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Poisson’s Contraction and Fiber
Kinematics in Tissue: Insight
From Collagen Network
Simulations
Connective tissue mechanics is highly nonlinear, exhibits a strong Poisson’s effect, and is
associated with significant collagen fiber re-arrangement. Although the general features
of the stress–strain behavior have been discussed extensively, the Poisson’s effect
received less attention. In general, the relationship between the microscopic fiber net-
work mechanics and the macroscopic experimental observations remains poorly defined.
The objective of the present work is to provide additional insight into this relationship.
To this end, results from models of random collagen networks are compared with experi-
mental data on reconstructed collagen gels, mouse skin dermis, and the human amnion.
Attention is devoted to the mechanism leading to the large Poisson’s effect observed in
experiments. The results indicate that the incremental Poisson’s contraction is directly
related to preferential collagen orientation. The experimentally observed downturn of the
incremental Poisson’s ratio at larger strains is associated with the confining effect of
fibers transverse to the loading direction and contributing little to load bearing. The rate
of collagen orientation increases at small strains, reaches a maximum, and decreases at
larger strains. The peak in this curve is associated with the transition of the network
deformation from bending dominated, at small strains, to axially dominated, at larger
strains. The effect of fiber tortuosity on network mechanics is also discussed, and a com-
parison of biaxial and uniaxial loading responses is performed.
[DOI: 10.1115/1.4038428]
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1 Introduction

Connective tissue generally contains a random three-
dimensional or quasi-two-dimensional (2D) collagen network. The
cruciate ligament contains 78% collagen by dry weight, the menis-
cus contains 90%, skin 65%, and tendon 78% [1]. Elastin is an
important component in some tissue, such as the aorta (45% by
dry weight, compared with 25% collagen) [1]. The mechanical
behavior of these tissues is controlled to a large extent by the
mechanics of the collagen network, while the transport of water
between the tissue and the surrounding medium also plays a role.

Collagen organization in tissue is complex. Collagen fibrils of
submicron diameter organize in fibers, which may organize further
in fascicles, as is the case in tendon. The nature and strength of
interfibrillar connectors are poorly understood at this time. Fibrils
separate from a bundle to join another bundle, and this provides
some degree of connectivity between bundles. Collagen fibrils can
be also connected by proteoglycans. It is not clear to what extent
bundles of fibrils re-organize during network deformation.

Generally, fibril orientation is neither uniform nor entirely ran-
dom over the volume of a tissue. Tendon has a preferentially
aligned collagen structure [2–5] with some level of crimp being
present in the unloaded state. Cartilage has a complex structure
with collagen oriented parallel to the surface in the superficial
regions, having random orientation in the central part of the tissue
and being oriented perpendicular to the interface with the bone in
the deeper layer [6,7]. Ligaments may have complex collagen
structures; the facet capsule ligament of the spine exhibits a patch-
work of preferentially oriented subdomains [8]. In membranes,

collagen organization is quasi-two-dimensional and some degree
of preferential orientation in the plane of the membrane is
expected [9–13], although the quantitative experimental evalua-
tion of the difference between the in-plane and out-of-plane fibril
orientation in the undeformed state is difficult.

Modeling the mechanical behavior of soft tissue has been cen-
tered on the development of constitutive equations that take into
account essential components of the physics, such as the exchange
of water with the environment (biphasic model) and deformation-
induced fiber orientation, but generally disregard the details of the
microstructure [14]. A mean-field class of models assumes that
fibers move independently and follow the macroscopic applied
deformation [15–21]. The affine deformation assumption allows
evaluating the strain energy function from which the multiaxial
mechanical behavior can be inferred. This procedure may take
into account any fiber orientation distribution in the undeformed
state and predicts fiber re-orientation driven by the macroscopic
imposed kinematics. The essential advantage of this method is
that it leads to closed-form solutions, which are easy to implement
in continuum formulations.

The affine assumption is adequate when the network is embed-
ded in a solid matrix or at large fiber densities. Many works dis-
cussed the affine assumption in both the physics [22–27] and
biomechanics literature [28–31], and concluded that fiber net-
works of realistic density and fiber properties deform in a highly
nonaffine way. Since no general theory exists that can predict the
nonaffine deformation of a random structure of given global sto-
chastic parameters, the structure–properties relations have to be
established by large-scale numerical models of networks [32–34].
Such models represent a three-dimensional (3D) structure of fibers
connected at cross-links. The fibers deform cooperatively and
nonaffinely. The mechanical behavior of such models has been
shown to share some characteristics with biological soft tissue.
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Their advantage stems from the fact that they represent the net-
work microstructure. They can be used to investigate the
structure–properties relationship and to identify mechanisms oper-
ating at scales not accessible to experiments, or provide informa-
tion about quantities (e.g., energy storage and spatial distribution)
that cannot be directly measured. The disadvantage is that their
predictions are not reducible to simple analytic formulations and,
in order to connect network models to the larger scales, computa-
tionally expensive multiscale formulations have to be used [35,36].

The goal of this paper is to compare the behavior of a specific
type of network model with that of a series of soft tissues and
reconstructed collagen gels, and to provide a mechanistic perspec-
tive on the origins of the large Poisson’s effect and strong fiber
orientation observed. The Poisson’s effect is associated with fiber
orientation in the stretch direction (under uniaxial tensile loading),
which occurs due to the large free volume of the network. The
incremental Poisson’s ratio decreases at large strains due to the
confining effect of fibers not engaged in carrying the axial load.
We also analyze the effect of fiber tortuosity and show that
although the stress–stretch curves for materials with various levels
of tortuosity are very different, a unifying perspective can be
found, which allows collapsing data from various such systems. A
similar perspective is taken when comparing the behavior under
uniaxial and biaxial tension. These results demonstrate that many
of the features observed experimentally are reproduced by fiber
network models. Therefore, such models can be used to advance
the understanding of tissue mechanics and to assist the design of
tissue scaffolds and tissue equivalents.

