
HieIM: Highly Flexible In-Memory Computing using STT MRAM

Farhana Parveen, Zhezhi He, Shaahin Angizi, Deliang Fan∗

Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL-32816, USA.
∗Email: dfan@ucf.edu

Abstract— In this paper we propose a Highly Flexible In-
Memory (HieIM) computing platform using STT MRAM, which
can be leveraged to implement Boolean logic functions without
sacrificing memory functionality. It could pre-process data within
memory to further reduce power hungry long distance communi-
cation between memory and processing units as in Von-Neumann
computing system. HieIM can implement all the Boolean logic
functions (AND/NAND, OR/NOR, XOR/XNOR) between any two
cells in the same memory array, thus overcoming the ‘operand
locality’ problem in contemporary in-memory computing plat-
form designs. To investigate the performance of HieIM, we test
in-memory bulk bit-wise Boolean logic operations using differ-
ent vector datasets, which shows ∼ 8× energy saving and ∼ 5×
speedup compared to recent DRAM based in-memory computing
platform. We further implement an in-memory data encryption
engine design based on HieIM as another case study. With AES
algorithm, it shows 51.5% and 68.9% lower energy consumption
compared to CMOS-ASIC and CMOL based implementations,
respectively.

I. INTRODUCTION

‘Memory Wall’ [1] bottleneck hinders the effectiveness of

traditional Von-Neumann architecture specially for data inten-

sive applications [2]. Due to separation of memory and pro-

cessing units, massive data transfer between processor and

memory creates several critical limitations, e.g., long mem-

ory access latency, significant congestion at I/Os, limited mem-

ory bandwidth and huge leakage power consumption. Hence,

the need for efficient computing platform to support memory-

oriented processing is the cynosure of recent big-data ori-

ented research. To meet these demands, in-memory comput-

ing scheme [3–9] are proposed to calculate the intermediate

results by pre-processing the data within memory before send-

ing to the main processor, thus greatly reducing power hungry

off-chip massive data flow.

DRAM based in-memory data processing has been proposed

in [5]. However, several inherent limitations of DRAM push

them back from being an efficient in-memory computing so-

lution. Among them- volatility, need for repeated refresh, de-

structive read/compute operation, slow charging and discharg-

ing etc. are the dominant ones. Additionally, incorporating

logic functionality within memory increases complexity and

cost of DRAM chip. In view of these, more efficient, compact

and non-volatile in-memory computing platform that is capa-

ble of simultaneously offering density optimized memory and

performance optimized computing facility, is one of the most

important focus points for modern computing platform design.

Non-volatile Resistive RAM (ReRAM) [10, 11] and Phase

Change RAM (PCRAM) [12, 13] offer more packing density

(∼ 2 − 4×) than DRAM, and hence appear to be competitive
alternatives to DRAM. However, they have much slower and

more power hungry operations than DRAM [11, 13]. Further-

more, PCRAMs wear out with each write [14].

Nowadays, Spin-Transfer Torque Magnetic RAM (STT-

MRAM) [15] has come out to be a better alternative to DRAM

technologies. Though it may not be much competitive to

DRAM in terms of packing density and write performance,

STT-MRAM has comparable read performance (latency and

energy) with DRAM. More importantly, STT-MRAM pro-

vides two major advantages over DRAM: non-volatility and

decoupled sensing and buffering [12]. While comparing with

ReRAM and PCRAM, STT-MRAM shows better read/write

performance and better endurance. Therefore, modern mem-

ory oriented research is leaning toward non-volatile memories,

specially STT-MRAM. In early 2016, Everspin announced

256Mb STT-MRAM chips based on MTJ with interface speed

similar to DRAM and was planning 1Gb chips in 2017 [16].

Toshiba and SK Hynix co-developed a 4-Gbit STT-MRAM

chip prototype and demonstrated at IEDM 2017 [17]. Hence,

in-memory computing using STT-MRAM without sacrificing

memory capacity can pave a novel way to efficient comput-

ing paradigm. Recently, several research works proposed in-

memory computing architectures [6, 8, 9] using STT-MRAM.

However, these designs have a few limitations. First, none

of these designs can perform computing (Boolean logic func-

tions) between any two bits irrespective of their position in the

memory array. They need to be stored either in the same bit-

line or word-line, which is defined as operand locality in this
work. Second, most of these works [8, 9] can implement only

AND/OR logic function.

