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Abstract—In this paper, we propose a novel Spin-Transfer
Torque Magnetic Random-Access Memory (STT-MRAM) array
design that could simultaneously work as non-volatile memory
and implement a reconfigure in-memory logic operation with-
out add-on logic circuits to the memory chip. The computed
output could be simply read out like a typical MRAM bit-cell
through the modified peripheral circuit. Such intrinsic in-memory
computation can be used to process data locally and transfers
the ‘“‘cooked” data to the primary processing unit (i.e. CPU or
GPU) for complex computation with high precision requirement.
It greatly reduces power-hungry and long distance data commu-
nication, and further leads to extreme parallelism within memory.
In this work, we further propose an in-memory edge extraction
algorithm as a case study to demonstrate the efficiency of in-
memory preprocessing methodology. The simulation results show
that our edge extraction method reduces data communication as
much as 8x for grayscale image, thus greatly reducing system
energy consumption. Meanwhile, the F-measure result shows
only ~10% degradation compared to conventional edge detection
operator, such as Prewitt, Sobel and Roberts.

Index Terms—In-memory computing, STT-MRAM, image pro-
cessing, edge detection

I. INTRODUCTION

The era of big data reveals the emerging needs to rethink and
redesign the current computing architecture that can support
memory-oriented processing for large datasets at exascale
(10'® bytes/s or flops) [1]. Especially, the ability of conven-
tional computing platforms to address these needs is beginning
to stall fundamentally due to the exiting bottlenecks either
in architecture (i.e. memory wall [2]) or device technology
(power wall [2]). In the existing von Neumann computing
architecture, the separation of memory and computing units
interconnected via buses has faced serious challenges, such
as long memory access latency, significant congestion at
I/Os, limited memory bandwidth, and huge leakage power
consumption in big data-driven applications [3]. To mitigate
these challenges, in-memory computing architecture and non-
volatile memory technology have been proposed to inte-
grate memory and logic, leading to a more energy efficient
information processing platform. However, such in-memory
processing platforms typically impose additional area overhead
to the memory chip owning to add-on logic elements, and thus
sacrificing valuable memory capacity [3].
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From the device technology perspective, there are many
recent researches carried out about emerging Non-Volatile
Memories (NVM) that are promising to design such in-
memory computing concept, for example, Resistive Random-
Access Memory (RRAM) [3], Phase Change Memory (PCM)
[4], Spin-Transfer Torque Magnetic Random-Access Memory
(STT-MRAM) [5]. With great development of fabrication
technology and commercialization progress, STT-MRAM has
emerged as a leading non-volatile memory candidate owning
to its unique features [5], [6], such as non-volatility, zero
standby leakage, high write/read speed, compatibility with
CMOS fabrication process, scalability, excellent endurance
and high integration density. They are among the most promi-
nent features which could pave a novel way to realize area
and energy-efficient system supporting in-memory computing,
normally-off computing, instant-on computing [5]-[8].
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Fig. 1: In-memory computing to reduce the data communica-
tion and increase the computation parallelism.

For big data processing, one potential solution is extracting
the abstract of data, and utilizing such extracted data for further
processing. As depicted in Fig. 1, from in-memory computing
architecture perspectives, memory takes care of data feature
extraction with bit-wise low precision computation in extreme
parallel approach, while the primary processing unit handles
high precision operation with limited I/O bandwidth. In this
work, edge extraction is used as a case study to demon-
strate the efficiency improvement with in-memory computing
paradigm. Edge detection is one of the fundamental operations
in computer vision and image processing, which drastically
reduces the complexity of original image while extracts the
crucial boundary information for further processing procedures
[9]. Currently, most edge detection algorithms can be classified
into two categories [10]: search-based (e.g. Sobel [11], Prewitt
[12], Roberts [13]) or zero-crossing based (e.g. Canny [9],
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Marr-Hildreth [14]). The search-based algorithms are based
on looking for the local maximum of the first-order deriva-
tives, with a predefined threshold to decide the edge pixels.
Meanwhile, the zero-crossing based algorithms identify the
edge through seeking the zero crossing points in the second-
order derivatives of the input image. However, such derivatives
operation is computation expensive, which urges the discovery
of other energy efficient edge extraction method.

