
Energy Efficient In-Memory Binary Deep Neural
Network Accelerator with Dual-Mode SOT-MRAM

Deliang Fan and Shaahin Angizi
Department of Electrical and Computer Engineering

University of Central Florida, Orlando, FL 32816

Email: {dfan, angizi}@ucf.edu

Abstract—In this paper, we explore potentials of leveraging
spin-based in-memory computing platform as an accelerator for
Binary Convolutional Neural Networks (BCNN). Such platform
can implement the dominant convolution computation based on
presented Spin Orbit Torque Magnetic Random Access Memory
(SOT-MRAM) array. The proposed array architecture could si-
multaneously work as non-volatile memory and a reconfigurable
in-memory logic (AND, OR) without add-on logic circuits to
memory chip as in conventional logic-in-memory designs. The
computed logic output could be also simply read out like a normal
MRAM bit-cell using the shared memory peripheral circuits.
We employ such intrinsic in-memory computing architecture to
efficiently process data within memory to greatly reduce power-
hungry and omit long distance data communication concerning
state-of-the-art BCNN hardware.

Index Terms—In-memory computing, SOT-MRAM, Convolu-
tional Neural Network

I. INTRODUCTION

Deep learning Convolutional Neural Network (CNN) has

achieved world-wide attention due to close-to-human or even

better than human performance in image recognition over

large scale dataset such as ImageNet [1]–[3]. Following the

trend, when going deeper in CNNs (e.g. ResNet employs

18-1001 layers), memory/computational resources and their

communication have faced inevitable limitations. This can be

interpreted as ‘CNN power and memory wall’ [1], leading

to different approaches to improve CNN efficiency at either

algorithm or hardware level. Recently, Binary Convolutional

Neural Network (BCNN) has achieved almost similar accuracy

as CNN on large datasets by breaking the network parameters’

high precision limit [4]. It binarizes both CNN weights and

inputs, providing a promising solution to mitigate storage and

computational bottlenecks [5].

From Hardware implementation point of view, the isolated

memory and computing units (GPU or CPU) interconnected

via buses has faced serious challenges, such as long memory

access latency, significant congestion at I/Os, limited memory

bandwidth, and huge leakage power consumption for the

neural network acceleration. To address these concerns, in-

memory processing platform based on non-volatile memory

can be an alternative solution to integrate memory and logic,

leading to an energy-efficient information processing platform

Partial support of this research was provided by the National Science
Fundation under Grant No. 1740126 and the Woodrow W. Everett, Jr. SCEEE
Development Fund.

Act.

CPU

GPU

Pool. Act. Pool. Act. Class.

0% 20% 40% 60% 80% 100%

Conv ConvConv

Conv Conv Conv

Figure 1: Execution time of a sample CNN for scene labeling

on CPU and GPU [13].

[6]–[8]. Spin-transfer torque magnetic random access memory

(STT-MRAM) [9] and recent Spin Orbit Torque Magnetic

Random Access Memory (SOT-MRAM) [10] are very promis-

ing to pave a new way to realize such area and energy-efficient

systems supporting in-memory processing with features like

non-volatility, zero standby leakage, compatibility with CMOS

fabrication process and excellent integration density [11], [12].

CNN (/BCNN) typically consists of multiple layers, namely

convolution, activation, and pooling, where as depicted in

Fig. 1 [13], convolutional layer always takes most fraction

(over 90%) of execute time and computational sources in

GPU, CPU, FPGA and ASIC implementations [1-4]. In this

work, we present a convolution-in-memory engine (CIM) that

can implement the dominant convolution computation within

memory based on our presented dual-mode SOT-MRAM array

architecture to greatly accelerate Binary CNN (BCNN). We

show that performing the most computationally intensive con-

volution within non-volatile CIM can thrive three significant

objectives: (1) With help of a simple digital processing unit

(DPU), all BCNN computation can be implemented within the

proposed in-memory BCNN accelerator, where input images

are stored. It eliminates massive energy consumption of data

communication in traditional architecture between memory

and computing units (i.e. CPU/GPU); (2) Reducing the energy

consumption of convolution layers through utilizing energy

efficient intrinsic in-memory computation; (3) Accelerating the

inference task by employing in-memory parallelism.

