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Abstract—In this paper, we explore potentials of leveraging
spin-based in-memory computing platform as an accelerator for
Binary Convolutional Neural Networks (BCNN). Such platform
can implement the dominant convolution computation based on
presented Spin Orbit Torque Magnetic Random Access Memory
(SOT-MRAM) array. The proposed array architecture could si-
multaneously work as non-volatile memory and a reconfigurable
in-memory logic (AND, OR) without add-on logic circuits to
memory chip as in conventional logic-in-memory designs. The
computed logic output could be also simply read out like a normal
MRAM bit-cell using the shared memory peripheral circuits.
We employ such intrinsic in-memory computing architecture to
efficiently process data within memory to greatly reduce power-
hungry and omit long distance data communication concerning
state-of-the-art BCNN hardware.

Index Terms—In-memory computing, SOT-MRAM, Convolu-
tional Neural Network

I. INTRODUCTION

Deep learning Convolutional Neural Network (CNN) has
achieved world-wide attention due to close-to-human or even
better than human performance in image recognition over
large scale dataset such as ImageNet [1]-[3]. Following the
trend, when going deeper in CNNs (e.g. ResNet employs
18-1001 layers), memory/computational resources and their
communication have faced inevitable limitations. This can be
interpreted as ‘CNN power and memory wall’ [1], leading
to different approaches to improve CNN efficiency at either
algorithm or hardware level. Recently, Binary Convolutional
Neural Network (BCNN) has achieved almost similar accuracy
as CNN on large datasets by breaking the network parameters’
high precision limit [4]. It binarizes both CNN weights and
inputs, providing a promising solution to mitigate storage and
computational bottlenecks [5].

From Hardware implementation point of view, the isolated
memory and computing units (GPU or CPU) interconnected
via buses has faced serious challenges, such as long memory
access latency, significant congestion at I/Os, limited memory
bandwidth, and huge leakage power consumption for the
neural network acceleration. To address these concerns, in-
memory processing platform based on non-volatile memory
can be an alternative solution to integrate memory and logic,
leading to an energy-efficient information processing platform
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Figure 1: Execution time of a sample CNN for scene labeling
on CPU and GPU [13].

[6]-[8]. Spin-transfer torque magnetic random access memory
(STT-MRAM) [9] and recent Spin Orbit Torque Magnetic
Random Access Memory (SOT-MRAM) [10] are very promis-
ing to pave a new way to realize such area and energy-efficient
systems supporting in-memory processing with features like
non-volatility, zero standby leakage, compatibility with CMOS
fabrication process and excellent integration density [11], [12].
CNN (/BCNN) typically consists of multiple layers, namely
convolution, activation, and pooling, where as depicted in
Fig. 1 [13], convolutional layer always takes most fraction
(over 90%) of execute time and computational sources in
GPU, CPU, FPGA and ASIC implementations [1-4]. In this
work, we present a convolution-in-memory engine (CIM) that
can implement the dominant convolution computation within
memory based on our presented dual-mode SOT-MRAM array
architecture to greatly accelerate Binary CNN (BCNN). We
show that performing the most computationally intensive con-
volution within non-volatile CIM can thrive three significant
objectives: (1) With help of a simple digital processing unit
(DPU), all BCNN computation can be implemented within the
proposed in-memory BCNN accelerator, where input images
are stored. It eliminates massive energy consumption of data
communication in traditional architecture between memory
and computing units (i.e. CPU/GPU); (2) Reducing the energy
consumption of convolution layers through utilizing energy
efficient intrinsic in-memory computation; (3) Accelerating the
inference task by employing in-memory parallelism.

II. IN-MEMORY PROCESSING PLATFORM

A. SOT-MRAM

Fig. 2a shows a Spin-Orbit Torque Magnetic Random Ac-
cess Memory (SOT-MRAM) device structure with the compos-
ite structure of spin Hall metal (SHM) and Magnetic Tunnel
Junction (MTJ). Here the flow of charge current (£y) through
the SHM (Tungsten, 5 — W [14]) will cause accumulation of
opposite directed spin on both surfaces of SHM due to spin
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Figure 2: (a) SOT-MRAM device structure and Spin Hall
Effect, (b) Schematic and (c) biasing conditions of SOT-
MRAM bit-cell.