2 Models and Methods

2.1 Network Models. In these models, fibers represent colla-
gen fibrils and are connected in a 3D structure, which percolates
the problem domain. Fibers may be randomly oriented in space or
may have preferential orientation. They are connected at nodes,
with the connectivity number, z, representing the number of fibers
emerging from each cross-link, and are not allowed to bundle
since adhesion or chemical interaction are not represented in the
model. Generally, fibers have identical diameter and material
properties, although composite networks made from fibers of dif-
ferent properties have been considered in the literature [37,38].
The essential network parameters are

(a) The density, q, which represents the total length of fiber per
unit volume of network. For networks made from a single
type of fiber, the density is related to the volume fraction
occupied by fibers, qv, and to the mass density of the mate-
rial, qm, as qm ¼ qqfA ¼ qvqf , where qf is the density of
the fiber material and A is the fiber cross section area.

(b) The average connectivity, �z, and the density of cross-links,
qc, which represents the number of cross-links per unit vol-
ume. �z and qc are related to q as q ¼ qc�zlc/2, where lc is
the mean fiber length between two cross-links (mean seg-
ment length). Independent geometric evaluation of lc indi-
cates an inverse relationship between lc and q [39] in
certain types of networks (e.g., Mikado and Voronoi
networks).

(c) Fiber properties, including the axial and bending fiber
rigidities, EfA and Ef I, where Ef is Young’s modulus of the
fiber and I is the axial moment of inertia of the cross sec-
tion. Fibers are considered of circular cross section. For
networks made from a single type of fiber, it was shown
that a single parameter that combines the two rigidities is
essential: lb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ef I=EfA
p

[22,23,26].

It is notable that the torsional rigidity of fibers is not an impor-
tant parameter, which is a consequence of the fact that the defor-
mation of random networks is dominated by the axial and bending
modes, while fiber torsional strain energy is minimal.

A large number of configurations can be generated for any
given set of the above parameters. This degeneracy originates

from two sources: (i) the method used to generate the network
defines the network “architecture” and different methods lead to
structures of different type; (ii) many configurations can be gener-
ated for each architecture, i.e., using the same generation method.
The second source of structural variability leads to a size effect
well known in random composites, effect which can be mitigated
by considering models large enough to average out the variability.
In the context of random fiber networks, the size of the model that
provides replica-independent material properties depends on the
parameters listed above [40], but is finite. The more important
issue of the effect of the network architecture on mechanical
behavior has been discussed to some extent [41]. It is generally
accepted at this time that networks with different architecture lead
to similar mechanical behavior but given behavior can be repro-
duced with different architecture only upon an (often significant)
adjustment of the key network parameters. Based on this observa-
tion and considering the previous models developed for collagen
networks [42,43], we choose to work with Voronoi networks in
this study.

The models are generated using an in-house developed Voronoi
tessellation algorithm implemented in MATLAB. A set of randomly
distributed seed points are generated inside a cubic domain of size
L and are used to generate a Voronoi tessellation. Fibers are
defined along all edges of the resulting tessellation, which results
in an interconnected fiber network. The connectivity number is
z¼ 4. The model size, L, is taken large enough to eliminate size
effects and minimize the variability from replica to replica. All
reported results are averaged over three replicas of the system.
The network density, q, is adjusted by controlling the density of
seeds used to generate the Voronoi tessellation of the domain.

Collagen organizes in fibrils of diameter in the range
100–500 nm [44,45]. The tropocollagen molecules are arranged
largely parallel to the fibril axis and are staggered, with the stagger
creating the characteristic D-banding repeat unit of gap–overlap
regions with periodicity of 67 nm. Fibrils bundle to create fibers of
diameter larger than 1 lm. The degree of bundling depends on tis-
sue type, on pH, and the temperature at which the network is cre-
ated (in reconstructed collagen gels) [46,47]. In biological
structures, fibers have different degree of bundling and hence dif-
ferent effective diameter. In the present models, we consider fibers
of same diameter, equal to 0.1 lm.

Two collagen concentrations are considered, c¼ 1mg/ml and
4mg/ml, in separate models. For the fiber diameter selected, these
correspond to network volume fractions qv ¼ 0.076% and 0.306%,
and network density q ¼0.097 and 0.39 lm=lm3, respectively.
The resulting mean segment length is lc ¼3.3 and 1.5 lm for the
two concentrations. These are in agreement with the values
reported in Refs. [48–50] measured from scanning electron micros-
copy images of reconstructed collagen networks and values used
in other models inspired from direct observations of the network
[32,51]. Overall, the network parameters used here are also in
agreement with those used in a two-dimensional discrete network
model parametrized based on direct microscopic observations of
the human amnion structure [52].

The models considered are athermal, i.e., thermal fluctuations
do not influence fiber mechanics significantly. This is adequate for
fibers of such large diameter and persistence length larger than
1mm, as reported for fibrils [53,54]. Fibers are represented as
beams of circular cross section with axial, bending, torsional, and
shear stiffness (the Timoshenko model for beams) [55]. Account-
ing for the bending stiffness of the fibers is important both
because collagen fibers have nonzero bending stiffness (directly
measured in Ref. [56]) and because the network would be unstable
in the initial configuration if fibers would carry only axial forces.
The issue of network stability is often disregarded in microscale
models of biological tissue. However, according to Maxwell’s cri-
terion [57], 3D structures of fibers with only axial stiffness are
unstable if the average connectivity number of the network �z is
smaller than 6. With �z between 3 and 4 (close to 4), as measured
from collagen network images [48,50], and �z ¼ z ¼ 4 in our
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models, the structure is subisostatic and has zero stiffness in the
unloaded state. The use of subisostatic structures as models for
collagen networks is considered acceptable in some works
because such structures develop finite stiffness when stretched
beyond a critical strain [58,59]. This mimics the experimentally
observed toe region of the stress–strain curves, but may lead to
errors in kinematics when simulating the heel region. Such errors
emerge from the fact that fibers in 3D networks with parameters
in the range relevant for collagen deform mainly in the bending
mode over the entire physiologically important strain range, as
discussed in the literature [26,60].

In the undeformed configuration, fiber segments bounded by
two cross-links are straight. The effect of fiber tortuosity is studied
with separate models in which fibers are constructed as arcs of
circle representing nonzero crimp in the initial configuration. The
crimped models retain a nonvanishing (although small) stiffness
in the initial configuration associated primarily with the fiber
bending stiffness. This insures overall network stability. The tor-
tuosity, s, i.e., the ratio of the contour length to the end-to-end
length of a segment, measured in various tissues and in recon-
structed collagen gels varies from 1.1 to 1.4 [48,61,62]. We con-
sider the tortuosity to be 1.15 and 1.3, in separate models. Crimp
is introduced in all fibers of the model such that to insure that all
fibers have the same tortuosity parameter.