II. IN-MEMORY PROCESSING PLATFORM

A. SOT-MRAM
Fig. 2a shows a Spin-Orbit Torque Magnetic Random Ac-

cess Memory (SOT-MRAM) device structure with the compos-

ite structure of spin Hall metal (SHM) and Magnetic Tunnel

Junction (MTJ). Here the flow of charge current (±y) through

the SHM (Tungsten, β −W [14]) will cause accumulation of

opposite directed spin on both surfaces of SHM due to spin

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.107

609

Pinned Layer
Tunneling barrier
Free Layer
Heavy Metal

(SHM)

X
Y

Z

Write 0 Write 1

MTJ

(a)

IREAD

WWL

W
B

L

SL

RB
L

RWL

IWRITE

MTJ

SHM Operations
Write

‘1’(‘0’)
Read

WWL VDD 0

RWL 0 VDD

RBL 0 IREAD

WBL VWP (VWN) 0

SL 0 0

(b) (c)

Figure 2: (a) SOT-MRAM device structure and Spin Hall

Effect, (b) Schematic and (c) biasing conditions of SOT-

MRAM bit-cell.

Hall effect [11]. Thus, a spin current flowing in±z is generated

and further produces spin-orbit torque (SOT) on the adjacent

free magnetic layer, causing switch of magnetization. The bit-

cell structure of 2T1R SOT-MRAM and its biasing conditions

are shown in Fig. 2b and 2c, respectively.

B. Computational Sub-array Architecture

The presented SOT-MRAM sub-array architecture could

work in dual mode that perform both memory read-write

and AND/OR logic operations. Fig. 3e shows the architecture

of 2×2 memory array. Each SOT-MRAM cell is associated

with the Write Word Line (WWL), Read Word Line (RWL),

Write Bit Line (WBL), Read Bit Line (RBL), and Source

Line (SL) to perform typical memory operations. Moreover,

in our design, any two cells in identical column (i.e. RBL)

could be sensed simultaneously to implement an in-memory

logic function. The peripheral decoders (active-high output)

control the activation of current path through the array. Voltage

drivers are used with the WBLs for providing the required

write voltage. A voltage mode Sense Amplifier (SA) [11] is

connected to the RBL for sensing the total resistance in the

selected current path during Read or Computing mode.

Memory Write: To write a bit in any of the SOT-MRAM

cells, for example in the cell of 1st row and 1st column,

write current should be injected through the heavy metal

substrate of SOT-MRAM. To activate this write current path,

WWL1 should be activated by the Row Decoder and SL1

is grounded, while all the other word lines and source lines

are kept deactivated. Now, in order to write ‘1’ (/ ‘0’), the

voltage driver (V1) connected with WBL1 is set to positive

(/negative) write voltage. This allows sufficient charge current

flows from V1 to ground (/ground to V1), leading to MTJ

resistance programmed to High-RAP (/Low-RP)

Memory Read: For typical memory read, a read current

flows from the selected SOT-MRAM cell to ground, generating

a sense voltage at the input of SA, which is compared with

memory mode reference voltage (Vsense,P<Vref<Vsense,AP).

This reference voltage generation branch is selected by setting

the Enable values (ENM , ENAND, ENOR)= (1,0,0). Now,

if the path resistance is higher (/lower) than Rref , i.e. RAP

(/RP), then the output of the SA produces High (/Low) voltage

indicating logic ‘1’ (/ ‘0’).

Computing Mode: In this mode, every two bits stored

in the identical column can be selected and sensed simul-

taneously as depicted in Fig. 3e. Note that, the row de-

coders are modified to support multi-line enable function,

through combining two single-line enable decoder with their

outputs connected to OR gates. Then, the equivalent resis-

tance of such parallelly connected SOT-MRAMs and their

cascaded access transistors are compared with a specific

reference by SA. Through selecting different reference resis-

tances (ENM , ENAND, ENOR), the SA can perform basic

in-memory Boolean functions (i.e. AND and OR). For AND

operation, Rref is set at the midpoint of RAP //RP (‘1’,‘0’)

and RAP //RAP (‘1’,‘1’). Thus only when both of the two

selected SOT-MRAM bit-cells are in anti-parallel state (i.e.

binary input: ‘1’,‘1’), the output is high, whereas output is

low. Similarly, for OR operation, Rref is set at the midpoint

of RP //RP and RP //RAP .