In this paper, we propose a novel STT-MRAM array that
could work as conventional memory and in-memory comput-
ing kernel, which is inspired by the related works in [15]-[17].
For the additional in-memory computing function, no memory
capacity is sacrificed, while any memory bit-cells allocated in
the same row/column can be efficiently leveraged to realize
bit-wise AND/OR/XOR and other linear/nonlinear operations
with larger fan-ins. Moreover, we propose a local edge extrac-
tion method for digital image (i.e. binary and grayscale image),
utilizing the introduced in-memory computing platform. Thus,
only image feature is extracted and transferred to the primary
processing unit (i.e. CPU or GPU) for further processing.

II. SPIN-TRANSFER TORQUE RANDOM-ACCESS MEMORY

A typical Magnetic Tunnel Junction (MTJ) structure, as
shown in Fig.2a, consists of two ferromagnetic layers with
a tunnel barrier sandwiched between them. Due to the Tunnel
MagnetoResistance (TMR) effect [18]-[20], the resistance of
MTJ is high (low) when the magnetization of two ferromag-
netic layers are in anti-parallel (parallel) state. The TMR ratio
is defined as (Rap-Rp)/Rp, which may vary from 10% to 400%
depending on materials and temperature [18]-[21]. Thus, the
data are stored as the magnetization direction in the free layer,
which could be programmed through current induced Spin-
Transfer Torque (STT). Note that, the MTJ with Perpendicular
Magnetic Anisotropy (PMA) is used in this work. The 1T1R
bit-cell is widely used in the typical STT-MRAM design, as
depicted in Fig. 2b, which is correspondingly controlled by
Bit Line (BL), Word Line (WL) and Source Line (SL). The
biasing conditions of memory read and write are presented in
Fig. 2c. For both memory read and write operation, the WL is
enabled, which turns on the access transistor. Then, a voltage
drop -Vpp or +Vpp is applied across the BL and SL, in order
to realize write ‘1’ or ‘0’ respectively. For memory read, a
sensing current (Irpap) is applied on the BL and consequently
generates a sensing voltage, which can be detected by sense
amplifier.

We jointly use the Non-Equilibrium Green’s Function
(NEGF) and Landau-Lifshitz-Gilbert (LLG) equation to model
STT-MRAM bitcell (i.e. MTJ) for circuit level simulation.
The magnetization dynamics of FL (m) can be modeled by
LLG equation with spin-transfer torque terms, which can be
mathematically described as [22], [23]:

dm
dt dt
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Fig. 2: (a) Device structure of conventional magnetic tunnel
junction in parallel- and anti-parallel states, with current-
induced spin-transfer torque switching scheme. (b) Bit-cell
schematic of 1TIR STI-MRAM. (c) Biasing conditions for
STT-MRAM operations.
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where Fi is the reduced plank constant, +y is the gyromagnetic
ratio, I is the charge current flowing through MT]J, {g is the
thickness of free layer, €' is the second Spin transfer torque
coefficient, and H is the effective magnetic field, P is the
effective polarization factor, Ayry is the cross sectional area
of MTIJ, m, is the unit polarization direction. The Fig. 3a has
shown the normalized magnetization dynamics of free layer
in x-, y- and z-axis, when performing the STT-MRAM write
scheme as described in Fig. 2c.