Fiber properties are of central importance for model develop-
ment. A review of collagen properties on the fibril, fiber, and fasci-
cle level is provided in Ref. [62]. Stiffness generally decreases
from GPa level on the molecular scale (estimated by atomistic sim-
ulations [63]), to hundreds of MPa for fibrils, and tens to hundreds
of MPa for collagen fibers (somewhat overlapping with fibril
range). Bending experiments performed with single fibrils indicate
Young’s modulus in the 100–360MPa range [56]. Uniaxial stretch-
ing performed with micro-electromechanical systems devices led to
modulus values 500–900MPa [64] and 2GPa [65]. In the present
models, we consider Ef ¼ 100MPa, in agreement with Ref. [52].

Fibers are considered linear elastic. Keeping the constitutive
behavior of fibers linear allows emphasizing the effect of geomet-
ric nonlinearity in the overall network behavior. As discussed
below, the essential features observed in experiments can be
reproduced with models in which fibers are linear elastic. Consti-
tutive nonlinearity is expected to have a secondary effect on some
aspects of the material response. While most single fibril test
results indicate a nonlinear tensile behavior, at small strains, the
response can be considered linear. For example, in Ref. [64], the
stress–strain curve of a single fibril stiffens significantly for strains
larger than 30%, but at strains below 10% it is linear. The
response reported in Ref. [65] is also linear up to 4% strain (the
upper limit of the reported range) except for a toe regime, which
extends up to 1%. In these reports, the nonlinearity is of strain-
stiffening type. Strain softening experimental stress–strain curves
have also been reported [66,67].

Representative examples of the three main types of models con-
sidered in this study—models with randomly oriented fibers, with

preferentially oriented fibers and with randomly oriented but tor-
tuous fibers—are shown in Fig. 1. The models are discretized with
finite elements, each fiber being represented with several Timo-
shenko beam elements. Uniaxial or biaxial loads are applied via
displacement boundary conditions. The surfaces of the cubic mod-
els, which are not subjected to imposed displacements, are kept
planar, but allowed to relax in the direction of their normal, under
zero tractions. The solution is found using the general purpose
finite element solver Abaqus, version 6.14.

2.2 Definition of Parameters. The stress and strain measures
used in this work are the first Piola–Kirchhoff stress (or the nomi-
nal stress), S, and the deformation gradient tensor, F, which are
work conjugates. The Cauchy stress, r, can be obtained from S as
r ¼ 1=Jð ÞSFT, where J ¼ detF is the Jacobian of the transforma-
tion. The Cauchy stress is the physically more representative
quantity, but it is usually difficult to measure in experiments since
the current cross-sectional area of a soft specimen is hard to be
measured in situ. It should be noted that using the true stress–true
strain measures are inadequate for network-based materials since
the conversion from the nominal stress to the true stress requires
the assumption of isochoric deformation, which does not apply to
this class of materials.

The models are deformed via imposed displacements either uni-
axially or biaxially. The uniaxial deformation is applied in the x1
direction. Fibers are randomly oriented in space and the structure
is isotropic in the initial configuration, or is pre-oriented in the x1
direction, in separate models. The pre-oriented samples are trans-
versely isotropic in the initial configuration, with x1 being the axis
of transverse isotropy. All samples acquire transverse isotropy
during uniaxial deformation. In the biaxial deformation case, load-
ing is applied in the x1� x2 plane and the model is free to contract
in the x3 direction.

Fiber orientation is evaluated using the orientation tensor. Only
the first component of the tensor is relevant here (Herman orienta-
tion factor) and hence we refer to the orientation index as a scalar
parameter defined in 3D by

P3D
2 ¼ 1

2
3 hcos2hi � 1
� �

(1)

where h is the angle made by the fiber end-to-end vector with the
x1 axis (loading direction), and h i represents the ensemble aver-
age. In 2D, this quantity reads

P2D
2 ¼ 2 cos2h� 1 (2)

Both P2 parameters are 0 for randomly oriented fibers and reach a
maximum value of 1 when the fibers are fully aligned with the x1
direction. Their minimum value is �0.5 in 3D and �1 in 2D, both
corresponding to perfect alignment in the plane perpendicular to
the x1 direction.

Fig. 1 Realizations of models with (a) randomly oriented straight fibers, (b) randomly ori-
ented tortuous fibers, and (c) preferentially oriented straight fibers
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Samples are three-dimensional in all cases. The 2D quantity is
useful here in order to make the connection with experimental
observations. For thin samples, the orientation is usually measured
relative to the loading direction in the plane of the membrane.
Hence, even though the fibers re-arrange in 3D, only the
deformation-induced orientation of the projection of the fiber in
the x1� x2 plane is measured. A similar situation is encountered
when working with experimental orientation data for 3D samples.
In this case, fibers orient in 3D, but the process is monitored in the
2D projection.

Consider a 3D sample loaded uniaxially in the x1 direction, for
which the orientation is measured on one of the lateral surfaces
(x1� x2 or x1� x3). The relation between the true 3D orientation
and the measured orientation in the 2D projection for this axisym-
metric deformation case is discussed in the Appendix. P2D

2 is dif-
ferent from P3D

2 , the difference being smaller than 20%.
The Poisson’s effect is evaluated using the incremental Pois-

son’s ratio given by

�i ¼ � d ln k2

d ln k1
(3)

which can be interpreted as the incremental Poisson’s ratio com-
puted based on the logarithmic strains in the loading and trans-
verse directions. Here, k1 is the stretch ratio in the x1 direction

and k2 ¼ k3, for uniaxial loading. This measure becomes the usual
Poisson’s ratio at small strains when the logarithmic strain can be
approximated with the small strain. However, it remains a conven-
tional measure of the Poisson’s effect at large strains.

It is interesting to note that if the lateral stretch, k2, is consid-
ered a function of the axial strain, k1, k2 ¼ k2ðk1Þ, Eq. (3) implies
ðdk2=k2Þ ¼ ��iðdk1=k1Þ and, if �i can be considered a constant of
k1 over any small portion of the loading history, it implies
k2 ¼ k��i

1 .

