams
on the lower Canada Glacier have median dissolved (<0.4 wm) concentrations of Fe,
Mn, As, Cu, and V of 71.5, 75.5, 3.7, 4.6, and 4.3nM. All dissolved Cd concentrations
and the vast majority of Pb values are below our analytical detection (i.e., 0.4 and
0.06 nM). Chemical behavior did not follow similar trends for eastern and western draining
waters. Heterogeneity likely reflects distinctions eolian deposition, rock:water ratios,
and hydrologic connectivity. Future increases in wind-delivered sediment will likely drive
dynamic responses in melt chemistry. For elements above detection limits, dissolved
concentrations in glacier surface melt are within an order of magnitude of concentrations
observed in proglacial streams (i.e., flowing on the valley floor). The Fe enrichment
of cryoconite water relative to N, P, or Si exceeds enrichment observed in marine
phytoplankton. This suggests that the glacier surface is an important source of Fe to
downstream ecosystems.

Keywords: trace elements, cryoconite holes, supraglacial streams, Antarctica, glacier melt chemistry

INTRODUCTION

Cryoconite holes are small, water-filled holes formed on the surface of glacier ice by the deposition
and accumulation of eolian material (Fountain et al., 2008). Cryoconite holes on polar glaciers
have frozen lids that minimize contact with the atmosphere (Bagshaw et al., 2013). Through time,
cryoconite holes increase their interconnectivity and form supraglacial streams (Fountain et al.,
2008). Streams typically include a series of ice-covered pool and riffle sequences of varying size
and dimensions that can fill and drain rapidly during the ablation season (Fountain et al., 2004;
Bagshaw et al., 2007; Tranter et al., 2010). The large pool (10-50 m in diameter) have been termed
cryolakes by Tranter et al. (2010). Glacier surface melt contribute most of the downstream because
MDYV glacier have frozen beds (Fountain et al., 2004; Tranter et al., 2010).

The eolian materials that initiate the development of cryoconite holes and supraglacial stream
supply geologic material and inoculate the glacier surface with organisms. Organism can grow
and develop thereby mobilizing nutrients and adding autochthonous production. Thus, unique
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ecosystems that include bacteria, diatoms, algal mats, and
invertebrates develop in environments where nutrients such
as N and P are recycled, organic carbon produced (Cameron
et al., 2012; Porazinska et al., 2012; Stanish et al., 2013; Telling
et al., 2014). Studies over the past decade have demonstrated
that both solutes and organic matter accumulate in cryoconite
holes through time (e.g., Bagshaw et al., 2007, 2011, 2013). Both
nutrients and labile dissolved organic carbon (DOC) can not only
be produced in these systems, but may also be transferred to
downstream ecosystems as hydrologic connectivity is established
during the ablation season (Bagshaw et al., 2013; Dubnick et al.,
2017; SanClements et al., 2017). The accumulation of solutes is
brought about through high rock:water ratios and relatively high
residence times of eolian material encrusted in the cryoconite
holes (Tranter et al., 2005; Bagshaw et al., 2013; Dubnick et al.,
2017).

Studies of cryoconite and supraglacial stream biogeochemistry
have focused on carbon and macronutrient (i.e., N and P)
dynamics (e.g., Bagshaw et al., 2013). There have been only
a few studies that have investigated major solute behavior
(Fortner et al, 2005; Bagshaw et al., 2013). Still unknown
is the composition of minor and trace elements in these
environments. In fact only a few studies have measured trace
element concentrations in cryoconite holes and these have
focused on solids or leachates (Wientjes et al., 2011; Singh
et al, 2012) or in liquid that had not been filtered (Fortner
et al, 2011). The availability of bioaccessible trace elements
may impact species composition, abundance, or functioning.
Our work considers trace element concentrations from the
filterable (<0.4 jum) fraction of cryoconite holes and supraglacial
streams. We examine the fate of this dissolved fraction as it
is transported from supraglacial environments to the proglacial
stream environment, and finally into its terminal path, the closed-
basin lakes.

