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Abstract—In this paper, we propose a novel Spin-Transfer
Torque Magnetic Random-Access Memory (STT-MRAM) array
design that could simultaneously work as non-volatile memory
and implement a reconfigure in-memory logic operation with-
out add-on logic circuits to the memory chip. The computed
output could be simply read out like a typical MRAM bit-cell
through the modified peripheral circuit. Such intrinsic in-memory
computation can be used to process data locally and transfers
the “cooked” data to the primary processing unit (i.e. CPU or
GPU) for complex computation with high precision requirement.
It greatly reduces power-hungry and long distance data commu-
nication, and further leads to extreme parallelism within memory.
In this work, we further propose an in-memory edge extraction
algorithm as a case study to demonstrate the efficiency of in-
memory preprocessing methodology. The simulation results show
that our edge extraction method reduces data communication as
much as 8x for grayscale image, thus greatly reducing system
energy consumption. Meanwhile, the F-measure result shows
only ∼10% degradation compared to conventional edge detection
operator, such as Prewitt, Sobel and Roberts.

Index Terms—In-memory computing, STT-MRAM, image pro-
cessing, edge detection

I. INTRODUCTION

The era of big data reveals the emerging needs to rethink and
redesign the current computing architecture that can support
memory-oriented processing for large datasets at exascale
(1018 bytes/s or flops) [1]. Especially, the ability of conven-
tional computing platforms to address these needs is beginning
to stall fundamentally due to the exiting bottlenecks either
in architecture (i.e. memory wall [2]) or device technology
(power wall [2]). In the existing von Neumann computing
architecture, the separation of memory and computing units
interconnected via buses has faced serious challenges, such
as long memory access latency, significant congestion at
I/Os, limited memory bandwidth, and huge leakage power
consumption in big data-driven applications [3]. To mitigate
these challenges, in-memory computing architecture and non-
volatile memory technology have been proposed to inte-
grate memory and logic, leading to a more energy efficient
information processing platform. However, such in-memory
processing platforms typically impose additional area overhead
to the memory chip owning to add-on logic elements, and thus
sacrificing valuable memory capacity [3].

This material is based upon work supported in part by the National Science
Foundation under Grant No.1740126.

From the device technology perspective, there are many
recent researches carried out about emerging Non-Volatile
Memories (NVM) that are promising to design such in-
memory computing concept, for example, Resistive Random-
Access Memory (RRAM) [3], Phase Change Memory (PCM)
[4], Spin-Transfer Torque Magnetic Random-Access Memory
(STT-MRAM) [5]. With great development of fabrication
technology and commercialization progress, STT-MRAM has
emerged as a leading non-volatile memory candidate owning
to its unique features [5], [6], such as non-volatility, zero
standby leakage, high write/read speed, compatibility with
CMOS fabrication process, scalability, excellent endurance
and high integration density. They are among the most promi-
nent features which could pave a novel way to realize area
and energy-efficient system supporting in-memory computing,
normally-off computing, instant-on computing [5]–[8].
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Fig. 1: In-memory computing to reduce the data communica-
tion and increase the computation parallelism.

For big data processing, one potential solution is extracting
the abstract of data, and utilizing such extracted data for further
processing. As depicted in Fig. 1, from in-memory computing
architecture perspectives, memory takes care of data feature
extraction with bit-wise low precision computation in extreme
parallel approach, while the primary processing unit handles
high precision operation with limited I/O bandwidth. In this
work, edge extraction is used as a case study to demon-
strate the efficiency improvement with in-memory computing
paradigm. Edge detection is one of the fundamental operations
in computer vision and image processing, which drastically
reduces the complexity of original image while extracts the
crucial boundary information for further processing procedures
[9]. Currently, most edge detection algorithms can be classified
into two categories [10]: search-based (e.g. Sobel [11], Prewitt
[12], Roberts [13]) or zero-crossing based (e.g. Canny [9],
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Marr-Hildreth[14]).Thesearch-basedalgorithmsarebased
onlookingforthelocalmaximumofthefirst-orderderiva-
tives,withapredefinedthresholdtodecidetheedgepixels.
Meanwhile,thezero-crossingbasedalgorithmsidentifythe
edgethroughseekingthezerocrossingpointsinthesecond-
orderderivativesoftheinputimage.However,suchderivatives
operationiscomputationexpensive,whichurgesthediscovery
ofotherenergyefficientedgeextractionmethod.