III. PROPOSED BCNN ACCELERATOR

BCNN typically imposes the least possible computational

complexity to underlying hardware due to the extreme 1-bit

quantization of weights/inputs compared to well-trained CNNs

which use floating point operations. Interestingly, the proposed

dual-mode SOT-MRAM array architecture can also support

limited bit-width computation which well-suites to BCNNs.

To show this, we take advantage of AlexNet architecture

[15], which is a deep CNN successfully performing ImageNet

classification task in relative high accuracy. AlexNet is a

CNN architecture with 5 convolutional layers and 3 fully

connected layers as depicted in Fig. 3a. In recent XNOR-NET

[4], the authors have successfully shown the binarized Alex-

Net (AlexNet-BCNN) with last three fully-connected layers

converted into convolutional layers as depicted in Fig. 3a.

Thus, such AlexNet-BCNN consists of 8 convolutional layers.

Note that, as thoroughly discussed in [4], this BCNN avoids

binarization in the first and last layers.

A. Mapping

The binary computational blocks of AlexNet-BCNN (i.e.

Conv2 to Conv7) mainly consist of four consecutive layers:

1-Batch Normalization, 2- Binary Activation, 3-Binary Convo-

lution, and 4-Pooling (see Fig. 3a). Fig. 3b illustrates the split

of computational tasks in each layer of block between DPU

and CIM units. Similar colors are used to demonstrate tasks

performed in one layer (e.g. Sign-Func and Scaling-Fact tasks

belong to Bin Active layer). Initially, input (I) and weight

(W) tensors are organized in ImageBanks and KernelBanks of

memory as depicted in Fig. 3c. To perform the computation,

they need to be preprocessed to efficiently map into CIM units.

In our proposed accelerator, we convert the original binary

tensor in the form of +1, -1 to 1, 0. Thus the binary convolution

of two vector I(B) and W (B) could be computed by AND

logic and BitCount operations: BitCount(and(I(B),W (B)).

610

Figure 3: (a) Computational blocks of AlexNet-BCNN [4]. The input/output type of each computational layer is indicated by

R (Real-valued) or B (Binary), (b) Mapping of AlexNet-BCNN into the proposed accelerator (CIM) and DPU units, (c) DPU

and memory organization with Image/Kernel Banks, (d) Convolution-in-memory engine based on (e) The proposed dual-mode

SOT-MRAM array architecture with in-memory logic functions.

As shown in Fig. 1d, such bit-wise AND logic could be

intrinsically implemented within CIM unit based on presented

SOT-MRAM array without add-on logic circuits, which dif-

ferentiates from other logic-in-memory designs. As shown in

Fig. 1d, assuming tensor-I and tensor-W are stored in different

words, in order to implement in-memory logic, two bits stored

in the identical column (i.e. Bit-Line) will be selected and

sensed simultaneously. Then, the equivalent resistance of such

parallelly connected SOT-MRAMs is compared with a specific

reference by SA to realize bulk AND operation. Thus, it

can be seen that such binary convolution computation could

be intrinsically implemented within memory with no need

to read out data from memory. Such design will directly

read-out the logic output and sends to the following ‘bit-

counter’ (see Fig. 3d) to finish the convolution computation.

It is worth to note that, even a DPU is added to take care

of miscellaneous computation in one computational block,

like batch normalization, scaling and pooling. The mapping

method of each computational task is summerized in Table I.

IV. RESULTS AND DISCUSSION

A. Main Memory Storage

The breakdown of memory storage required for AlexNet

is shown in Fig. 4 under different input/weight bit-levels.