2.3 Overview of the Experimental Data Sets Used. Three
data sets from the literature are used to compare with numerical
data: results for reconstructed type I collagen gels from Ref. [68],
data for the deformation of mouse skin from Ref. [11], and results
from experiments performed with human amnion [9]. A brief
account of the experimental conditions is presented here for
completeness.

Reference [68] reports results from mechanical tests performed
with reconstructed collagen gels at a concentration of 1.5mg/ml.
The gel solution was cast in dog-bone specimens of cross section
dimensions 8� 3mm in the gauge region. The network has mean
segment length lc � 2:5lm and connectivity 3 < �z < 4, as
observed from SEM images. Hence, the cross-sectional dimen-
sions are much larger than the characteristic length of the network.
Samples were tested in uniaxial tension, and relaxation was per-
formed at various levels of the applied load. Two values of the
stress are reported corresponding to each relaxation stage: the
peak stress and the stress at the end of the relaxation period
(300 s), which is considered the equilibrium stress at the
respective strain. Here, we use the equilibrium stress–stretch data.
The Poisson’s contraction was measured in both directions per-
pendicular to the loading axis, and it was concluded that the Pois-
son’s effect is identical in the two directions. This indicates that
the initial microstructure is isotropic and remains transversely iso-
tropic relative to the loading direction throughout the test.

Reference [11] reports results from uniaxial tension tests per-
formed with mouse skin. Samples were collected from the back of
the animals, and the epidermis was separated from the dermis,
which was further used in the experiments. Deformation was
measured globally as well as locally (i.e., at the scale of �300
lm). The local evaluation was made based on the relative motion
of hair follicles. The applied force is directly measured and the
nominal stress computed as the force divided by the initial area of
the cross section (approximately 8� 1mm2) is reported. Tests are
performed with a low strain rate of 10�4s�1. The Poisson’s con-
traction is reported in the plane of the sample. Collagen orienta-
tion was measured using a multiphoton microscope with a spatial
resolution of 0.5 lm. Image stacks with in-plane dimensions of
480� 480 lm2 and depth of 50lm were recorded. The orientation
index reported is identical to P2D

2 of Eq. (2).
Tests on human amnion samples are reported in Ref. [9]. The

fetal membrane is composed from the amnion and the chorion,
with the two components being in contact with the amniotic fluid
and the maternal tissue, respectively. The amnion, which is a col-
lagen network of thickness 60–100lm, is primarily responsible
for the mechanical function. In these experiments, the amnion was
separated from the chorion, sectioned, and tested in uniaxial ten-
sion. The deformation is characterized by the global (grip-to-grip)
applied strain and the local strain, which was evaluated by track-
ing the relative motion of stained nuclei of cells that form the
amniotic epithelium—a layer of cells anchored to the collagen
network. The Poisson’s contraction was measured both in the
plane of the membrane and in the thickness direction. The colla-
gen network has fibers of diameter approximately 50 nm, which
may bundle into thicker fibers, and which are randomly oriented
in the unloaded state. Strong alignment results upon loading. The
degree of alignment is evaluated using multiphoton microscopy
based on second harmonic generation. Special attention is paid in
Ref. [9] to the selection of the reference state for the test, and the

Fig. 2 (a) Nominal stress–stretch curves for networks of den-
sity equivalent to collagen concentration of c5 1mg/ml and
c54mg/ml. The three regimes discussed in text are indicated
by vertical bars and red filled circles. (b) Data in (a) replotted as
tangent stiffness versus stress. The red filled circles indicate
the transition between the regimes indicated in (a). The figure
includes experimental data for reconstructed collagen gels
(orange circles) [68], human amnion (green squares) [9], and
mouse skin dermis (blue triangles) [11].
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importance of this choice for data interpretation is discussed.
Interestingly, the uniaxial stretch at which the load cell signal
emerges from the noise is above 1.1 and substantial lateral con-
traction and collagen orientation are measured at this stage. The
additional Poisson’s contraction corresponding to larger loads is
larger than that observed between the initial and reference states,
but the collagen orientation increases weakly beyond the reference
state. Due to this reason, we are not able to use the orientation
data in Ref. [9] in the current analysis.

3 Results and Discussion

3.1 Uniaxial Tensile Behavior and the Effect of Fiber
Tortuosity

3.1.1 Generic Network Behavior. As broadly discussed in the
literature, the stress–strain curve measured for various types of tis-
sue has three regimes: a toe regime characterized by very small
stress values, but in which fiber kinematics is observed [9], a heel
regime described by an exponential functional form, and a linear
regime at large stresses. Under normal physiological conditions,
most tissue functions within the toe and heel regimes. Fiber net-
work models generally reproduce this type of behavior. An exam-
ple is given in Fig. 2(a), which shows the stress–strain curves for
models with collagen concentration c¼ 1mg/ml and 4mg/ml.
The three regimes that correspond to the toe, heel, and linear
experimental regimes are indicated in the figure.

Figure 2(b) shows the data in Fig. 2(a) replotted as tangent stiff-
ness versus stress. The figure shows typical sigmoidal curves with
the three regimes becoming obvious. The approximate transition
between regimes 1 and 2 and between regimes 2 and 3 is marked
by red symbols (corresponding to those defined in Fig. 2(a)). The
network has a linear elastic behavior in regime 1, with the effec-
tive modulus, E0, being strain-independent. Stress values are very
small and it can be thought that this regime is irrelevant for tissue
mechanics. In models of purely axial elements in which the bend-
ing of fibers is ignored, the stiffness in regime 1 is zero since such
models are not stable at small stretches. The most relevant part of
the stress–stretch curve is regime 2 in which the tangent stiffness
is proportional to the stress and therefore the stress–stretch rela-
tion is exponential. Regime 3, in which the curves bend back to
the horizontal indicating that the stress–stretch curves become
again linear, is reached at larger stress values. Failure may occur
in biological networks before this transition. This would lead to
an early reduction of the tangent modulus and the partial or com-
plete elimination of regime 3, as observed in some experiments

[48]. A similar behavior can be caused by the nonlinear deforma-
tion of fibrils [64–66] at large loads.