Inthispaper,weproposeanovelSTT-MRAMarraythat
couldworkasconventionalmemoryandin-memorycomput-
ingkernel,whichisinspiredbytherelatedworksin[15]–[17].
Fortheadditionalin-memorycomputingfunction,nomemory
capacityissacrificed,whileanymemorybit-cellsallocatedin
thesamerow/columncanbeefficientlyleveragedtorealize
bit-wiseAND/OR/XORandotherlinear/nonlinearoperations
withlargerfan-ins.Moreover,weproposealocaledgeextrac-
tionmethodfordigitalimage(i.e.binaryandgrayscaleimage),
utilizingtheintroducedin-memorycomputingplatform.Thus,
onlyimagefeatureisextractedandtransferredtotheprimary
processingunit(i.e.CPUorGPU)forfurtherprocessing.

II.SPIN-TRANSFERTORQUERANDOM-ACCESSMEMORY

Atypical MagneticTunnelJunction(MTJ)structure,as
showninFig.2a,consistsoftwoferromagneticlayerswith
atunnelbarriersandwichedbetweenthem.DuetotheTunnel
MagnetoResistance(TMR)effect[18]–[20],theresistanceof
MTJishigh(low)whenthemagnetizationoftwoferromag-
neticlayersareinanti-parallel(parallel)state.TheTMRratio
isdefinedas(RAP-RP)/RP,whichmayvaryfrom10%to400%
dependingonmaterialsandtemperature[18]–[21].Thus,the
dataarestoredasthemagnetizationdirectioninthefreelayer,
whichcouldbeprogrammedthroughcurrentinducedSpin-
TransferTorque(STT).Notethat,theMTJwithPerpendicular
MagneticAnisotropy(PMA)isusedinthiswork.The1T1R
bit-celliswidelyusedinthetypicalSTT-MRAMdesign,as
depictedinFig.2b,whichiscorrespondinglycontrolledby
BitLine(BL), WordLine(WL)andSourceLine(SL).The
biasingconditionsofmemoryreadandwritearepresentedin
Fig.2c.Forbothmemoryreadandwriteoperation,theWLis
enabled,whichturnsontheaccesstransistor.Then,avoltage
drop-VDDor+VDDisappliedacrosstheBLandSL,inorder
torealizewrite‘1’or‘0’respectively.Formemoryread,a
sensingcurrent(IREAD)isappliedontheBLandconsequently
generatesasensingvoltage,whichcanbedetectedbysense
amplifier.

Wejointlyusethe Non-Equilibrium Green’sFunction
(NEGF)andLandau-Lifshitz-Gilbert(LLG)equationtomodel
STT-MRAMbitcell(i.e. MTJ)forcircuitlevelsimulation.
ThemagnetizationdynamicsofFL(m)canbemodeledby
LLGequationwithspin-transfertorqueterms,whichcanbe
mathematicallydescribedas[22],[23]:

dm

dt
=−|γ|m×Heff+α m×

dm

dt

+|γ|β(m×mp×m)−|γ|β (m×mp)
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Fig.2:(a)Devicestructureofconventionalmagnetictunnel
junctioninparallel-andanti-parallelstates, withcurrent-
inducedspin-transfertorqueswitchingscheme.(b)Bit-cell
schematicof1T1RSTT-MRAM.(c)Biasingconditionsfor
STT-MRAMoperations.

β=|
h̄

2µ0e
|
IcP

AMTJtFLMs
(2)

whereh̄isthereducedplankconstant,γisthegyromagnetic
ratio,IcisthechargecurrentflowingthroughMTJ,tFListhe
thicknessoffreelayer, isthesecondSpintransfertorque
coefficient,andHeffistheeffectivemagneticfield,Pisthe
effectivepolarizationfactor,AMTJ isthecrosssectionalarea
ofMTJ,mpistheunitpolarizationdirection.TheFig.3ahas
shownthenormalizedmagnetizationdynamicsoffreelayer
inx-,y-andz-axis,whenperformingtheSTT-MRAMwrite
schemeasdescribedinFig.2c.