In this paper, we have proposed an efficient in-memory

computing architecture using STT-MRAM, which can perform

complete Boolean logic functions (AND/NAND, OR/NOR,

XOR/XNOR) between any two bits stored in the same memory

array, thus solving the ‘operand locality’ issue [18] of contem-

porary DRAM [5], SRAM [18] and other non-volatile memory

based in-memory computing designs [7, 8]. To investigate the

performance of our proposed design, we perform in-memory

bulk bit-wise vector operation using different vector dataset

[6], which shows∼ 8× energy saving and∼ 5× speedup com-
pared to that in DRAM based in-memory computing platform

[5]. We further employ the proposed HieIM to implement an

in-memory data encryption engine design. With AES algo-

978-1-5090-0602-1/18/$31.00 ©2018 IEEE

4C-2

361

���

��� ���
Fig. 1. (a) Device structure of conventional magnetic tunnel junction in
parallel- and anti-parallel states, with current- induced spin-transfer torque

switching scheme, (b) Bit-cell schematic of 1T1R STT-MRAM bitcell, (c)

Biasing conditions for STT-MRAM operations.

rithm, it shows 51.5% and 68.9% lower energy consumption

compared to CMOS-ASIC and CMOL based implementations,

respectively.

II. SPIN-TRANSFER TORQUE RANDOM-ACCESS MEMORY

A typical Magnetic Tunnel Junction (MTJ) structure (Fig.

1a) consists of two ferromagnetic layers with a tunnel barrier

sandwiched between them. Due to the Tunnelling Magneto

Resistance (TMR) effect [19], the resistance of MTJ is high

(low) when the magnetizations of two ferromagnetic layers are

in anti-parallel (parallel) state. Thus, the data are stored as the

magnetization direction in the free layer (FL), which could be

flipped through current induced Spin-Transfer Torque (STT)

[20]. Note that, MTJ with Perpendicular Magnetic Anisotropy

(PMA) is used in this work.

1 Transistor 1 MTJ (1T1R) bit-cell is widely used in typical

STT-MRAM design, as depicted in Fig.1b, which is controlled

by Bit-Line (BL), Word-Line (WL) and Source Line (SL). The

memory read and write biasing conditions are presented in Fig.

1c. For both memory read and write operations, WL is en-

abled, which activates the access transistor. Then, a voltage

difference−VDD or+VDD is applied between the BL and SL,

in order to write ‘1’ or ‘0’ respectively. For memory read, a

sensing current (Isense) is applied on the BL that generates a
sensing voltage, which can be detected by a sense amplifier.

We have used the Landau-Lifshitz-Gilbert (LLG) equation

[21] to model the STT-MRAM bitcell (MTJ) for circuit level

simulation. The dimensions and parameters used for simula-

tion are listed in Table I.

III. PROPOSED STT-MRAM BASED IN-MEMORY

COMPUTING ARCHITECTURE

The proposed STT-MRAM based highly flexible in-memory

computing architecture can perform dual mode operation:

memory mode and computing mode. Fig.2 shows the archi-

tecture of the proposed in-memory computing platform with

a 3 × 3 STT-MRAM memory array. Here, each memory cell

is designed using the 1T1R STT-MRAM bitcell structure de-

scribed in section II. Each cell is associated with the Word

Lines (WL), Bit Lines (BL) and Source Lines (SL). The WLs

and BLs are externally controlled by the row decoder and col-

umn decoder respectively. Additionally, voltage drivers (VD)

are connected to each BL and SL.

TABLE I

SIMULATION PARAMETERS

Parameter Value

Free layer dimension,(W × L× t)FM 65× 65× 2 nm3

Polarization factor, P 0.4

Gilbert Damping Factor, α 0.007
Saturation Magnetization,Ms 850 kA/m

Oxide thickness, tox 1.2 nm
RA product, RAp / TMR 10.58 Ω · μm2 / 171.2%

Supply voltage 1 V
CMOS technology 45 nm
STT-MRAM cell area 48F2

Access transistor width 9F

Cell aspect Ratio 1.34

Fig. 2a shows the conventional STT-MRAM array with

sense amplifier (SA). The BLs of the array are connected to SA

to generate memory read output. We propose a new sensing

circuit design using 5 Terminal (5T) Magnetic Domain Wall

Motion (DWM) device [22] as an extension to the sense am-

plifier of STT-MRAM array to obtain the computing mode op-

eration results (Fig. 2b). Here, both the memory mode and

computing mode operations are described.

A. Memory Mode:
In memory mode, data are written into or read from the

memory cells as described in section II and Fig. 1b.

Memory Write: To write data in a memory cell, the corre-

sponding WL is activated using the row decoder. Then ap-

propriate voltage difference (Fig. 1c) is applied to the corre-

sponding BL and SL using the voltage drivers connected to

them. The write current path through one STT-MRAM bitcell

is shown in Fig. 1b.

Memory Read: To read data from a memory cell, the corre-

sponding WL is activated using the row decoder and the cor-

responding BL is connected to the sense amplifier (SA) using

the column decoder. Here the sense amplifier circuitry using

StrongARM Latch [23] is shown in Fig. 2c. The read current

path through one STT-MRAM bitcell is shown in Fig. 1b.