Figure 2(b) includes data from Refs. [9], [11], and [68]. Regime
1 is not visible in any of these data sets, probably due to truncation
introduced in postprocessing or due to the limited resolution of
the load cells. The tangent modulus is proportional to the stress in
all data sets, which is characteristic for regime 2. Two of the data
sets show a reduction of the stiffness at large stress values, likely
due to the onset of damage [11].

It is generally indicated in the literature that the final linear
regime is associated with the full orientation of the fibers in the
loading direction. Both models and experiments in which collagen
orientation is measured indicate that even at large strains, the
fibers are not fully oriented. The transition from regime 2 to
regime 3 is controlled by the formation of a subnetwork of
strongly aligned fibers that carries most of the load, while the
remaining fibers are less oriented [69]. The tangent modulus in
regime 3 is controlled by the structure and density of this
subnetwork.

A discussion is required at this point regarding the general
statement that the stress–strain curve is exponential. This has to
be made specific by indicating which stress and deformation
measures are observed to be exponentially related. Figure 2(b)
shows the first Piola–Kirchhoff stress, S, versus stretch, k1. In the
literature, the respective statement is made when using the pair
Cauchy stress, T, and the small strain, e, [60], and the second
Piola–Kirchhoff stress, P, and the Green strain, E. It is clear that
not all these groups of stress and deformation measures can be
simultaneously exponentially related. Assuming that in a uniaxial

experiment it is observed that S11 � exp k1, then T11 �
ðexp k1Þ=k22 and P11 � ðexp k1Þ=k1, which implies that T11 �
ðexp e11Þ=ðe22 þ 1Þ2 and P11 � ðexp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E11 þ 1
p

Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2E11 þ 1
p

.

While T11 � ðexp e11Þ=ðe22 þ 1Þ2 � exp e11 for small strains, the
relation between P11 and E11 cannot be approximated with an
exponential.

Interestingly, these models are able to capture the strongly non-
linear behavior of tissue. However, the nonlinearity here is purely
geometric as fibers have linear elastic constitutive behavior.
Therefore, it is possible to infer that fiber convection in the direc-
tion of the principal load is responsible for the exponential mate-
rial behavior of the heel regime (regime 2).

It is important to point to the fact that models of this type are
not aimed at reproducing exactly the microstructure of the net-
work. Real collagen networks are not necessarily of Voronoi type.

Fig. 3 Tangent stiffness versus stress for models with tortuos-
ity parameter s5 0 (reproduced from Fig. 2(b)), s5 1.15 and
s5 1.3. The vertical axis is normalized by the small strain modu-
lus of regime 1, E0.

Fig. 4 Variation of the incremental Poisson’s ratio with the
stretch ratio for models with c51 and 4mg/ml. The red filled
squares mark the transition between the regimes indicated in
Fig. 2(a). The figure includes experimental data for recon-
structed collagen gels (orange circles) [68], human amnion
(green squares) [9], and mouse skin (blue triangles) [11].
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Fibers in the model are all of identical diameter and mechanical
properties, which is certainly not the case in tissue. However,
these discrepancies may affect the prediction of the stress values,
but not the trends and general behavior. This insensitivity of the
global mechanical behavior to the network architecture [27,41],
which is most likely due to the stochastic nature of these struc-
tures, is actually a major advantage of the type of models used
here.

3.1.2 Effect of Fiber Tortuosity. The effect of collagen tortu-
osity on the stress–strain curve has been discussed in the literature
[2,62,70]. It is observed that increasing the contour length of the
fiber at constant end-to-end distance increases the range of the toe
regime. However, the stress–strain curves obtained from networks
with different tortuosity cannot be overlapped by a simple transla-
tion along the strain (or stretch) axis. In Ref. [2], which reports
experiments on rat tail collagen fascicles, it is shown that fiber tor-
tuosity is eliminated by a global strain of 3%; this strain corre-
sponds to the middle range of the exponential regime 2 in these
experiments. In Refs. [71] and [72], it is reported that tortuosity is
eliminated by 4% strain. Therefore, the elimination of tortuosity
cannot be associated with the end of regime 1, rather fiber align-
ment and fiber straightening occur simultaneously.

Here, we perform simulations with two values of the tortuosity
parameter, s¼ 1.15 and 1.3, defined as the ratio of the contour
length of the fiber to its end-to-end vector length. The resulting
S11ðk1Þ curves depend strongly on the value of s, with the stress
level decreasing markedly with increasing s. However, these dif-
ferences are eliminated when the data are represented as tangent
stiffness versus stress (Fig. 3). In Fig. 3, the vertical axis is nor-
malized by the network modulus corresponding to infinitesimal
strains, E0; this leads to the overlap of the curves. The value of E0

depends on the magnitude of s and on the fraction of the fibers in
the network, which are not straight. The relation between E0 and
these structural parameters is discussed in Ref. [73].

The data in Fig. 3 indicate that in the experimentally relevant
regime 2

S11 � exp ðqðE0Þk1Þ (4)

where qðE0Þ is a function of the small strain network modulus E0,
which in turn depends on the modulus of the fiber material, Ef ,
and the structural parameters mentioned above.

3.2 Poisson’s Effect and Collagen Orientation. Further
insight into the mechanisms leading to the behavior discussed in

Sec. 3.1 can be obtained by analyzing the Poisson’s effect and the
associated orientation of the collagen during stretch. Tissue exhib-
its very large Poisson’s ratios, with values much larger than 0.5,
which corresponds to the incompressible continuum case and is
the upper limit of the Poisson’s ratio for 3D continua. Fiber net-
works are not continua and hence can exhibit a stronger Poisson’s
effect.

Figure 4 shows the variation of the incremental Poisson’s ratio,
�i, of Eq. (3) with the stretch ratio for network densities corre-
sponding to c¼ 1 and 4mg/ml. The transition between regimes 1
and 2 and between regimes 2 and 3 is indicated with red filled
squares. The values of the incremental ratio are very large and
increase fast during deformation. The initial values of �i, during
regime 1, are below 0.5 and weakly dependent on k1. �i increases
fast during regime 2 and reaches a plateau when the network
enters regime 3. This indicates that the pronounced Poisson’s
effect is associated with fiber convection which, as discussed in
Sec. 3.1, also leads to the exponential stress–stretch curve. The
figure includes data from Refs. [9], [11], and [68], which exhibit a
variation similar to that of the network models. The data sets from
different experiments are shifted in the horizontal direction likely
due to the different definition of the reference state. The rate of
increase of the incremental Poisson’s ratio with k1 is identical in
all data sets and all curves appear to reach a plateau at the largest
k1 values. The gradual increase at small k1 seen in the simulation
data corresponds to regime 1 and is not seen in the experimental
data due to the truncation of the toe.

