
Rate Impact Analysis in Robotic Systems

Nishant Sharma, Sebastian Elbaum and Carrick Detweiler

Abstract— Changes to robotic systems as they are updated
or upgraded often affect the flow of control and sensor data.
Developers and users spend a significant amount of time
tracing the impact of these changes that could otherwise have
negative impacts on the robot’s performance and behavior.
Changes to the rates at which data is published from sensors,
controllers, and other parts of the system are particularly
subtle and difficult to detect. These rate changes, even if minor
(e.g. lowering the frame rate of a camera), can propagate
throughout the system and have broad impacts. In this work,
we develop and implement an approach to help identify the
set of components whose rate may be impacted by a system
change. The approach builds on the insight that certain code
patterns render component’s outgoing data rate independent
of the component’s incoming data rate. We use that insight to
reduce the number of components reported as affected by the
change to minimize the number of components that must be
reevaluated by the developer. A study of an implementation of
the approach on three ROS systems shows that it can reduce
the size of the impact set by up to 41% in cases when the
changes have broad data impacts. The analysis is performed at
compile time and only adds a third more to the compilation
time.

I. INTRODUCTION

A robot’s performance and behavior depend in part on

the rate at which data is produced and consumed by its

components. Consider the Care-O-Bot (COB) robot [1] in

Figure 1. In this system, replacing an arm position encoder

with a higher resolution sensor, but with a lower data rate,

may result in a position controller instability. Or updating

a planning algorithm with one that renders faster data rates

may overwrite a buffer potentially leading to skipping certain

actions. Similarly, increasing the camera frame rate could re-

sult in better obstacle avoidance, but might worsen feedback

to a remote operator if WiFi bandwidth is exceeded. Various

approaches for handling this have been proposed including

Paikan et al. [18] who uses run-time channel prioritization

for components that are time-critical and require higher

controlling rate. However, few researchers have addressed

the general problem of analyzing the impact of rate changes.

Clearly, in many robot systems, the rate at which data

is made available to some of these components is often as

important as the data itself. In such cases, we are interested

in understanding whether the rate changes in the system

could affect its performance and lead to incorrect behaviors.

More specifically, we would like to know how rate changes

The authors are with Department of Computer Science and Engi-
neering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
Email:{nsharma, elbaum, carrick}@cse.unl.edu. This work
was partially supported by National Science Foundation under awards
#1526652 and #1638099, and USDA-NIFA #2013-67021-20947.

Fig. 1: Care-O-Bot (COB)

[1], a ROS based mobile

manipulation robot.

propagate through the system

so that those areas that may

be affected are examined and

validated more carefully.

Techniques to understand

the impact of a change fall

under the umbrella of Impact

Analysis (IA) [5]. These tech-

niques generally identify de-

pendencies among code en-

tities and traverse those de-

pendencies starting from a

changed location to determine the set of impacted code

entities. Existing IA techniques have focused exclusively on

data and control dependencies in code.

In this work, we add the rate dimension, which is particu-

larly relevant to robotic systems that explicitly rely on timing

properties or implicitly rely on rate assumptions. We build

on the insight that certain code patterns render component’s

outgoing data rate independent of its incoming data. We use

that insight to reduce the number of components reported as

affected by the change. Our contributions are:

• A novel approach to impact analysis focused on the rate

of incoming and outgoing data, an aspect overlooked by

existing impact analysis approaches. The analysis incor-

porates component’s source code patterns that render

data production rates independent of the incoming data

rates (and hence independent of changes that may affect

those incoming rates).

• A tool implementing the approach, targeting systems

built in C++ using the Robot Operating System (ROS)

middleware. The tool performs a static code and con-

figuration analysis to identify what data flows between

components and recognizes the patterns defined by the

approach to infer rate independence.

• A study assessing the effectiveness and performance of

the proposed approach on three systems (COB [1], PR2

[3], and H2OS [17]). The study shows that the approach

has the potential to reduce the size of the impact set to

half compared with existing IA approaches. The current

automated implementation reduces the impact set size

of three studied systems to 73%, 92%, and 41%. It does

not require code execution and has an analysis overhead

of about one third of compilation time.