B. Computing Mode:
We propose a sensing circuit design using 5T DWM device

[22], as an extension to the sense amplifier (SA) of memory

array, to implement complete Boolean logic functions between

any two cells in the memory array. The proposed sense am-

plifier extension circuitry is shown in Fig. 2b, which contains

one 5T DWM device, one differential latch and 4 keys. All

transistors associated with the 5T DWM device are designed

to work in deep triode region by applyingΔV (100mV) across

the drain and source (VDS ≈ 100mV) terminals. Hence, it
will lead to ultra-small voltage drop and thus ultra-small power

consumption. Fig. 3a shows transient micromagnetic simula-

tion of the DWM strip with lateral currents of ∼ 48μA and

∼ 24μA from W- to W+ (electron flow is from W+ to W-

). Please note, three notches have been inserted in the DWM

strip to stabilize the DW position at W-, Mid and W+ posi-

tions inside it. It can be seen that the domain wall (DW) could

be moved from W+ to W- (or middle) in the DWM nano-strip

within ∼ 1ns by applying ∼ 48μA (or ∼ 24μA) current from
W- to W+.

4C-2

362

�����

��	
��

��	�	�

��	�	�

��
�����

�����

��� ���

�� ��

��	
��

�����

�� �

�����
�
���

��
	�
��
�
�!�

 	
"�
#	�
�$
!�	
�
�%

�

�� ��
�&'(!"!�#

��	
��

�����

�

��� ���

���

��	
��

���������	� � ���

�� � �

��
�����

�����

��� ���

�� ��

�����
�
���

���

�� ��

��� ���

��

��)
 ����
�*��

�+ �,
��

��

��
���

���

Fig. 2. (a) Proposed highly flexible dual mode in-memory computing architecture (HieIM), (b) Proposed sensing scheme for in-memory logic implementation,
(c) Memory sense amplifier (StrongARM latch), (d) Differential Latch used in the proposed sensing circuit using the 5T device.

���-			�		�	

./0

�� ���

�����

���-			1		��	�		1
���-			1		1	

1 �
12�� �
12� �
123� �

� �

1 �
12�� �
12� �
123� �

� �

4�
�,
	�
�	

4�
,5
	�
�	

.�0

�� ����� ���

������

��� 1		1	 1		��	�		1 �		�

�	'��!�!� �� �!% ��

��

��

��

�� ��

�.��6���0 �7��7 �7���7 ��'���7
�.��6���0 �7���7 �7��7 �7���7

��� ��)

�*��.�0

�� ���!%

�� ���!%

Fig. 3. (a)Micromagnetic simulation for flowing current from W+ to W-, (b)
DW position within the 5T DWM device for different data combinations, (c)

Resistance variation of the sensing current path through the 5T DWM device

and selection of Reference MTJ value.

For a complete Boolean operation, the SA extension needs

three subsequent stages- Reset, Compute and Sense. In Reset

stage (Reset=1), the reset transistor (Fig. 2b) is turned on for

1ns. Then, a current of ∼ 48μA flows from W- to W+ ter-

minals, which sets the Domain Wall (DW) back to its initial

position at W- side.

In compute stage, for logic AND/OR/XOR between any two

cells in the memory array, two operands stored in the memory

array are read in two consecutive cycles using the sense ampli-

fier (SA). The input transistor size of 5T DWM device is tuned

in such a way that, if the SA output is ‘1’,∼ 24μA current will
flow from W+ to W-. As per the micromagnetic simulations

shown in Fig. 3a, this will move DW to the middle pinning

site. On the other hand, if the SA output is ‘0’, then no cur-

rent will be injected to 5T DWM device, and hence the DW

position will not change. Fig. 3b shows the final DW positions

after loading two operands.

In sense stage, a small sensing current is injected through

5T DWM device from R+ to R1- (setting K1=1, K2=0) or

from R+ to R2- (setting K1=0, K2=1) terminals based on re-

TABLE II

IMPLEMENTATION OF COMPUTING MODE (AND/OR/XOR)

Data 1 1 0 1/ 1 0 0 0

DW Position W+ Mid W-

AND

Keys:

K1-K4=1010

R(R+,R1-) RAP +RAP RP +RAP RP +RP

compare to RAND
∗ > < <

OUT 1 0 0

OR

Keys:

K1-K4=1001

R(R+,R1-) RAP +RAP RP +RAP RP +RP

compare to ROR
∗∗ > > <

OUT 1 1 0

XOR

Keys:

K1-K4=0101

R(R+,R2-) RAP +RP RP +RP RP +RAP

compare to RXOR
∗∗ > < >

OUTbar 0 1 0
∗ RAND = Between 2RAP and RP +RAP

∗∗ ROR/RXOR = Between 2RP and RP +RAP

quired logic implementation. A differential latch (Fig. 2d)

compares the sensing resistance of 5T DWM device with ei-

ther of the two reference MTJs (RAND or ROR/RXOR) by

setting appropriate K3 and K4. Please note,ROR=RXOR. The

value of RAND (or ROR, RXOR) is in between RP + RAP

and 2RAP (or 2RP). Table II shows the detailed logical

breakdown of the sensing functionality of the proposed SA

extension for AND/OR/XOR logic operations. Note that,

NAND/NOR/XNOR could also be readily achieved at the dif-

ferential output. Detailed implementation of every Boolean

logic functions is described below.