The variation of the 3D orientation index P2 (Eq. (1)) during
deformation is shown in Fig. 5. Network density has a weak effect
on kinematics in this concentration range. P2 increases fast during
regime 2 and the rate of preferential orientation decreases when
regime 3 is reached. Experimental data (in-plane, P2D

2 ) from Ref.
[11] are also shown.

These results indicate that the large and strain-dependent Pois-
son’s effect is associated with the strong fiber realignment during
deformation. Figure 6 shows an almost linear relation between the
incremental Poisson’s ratio, �i, and P2 during regime 2. In regime
3, orientation continues to a smaller extent while �i levels off.

In order to gain additional insight into the �i-P2 relationship,
models with preferential fiber alignment in the initial, undeformed
state are considered. Alignment is introduced during network gen-
eration, axisymmetrically with respect to and in the direction of

Fig. 5 Variation of the 3D orientation index P2 with the stretch
ratio for networks with c51 and 4mg/ml. The red filled squares
indicate the transition between regimes indicated in Fig. 2(a).
The figure includes the 2D orientation index for mouse skin
(blue triangles) [11].

Fig. 6 Relationship between the incremental Poisson’s ratio
and the orientation index for models with c54mg/ml and vari-
ous levels of pre-alignment in the initial, unloaded configura-
tion (P0

2 ). The red dots on the P0
2 5 0 curve indicate the bounds

of regime 2. The dotted blue line shows the variation of the
small strain Poisson’s ratio with the degree of pre-alignment.
The blue triangles represent the measured in-plane incremental
Poisson’s ratio for a pre-aligned sample of mouse skin [11]. The
curves corresponding to the four values of P0

2 are shown with
both markers and lines to emphasize the trends.
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the x1 axis. This mimics the orientation resulting from the uniaxial
tensile test performed with initially unoriented networks. The ini-
tial orientation is characterized by an initial P0

2 value. The models
are then deformed uniaxially by stretching in the x1 direction. The
difference between a preoriented sample with P0

2 and a deformed
sample of P2 ¼ 0 in the initial configuration and P2 ¼ P0

2 in the
current configuration is that the preoriented sample has no internal
stress.

Data from these simulations are shown in Fig. 6. The initial
Poisson’s ratio of oriented models increases with the degree of

orientation, as shown by the dotted blue line. This effect is rather
weak compared to the strong increase of �i during regime 2. It is
observed that in preoriented samples, �i increases very fast with-
out a significant variation of P2 in the initial stages of deforma-
tion. Subsequently, all curves reach a maximum, followed by a
decrease of �i. The decreasing trend is shown by dashed lines due
to the large numerical noise in the respective regime. Experimen-
tal data from Ref. [11] included in Fig. 6 correspond to a sample
with pre-aligned collagen. Good agreement with the numerical
results is again observed.

The interpretation of this behavior is as follows: fiber convec-
tion in the stretch direction is opposed by the resistance of fibers
oriented roughly perpendicular to the stretch direction and which

Fig. 7 Relationship between the incremental Poisson’s ratio
and the orientation index for models with c51mg/ml and vari-
ous levels of tortuosity. The orientation index is evaluated
based on the end-to-end vectors of the crimped fibers.

Fig. 8 Variation of the incremental orientation index, dP2/dk1,
for models with collagen concentration c51mg/ml (crosses)
and c5 4mg/ml (open circles), along with the energy partition
for the same models and loading history. The energy stored in
the bending and axial modes is shown. The contribution of the
shear and torsional modes is smaller than 10% in all cases and
is not shown. The transition from the bending-dominated state
at small stretches to the axial dominance observed at large
stretches (crossing of curves in the lower figure) corresponds
to the peak in the incremental P2 (shown by the red arrow).

Fig. 9 Variation of the incremental orientation index, dP2/dk1,
for models with collagen concentration c54mg/ml and various
levels of pre-alignment, along with the energy partition for the
same models and loading history. Only the energy stored in
the bending and axial modes is shown. The transitions from the
bending-dominated state at small stretches to the axial domi-
nance observed at large stretches (crossings in the lower fig-
ure) correspond to the peaks in the incremental P2, as indicated
by the red arrows.

Fig. 10 Comparison of the affine model prediction (continuous
red line), calculated (c5 1mg/ml (filled diamonds) and c5 4mg/ml
(open circles)), and experimental (blue triangles, [11]) variation of
the orientation index with the ratio k2/k1
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need to deform significantly to allow continued convection. This
resistance increases nonlinearly and eventually stops the align-
ment process, leading to a rapid decrease of �i. Structures ran-
domly oriented in the initial configuration experience the effect of
this lateral constraint at smaller values of the total P2, but at
approximately the same value of P2 � P0

2, compared with the pre-
aligned samples.

Although the decrease of �i with increasing P2 is not observed
in the three experimental datasets used, the plateau preceding this
regime is manifest. It is likely that this is due to the onset of
failure in the experimental samples (note that the plateau in the
�i � P2 and �i � k1 curves is associated with regime 3). Fiber or
cross-link failure leads to an increase of the sample volume at
given stretch and an associated increase of its transverse dimen-
sions, i.e., a reduction of �i. Since the discussion of failure is
beyond the objective of the present discussion, we do not dwell
further into this issue.

The correlation between the Poisson’s effect and fiber align-
ment is supported by experimental data on cartilage. Collagen is
oriented parallel to the surface in the outer layers of the tissue and
is more randomly oriented in the midthickness region [6,74–76].
This causes a stronger Poisson’s effect (3–4 times larger Poisson’s
ratio) in samples harvested from the surface layer and oriented
parallel to the surface, compared to samples taken from the central
layer of cartilage [77,78]. The stiffness in the toe region is also
larger for surface samples compared to samples harvested from
the midthickness range [77,79] and the stiffening rate is also
larger for the preferentially aligned sample [79]; this is in agree-
ment with model predictions.