TABLEI.SIMULATIONPARAMETERS

Parameter Value

Freelayerdimension,(W ×L×t)FL 65×65×2nm3

Polarizationfactor,P 0.4
GilbertDampingFactor,α 0.007
SaturationMagnetization,Ms 850kA/m

Oxidethickness,tox 1.2nm
RAproduct,RAp/TMR 10.58Ω·µm2/171.2%

Supplyvoltage 1V
CMOStechnology 45nm
STT-MRAMcellarea 48F2

Accesstransistorwidth 9F
CellaspectRatio 1.34

BasedonthesimulationparameterslistedinTableI,the
magnetizationdynamicfromLLGequationcanprovidethe
relativeangleθbetweenthemagnetizationofPL(̂z)andFL
(m).Therefore,thereal-timeconductanceofMTJ(GMTJ)is
givenby[24]:

GMTJ=
GP+GAP
2

+
GP−GAP
2

cosθ (3)

whereGPandGAParetheconductanceof MTJinparallel
(θ=0)andanti-parallel(θ=180)configurations.Both
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scheme.(b)TheResistance-Areaproductw.r.tthethickness
ofMTJtunneloxide(tox).

GPandGAP areobtainedfromtheatomisticlevelsimula-
tionframeworkbasedonNon-EquilibriumGreen’sFunction
(NEGF)[25],whiletheResistance-AreaProductwithrespect
tothethicknessofMTJtunneloxideisshowninFig.3b.

III.STT-MRAMBASEDIN-MEMORYCOMPUTING

InadditiontotheconventionalmemoryfunctionofSTT-
MRAM,through modifyingtherow/columndecodersof
memorysub-arrayandsensingcircuitry,areconfigurablein-
memorylogic(i.e.AND,OR,XORandetc.)canbeimple-
mentedwithoutadd-onlogiccircuits.
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Fig.4:TheideaofvoltagecomparisonbetweenVsenseand
Vreffor(a)memoryreadand(b)in-memorylogicoperation.

Thekeyideatoperform memoryreadandin-memory
computingistochoosedifferentthresholdswhensensingthe
selectedmemorycell(s).AsshowninFig.4a,formemoryread
operation,asinglememorycellisaddressedandroutedinthe
memoryreadpathtogenerateasensevoltage(Vsense),which
willbecomparedwithareferencevoltage(Vref).Owingtothe
parallel-oranti-parallelstateofselectedSTT-MRAMbit-cell
(RM1),thesensevoltageareVPorVAP(VP<VAP)respectively.
Thus,throughsettingthereferencevoltageat(VAP+VP)/2,the
senseamplifieroutputsbinary‘1’whenVsense>Vref,otherwise
thesenseamplifieroutputs‘0’.

Fig.4bdepictsthesensing-based methodofin-memory
Booleancomputing,wheretwomemorybit-cells(RM1 and
RM2)aresensedsimultaneously.R1andR2correspondsto
theaccesstransistorswithinthesensingpath.Owingtothe
differentresistancecombinationsoftwoselectedSTT-MRAM
bit-cells(i.e.RAP,RAP;RAP,RP;RP,RP),threedifferent
sensevoltagesVsense(VAP,AP;VAP,P;VP,P)couldbegener-
atedrespectively.Considersettingthereferencevoltageas
(VAP,AP+VAP,P)/2throughtuningreferenceresistance,thesense
amplifieronlyoutputs‘1’whenbothselectedSTT-MRAMs
areinanti-parallelstate(Vsense>Vref).Thus,thissensing
operationwithmodifiedreferencevoltageperformsanAND
logicoperationtakenthebinarydatastoredinRM1andRM2as
logicinputs.Similarly,whenthereferencevoltageisshifted
to(VP,P+VAP,P)/2,theORlogicoperationcanbeperformed
aswell.Therefore,throughtuningthereferencevoltagefor
comparison,thesenseamplifiercanperformreconfigurable
in-memorycomputations.