AND/OR: For logic AND (OR) between any two cells in

the memory array, sensing current is flowed from R+ to R1-

terminal of the 5T DWM device using K1-K2 = 1-0. The ref-

erence MTJ, RAND (or ROR) is selected by setting K3-K4 =

1-0 (or 0-1). Hence, as shown in Table II, the latch output

(OUT in Fig. 2d) will provide the logic AND (OR) operation

result. Please note, logic NAND (NOR) operation result can

be obtained from the differential output (OUT) of the latch.

XOR: For logic XOR function between any two cells in the

memory array, sensing current is flowed from R+ to R2- termi-

nal of the 5T DWM device using K1-K2 = 0-1. Now, the refer-

ence MTJ-RXOR is selected by setting K3-K4 = 0-1. Hence,

per Table II, the differential latch output (OUT in Fig. 2d)

4C-2

363

���

���

�� �� 	� 	�
�
� �� ��

	
�
�

*���
���
��

�
��
�
��
��
��

�
��
��
���
��
��
�

��

�

�

�
��
�
��
��
��

�
��
��
���
��
��
�

��

�

�
��
��
�
� ��!"���
� ����
���� �
��
��
� ��!"���
� ����
����

#���
�$� #���
�$�
� � 	
 � � � 	
 �
��

��

���

���
��

Fig. 4. (a) The transient plot of the normalized magnetization switching in x-,
y- and z-axis, with provided STT-MRAM write scheme, (b) The Monte-Carlo

simulation result of sense voltage (Vsense) distribution for (top) conventional

memory read op- eration with single STT-MRAM.

will provide the logic XOR operation result. Please note, logic

XNOR operation result can be obtained from the output (OUT)

of the Latch.

IV. MEMORY MODE PERFORMANCE EVALUATION

We have performed the circuit level simulation of STT-

MRAM in Cadence Spectre with 45nm NCSU PDK [24] as

the CMOS library. The MTJ resistive model is obtained from

the modeling approach described in II with device dimensions

listed in Table I. Fig. 4a shows the normalized magnetization

dynamics of free layer in x-, y- and z-axis, when performing

the STT-MRAM write scheme that is described in Fig. 1c.

To evaluate the memory mode performance of HieIM at sys-

tem level, we have configured the memory chip organization

by dividing it into multiple Banks (Bank organization: total-

4×4, active-1×1) consisting of multiple Mats (Mat organi-
zation: total-2×2, active-1×1). Each Mat includes multiple
sub-arrays (sub-array size: 1024×512) organized in a H-tree
routing manner. For the simulation, we have employed mod-

ified self-consistent NVSim [25] along with an in-house de-

veloped C++ code to verify the system level performance and

to report the average latency, dynamic energy, leakage power

and area. Table III tabulates and compares the performance

of our design with two different memory arrays employed for

in-memory processing (i.e. SRAM and DRAM) for a sample

memory capacity of 4MB in 45nm process node.

According to Table III, the proposed HieIM memory model

shows the least read dynamic energy in comparison to other

designs. Besides, HieIM reduces the total leakage power com-

pared to SRAM. Although, the proposed HieIM shows longer

average latency compared to SRAM due to the longer write

latency of magnetic memory storage. Moreover, the area over-

head of the proposed STT-MRAM memory model is 24.86%

more than DRAM but still 44.32% less than SRAM design. It

is noteworthy that the first and foremost benefit of spintronic

memories, compared to SRAM, is their non-volatility with al-

TABLE III

SRAM, DRAM AND PROPOSED HIEIM MEMORY MODEL VALIDATION

AND COMPARISON FOR A SAMPLE 4MB MEMORY

SRAM DRAM HieIM

Metrics Write Read Write Read Write Read

Average Latency (ns) 1.53 2.7 1.93

Dynamic Energy (pJ) 297.46 312.56 967 1483 354.89 248.95

Leakage Power (mW) 5258 185.5 730.966

Area (mm2) 10.544 4.702 5.871

TABLE IV

PERFORMANCE OF 2-INPUT AND GATES

Performance HieIM

DW

Racetrack

based [27]

MTJ

based [28]

DW

Racetrack

based [29]

CMOS

Energy (fJ) 23.5 67.72 125.85 504.36 6.69

Speed (ns) 4 1.12 1.18 2.14 0.062

TABLE V

PERFORMANCE EVALUATION OF FA CELLS

Parameters HieIM HSM [30] LPM [30]

Diode-

GSHE

[31]

CMOS [31]

Average

Power (μW)
91.93 1354 85 15.6 49.4

Delay (ps) 26,000 269 877 10,000 1000

most 10 years’ retention time [7].