The effect of fiber tortuosity on the �i � P2 relation is shown in
Fig. 7. Data for samples with s ¼ 1:15 and 1.3 are shown together
with the corresponding curve for s¼ 0 from Fig. 6. Interestingly,
although the stress–stretch curves for these systems are very dif-
ferent, the relation between the incremental Poisson’s ratio and
the orientation index is almost identical. This indicates that the
mechanism controlling the Poisson’s effect is linked to the con-
vection of fibers and tortuosity influences both measures to similar
extent.

P2 increases monotonically during stretching, but the rate at
which it increases is not constant. dP2=dk1 increases at the begin-
ning of the deformation, reaches a maximum, and then decreases.
This trend is also visible in the experimental data included in Fig.
5 [11]. Figure 8 shows the variation of dP2=dk1 with k1 for mod-
els of density c¼ 1 and 4mg/ml. A broad peak is visible, centered
on k1 ¼ 1:2. Models offer the opportunity to relate this feature to
the details of fiber deformation, providing deeper insight into the
origins of this system-scale feature. The numerical data are post-
processed to identify the dominant mode of strain energy storage.
The deformation of these networks is strongly dominated by the
bending mode at small strains. This is related to the network

Fig. 11 (a) Nominal stress–stretch curves for networks sub-
jected to uniaxial (from Fig. 2(a)) and biaxial loading. (b) Data in
(a) replotted as tangent stiffness versus stress.

Fig. 12 Data in Fig. 11(a) replotted as r11t3, where t3 is the
model thickness in the direction perpendicular to the plane of
biaxial tension, x3. The collapse of the two curves indicates that
the difference seen in Fig. 11(a) is due to the more pronounced
Poisson’s contraction in the x3 direction in the biaxial loading
case.

Fig. 13 Relationship between the incremental Poisson’s ratio
and the orientation index for models with c5 4mg/ml subjected
to uniaxial (reproduced from Fig. 6) and biaxial loading. In the
uniaxial case, P2 is computed in 3D. In the biaxial case, both mi

and P2 are computed as averages over the x12x3 and x22 x3

faces of the model. Biaxial stretch is applied in the x1 and x2

directions.
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density and parameter lb, as discussed for example in Ref. [55].
As the deformation proceeds, the fraction of strain energy stored
in the bending mode decreases and the energy stored in the axial
mode increases. The contribution of the shear and torsional modes
to the total strain energy is negligible. The axial mode becomes
dominant beyond a stretch in the range k1 ¼ 1:2 to 1.3, which cor-
relates with the stretch at which the peak of dP2=dk1 is observed.

Further support for this observation is provided by the pre-
aligned models. The partition of the strain energy in these models
is shown in Fig. 9 together with the variation of dP2=dk1 with the
stretch k1. The pre-aligned networks are still bending dominated
at small deformations, but switch to the axial mode at smaller
stretch values. The peak of the dP2=dk1 curve shifts also, reinforc-
ing the relationship shown in Fig. 8. This correlation indicates that
fiber orientation toward the tensile loading direction slows down
when the network becomes axially dominated. This happens
roughly in the middle range of regime 2. Regime 3 is entered
when no further alignment is possible due to the constraining
effect of strongly bent fibers oriented roughly orthogonal to the
loading direction (Fig. 6).

It is instructive to compare the evolution of fiber alignment
during stretch with the prediction of the affine model. In the affine
description, each fiber moves with the applied macro-
deformation. Specifically, a fiber end-to-end vector t0 in the
undeformed configuration becomes t ¼ Ft0 in the deformed con-
figuration, with F being the deformation gradient tensor. For the
uniaxial deformation considered here, F is diagonal with diagonal
entries F11 ¼ k1, F22 ¼ F33 ¼ k2. Considering the initial distribu-
tion of fiber directions to be uniform, the value of P2 can be com-
puted in terms of k2=k1. This affine prediction is shown in Fig. 10.
The figure includes the variation of P2 with k2=k1 for models with
random initial orientation of fibers and c¼ 1 and 4mg/ml, as well
as experimental data from Ref. [11] for mouse dermis. It is seen
that both models and experimental data exhibit stronger fiber ori-
entation compared with the affine prediction at the beginning of
the deformation (k2=k1 close to 1), and much weaker alignment
than the affine prediction at larger k2=k1 values.

Interestingly, the value of k2=k1 at which the model data cross
the affine line corresponds to the peak of the dP2=dk1 in Fig. 9
and to the transition from bending to axial energy storage domi-
nance (Figs. 8 and 9). This point is indicated in Fig. 10 by an
arrow and is hence labeled “bending to axial transition.” The
cross-over for the experimental data takes place at approximately
the same value of k2=k1.

The results in Fig. 10 also indicate that deformation is nonaf-
fine. It is broadly acknowledged in the literature that networks of
relatively small density and/or small lb deform nonaffinely even in
the small strains range, while the level of nonaffinity decreases as
the density and/or the bending stiffness of fibers (i.e., lb) increase
[26,27]. This transition from nonaffine to affine at small strains is
associated with a transition from bending to axial energy storage.
The transition from bending to axial dominance discussed here is
induced by the deformation (at given network parameters); how-
ever, the deformation remains nonaffine at all strain levels, in
both bending and axial dominated regimes.

Support for the fact that deformation is nonaffine in biological
collagen networks exists in the literature. It is reported [80] that
the deformation of individual collagen fibrils is significantly
smaller than that applied macroscopically, while Ref. [81] indi-
cates that strain is heterogeneous at the scale of the fibrils.

3.3 Biaxial Tensile Behavior. Since tissue is also loaded
biaxially, it is of interest to compare the uniaxial and biaxial
model behavior and to qualitatively compare with experimental
data.

In biaxial loading, the same stretch, k1, is applied in the “in-
plane” directions and the sample is free to contract in the third
direction, x3. If the sample is transversely isotropic relative to the
x3 direction, the resulting in-plane stresses, S11 and S22, are equal,

while S33 ¼ 0. Fibers align in the x1� x2 plane and hence the 2D
orientation index evaluated for projections in planes x1� x3 and
x2� x3 and relative to the respective stretch direction increases
during deformation. P2D

2 evaluated in the x1� x2 plane remains
close to zero.