TABLE 1. SIMULATION PARAMETERS

Parameter Value
Free layer dimension,(W x L x &)r_ 65 % 65 x 2 nm?
Polarization factor, P 0.4
Gilbert Damping Factor, o 0.007
Saturation Magnetization, M, 850 kA/m
Oxide thickness, toy 1.2 nm

RA product, RAp / TMR 10.58 Q - pm? 1 171.2%

Supply voltage 1V
CMOS technology 45 nm
STT-MRAM cell area 48F*
Access transistor width 9F
Cell aspect Ratio 1.34

Based on the simulation parameters listed in Table I, the
magnetization dynamic from LLG equation can provide the
relative angle 6 between the magnetization of PL (2) and FL
(m). Therefore, the real-time conductance of MTJ (Gyry) 1s
given by [24]:

Gp+ G Gp -G
Gy = P+ ap | G AP 5O 3)
2 2
where Gp and Gap are the conductance of MTJ in parallel
(@ = 0) and anti-parallel (¢ = 180) configurations. Both
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Fig. 3: (a) The transient plot of the normalized magnetization
switching in x-, y- and z-axis, with provides STT-MRAM write
scheme. (b) The Resistance-Area product w.r.t the thickness
of MTJ tunnel oxide (tyy).

Gp and Gpp are obtained from the atomistic level simula-
tion framework based on Non-Equilibrium Green’s Function
(NEGF) [25], while the Resistance-Area Product with respect
to the thickness of MTJ tunnel oxide is shown in Fig. 3b.

III. STT-MRAM BASED IN-MEMORY COMPUTING

In addition to the conventional memory function of STT-
MRAM, through modifying the row/column decoders of
memory sub-array and sensing circuitry, a reconfigurable in-
memory logic (ie. AND, OR, XOR and etc.) can be imple-
mented without add-on logic circuits.

A. Sensing-based in-memory computing scheme
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Fig. 4: The idea of voltage comparison between Vgps and
Vet for (a) memory read and (b) in-memory logic operation.

The key idea to perform memory read and in-memory
computing is to choose different thresholds when sensing the
selected memory cell(s). As shown in Fig. 4a, for memory read
operation, a single memory cell is addressed and routed in the
memory read path to generate a sense voltage (Vgpse), which
will be compared with a reference voltage (V). Owing to the
parallel- or anti-parallel state of selected STT-MRAM bit-cell
(Rm1), the sense voltage are Vp or Vap (Vp<<Vap) respectively.
Thus, through setting the reference voltage at (Vap+Vp)/2, the
sense amplifier outputs binary ‘1’ when Vgpee >V s, otherwise
the sense amplifier outputs ‘0’

Fig. 4b depicts the sensing-based method of in-memory
Boolean computing, where two memory bit-cells (Ry; and
Rm2) are sensed simultaneously. Ry and R; corresponds to
the access transistors within the sensing path. Owing to the
different resistance combinations of two selected STT-MRAM
bit-cells (i.e. Rap, Rap; Rap, Rp; Rp, Rp), three different
sense voltages Vgne (Vapap; Vapp; Vpp) could be gener-
ated respectively. Consider setting the reference voltage as
(Vapap+Vapp)/2 through tuning reference resistance, the sense
amplifier only outputs ‘1’ when both selected STT-MRAMSs
are in anti-parallel state (Vgpse>Vrer). Thus, this sensing
operation with modified reference voltage performs an AND
logic operation taken the binary data stored in Ry and Ry as
logic inputs. Similarly, when the reference voltage is shifted
to (Vpp+Vapp)/2, the OR logic operation can be performed
as well. Therefore, through tuning the reference voltage for
comparison, the sense amplifier can perform reconfigurable
in-memory computations.

B. in-memory computing platform design

Based on the STT-MRAM device modeling approach dis-
cussed above, we have performed the circuit level STT-MRAM
simulations in Cadence Spectre with 45nm NCSU PDK [26]
as CMOS library. The MT]J resistive model is obtained from
the modeling approach described in Section II with respect to
the device parameters listed in Table. L