Hall effect [11]. Thus, a spin current flowing in 4z is generated
and further produces spin-orbit torque (SOT) on the adjacent
free magnetic layer, causing switch of magnetization. The bit-
cell structure of 2T1R SOT-MRAM and its biasing conditions
are shown in Fig. 2b and 2c, respectively.

B. Computational Sub-array Architecture

The presented SOT-MRAM sub-array architecture could
work in dual mode that perform both memory read-write
and AND/OR logic operations. Fig. 3e shows the architecture
of 2x2 memory array. Each SOT-MRAM cell is associated
with the Write Word Line (WWL), Read Word Line (RWL),
Write Bit Line (WBL), Read Bit Line (RBL), and Source
Line (SL) to perform typical memory operations. Moreover,
in our design, any two cells in identical column (i.e. RBL)
could be sensed simultaneously to implement an in-memory
logic function. The peripheral decoders (active-high output)
control the activation of current path through the array. Voltage
drivers are used with the WBLs for providing the required
write voltage. A voltage mode Sense Amplifier (SA) [11] is
connected to the RBL for sensing the total resistance in the
selected current path during Read or Computing mode.

Memory Write: To write a bit in any of the SOT-MRAM
cells, for example in the cell of 1st row and Ist column,
write current should be injected through the heavy metal
substrate of SOT-MRAM. To activate this write current path,
WWLI should be activated by the Row Decoder and SL1
is grounded, while all the other word lines and source lines
are kept deactivated. Now, in order to write ‘1’ (/ ‘0’), the
voltage driver (V1) connected with WBL1 is set to positive
(/negative) write voltage. This allows sufficient charge current
flows from V1 to ground (/ground to V1), leading to MTJ
resistance programmed to High-Rsp (/Low-Rp)

Memory Read: For typical memory read, a read current
flows from the selected SOT-MRAM cell to ground, generating
a sense voltage at the input of SA, which is compared with
memory mode reference voltage (Venser <Vier<Vsense.AP)-
This reference voltage generation branch is selected by setting
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the Enable values (ENy;, ENanp, ENor)= (1,0,0). Now,
if the path resistance is higher (/lower) than R,.f, i.e. Rap
(/R p), then the output of the SA produces High (/Low) voltage
indicating logic ‘1’ (/ ‘0’).

Computing Mode: In this mode, every two bits stored
in the identical column can be selected and sensed simul-
taneously as depicted in Fig. 3e. Note that, the row de-
coders are modified to support multi-line enable function,
through combining two single-line enable decoder with their
outputs connected to OR gates. Then, the equivalent resis-
tance of such parallelly connected SOT-MRAMSs and their
cascaded access transistors are compared with a specific
reference by SA. Through selecting different reference resis-
tances (ENp, ENanp, ENoRr), the SA can perform basic
in-memory Boolean functions (i.e. AND and OR). For AND
operation, R,y is set at the midpoint of Rap//Rp (‘1°,°0")
and Rap//Rap (‘I’,‘1’). Thus only when both of the two
selected SOT-MRAM bit-cells are in anti-parallel state (i.e.
binary input: ‘1°,°1’), the output is high, whereas output is
low. Similarly, for OR operation, I2,..; is set at the midpoint
of Rp//Rp and RP//RAP~

ITI. PROPOSED BCNN ACCELERATOR

BCNN typically imposes the least possible computational
complexity to underlying hardware due to the extreme 1-bit
quantization of weights/inputs compared to well-trained CNNs
which use floating point operations. Interestingly, the proposed
dual-mode SOT-MRAM array architecture can also support
limited bit-width computation which well-suites to BCNNs.
To show this, we take advantage of AlexNet architecture
[15], which is a deep CNN successfully performing ImageNet
classification task in relative high accuracy. AlexNet is a
CNN architecture with 5 convolutional layers and 3 fully
connected layers as depicted in Fig. 3a. In recent XNOR-NET
[4], the authors have successfully shown the binarized Alex-
Net (AlexNet-BCNN) with last three fully-connected layers
converted into convolutional layers as depicted in Fig. 3a.
Thus, such AlexNet-BCNN consists of 8 convolutional layers.
Note that, as thoroughly discussed in [4], this BCNN avoids
binarization in the first and last layers.