MATERIALS AND METHODS

Site Description

The Canada Glacier is located on the northern side of Taylor
Valley, Antarctica, 14 km west of the Ross Sea (Figure 1). Like all
MVD glaciers, Canada Glacier features low accumulation rates,
high sublimation rates, and cold temperatures (Fountain et al.,
2004). Fountain et al. (2008) observed that 50% of the cryoconite
holes are hydrologically connected and the other half are isolated.
Seasonally, these holes are frozen most of the year and begin to
thaw in November and by January they begin to freeze again
(Bagshaw et al., 2007). The initial melt pulse from cryoconite
holes releases high concentrations of solutes (Telling et al., 2014).
Cryolakes are full, draining, and frequently drain during the peak
of the ablation season. Discharge from these lakes on the Canada
Glacier frequently reaches 21 s~! with maximums measured at
751571 (Bagshaw et al., 2007). This variability makes it difficult
to develop predictive physical models based on to estimate their
contributions to hydrology. The isolation time or residence time
of water in cryoconite holes also varies. The mean residence
time of cryoconite holes is 3.4 years on the Canada Glacier
(Telling et al.,, 2014). The flux of chemistry from supraglacial

environments into downstream proglacial streams and lakes
depends on the age distribution of the cryoconite holes and their
hydrologic connectivity (Bagshaw et al., 2007; Telling et al., 2014).
This, of course, complicates flux calculations. Redox sensitive
chemistry also varies substantively depending on the conditions
during sampling. Supersaturations of O, and high pHs have been
observed in cryoconite holes due to photosynthesis and isolation
from the atmosphere that limits gas exchange (i.e., both O, and
CO;, in this case) (Tranter et al., 2004; Bagshaw et al., 2011, 2013).

Supraglacial melt on the western side of the Canada Glacier
either flows into Lake Hoare via a proglacial stream Andersen
Creek or via direct inflow into the lake. On the eastern side
of the glacier, supraglacial waters flow into Canada Stream and
continue along the valley floor before reaching Lake Fryxell. The
two proglacial streams have distinct biological, geomorphological
and geochemical characteristics, in part, because of their position
with respect to dominant W-E foehn winds that deposit eolian
material onto the glacier surface (Lyons et al., 2003; Fortner et al.,
2011, 2012).

Field Methods

In December 2006 and 2007 a total of 33 supraglacial streams
and 4 cryoconite hole samples were collected for trace element
analyses from the Canada Glacier ablation zone (Figure1).
The sampled holes were located primarily in the center of
the lower ablation area of the glacier (Figure2). The pH
conditions was not measured for all cryoconite holes and
supraglacial streams, but other studies report that cryoconites
that have established hydrologic connectivity with supraglacial
streams and supraglacial streams have somewhat acidic to
circumneutral pH values (Fortner et al., 2005; Bagshaw et al.,
2007; Foreman et al.,, 2007). Bagshaw et al. (2007) found that
Canada Glacier wet cryoconite holes had a median pH of 7.2.
Supraglacial stream sampling was conducted at locations that
had obvious drainage into either the western and eastern side
of glacier into the respective lake basins. Single samples were
also collected from the moat waters of Lake Hoare and Lake
Fryxell.

Low density polyethylene (LDPE) bottles were prepared for
trace element sampling by soaking them in al0% v/v trace
metal grade HCI/18 M2 deionized water (DI). Bottles were then
triple rinsed and filled with 1% ultraclean Optima™ HNO3/18
MQ DI and stored in plastic bags. Sample collection was
conducted by an individual wearing a Tyvek non-particulating
suit, clean vinyl gloves that were changed prior to collecting
each sample, and with careful attention to position downwind
of the collection. Bottle blanks, LDPE bottles filled with 18
MQ DI that were opened and shut in the field and filled with
18 M2 DI in the lab, were all below sample detection limits.
Samples were stored at 4°C and transported at this temperature
back to Ohio State University where they were filtered using
0.45 Lm Nucleopore™ membranes and then acidified to 2%
v/v using Optima™ HNOs5. This processing is similar to the
techniques used for proglacial stream sampling (Fortner et al,,
2012). Previous work (Fortner et al., 2011) compared unfiltered
and acidified, termed “environmentally available” trace element
concentrations in snow, supraglacial and proglacial streams to
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FIGURE 1 | (A) Map of Taylor Valley Antarctica with Canada Glacier shown (reprinted from Lyons et al., 1998 with permission of the copyright holder AGU). (B) The
lower Canada Glacier where cryoconite and supraglacial stream sampling occurred. Note the lower glacier feeds Andersen Creek and Canada Stream which drains

discern the partitioning of elements affiliated with particulate
sources. The methods described herein relate to determining
more soluble, filterable (<0.4 wm) fraction that is reactive and
bio-available.