Fig. 5a depicts the architecture of memory sub-array, where
memory read/write path of the specific bit-cell is enabled by
the row/column decoders. As shown in Fig. 5c, the modified
row/column decoders can enable either single line (memory
write/read) or double lines (bit-wise Boolean computation),
depending on the addresses (Addrl and Addr2) provided. For
memory write, the voltage drop across BL and SL is generated
by the Voltage Drivers (VD), which realize the fast memory
switching as depicted in Fig. 3a. For memory read and Boolean
computation, a small sense current (Igpsee ~ 3pA4) is injected
into the read path to generate a sense voltage (Vgps), which
is taken as the input of modified sense circuit. As shown in
Fig. 5d, the modified sense circuit can provide memory read,
AND/NAND, OR/NOR and XOR/XNOR functions, through
combining two sense amplifiers (i.e. StrongARM latch shown
in Fig. 5b), external CMOS logic gate and control units. Owing
to the complementary outputs of SA, the modified sensing
circuit can provide NAND and NOR without additional cost.
Moreover, according to the Boolean representation of pP ¢ =
(pvg)A(p A q), the XOR logic can be realized with two sense
amplifiers (i.e. performing AND and NOR logic respectively)
and an additional CMOS NOR gate. It is noteworthy that, other
computation requiring two threshold can also be implement by
adding additional reference branches. The operation of such
sense circuit is determined by the control signals (ENanp,
ENor and ENy), while the desired result is acquired by the
selection signal (SEL) of the output multiplexer. Note that,
only one sense amplifier is used during AND/OR/memory-
read operation, in order to reduce the power consumption of
sensing.
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Fig. 5: (a) The modified sub-array structure of STT-MRAM.
(b) The schematic of StrongARM latch as Sense Amplifier
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C. performance evaluation

Fig. 6 depicts the transient simulation result of the sense
circuit under a 2ns period clock signal (CLK), which takes
the data stored in MRAM1 and MRAM?2 as inputs. When
CLK is high, the sense amplifier is in pre-charge phase and
the output is reset to ‘0’. When CLK is low, the sense am-
plifier is in sampling phase, and generates logic computation
result depending on the reference voltage configuration. Vp,
includes all the input signals of SAs, which are sense voltage
(Vense) and two reference voltage (Vier; and Viep). Viepr 1S
set to (Vapap+Vapp)/2, and Vi is set to (Vpp+Vapp)/2, for
performing AND and OR respectively. Note that, the ripple
of Vemp are resulted from the kickback noise due to the
clock switching of SA. In general, the transient curve has
demonstrated the correct logic operation of sense circuit with
around 200ps output latency.

Furthermore, in order to validate the variation tolerance of
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Fig. 6: Transient simulation results of in-memory computing
operations (i.e. AND, OR and XOR).
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Fig. 7: Monte-Carlo simulation result of sense voltage (Vense)
distribution for (top) conventional memory read operation
with single STT-MRAM, and in-memory computing operation
with (middle) two selected STT-MRAM bit-cells (down) four
selected STT-MRAM bit-cells.

sense circuit, we have performed Monte-Carlo simulation with
100000 trials. A o = 2% variation is added to the Resistance-
Area product (RAp), and a ¢ = 5% process variation is
added on the TMR. The simulation result of sense voltage
(Vsense) distributions in Fig. 7 shows the sense margin for
conventional memory read, two fan-in in-memory computation
and four fan-ins sense-based operation. It can be seen that
sense margin gradually reduces when increasing the number
of fan-ins (selected STT-MRAM cells for computation). Note
that, such sense margin could be improved by increasing the
sense current, but with a sacrifice of read operation energy
efficiency.

TABLE II. Performance evaluation of STT-MRAM based in-
memory computing platform

. Memory mode Compute
Metrics Write Read mode
Dynamic Energy 826.149p] | 870.042p] | 985.851pJ
Mat Dynamic Energy 9.151pJ 14.637pJ 21.303pJ
Subarray Dynamic Energy 2.218pJ 3.590pJ] 5.252p]
Leakage Power 830.847mW
Area 1.271mm x 5.216mm = 6.632mm?