B.in-memorycomputingplatformdesign

BasedontheSTT-MRAMdevicemodelingapproachdis-
cussedabove,wehaveperformedthecircuitlevelSTT-MRAM
simulationsinCadenceSpectrewith45nmNCSUPDK[26]
asCMOSlibrary.TheMTJresistivemodelisobtainedfrom
themodelingapproachdescribedinSectionIIwithrespectto
thedeviceparameterslistedinTable.I.
Fig.5adepictsthearchitectureofmemorysub-array,where
memoryread/writepathofthespecificbit-cellisenabledby
therow/columndecoders.AsshowninFig.5c,themodified
row/columndecoderscanenableeithersingleline(memory
write/read)ordoublelines(bit-wiseBooleancomputation),
dependingontheaddresses(Addr1andAddr2)provided.For
memorywrite,thevoltagedropacrossBLandSLisgenerated
bytheVoltageDrivers(VD),whichrealizethefastmemory
switchingasdepictedinFig.3a.FormemoryreadandBoolean
computation,asmallsensecurrent(Isense 3µA)isinjected
intothereadpathtogenerateasensevoltage(Vsense),which
istakenastheinputofmodifiedsensecircuit.Asshownin
Fig.5d,themodifiedsensecircuitcanprovidememoryread,
AND/NAND,OR/NORandXOR/XNORfunctions,through
combiningtwosenseamplifiers(i.e.StrongARMlatchshown
inFig.5b),externalCMOSlogicgateandcontrolunits.Owing
tothecomplementaryoutputsofSA,themodifiedsensing
circuitcanprovideNANDandNORwithoutadditionalcost.
Moreover,accordingtotheBooleanrepresentationofp q=
(p∨q)∧(p∧q),theXORlogiccanberealizedwithtwosense
amplifiers(i.e.performingANDandNORlogicrespectively)
andanadditionalCMOSNORgate.Itisnoteworthythat,other
computationrequiringtwothresholdcanalsobeimplementby
addingadditionalreferencebranches.Theoperationofsuch
sensecircuitisdeterminedbythecontrolsignals(ENAND,
ENORandENM),whilethedesiredresultisacquiredbythe
selectionsignal(SEL)oftheoutputmultiplexer.Notethat,
onlyonesenseamplifierisusedduringAND/OR/memory-
readoperation,inordertoreducethepowerconsumptionof
sensing.
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Fig. 5: (a) The modified sub-array structure of STT-MRAM.
(b) The schematic of StrongARM latch as Sense Amplifier
(SA). (c) Modified decoder which provides single/multiple
lines enable function. (d) Modified sense circuit for regular
memory W/R and in-memory computing operations.

C. performance evaluation

Fig. 6 depicts the transient simulation result of the sense
circuit under a 2ns period clock signal (CLK), which takes
the data stored in MRAM1 and MRAM2 as inputs. When
CLK is high, the sense amplifier is in pre-charge phase and
the output is reset to ‘0’. When CLK is low, the sense am-
plifier is in sampling phase, and generates logic computation
result depending on the reference voltage configuration. Vcmp
includes all the input signals of SAs, which are sense voltage
(Vsense) and two reference voltage (Vref1 and Vref2). Vref1 is
set to (VAP,AP+VAP,P)/2, and Vref2 is set to (VP,P+VAP,P)/2, for
performing AND and OR respectively. Note that, the ripple
of Vcmp are resulted from the kickback noise due to the
clock switching of SA. In general, the transient curve has
demonstrated the correct logic operation of sense circuit with
around 200ps output latency.

Furthermore, in order to validate the variation tolerance of
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Fig. 6: Transient simulation results of in-memory computing
operations (i.e. AND, OR and XOR).

Fig. 7: Monte-Carlo simulation result of sense voltage (Vsense)
distribution for (top) conventional memory read operation
with single STT-MRAM, and in-memory computing operation
with (middle) two selected STT-MRAM bit-cells (down) four
selected STT-MRAM bit-cells.

sense circuit, we have performed Monte-Carlo simulation with
100000 trials. A σ = 2% variation is added to the Resistance-
Area product (RAP), and a σ = 5% process variation is
added on the TMR. The simulation result of sense voltage
(Vsense) distributions in Fig. 7 shows the sense margin for
conventional memory read, two fan-in in-memory computation
and four fan-ins sense-based operation. It can be seen that
sense margin gradually reduces when increasing the number
of fan-ins (selected STT-MRAM cells for computation). Note
that, such sense margin could be improved by increasing the
sense current, but with a sacrifice of read operation energy
efficiency.