Furthermore, in order to validate the variation tolerance of

sense circuit, we have performed Monte-Carlo simulation with

100000 trials. A σ = 5% variation is added to the Resistance-

Area product (RAP) and a σ = 10% process variation is added

to the TMR as done in [26]. The simulation result of sense

voltage (Vsense) distributions in Fig. 4b shows the sense mar-

gin for conventional memory read. Such sense margin could be

improved by increasing the sense current, but with a sacrifice

of read operation energy efficiency.

V. COMPUTING MODE PERFORMANCE EVALUATION

To evaluate the performance of HieIM for performing logic

operations, AND/OR/XOR logic computation energy and la-

tency have been measured. Comparison result between re-

cent in-memory non-volatile Boolean AND gates and CMOS

counterpart is shown in Table IV. It is seen that, in-memory

AND operation can be carried out using our proposed de-

sign with 65.3% and 81.32% lower energy consumption than

Domain-Wall (DW) Racetrack based [27] and MTJ based [28]

in-memory non-volatile AND gate implementations, respec-

tively. However, HieIM requires longer latency to compute the

logic result than other designs [27–29]. However, this comes

as a reasonable trade-off to the fact that, HieIM can implement

all the Boolean logic functions (AND/OR/XOR) between any

two cells within memory, overcoming operand locality issue.

We further investigate the performance of in-memory logic

operations of HieIM by implementing in-memory Full Adder

(FA). Comparison of non-in-memory CMOS based, diode-

GSHE based [31] and Domain Wall nanomagnet based High-

Speed mode (HSM) and Low-Power mode (LPM) [30] FA de-

signs with that of HieIM is shown in Table V. Please note,

full adder using HieIM is implemented using two half adders,

whereas a half adder is designed using AND and XOR logic

functions. The average power of FA using HieIM is compara-

ble to that of LPM based FA design [30]. However, HieIM re-

quires longer delay due to the read-and-write-back overhead of

the intermediate results as a reasonable trade-off of the afore-

mentioned in-memory operation.

Pros and Cons analysis of HieIM: As a critical assessment

of our proposed highly flexible in-memory computing plat-

form, following pros and cons can be identified-

4C-2

364

Pros: HieIM 1) can be used both as a density-optimized

non-volatile memory and performance-optimized in-memory

computing platform; 2) can reduce power hungry long dis-

tance data communication between processor and memory

by pre-processing raw data; 3) can perform any two input

logic function (AND/OR/XOR) between any two bit-cells (i.e.,

operands) stored in the memory array, overcoming the operand

locality issue [18] as in DRAM, SRAM and other recent non-

volatile memory based in-memory computing platforms.

Cons: HieIM requires multiple cycles (4 cycles) to complete

one Boolean logic computation, which is slower than other in-

memory computing platforms while working in the computing

mode.
VI. CASE STUDIES

To evaluate the performance of the proposed STT-MRAM

based in-memory computing platform- HieIM, two applica-

tions have been studied: 1) In-memory bulk bit-wise Boolean

vector logic (AND/OR) operation and 2) In-memory data en-

cryption using Advanced Encryption Standard (AES) [32].

A. In-memory Bulk Bitwise Boolean Vector Logic Operation:
To implement an in-memory bitwise vector computing plat-

form, four different vector datasets [6] have been used. Here, a

dataset ‘19-16-1s’ refers to a vector dataset with vector length=

219, number of vectors= 216, and AND/OR operation is done
between 21 rows, where ‘s’ means sequentially. As our pro-
posed design can perform logic operation between any two

cells in the same sub-array, there is no restriction on data

mapping. In this work, the data from two vectors have been

mapped on two consecutive rows of a memory array (Fig. 5a).

Performance Evaluation: The performance of bulk bit-wise

vector operation using our proposed architecture has been eval-

uated using similar simulation framework as described in sec-

tion IV. Here, each compute (AND/OR) operation has been

carried out using 4 consecutive clock cycles (1ns each) as de-

scribed in section III. Performance of in-memory computing

platform using DRAM [5] has also been evaluated using an

in-house developed SPICE simulation platform incorporating

6F 2 DRAM cell structure with 16fF cell capacitance [33] us-

ing 45nm technology node. Here, a complete compute opera-

tion between two bits needs three consecutive operation cycles-

Fig. 5. (a) Data mapping for performing vector operation between two 32 bit
vectors using an 8× 8 STT-MRAM array (b) Energy saving and speedup for

bulk-bitwise vector operation for different vector datasets compared to

DRAM based in-memory computing platform.