In order to evaluate the performance of the proposed STT-
MRAM based in-memory computing platform, we configure



the memory chip organization by dividing it into multiple
Banks consisting of multiple Mats. Each Mat includes mul-
tiple sub-arrays organized in a H-tree routing manner. We
employ modified self-consistent NVSim [27] along with an
in-house developed C++ code to verify the architecture level
performance of STT-MRAM in-memory computing platform,
which includes the metrics for read/write in memory mode
and logic operations in compute mode. Table II lists the
energy consumption of a sample 4MB memory with 512 word-
width in 45nm process node. Note that, the energy overhead
comes from the previous described modified decoders, sense
amplifier, etc.

IV. EDGE DETECTION USING IN-MEMORY BOOLEAN
COMPUTING

In this section, an in-memory edge extraction algorithm is
proposed to acquire the image edge feature, which leverages
the intrinsic in-memory computing functionality and massively
reduces the data communication between memory and main
processing unit.

A. Binary Image

Considering a binary image with dimension of m x n. As
described in Fig. 8a, a 2 by 2 edge detection operator shift
from the top-left to the bottom-right corner. If and only if all
four neighboring pixels are of the identical magnitude (binary
‘1’ or “0’), it indicates the absence of image variation. Then,
the corresponding pixel at the edge map is set to binary ‘0’
(black). For the other combinations, the corresponding edge
map pixel is set to binary ‘1’ (white). The corresponding edge
extraction algorithm is described in Algorithm 1.
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Fig. 8: (a) The edge extraction procedure for binary image
(ie. individual bit-plane). (b) Original binary image and (c)
its edge map extracted from memory.

In order to extract the edge map through the proposed in-
memory computing platform, the dimension of memory sub-
array should be sufficient to store the entire binary image
matrix. For extracting image edge, four neighboring STT-
MRAM bit-cells are selected simultaneously by the modified
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Algorithm 1 In-memory edge extraction algorithm for binary
image (single bit-plane)

Input: input binary image I(m,n)
Output: edge map OUT = edge( I );
fori=1to m-1 do
for j=1ton-1 do
tmp = sum( I(i:i+1, j;j+1) );
if tmp < 1 or > 3 then
OUTG,)) = 1;
else
OUTG,)) = 0
end if
end for
end for
return OUT

Algorithm 2 In-memory edge extraction algorithm for
grayscale image (multiple bit-planes)

Input: input grayscale image I(m,n,8); p: number of bitplanes
used for edge extraction
Output: edge map OUT;
OUT = zeros(m-1,n-1);
for k = 8+1-p to 8 do
tmp_edge = edge( I(:,:.k) );
for i =1 to m-1 do
for j = 1ton-1 do
OUT = or( tmp_edge(i,j), OUT(1,j) );
end for
end for
end for
return OUT

row and column decoders. Then, the edge detection operator
can be intrinsically performed through the previous described
modified sense amplifier by configuring the two reference
voltages to (Viap+Vaapp)/2 and (V4p+V3pap)/2, respectively,
as marked in Fig. 8a. A binary image and its extracted edge
image are displayed in 8b and 8c as an example. Note that, in
such process, the edge map could be directly 'read out’ using
the modified sense amplifier. While, in traditional design, the
raw image needs to be read out from memory and sent to
processing unit for edge extraction computation.

B. Grayscale Image

The proposed in-memory edge extraction algorithm could
also be extended to greysalce image, as described in Al-
gorithm 2. Considering an 8-bit grayscale image (Fig. 9a)
is divided into eight bit-planes, from most significant bit
(MSB) to least significant bit (LSB) as shown in Figs. 9b
to 9i. It presents that the high order bit-planes contains more
information for local processing, while the low order bit-plane
are noisy. In order to perform the edge extraction based on the
grayscale image, the same algorithm shown in Algorithm 1
is applied on bit-planes separately. Then, an in-memory OR
operation is implemented on each pixel over the calculated
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Fig. 9: (a) grayscale image of lena. The bit-planes from MSB
to LSB are shown (b-i), which indicate that most image
informations are included in (b-e).

bit-planes. The extracted edge images are shown in Fig. 10,
through the combination of different numbers of bit-planes.