Figure 11(a) shows the stress–stretch curves for the system
with c¼ 4mg/ml, with random initial fiber orientations and sub-
jected to uniaxial and biaxial loading. Stiffening is much more
pronounced in biaxial loading. Also, the stretch at which the tran-
sition between regimes 1 and 2 is observed is smaller in biaxial
loading. These results are in line with experimental observations.
Chen et al. [82] report results for biaxial deformation of porcine
pulmonary ligament, with various values of the in-plane stretch
ratios. As the deformation becomes more biaxial (ratio of in-plane
stretches increases toward 1), the stress–stretch curve becomes
stiffer and the transition from the toe to heel regimes shifts to
smaller stretch values.

Despite this strong effect, the corresponding tangent moduli
versus stress curves are almost identical (Fig. 11(b)). The three
regimes are well defined and occur in the same stress range. The
slope of the curve in regime 2 is equal to 1, indicating an exponen-
tial dependence of the nominal stress on the stretch ratio.

The agreement seen in Fig. 11(b) is a consequence of the fact
that mechanics is identical in the two tests, except for the fact that
Poisson’s contraction in the unloaded direction (x3) is more pro-
nounced in the biaxial than in the uniaxial case. This is shown in
Fig. 12 where the data in Fig. 11(a) are replotted as force per unit
edge length of the sample (or Cauchy stress multiplied by the
model thickness in the direction perpendicular to the plane in
which the biaxial load is applied, r11t3). The two curves collapse,
which indicates that the difference between the stress–strain curves
is indeed due to the Poisson’s effect. This is also suggested by the
experimental data presented in Ref. [83], where stress–strain curves
for uniaxial and biaxial loading of human amnion are reported. In
their case too, the curves representing the force per unit length of
the loaded sample edge versus strain overlap, within the reported
sample to sample variability.

In line with the shift of regime 2 to a smaller stretch range

under biaxial loading, the peak of dP2D
2 =dk1, with P2D

2 measured

in the x1� x3 plane, shifts to smaller stretch values, but remains in

the middle range of regime 2. dP2D
2 =dk1 decreases fast beyond the

peak and hence P2D
2 levels off at in-plane stretches as small as 1.2.

As seen, the Poisson’s effect is more pronounced in the biaxial
than in the uniaxial case. Here, we use the in-plane, k1, and out-
of-plane, k3, stretches to compute the incremental Poisson’s ratio.
Contraction in the x3 direction takes place very fast with increas-

ing in-plane stretch, but the relationship between �i and P2D
2

remains qualitatively identical to that of the uniaxial case (Fig.

13). �i decreases with increasing P2D
2 beyond the peak, but less

abruptly than in the uniaxial case. This is due to the fact that in
the biaxial case, this peak is not associated with the onset of
regime 3, as happens under uniaxial deformation.

4 Conclusions

A discussion of the mechanical behavior of random networks
with parameters in the range relevant for collagen networks of soft
tissue is presented. The results are compared with three sets of
experimental data from the literature and good agreement with
model predictions is observed. The stress–strain curves exhibit the
usual three regimes, with the exponential regime (regime 2) being
the most relevant for tissue. The exponential stress–stretch depend-
ence is associated with fiber convection and hence it is a purely
geometric nonlinear effect. Strong fiber alignment in the tensile
loading direction takes place in regime 2. This leads to a large
increase of the incremental Poisson’s ratio with stretch. Fiber
alignment stops when the lateral constraint produced by fibers not
collected into the axial load carrying subnetwork becomes suffi-
ciently strong. This leads to leveling and further reduction of the
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incremental Poisson’s ratio. In uniaxial loading, this stage corre-
lates with the onset of regime 3. However, it occurs earlier under
biaxial loading. As fibers become preferentially aligned in the
stretch direction, a transition from the bending to the axial defor-
mation mode of fibers is observed. This transition is associated
with a reduction of the rate of collagen reorientation, which
increases with stretch as long as the network deformation is bend-
ing dominated, and decreases when the deformation becomes axi-
ally dominated. Accounting for fiber tortuosity does not change
any of these conclusions. The tangent stiffness-stress function and
the relation between the incremental Poisson’s ratio and the orien-
tation index are independent of the magnitude of tortuosity.
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Appendix

In this appendix, we consider a tensile uniaxial deformation of
an ensemble of fibers and evaluate the relationship between the
true fiber orientation index P3D

2 and its two-dimensional equiva-
lent P2D

2 , which would be measured by inspecting the lateral sur-
face of the respective sample.

Consider that the fiber orientation is described by the probabil-
ity distribution function

p u; hð Þ ¼ 1

2p3=2rQ
sinu exp

cosu

r

� �2
 !

(A1)

where ðu; hÞ are the Euler angles, with u measured from the load-
ing direction (x1), r is a parameter controlling the standard devia-
tion of the distribution, and Q ¼ erfið1=rÞ is the imaginary error
function. Parameter r decreases as the deformation proceeds and
fibers become aligned in the loading direction. This distribution is
defined over 0 < u < p and 0 < h < 2p and is normalized over

this interval:
Ð 2p

0

Ð p

0
pðu; hÞdudh ¼ 1. The distribution (A1) is

approximately a Gaussian in the vicinity of u ¼ 0 but fulfills the
required periodicity conditions at the boundaries of the domain of

definition. P3D
2 is evaluated using Eq. (1), and with

hcos2ui ¼
ð2p

0

ðp

0

cos2up u; hð Þdudh ¼ r exp 1=r2
� �

p1=2Q
� r2

2
(A2)

In experiments, one typically observes one of the lateral surfaces
of the sample, say the x1� x2 face, and evaluates the orientation
in the x1 direction during deformation using Eq. (2) and cos2u0,
where u0 is the angle between x1 and the projection of the fiber
end-to-end vector in the x1� x2 plane. This quantity is given by

hcos2u0i ¼
ð2p

0

ðp

0

1

1þ tan 2u cos 2h
p u; hð Þdudh (A3)

Figure 14 shows the variation of P3D
2 and P2D

2 function of r, while

the inset shows the error made by using P2D
2 in place of P3D

2 .
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