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

S4,4[7]

S3,4[7]

S2,4[7]

S1,4[7]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

7777]7S4,4[6]

7777]7S3,4[6]

7777]7S2,4[6]

7777]7

]

S1,4[6]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

666]6S4,4[5]

666]6S3,4[5]

666]6S2,4[5]

666]6S1,4[5]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

5555S4,4[0]

5555S3,4[0]

5555S2,4[0]

5555S1,4[0]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

]]]S4,4[3]

]]]S3,4[3]

]]]S2,4[3]

]]]S1,4[3]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

3333S4,4[2]

3333S3,4[2]

3333S2,4[2]

3333S1,4[2]

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

S4,2[0]

S3,2[0]

S2,2[0]

S1,2[0]

S4,3[0]

S3,3[0]

S2,3[0]

S1,3[0]

222]]22S4,4[1]

222]]22S3,4[1]

222]]22S2,4[1]

222]]22S1,4[1]

S4,1
S3,1
S2,1
S1,1

S4,2
S3,2
S2,2
S1,2

S4,3
S3,3
S2,3
S1,3

S4,4
S3,4
S2,4
S1,4

S4,1[0]

S3,1[0]

S2,1[0]

S1,1[0]

]]] S4,2[0]

]]] S3,2[0]

]]] S2,2[0]

]]] S1,2[0]

]]] S4,3[0]

]]] S3,3[0]

]]] S2,3[0]

]]] S1,3[0]

1111]
]]] S4,4[0]

1111]
]]] S3,4[0]

1111]
]]] S2,4[0]

]0]] S1,4[[11111[[[[]000]0
]]] S1,4[0]S1,1[0[[]0]]] S

����������	

�������
���������
�

.�0

M

LUT

���������
�������
���

����
��	���
�������
���

M

Buffer

���������
�������
���

����
��	���
�������
���

M

LUT

���������
�������
���

��������	��
����
��	���� !

XOR

�"����	�����#$��
���

M

XOR

���������
�������
���

����
��	���
�������
���

%�
�&�������
�������
���

�"��
��	����#$�
�������
���

���'
��� �()���*� �	
+������ ,�������%�

�&������	��
�&

�&�

./0

S4,1
S3,1
S2,1
S1,1

S4,2
S3,2
S2,2
S1,2

S4,3
S3,3
S2,3
S1,3

S4,4
S3,4
S2,4
S1,4

S4,1
S3,1
S2,1
S1,1

S4,2
S3,2
S2,2
S1,2

S4,3
S3,3
S2,3
S1,3

S4,4
S3,4
S2,4
S1,4

�()���*�

.�0

S4,1
S3,1
S2,1
S1,1

S4,2
S3,2
S2,2
S1,2

S4,3
S3,3
S2,3
S1,3

S4,4
S3,4
S2,4
S1,4

03
01
01
02

01
01
02
03

01
02
03
01

02
03
01
01

�	
+������

�& �&�

8	

.%0

Fig. 6. (a) Data Organisation, (b)) Data Mapping of four AES
transformations to the proposed in-memory processing platform, (c)

schematic representation of ShiftRows transformation, (d) schematic

representation of MixColumn transformation.

precharge, access and sense [5, 34], assuming data were al-

ready written in the memory array.

Fig. 5b shows energy saving and speedup of implementing

in-memory bulk bitwise Boolean logic operation (AND/OR)

for different vector datasets compared to DRAM based in-

memory computing platform [5]. Here the in-memory com-

puting platform using HieIM offers ∼ 8× energy saving and

∼ 5× speed up compared to that using DRAM based in-

memory computing platform [5]. Again, the computation in

DRAM is destructive, i.e. data stored in three DRAM cells as-

sociated with the computation are overwritten with the result

of the logic operation. Whereas, the stored data are retained

even after computing in our STT-MRAM based design.

B. In-memory Data Encryption Engine:
Advanced Encryption Standard (AES) [32] has been used to

employ in-memory data encryption engine using HieIM. AES

works on the standard input length of 16 bytes (128 bits) data

organized in a 4 × 4 matrix (state matrix) while using three
different key lengths (128, 192, & 256 bits) [35]. For 128-

bit key length, AES encrypts the input data after 10 rounds of

consecutive transformations [36]- e.g. SubBytes, ShiftRows,

MixColumns, and AddRoundKey (Fig. 6).

Performance Evaluation: For evaluation of AES perfor-

mance in general purpose processor (GPP), we have used sim-

ilar method in [36] at 2GHz. AES C code is extracted from

[37] and compiled, then cycle-accurate architecture simulator

gem5 [38] is employed to take AES binary and system level

processor power evaluating tool McPAT [39] is used to es-

timate power dissipation. For evaluation of AES in CMOS

ASIC (1.133GHz), Synopsys Design Compiler tool is used.