Laboratory Methods

A Thermo Finnegan Element 2 Inductively Coupled Plasma
Sector-Field Mass Spectrometer (ICP-SF-MS) was used to
determine trace element concentrations as described in Fortner
et al. (2011). Six calibration standards were used to capture
the range of trace element concentrations. An internal check

standard relative standard deviation (RSD) values never exceeded
10%. Accuracy was better than 15% for all elements as determined
by the analysis of the certified reference standard, NWRI TM-
RAIN 95, a trace metal rainwater, approximately every five
samples. Detection limits were calculated as three times the
standard deviation of the blanks, or equivalent to the worst
filtration blank. These and other details on the technique and
laboratory procedures are further described in Fortner et al.
(2012). CI~ was measured, along with other major anions
(not reported here), using an Ion Chromatograph using the
methods of Welch et al. (2010). Precision of the Cl~ data

Frontiers in Earth Science | www.frontiersin.org

April 2018 | Volume 6 | Article 31


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles

Fortner and Lyons

Trace Elements in Supraglacial Water, Antarctica

FIGURE 2 | Cryoconite hole in Canada Glacier draining into a supraglacial
stream. The diameter of the cryoconite hole is 1.5 m.

were better than 5% determined from replicates of the lowest
standard.

RESULTS

Medians, ranges, and detection limits of dissolved As, Cu, V,
Fe, Mn concentrations measured in Canada Glacier cryoonite
holes, western supraglacial streams and eastern supraglacial
streams are reported in Table 1. Pb and Cd are not included
because they were below detection limits of 0.4 and 0.06 nM.
In the cryoconite holes median Fe and Mn concentrations
were similar (71.5 and 75.5nM). Likewise, As, Cu, and V
concentrations were all approximately 4 nM. Low cryconite hole
sample numbers limit our interpretation of dynamics, but they
are still offer a first examination of trace elements in these
systems. Western supraglacial streams had a greater median
dissolved Fe concentration (102nM) than eastern supraglacial
streams (43nM). Mn, As, Cu, and V all occurred in higher
median concentrations in the eastern supraglacial streams.

We plotted differences in median chemistry between
supraglacial and proglacial waters (Figure 3). Flow from the
Canada Glacier surface enters two distinct basins. Therefore, we
present chemistry for the western and eastern flowpaths. Only
the cryoconite data collected near the flow divide is the same.
Dissolved Fe increased from cryoconite holes to supraglacial
streams to proglacial stream on the western side of the glacier.
The western lake surface had a similar concentration to the
cryconite holes. The eastern lake, Fryxell, had greater median
dissolved Fe (130nM) than the median concentration (72 nM)
western lake (Lake Hoare). This is interesting because the eastern
supraglacial waters occurred in lower median concentrations
than on the western surface. Dissolved Mn decreased from
cryoconite holes to supraglacial streams to proglacial streams
on the western side of Canada Glacier, but remained relatively
constant from cryoconite holes to eastern supraglacial streams.
Dissolved Mn had similar concentrations to the moat waters of
both Lake Hoare and Lake Fryxell even though their inflows from
supra and proglacial waters were distinct. Dissolved As, Cu, and
V similarly did not behave the same on both sides of the glacier.

For example on the west, median dissolved As concentrations
were greatest in the lake (4.6 nM) followed by cryoconite holes
(3.7 nM), the proglacial stream (0.6 nM), and supraglacial stream
(<0.2nM). In the western drainage, dissolved Cu occurred in its
highest median concentrations in the cryoconite holes (4.6 nM)
followed by proglacial streams (1.8 nM), supraglacial streams
(0.8 nM), and Lake Hoare (0.3 nM). In the east, Lake Fryxell had
the greatest Cu concentrations (5.4nM) and both supraglacial
streams and the proglacial stream were an order of magnitude
lower. V concentrations were lower in the supraglacial streams
than the cryoconite holes on both sides of the glacier, but
interestingly the western proglacial stream had a greater
median V concentration (9.6nM) than the eastern proglacial
stream (4.8nM). Lakes were fairly similar to cryoconite hole
concentrations.