TABLE II. Performance evaluation of STT-MRAM based in-
memory computing platform

Metrics Memory mode Compute
modeWrite Read

Dynamic Energy 826.149pJ 870.042pJ 985.851pJ
Mat Dynamic Energy 9.151pJ 14.637pJ 21.303pJ

Subarray Dynamic Energy 2.218pJ 3.590pJ 5.252pJ
Leakage Power 830.847mW

Area 1.271mm x 5.216mm = 6.632mm2

In order to evaluate the performance of the proposed STT-
MRAM based in-memory computing platform, we configure
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the memorychiporganizationbydividingitinto multiple
Banksconsistingofmultiple Mats.Each Matincludesmul-
tiplesub-arraysorganizedinaH-treeroutingmanner. We
employmodifiedself-consistentNVSim[27]alongwithan
in-housedevelopedC++codetoverifythearchitecturelevel
performanceofSTT-MRAMin-memorycomputingplatform,
whichincludesthemetricsforread/writeinmemorymode
andlogicoperationsincompute mode.TableIIliststhe
energyconsumptionofasample4MBmemorywith512word-
widthin45nmprocessnode.Notethat,theenergyoverhead
comesfromthepreviousdescribedmodifieddecoders,sense
amplifier,etc.

IV.EDGEDETECTIONUSINGIN-MEMORYBOOLEAN
COMPUTING

Inthissection,anin-memoryedgeextractionalgorithmis
proposedtoacquiretheimageedgefeature,whichleverages
theintrinsicin-memorycomputingfunctionalityandmassively
reducesthedatacommunicationbetweenmemoryandmain
processingunit.

A.BinaryImage

Consideringabinaryimagewithdimensionofm×n
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‘1’or‘0’),itindicatestheabsenceofimagevariation.Then,
thecorrespondingpixelattheedgemapissettobinary‘0’
(black).Fortheothercombinations,thecorrespondingedge
mappixelissettobinary‘1’(white).Thecorrespondingedge
extractionalgorithmisdescribedinAlgorithm1.

(a)
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Fig.8:(a)Theedgeextractionprocedureforbinaryimage
(i.e.individualbit-plane).(b)Originalbinaryimageand(c)
itsedgemapextractedfrommemory.

Inordertoextracttheedgemapthroughtheproposedin-
memorycomputingplatform,thedimensionofmemorysub-
arrayshouldbesufficienttostoretheentirebinaryimage
matrix.Forextractingimageedge,fourneighboringSTT-
MRAMbit-cellsareselectedsimultaneouslybythemodified

Algorithm1In-memoryedgeextractionalgorithmforbinary
image(singlebit-plane)

Input:inputbinaryimageI(m,n)
Output:edgemapOUT=edge(I);
fori=1tom-1do
forj=1ton-1do
tmp=sum(I(i:i+1,j:j+1));
iftmp<1or>3then
OUT(i,j)=1;
else
OUT(i,j)=0;
endif
endfor
endfor
return OUT

Algorithm 2 In-memoryedgeextractionalgorithmfor
grayscaleimage(multiplebit-planes)

Input:inputgrayscaleimageI(m,n,8);p:numberofbitplanes
usedforedgeextraction
Output:edgemapOUT;
OUT=zeros(m-1,n-1);
fork=8+1-pto8do
tmpedge=edge(I(:,:,k));
fori=1tom-1do
forj=1ton-1do
OUT=or(tmpedge(i,j),OUT(i,j));
endfor
endfor
endfor
return OUT

rowandcolumndecoders.Then,theedgedetectionoperator
canbeintrinsicallyperformedthroughthepreviousdescribed
modifiedsenseamplifierbyconfiguringthetworeference
voltagesto(V4AP+V3AP,P)/2and(V4P+V3P,AP)/2,respectively,
asmarkedinFig.8a.Abinaryimageanditsextractededge
imagearedisplayedin8band8casanexample.Notethat,in
suchprocess,theedgemapcouldbedirectly’readout’using
themodifiedsenseamplifier.While,intraditionaldesign,the
rawimageneedstobereadoutfrommemoryandsentto
processingunitforedgeextractioncomputation.

B.GrayscaleImage

Theproposedin-memoryedgeextractionalgorithmcould
alsobeextendedtogreysalceimage,asdescribedinAl-
gorithm2.Consideringan8-bitgrayscaleimage(Fig.9a)
isdividedintoeightbit-planes,from mostsignificantbit
(MSB)toleastsignificantbit(LSB)asshowninFigs.9b
to9i.Itpresentsthatthehighorderbit-planescontainsmore
informationforlocalprocessing,whiletheloworderbit-plane
arenoisy.Inordertoperformtheedgeextractionbasedonthe
grayscaleimage,thesamealgorithmshowninAlgorithm1
isappliedonbit-planesseparately.Then,anin-memoryOR
operationisimplementedoneachpixeloverthecalculated
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(a) grayscale image (b) 8th bit-plane (MSB) (c) 7th bit-plane

(d) 6th bit-plane (e) 5th bit-plane (f) 4th bit-plane

(g) 3rd bit-plane (h) 2nd bit-plane (i) 1st bit-plane (LSB)

Fig. 9: (a) grayscale image of lena. The bit-planes from MSB
to LSB are shown (b-i), which indicate that most image
informations are included in (b-e).

bit-planes. The extracted edge images are shown in Fig. 10,
through the combination of different numbers of bit-planes.