Here, the performance for all the platforms are listed in Table

VI for 32nm technology. We have done fixed-voltage scal-

ing of the results obtained from of our work to 32nm by using

the appropriate scaling factor- which is (1/S2) for area and

(1/S) for energy [40], here S= L/32nm, where L=45nm. The
device to architecture co-simulation results show that HieIM

4C-2

365

TABLE VI

PERFORMANCE COMPARISON OF 128-BIT AES IMPLEMENTTAIONS

Platforms Energy (nJ) Cycles Area (μm2)

GPP [37] 460 2309 2.5e+6

ASIC [41] 6.6 336 4400

CMOL[42] 10.3 470 320

Baseline DW [36] 2.4 1022 78

Pipelined DW [36] 2.3 2652 83

Multi-issue DW [36] 2.7 1320 155

HieIM 3.2 1620 21.8

can achieve 51.5% and 68.9% lower energy consumption com-

pared to CMOS-ASIC and CMOL based implementations, re-

spectively. Furthermore, HielM occupies ∼ 3.5× less area

compared to baseline DW-AES [36], which requires lower

number of cycles due to intrinsic shift operation and multi-bit

data storage of DWM racetrack devices. However, racetrack

device suffers from data corruption due to non-uniform DW

velocities and huge Joule heating for large device dimension.

VII. CONCLUSION

In this paper we have proposed a dual-mode in-memory

computing architecture using STT-MRAM array architecture

which can perform any Boolean logic function (AND/NAND,

OR/NOR, XOR/XNOR) between any twomemory cells within

the same sub-array. Extensive device, circuit and system level

simulation have been carried out to evaluate the performance of

the proposed in-memory computing platform in both memory

mode and computing mode. In-memory bulk bitwise Boolean

vector logic (AND/OR) operation for different vector datasets

shows ∼ 8× energy saving and ∼ 5× speed up compared

to that using DRAM based in-memory computing platform.

We further have employed in-memory data encryption engine

using AES algorithm, which shows 51.5% and 68.9% lower

energy consumption compared to CMOS-ASIC and CMOL

based implementations, respectively. To summarize, by adding

several significant features as- non-volatility, in-memory logic

operation with high data mapping flexibility, low dynamic

power consumption, high packing density; our proposed de-

sign can thrive a new paradigm for future power efficient in-

memory computing platform.

ACKNOWLEDGEMENT

This material is based upon work supported in part by the

National Science Foundation under Grant No. 1740126.

REFERENCES

[1] W. A. Wulf et al. Hitting the memory wall: implications of the obvious.
ACM SIGARCH, 23(1):20–24, 1995.

[2] P. Chi et al. Prime: a novel processing-in-memory architecture for neu-
ral network computation in reram-based main memory. In ISCA, vol-
ume 43, 2016.

[3] Y. Wang et al. An energy-efficient nonvolatile in-memory computing
architecture for extreme learning machine by domain-wall nanowire
devices. IEEE TNANO, 14(6):998–1012, 2015.

[4] J.-P. Wang et al. General structure for computational random access
memory (cram), Dec. 2015. US Patent 9,224,447.

[5] V. Seshadri et al. Fast bulk bitwise and and or in dram. IEEE Computer
Architecture Letters, 14(2):127–131, 2015.

[6] S. Li et al. Pinatubo: a processing-in-memory architecture for bulk bit-
wise operations in emerging non-volatile memories. In DAC, pages 1–
6. IEEE, 2016.

[7] Y. Seo et al. High performance and energy-efficient on-chip cache us-
ing dual port (1r/1w) spin-orbit torque mram. IEEE JETCAS, 6(3):293–
304, 2016.

[8] S. Jain et al. Computing in memory with spin-transfer torque magnetic
ram. arXiv preprint arXiv:1703.02118, 2017.

[9] W. Kang et al. In-memory processing paradigm for bitwise logic oper-
ations in stt-mram. IEEE Trans. Magn., 2017.

[10] S. Kvatinsky et al. Magic—memristor-aided logic. IEEE TCAS II,
61(11):895–899, 2014.

[11] B. a. Hudec. 3d resistive ram cell design for high-density stor-
age class memory—a review. Science China Information Sciences,
59(6):061403, 2016.

[12] S. Raoux et al. Phase-change random access memory: a scalable tech-
nology. IBM J Res Dev, 52(4.5):465–479, 2008.

[13] B. C. Lee et al. Architecting phase change memory as a scalable dram
alternative. In ACM SIGARCH, volume 37 of number 3, pages 2–13.
ACM, 2009.

[14] E. Kultursay et al. Evaluating stt-ram as an energy-efficient main mem-
ory alternative. In ISPASS, pages 256–267. IEEE, 2013.

[15] E Chen et al. Advances and future prospects of spin-transfer torque
random access memory. IEEE Trans. Magn., 46(6):1873–1878, 2010.