DISCUSSION

Recent work has clearly demonstrated that the majority of eolian
material is local (Deuerling et al., 2014). Therefore we interpret
in-situ dissolution as the major source of solutes measured
in the supraglacial environment. Although scientific activities
contribute to material sources, they are minor contributor of
trace elements (Lyons et al., 2000; Fortner et al., 2011). The
behavior of trace and minor elements from glacier headwater
(i.e., supraglacial streams and cryconite holes) into proglacial
environments (ie., proglacial streams and lakes) differs on
between both sides of the drainage divide. This likely reflects
highly-localized controls on chemistry such as valley floor
composition, wind direction and strength, channel morphology,
and the abundance and compositions of organisms in the
materials blown onto the glacier surface (Porazinska et al., 2012).
This work agrees with previous work showing that element
loading to the glacier surface is more than an order of magnitude
greater than inland Antarctic sites (Witherow et al., 2006;
Williamson et al.,, 2007; Witherow and Lyons, 2008; Fortner
et al,, 2011). Differences between supraglacial and proglacial
streams probably also reflect differences in substrate, and hence
hyporheic exchange and chemical weathering (Nezat et al,
2001; Gooseff et al., 2002; Maurice et al., 2002; Dowling et al.,
2013). Additionally, ice melt may release soluble iron into the
cryoconites and streams similar to the release of dissolved Fe
from Antarctic icebergs into seawater (Raiswell et al., 2008).

To think about biogeochemical reactivity in aquatic systems
we have normalized dissolved As, Cu, V, Fe, and Mn to CI™
in Figure 4. Because Cl~ behaves conservatively and does not
take part in any biogeochemical process at these low total
dissolved solids (TDS), this normalization allows us to better
understand the behavior of these elements as they are transported
from the glacier surface to the surface water of the lakes. For
example, the As:Cl™ ratio along the western and the eastern
flowpaths show removal of As from the glacier surface into
the proglacial streams. This suggests little chemical weathering
input from the proglacial streams. However, As:Cl™ increases
from the proglacial stream values into the surface water of
Lake Hoare. This may indicate that direct supraglacial input
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TABLE 1 | Median and range () of dissolved element concentrations (nM) in supraglacial waters of Canada Glacier, Taylor Valley, Antarctica.

Element Cryoconite holes (n = 4) Western supraglacial streams (n = 17) Eastern supraglacial streams (n = 16) Detection limit
Fe 72 (32-546) 102 (35-153) 43 (27-160) 0.1
Mn 76 (33-94) 1(8-58) 79 (77-750) 0.5
As 3.7 (<0.2-4.5) <0.2 (<0.2-1.6) 5.4 (0.3-8.2) 0.2
Cu 4.6 (1.1-8.2) 0.8 (<0.3-1.6) 0.6 (<0.3-2.1) 0.3
\Y 4.3 (8.1-5.1) 1.8 (1.3-2.3) 4.8 (0.8-3.6) 0.7
Detection limits (nM) are also given.
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FIGURE 3 | (Top) Median dissolved Fe and Mn concentrations (nM) in cryoconite holes, supraglacial streams, proglacial streams, and lakes. Note that western waters
are presented on the left and eastern waters are on the right. (Bottom) Median dissolved As, Cu, and V concentrations (nM) in cryoconite holes, supraglacial streams,
proglacial streams, and lakes. Note As was not measured in Lake Fryxell.
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dominates the As concentrations in the lake. Cryoconite holes
and Lake Hoare have approximately the same dissolved As
concentration. Cu:Cl™ decreases in the west, but not the east.
The eastern fluctuating behavior is similar to variations in Cu:Cl~
from melting snow to the proglacial stream environment on
the Eliot Glacier Mount Hood (Fortner et al., 2009) which
was attributed to desorption from particulate matter in the
proglacial environment. Unlike Lake Hoare, Lake Fryxell surface
waters have higher Cu:Cl™ ratios than the supra and proglacial
streams that supply them. The higher relative values in Lake

Fryxell may reflect higher Cu?" contributions from the other
10 streams contributing water to the lake. This is not likely a
result of lake surface pH conditions (i.e., measured pH > 8
by Green et al., 1988). In both flow directions the V:Cl~ had
the highest values in the proglacial streams indicating possible
V solubilization in stream environments. Previous research has
linked dissolved V input to increased aluminosilicate weathering
(Shiller and Mao, 2000). Silicate weathering is a documented
source of ions within MDYV proglacial stream channels (Nezat
et al., 2001).
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TABLE 2 | N:P:Si:Fe ratios of Canada Glacier cryoconite holes vs. marine
phytoplankton.