AlexNet-BCNN [4] discussed here requires 39.7MB memory

storage which is 12× and 6× less compared to double pre-

cision (DP) and single precision (SP) CNN implementations,

respectively.

B. Energy and Area Estimation

In this subsection, the energy and area of different imple-

mentations of AlexNet on ImageNet is estimated. To do the

experiment, we have set up a device-to-architecture evaluation

platform. The circuit level simulation is initially implemented

in Cadence Spectre with NCSU 45nm CMOS PDK [16].

SOT-MRAM resistive model of Fig. 2a is used in the circuit

simulation. The MTJ resistance (RMTJ) is obtained from the

NEGF approach [11], while the heavy metal resistance (RSHM)

is calculated based on the resistivity and device dimension.

Accordingly, we massively modified the system level memory

evaluation tool NVSim [17] to co-simulate with an in-house

developed C++ code based on circuit level results.

Figure 4: Memory storage of different implementations of

AlexNet architecture (Double Precision (DP), Single Precision

(SP), and BCNN herein).

Here, we concisely explain our experimental results. The

energy consumption breakdown for memory read/write, CIM,

and DPU is plotted in Fig. 5a. It can be seen that for the first

and last un-binarized layers, DPU handles the computational

load. While, CIM takes care of dominant convolution com-

putations for the rest of layers. We also profile the area dis-

tribution of different convolutional layers of AlexNet-BCNN

and floating-point implementation of AlexNet (CNN) in Fig.

5b. The experimental results show that last three convolutional

layers (converted from fully connected layers) take up the most

part of the area due to high number of weight parameters and

accordingly number of subarrays in either BCNN or CNN

implementations. However, the area overhead of BCNN is

obviously less than floating-point implementation

The computation energy, area, and execution time of differ-

ent accelerators for AlexNet-BCNN/CNN on ImageNet dataset

are tabulated in Table II. The hardware mapping results show

that our accelerator can process BCNN on ImageNet favorably

with 310.42 μJ/Img, where ∼7× and 1.7× lower energy and

area are achieved, respectively, compared to recent RRAM-

based BCNN accelerator [3]. Such significant improvements

mainly come from: (1) RRAM based convolution computing

611

Table I: Hardware Mapping of BCNN Computational Tasks to the Proposed Platform

Computational Task Mapping

Batch-Norm
It alleviates the information loss during binarization by normalizing the input batch to have zero mean and unit variance.

Io(R) =
Ii(R)−μ√

σ2+ε
γ + β

Sign-Func
Sign-Func task can be readily accomplished by reading the sign bit of input and weight tensors from ImageBank and KernelBank (Fig. 3c),

and writing it back to an CIM sub-array to make them prepared for next computational task.
I(B) = sign(I(R)),W (B) = sign(W (R))

Scaling-Fact

Accurate binary convolution between weight kernels W with input fmap I requires calculating two important parameters called
scaling factors [4]. The optimum scaling factor for weight kernels can be obtained by the average of absolute weight values

α =
‖W (R)‖l1

n

Bin-AND

After binarizing the inputs and weights, the results are restored in consecutive rows of CIM sub-arrays as depicted in Fig. 3d.
Binary weights are inserted in specific rows of CIM’s sub-arrays, where inputs can be written in following rows.

Then, CIM can efficiently perform bit-wise convolution operations thanks to the following equation which computes the dot-product
of two vectors I(B) and W (B) by AND and BitCount operations:

I �W = BitCount(and(I(B),W (B))
Bit-Count The output of sensory circuitry is then connected to a CMOS Bit-counter. Only when the read data is binary ‘1’, counter counts upward.