[16] Everspin stt. 2016. URL: https://www.everspin.com/news/
everspin - readies - industry % E2 % 80 % 99s - first -
256mb-perpendicular-spin-torque-mram.

[17] S.-W. Chung and n. c. o. Supercomputing. 4gbit density stt-mram us-
ing perpendicular mtj realized with compact cell structure. In IEDM,
pages 27–1. IEEE, 2016.

[18] S. Aga et al. Compute caches. In hpca, pages 481–492. IEEE, 2017.
[19] G Autes et al. Strong enhancement of the tunneling magnetoresistance

by electron filtering in an fe/mgo/fe/gaas (001) junction. Physical re-
view letters, 104(21):217202, 2010.

[20] X. Fong et al. Spin-transfer torque devices for logic and memory:
prospects and perspectives. IEEE TCAD, 35(1):1–22, 2016.

[21] X. Fong et al. Knack: a hybrid spin-charge mixed-mode simulator for
evaluating different genres of spin-transfer torque mram bit-cells. In
SISPAD, pages 51–54. IEEE, 2011.

[22] F. Parveen et al. Hybrid polymorphic logic gate with 5-terminal mag-
netic domain wall motion device. In ISVLSI, pages 152–157. IEEE,
2017.

[23] Z. He and D. Fan. A low power current-mode flash adc with spin hall
effect based multi-threshold comparator. In ISLPED, pages 314–319.
ACM, 2016.

[24] Ncsu eda freepdk45. 2011. URL: http://www.eda.ncsu.edu/
wiki/FreePDK45:Contents.

[25] X. Dong et al. Nvsim: a circuit-level performance, energy, and area
model for emerging non-volatile memory. In Emerging Memory Tech-
nologies, pages 15–50. Springer, 2014.

[26] J.-W. Ryu et al. Self-adjusting sensing circuit without speed penalty for
reliable stt-mram. Electronics Letters, 53(4):224–226, 2017.

[27] K. Huang et al. Magnetic domain-wall racetrack memory-based
nonvolatile logic for low-power computing and fast run-time-
reconfiguration. IEEE TVLSI, 24(9):2861–2872, 2016.

[28] K. Huang et al. Stt-mram based low power synchronous non-volatile
logic with timing demultiplexing. In NANOARCH, pages 31–36. ACM,
2014.

[29] H.-P. Trinh et al. Magnetic adder based on racetrack memory. IEEE
TCAS I, 60(6):1469–1477, 2013.

[30] A. Roohi et al. A tunable majority gate-based full adder using current-
induced domain wall nanomagnets. IEEE Trans. Magn., 52(8):1–7,
2016.

[31] Y. Zhang et al. Giant spin hall effect (gshe) logic design for low power
application. In DATE, pages 1000–1005. IEEE, 2015.

[32] J. Daemen et al. The design of Rijndael: AES — the Advanced Encryp-
tion Standard. Springer-Verlag, 2002, page 238. ISBN: 3-540-42580-2.

[33] Y Yanagawa et al. In-substrate-bitline sense amplifier with array-noise-
gating scheme for low-noise 4f 2 dram array operable at 10-ff cell ca-
pacitance. In VLSIC, pages 230–231. IEEE, 2011.

[34] D. T. Wang.Modern dram memory systems: performance analysis and
scheduling algorithm. PhD thesis, Unversity of Maryland, 2005.

[35] N.-F. Standard. Announcing the advanced encryption standard (aes).
FIPSP, 197, 2001.

[36] Y. Wang et al. Dw-aes: a domain-wall nanowire-based aes for high
throughput and energy-efficient data encryption in non-volatile mem-
ory. IEEE TIFS, 11(11):2426–2440, 2016.

[37] K Malbrain. Byte-oriented-aes: a public domain byte-oriented imple-
mentation of aes in c, 2009.

[38] N. Binkert et al. The gem5 simulator. SIGARCH, 39:1–7, 2011.
[39] S. Li et al. Mcpat: an integrated power, area, and timing model-

ing framework for multicore and manycore architectures. In MICRO,
pages 469–480. ACM, 2009.

[40] A. Stillmaker et al. Toward more accurate scaling estimates of cmos
circuits from 180 nm to 22 nm. VLSI Computation Lab, ECE Depart-
ment, University of California, Davis, Tech. Rep. ECE-VCL-2011-4, 4,
2011.

[41] S. Mathew et al. 340 mv–1.1 v, 289 gbps/w, 2090-gate nanoaes hard-
ware accelerator with area-optimized encrypt/decrypt gf (2 4) 2 poly-
nomials in 22 nm tri-gate cmos. IEEE JSSC, 50(4):1048–1058, 2015.

[42] Z Abid et al. Efficient cmol gate designs for cryptography applications.
IEEE TNANO, 8:315–321, 2009.

4C-2

366