Type N:P:Si:Fe

25:1:25:0.36
16:1:60 £ 6:0.0075

Cryoconite Holes
Marine Phytoplankton

N:P:Si ratios for Canada Glacier cryoconite holes are from Bagshaw et al. (2013). Marine
phytoplankton ratios are from Ho et al. (2003) and Brzezinski et al. (2003).

Fe:Cl™ ratio decreases dramatically in the western flowpath,
while a large decrease only from the cryoconite holes to the
supraglacial streams is observed in the eastern flowpath. In
the eastern system, the Fe:Cl™ stays relatively constant from
supraglacial to proglacial stream to lakes suggesting either little
Fe?* loss from the system or a balance between input and
output. Higher Fe:Cl™ ratios on the east may also reflect the very
much higher organic matter concentrations in Canada Stream
(Cathey et al., 1981) with organic matter complexation impact
the uptake and release of Fe. Organic matter may also impact
Cu complexation in Antarctic environments (Bundy et al., 2013).
Our limited examination showed that Cu:Cl ratios were lower
in the eastern proglacial stream than the western one, unlike Fe.
The Mn:Cl™ ratio show a pattern of Mn loss in the lake waters,
with relatively constant ratios prior to the lake. Previous work
documents dynamic temporal changes in cryoconite hole redox
conditions (Tranter et al., 2004) another important variable in
metal dynamics. Similarly, UV sensitivity impacts the behavior of
trace elements including Fe in the Southern Ocean (Rijkenberg
et al., 2005), so future efforts should monitor these conditions.
Overall, these patterns indicate non-conservative behavior of
these elements as water moves through the supraglacial to
lake hydrologic system. To better understand specific drivers of
element behavior in glacier melt systems would take increased
spatial and temporal monitoring to capture the evolution of
glacier surface water and downstream dynamics. For example
it would be important to capture longer isolation periods that
generate greater solute concentrations as well as dilute connected
systems (Tranter et al., 2004). A next step would be to monitor
variations in microbial activity through time and observe the
response of trace and minor elements. This has recently been
accomplished in nearby Antarctic pond environments (Safi et al.,
2012). Finally, other work suggests a need to explore particulate
sources of trace elements in Antarctic streams (Hodson et al.,
2017). This might be particularly important in these dusty MDV
glaciers.

Castendyk et al. (2016) documented that increased foehn
winds generated more sediment on glacier surfaces drove the
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rising levels of MDV Lake Vanda and other lakes not analyzed in
detail. Wind deliveries of eolian sediment (Castendyk et al., 2016)
coupled with increased warming around the edges of Antarctica
may make MDYV glaciers important sources of Fe to the Southern
Ocean (Lyons et al., 2015). This is important because Fe is a
limiting nutrient in the Southern Ocean (Raiswell et al., 2008).
For this reason we explore N:P:Si:Fe nutrient stoichiometry of
cyoconite holes. Using the dissolved inorganic nitrogen and
dissolved phosphorus and silicon data from Bagshaw et al.
(2013), and the filterable Fe data presented here, we establish
the cryoconite hole N:P:Si:Fe ratio as 25:1:25:0.36 (Table 2). Note
that the relative amount of iron in cryoconite holes is orders of
magnitude higher than marine phytoplankton. Therefore, glacier
surfaces, and not just proglacial streams (Lyons et al., 2015) may
be an important future source of Fe to the Southern Ocean.
Work in the Pine Island region also suggests that glacier melt,
contributes substantively to dissolved iron loaded into the ocean
(Hodson et al., 2017).

CONCLUSIONS

While this study does not constrain elemental dynamics, it
is an important first look at the relative abundance and
heterogeneity of trace element chemistry in glacier surface
melt. The ultimate fate of dissolved solutes from eolian-derived
material is important to understanding MDV and Southern
Ocean ecosystems. Temporal studies are needed to understand
how trace element geochemistry evolves alongside melt evolution
(i.e., from isolated cryoconite hole to hydrogically connected
cryoconite hole-supraglacial stream). Future work might also
explore solute and solid chemistry dynamics. If foehn winds
continue to drive increased melt into the future, glacier surfaces
will potentially increase their chemical deliveries to downstream
ecosystems. Many questions remain, but our work suggests that
as the ice margin warms, glacier surface melt will be an important
source of trace element chemistry.
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