Multiplier
Once the bit-counting outputs are derived and scaling factors α and K are calculated for the weights and inputs, respectively,

the convolution between input I and weight kernel W can be approximated by DPU mainly using following equation:
I ∗W = BitCount(and(I(B),W (B)) ·Kα

Figure 5: (a) Energy and (b) Area distribution of AlexNet-

BCNN in different convolutional layers in inference mode.

unit has to employ matrix splitting due to small array limita-

tion, while the commercialized MRAM chip demonstrates sub-

array size of 1024 by 256, which is the array size used in our

work; (2) RRAM-based crossbar peripheral circuit’s overhead,

such as buffers and DAC/ADC, contributes more than 85% of

area and energy consumption. While, in our design, the only

logic overhead for convolution computation is a digital bit-

counter circuit since logic-AND could be fully implemented

within memory with shared memory peripheral circuits. We

also compare our accelerator with various platforms including

NVIDIA Jetson TK1 GPU (GPU1), server class NVIDIA Tesla

K40 GPU (GPU2), and Xilinx Zynq-7000 SOC FPGA [2]. As

shown in Table II, the proposed accelerator herein along with

ASIC design [1] consume least energy per image.

Table II: Performance estimation of BCNNs accelerators for

AlexNet on ImageNet. Metrics not reported by prior works

are indicated by (-).

Networks
Energy

(μJ/img)
Area

(mm2)
Execution time/img

(ms)

CNN RRAM [3] 5444.85 21.25 -

BCNN

RRAM [3] 2275.34 9.19 -
FPGA [2] 27918 - 5.94
GPU1 [2] 324000 - 90
GPU2 [2] 237250 - 0.73
ASIC [1] 352 1.9 -
our work 310.42 5.28 10.7

V. CONCLUSION

This paper presents a Convolution-in-Memory engine (CIM)

design based on dual-mode SOT-MRAM array architecture,

which could efficiently implement convolution computation

within memory to greatly reduce power-hungry and long dis-

tance data communication concerning state-of-the-art CNNs.

The hardware mapping results shows that CIM can process

the Binarized AlexNet [4] on ImageNet favorably with 310.42

μJ/Img, where ∼7× and 1.7× lower energy and area are

achieved, respectively, compared to recent BCNN-RRAM ac-

celerator [3].
REFERENCES

[1] R. Andri et al., “Yodann: An architecture for ultra-low power binary-
weight cnn acceleration,” IEEE TCAD, 2017.

[2] R. Zhao et al., “Accelerating binarized convolutional neural networks
with software-programmable fpgas,” in FPGA. ACM, 2017.

[3] T. Tang et al., “Binary convolutional neural network on rram,” in 22nd
ASP-DAC. IEEE, 2017, pp. 782–787.

[4] M. Rastegari et al., “Xnor-net: Imagenet classification using binary
convolutional neural networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 525–542.

[5] S. Zhou et al., “Dorefa-net: Training low bitwidth convolutional neural
networks with low bitwidth gradients,” arXiv preprint arXiv:1606, 2016.

[6] S. Angizi et al., “Rimpa: A new reconfigurable dual-mode in-memory
processing architecture with spin hall effect-driven domain wall motion
device,” in ISVLSI. IEEE, 2017, pp. 45–50.

[7] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ISCA,
vol. 43, 2016.

[8] S. Angizi et al., “Energy efficient in-memory computing platform based
on 4-terminal spin hall effect-driven domain wall motion devices,” in
GLSVLSI. ACM, 2017, pp. 77–82.

[9] Y. Kim et al., “Write-optimized reliable design of stt mram,” in
Proceedings of the 2012 ACM/IEEE ISLPED. ACM, 2012.

[10] G. Prenat et al., “Beyond stt-mram, spin orbit torque ram sot-mram
for high speed and high reliability applications,” in Spintronics-based
Computing. Springer, 2015, pp. 145–157.

[11] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE TCAD, vol. 35, 2016.

[12] S. Angizi et al., “Composite spintronic accuracy-configurable adder for
low power digital signal processing,” in ISQED. IEEE, 2017.

[13] L. Cavigelli et al., “Accelerating real-time embedded scene labeling with
convolutional networks,” in DAC, 2015. IEEE, 2015.

[14] C.-F. Pai et al., “Spin transfer torque devices utilizing the giant spin hall
effect of tungsten,” Applied Physics Letters, vol. 101, 2012.

[15] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” in Advances in neural information processing systems,
2012, pp. 1097–1105.

[16] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[17] X. Dong et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging non-volatile memory,” in Emerging Memory
Technologies. Springer, 2014, pp. 15–50.

612