A. Mapping

The binary computational blocks of AlexNet-BCNN (i.e.
Conv2 to Conv7) mainly consist of four consecutive layers:
1-Batch Normalization, 2- Binary Activation, 3-Binary Convo-
lution, and 4-Pooling (see Fig. 3a). Fig. 3b illustrates the split
of computational tasks in each layer of block between DPU
and CIM units. Similar colors are used to demonstrate tasks
performed in one layer (e.g. Sign-Func and Scaling-Fact tasks
belong to Bin Active layer). Initially, input (/) and weight
(W) tensors are organized in ImageBanks and KernelBanks of
memory as depicted in Fig. 3c. To perform the computation,
they need to be preprocessed to efficiently map into CIM units.

In our proposed accelerator, we convert the original binary
tensor in the form of +1, -1 to 1, 0. Thus the binary convolution
of two vector I(B) and W(B) could be computed by AND
logic and BitCount operations: BitCount(and(I(B), W (B)).
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Figure 3: (a) Computational blocks of AlexNet-BCNN [4]. The input/output type of each computational layer is indicated by
R (Real-valued) or B (Binary), (b) Mapping of AlexNet-BCNN into the proposed accelerator (CIM) and DPU units, (c) DPU
and memory organization with Image/Kernel Banks, (d) Convolution-in-memory engine based on (¢) The proposed dual-mode

SOT-MRAM array architecture with in-memory logic functions.

As shown in Fig. 1d, such bit-wise AND logic could be
intrinsically implemented within CIM unit based on presented
SOT-MRAM array without add-on logic circuits, which dif-
ferentiates from other logic-in-memory designs. As shown in
Fig. 1d, assuming tensor-I and tensor-W are stored in different
words, in order to implement in-memory logic, two bits stored
in the identical column (i.e. Bit-Line) will be selected and
sensed simultaneously. Then, the equivalent resistance of such
parallelly connected SOT-MRAMs is compared with a specific
reference by SA to realize bulk AND operation. Thus, it
can be seen that such binary convolution computation could
be intrinsically implemented within memory with no need
to read out data from memory. Such design will directly
read-out the logic output and sends to the following ‘bit-
counter’ (see Fig. 3d) to finish the convolution computation.
It is worth to note that, even a DPU is added to take care
of miscellaneous computation in one computational block,
like batch normalization, scaling and pooling. The mapping
method of each computational task is summerized in Table I.

IV. RESULTS AND DISCUSSION
A. Main Memory Storage

The breakdown of memory storage required for AlexNet
is shown in Fig. 4 under different input/weight bit-levels.
AlexNet-BCNN [4] discussed here requires 39.7MB memory
storage which is 12x and 6x less compared to double pre-
cision (DP) and single precision (SP) CNN implementations,
respectively.

B. Energy and Area Estimation

In this subsection, the energy and area of different imple-
mentations of AlexNet on ImageNet is estimated. To do the
experiment, we have set up a device-to-architecture evaluation
platform. The circuit level simulation is initially implemented
in Cadence Spectre with NCSU 45nm CMOS PDK [16].
SOT-MRAM resistive model of Fig. 2a is used in the circuit
simulation. The MT]J resistance (Ryy) is obtained from the
NEGF approach [11], while the heavy metal resistance (Rsgm)
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is calculated based on the resistivity and device dimension.
Accordingly, we massively modified the system level memory
evaluation tool NVSim [17] to co-simulate with an in-house
developed C++ code based on circuit level results.
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Figure 4: Memory storage of different implementations of
AlexNet architecture (Double Precision (DP), Single Precision
(SP), and BCNN herein).

Here, we concisely explain our experimental results. The
energy consumption breakdown for memory read/write, CIM,
and DPU is plotted in Fig. 5a. It can be seen that for the first
and last un-binarized layers, DPU handles the computational
load. While, CIM takes care of dominant convolution com-
putations for the rest of layers. We also profile the area dis-
tribution of different convolutional layers of AlexNet-BCNN
and floating-point implementation of AlexNet (CNN) in Fig.
5b. The experimental results show that last three convolutional
layers (converted from fully connected layers) take up the most
part of the area due to high number of weight parameters and
accordingly number of subarrays in either BCNN or CNN
implementations. However, the area overhead of BCNN is
obviously less than floating-point implementation