Fig. 10: The edge image that combines (i.e. OR operation)
the in-memory edge extraction result of (a) 8th (b) 8th-7th (c)
8th-6th (d) 8th-5th most significant bit-planes.

2 - Precision - recall

The F-measure ( ) is taken as indi-

precision + recall
cator of extracted edge quality. We perform the edge detec-

tion evaluation based on the Berkeley Segmentation Dataset
(BSD300) [28], which contains 300 natural images and human
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annotations as ground truth. The simulation results listed in
Table III shows that the best F-measure (only 8, bit-plane) of
our in-memory edge method merely has 0.05~0.06 (~10%)
degradation in comparison with Prewitt [12], Sobel [11] and
Roberts [13] such conventional edge operators. Increasing
the number of bit-planes for computation may involves more
image details for edge extraction, but introducing amounts of
noise as well which lowers F-measure of extracted edge image.

TABLE III. Evaluation of different edge detection algorithms
on BSD300 dataset

Conventional Canny Prewitt Sobel Roberts
edge oeprator [1] 2] 3] 4]
F-measure 0.58 0.48 0.48 0.47
.| 1bit-plane | 2 bit-planes | 3 bit-planes | 4 bit-planes
Our methods: | g0 "100) | (Fig. 10b) | (Fig. 10c) | (Fig. 10d)
F-measure 0.42 0.40 0.35 0.32
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Different edge extraction implementations
Fig. 11: Energy consumption of conventional edge detection
algorithm using ASIC and our in-memory edge extraction
method for one image (lena.tif, 512 x 512 pixels).

We further employ NVsim (memory setup in Section III-C)
and design compiler (processing element synthesis) to evaluate
the image edge extraction system energy consumption in 45nm
CMOS technology. Fig. 11 shows the energy consumption
comparison between various image edge extraction algorithms.
It shows that our edge extraction method achieves more than
8 energy reduction in comparison with conventional edge
extraction algorithms. Note that, the total energy consumption
includes two parts: computation energy and memory access
energy. Since the memory access energy for transferring data
from memory to processing element (PE) is much larger than
computation energy, reducing data communication between
memory and PE greatly reduces the total energy dissipa-
tion. The “computation energy” for in-memory computing
algorithm shown in Fig. 11 comes from decoders and SAs
configuration, data buffer, copy and write-back operations
in in-memory data processing. However, such overhead is
much smaller, due to local processing, compared with memory
access energy.

C. Edge-based Motion Detection

In additional to using the F-measure for evaluating our in-
memory edge extraction quantitatively, we utilize the edge-
based motion detection [29] to demonstrate the extracted
images have relatively good quality for the edge related
application. Note that, the extracted edge from memory is
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Fig. 12: (a-c) The three successive frames captured from a
stationary camera. The corresponding edge representation of
moving object are shown in (d-f) using Canny edge detector.
(g-h) our in-memory edge extraction algorithm.

forwarded to the main processing unit (i.e. CPU or GPU) for
processing. Such motion detection is performed with single
face dataset [30], where three successive frames and its motion
detection result using conventional canny edge operator and
our in-memory edge extraction method are taken as example
and shown in Fig. 12. It can be seen that the object motion is
successfully detected using our extracted edge maps, similar
as Canny edge detector.

V. CONCLUSION

In this work, we have presented a STT-MRAM based in-
memory computing platform and novel edge extraction algo-
rithm for in-memory image preprocessing. In-memory com-
puting has emerged as promising computation architecture for
big-data application, where the data communication between
memory and primary processing unit (i.e. CPU and GPU)
merely involves the preprocessed data. Such computation
methodology drastically reduces the data communication, thus
leading to energy-efficient operation and extreme computation
parallelism. As a case study, we have proposed an image edge
extraction algorithm that can be intrinsically performed by our
in-memory computing platform with 8 x energy reduction, and
only 10% F-measure score degradation.
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