(a) (b)

(c) (d)

Fig. 10: The edge image that combines (i.e. OR operation)
the in-memory edge extraction result of (a) 8th (b) 8th-7th (c)
8th-6th (d) 8th-5th most significant bit-planes.

The F-measure (
2 · Precision · recall
precision+ recall

) is taken as indi-

cator of extracted edge quality. We perform the edge detec-
tion evaluation based on the Berkeley Segmentation Dataset
(BSD300) [28], which contains 300 natural images and human

annotations as ground truth. The simulation results listed in
Table III shows that the best F-measure (only 8th bit-plane) of
our in-memory edge method merely has 0.05∼0.06 (∼10%)
degradation in comparison with Prewitt [12], Sobel [11] and
Roberts [13] such conventional edge operators. Increasing
the number of bit-planes for computation may involves more
image details for edge extraction, but introducing amounts of
noise as well which lowers F-measure of extracted edge image.

TABLE III. Evaluation of different edge detection algorithms
on BSD300 dataset

Conventional
edge oeprator

Canny
[1]

Prewitt
[2]

Sobel
[3]

Roberts
[4]

F-measure 0.58 0.48 0.48 0.47

Our methods: 1 bit-plane
(Fig. 10a)

2 bit-planes
(Fig. 10b)

3 bit-planes
(Fig. 10c)

4 bit-planes
(Fig. 10d)

F-measure 0.42 0.40 0.35 0.32

Fig. 11: Energy consumption of conventional edge detection
algorithm using ASIC and our in-memory edge extraction
method for one image (lena.tif, 512× 512 pixels).

We further employ NVsim (memory setup in Section III-C)
and design compiler (processing element synthesis) to evaluate
the image edge extraction system energy consumption in 45nm
CMOS technology. Fig. 11 shows the energy consumption
comparison between various image edge extraction algorithms.
It shows that our edge extraction method achieves more than
8× energy reduction in comparison with conventional edge
extraction algorithms. Note that, the total energy consumption
includes two parts: computation energy and memory access
energy. Since the memory access energy for transferring data
from memory to processing element (PE) is much larger than
computation energy, reducing data communication between
memory and PE greatly reduces the total energy dissipa-
tion. The “computation energy” for in-memory computing
algorithm shown in Fig. 11 comes from decoders and SAs
configuration, data buffer, copy and write-back operations
in in-memory data processing. However, such overhead is
much smaller, due to local processing, compared with memory
access energy.

C. Edge-based Motion Detection

In additional to using the F-measure for evaluating our in-
memory edge extraction quantitatively, we utilize the edge-
based motion detection [29] to demonstrate the extracted
images have relatively good quality for the edge related
application. Note that, the extracted edge from memory is
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 12: (a-c) The three successive frames captured from a
stationary camera. The corresponding edge representation of
moving object are shown in (d-f) using Canny edge detector.
(g-h) our in-memory edge extraction algorithm.

forwarded to the main processing unit (i.e. CPU or GPU) for
processing. Such motion detection is performed with single
face dataset [30], where three successive frames and its motion
detection result using conventional canny edge operator and
our in-memory edge extraction method are taken as example
and shown in Fig. 12. It can be seen that the object motion is
successfully detected using our extracted edge maps, similar
as Canny edge detector.

V. CONCLUSION

In this work, we have presented a STT-MRAM based in-
memory computing platform and novel edge extraction algo-
rithm for in-memory image preprocessing. In-memory com-
puting has emerged as promising computation architecture for
big-data application, where the data communication between
memory and primary processing unit (i.e. CPU and GPU)
merely involves the preprocessed data. Such computation
methodology drastically reduces the data communication, thus
leading to energy-efficient operation and extreme computation
parallelism. As a case study, we have proposed an image edge
extraction algorithm that can be intrinsically performed by our
in-memory computing platform with 8× energy reduction, and
only 10% F-measure score degradation.
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