The computation energy, area, and execution time of differ-
ent accelerators for AlexNet-BCNN/CNN on ImageNet dataset
are tabulated in Table II. The hardware mapping results show
that our accelerator can process BCNN on ImageNet favorably
with 310.42 pJ/Img, where ~7x and 1.7x lower energy and
area are achieved, respectively, compared to recent RRAM-
based BCNN accelerator [3]. Such significant improvements
mainly come from: (1) RRAM based convolution computing



Table I: Hardware Mapping of BCNN Computational Tasks to the Proposed Platform

Computational Task

Mapping

Batch-Norm

It alleviates the information loss during binarization by normalizing the input batch to have zero mean and unit variance.
o(R) =

1,

Li(R)—p /
2+e v+8

o2

Sign-Func

Sign-Func task can be readily accomplished by reading the sign bit of input and weight tensors from ImageBank and KernelBank (Fig. 3c),
and writing it back to an CIM sub-array to make them prepared for next computational task.
I(B) = sign(I(R)).W(B) = sign(W(R))

Scaling-Fact

Accurate binary convolution between weight kernels 1 with input fmap I requires calculating two important parameters called
scaling factors [4]. The optimum scaling factor for weight kernels can be obtained by the average of absolute weight values

W (R) Iy
n

After binarizing the inputs and weights, the results are restored in consecutive rows of CIM sub-arrays as depicted in Fig. 3d.
Binary weights are inserted in specific rows of CIM’s sub-arrays, where inputs can be written in following rows.

Bin-AND Then, CIM can efficiently perform bit-wise convolution operations thanks to the following equation which computes the dot-product
of two vectors I(B) and W (B) by AND and BitCount operations:
1 ® W = BitCount(and(I(B), W(B))
Bit-Count The output of sensory circuitry is then connected to a CMOS Bit-counter. Only when the read data is binary ‘1°, counter counts upward.
Once the bit-counting outputs are derived and scaling factors o and K are calculated for the weights and inputs, respectively,
Multiplier the convolution between input I and weight kernel W can be approximated by DPU mainly using following equation:
1+ W = BitCount(and(I(B), W(B)) - Ko
X 1 075 ‘o . . . . .
s - < 0.15 which could efficiently implement convolution computation
5§ 3 [EmoPu Eo.125 within memory to greatly reduce power-hungry and long dis-
= M 1= . . .
3 [ Memory g o tance data communication concerning state-of-the-art CNNis.
B 2 £ 0.075 The hardware mapping results shows that CIM can process
s} o . . .
> 1 B 005 by sie: l the Binarized AlexNet [4] on ImageNet favorably with 310.42
g - § 0.025 | 1024 236 =asekoi v wJ/Img, where ~7x and 1.7x lower energy and area are
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(a) (b) REFERENCES

Figure 5: (a) Energy and (b) Area distribution of AlexNet-
BCNN in different convolutional layers in inference mode.

unit has to employ matrix splitting due to small array limita-
tion, while the commercialized MRAM chip demonstrates sub-
array size of 1024 by 256, which is the array size used in our
work; (2) RRAM-based crossbar peripheral circuit’s overhead,
such as buffers and DAC/ADC, contributes more than 85% of
area and energy consumption. While, in our design, the only
logic overhead for convolution computation is a digital bit-
counter circuit since logic-AND could be fully implemented
within memory with shared memory peripheral circuits. We
also compare our accelerator with various platforms including
NVIDIA Jetson TK1 GPU (GPU1), server class NVIDIA Tesla
K40 GPU (GPU2), and Xilinx Zyng-7000 SOC FPGA [2]. As
shown in Table II, the proposed accelerator herein along with
ASIC design [1] consume least energy per image.

Table II: Performance estimation of BCNNs accelerators for
AlexNet on ImageNet. Metrics not reported by prior works
are indicated by (-).

Ener: Area Execution time/im,
Networks (llimg) | (mm) sy e
CNN RRAM [3] 5444.85 21.25 -
RRAM [3] 2275.34 9.19 -
FPGA [2] 27918 - 5.94
GPUI [2] 324000 - 90
BONN - —Gpuz 121 [ 237250 - 073
ASIC [1] 352 1.9 -
our work 310.42 5.28 10.7

V. CONCLUSION

This paper presents a Convolution-in-Memory engine (CIM)
design based on dual-mode SOT-MRAM array architecture,
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