II. MOTIVATING EXAMPLE AND APPROACH INTUITION

Figure 1 shows COB [1], a robot designed by Fraunhofer

IPA to be a human assistant in a variety of settings. COB

sits on a movable base, utilizes lasers and cameras to scan

2017 IEEE International Conference on Robotics and Automation (ICRA)
Singapore, May 29 - June 3, 2017

978-1-5090-4633-1/17/$31.00 ©2017 IEEE 2089

B

A

scan_in

tf

scan_out

Fig. 2: Part of COB’s publish-subscribe dependency graph.

Circles represent nodes (software components) and squares

represent topics. Edges are labeled Dependent (solid) or

Independent (dashed). We assume the node with a star has

changed. The traditional IA approach deems solid circles as

being affected by the changed. Solid circles within the dotted

line area show the impact set produced by the proposed

approach, 50% smaller.

0 10 20 30 40 50

Node Number

0

5

10

15

20

S
iz

e
 o

f
Im

p
a
c
t

S
e
t

Traditional

Proposed Approach

Fig. 3: Impact set reduction across the nodes of COB.

the environment for obstacle detection and navigation, and

employs two robotic arms for manipulation tasks. Like many

other robotic systems, COB is implemented on top of the

Robot Operating System (ROS) [20] and relies heavily on

publishers and subscribers to communicate using ‘topics’

between nodes [14]. A node can publish or subscribe to

multiple topics, and multiple nodes can subscribe or publish

to a single topic, providing flexibility in how the nodes

of the system are connected, but still enabling modularity

as nodes are separated through topics. Many studies have

analyzed the publish-subscribe architecture [8] [10] [15]

[18] [22]. Eugster et al. [10] presented that the publish

subscribe architecture can be decoupled in terms of space,

time, and synchronization. Recently, Rusakov et al. [22]

presented multiple concurrency patterns for common robotics

coordination tasks operating in parallel.

1 publishTransform(){

2 <publisher>.publish(<msg>);

3 }

4 foo(){

5 ros::Rate <rate_var>(getPubRate());

6 while (ros::ok()){

7 publishTransform();

8 <rate_var>.sleep();

9 }

10 }

Code 1: Component A - Independent Publisher due to

fixed rate caused by adaptive sleep.

1 callback(...) {

2 <publisher>.publish(<msg>);

3 }

4 foo() {

5 <publisher> = <nh>.advertise("scan_out",...

6 <sub> = <nh>.subscribe("scan_in", 1, &callback...

7 }

Code 2: Component B - Dependent Publisher.

Figure 2 presents part of the graph representation of

COB’s publish-subscribe architecture. The ROS nodes are

represented by circles and the topics by squares. COB has

66 nodes, and 155 topics (we only show 18 nodes and 9

topics in the figure). We will assume that the node with a

star has changed. Nodes and topics external to the abstracted

system view are depicted in gray.

This graph representing the publish-subscribed architec-

ture of COB also encodes a conservative approximation of

the nodes dependencies. In essence, if there is a path through

the edges from one node to another, then the former can

impact the later. In the case of COB, for example, if the

change occurred in the process handling of the laser scanner

(marked with a star in figure 2), then a traditional impact

analysis would traverse this dependency graph starting from

the star node and propagating the effect along the edges to

all reachable nodes. Using such approach would render all

the nodes in the graph in Figure 2 as potentially impacted by

the change. The impact set contains 19 affected nodes that

a developer will have to check.

When changes are not data-driven but rather rate-driven,

like in the case of updating the rate of the laser scanner, such

an approach is likely overly conservative. In such cases, we

can do better by annotating the dependency graph with labels

that reflect rate-dependencies among the edges.

For example, let’s assume that we have a mechanism (like

the one we proposed in this paper) to tell that the node

marked as A in Figure 2 publishes data to topic tf on a timer.

We can then label such outgoing edge as “rate-Independent”

(or just “Independent” – dashed in Figure 2). For other nodes

like B, we can tell by examining its code that their publishing

rate depends on the rate of the incoming topics because

this node reacts to each inbound message by publishing a

message of its own. With such information, we can prune

the potential set of impacted nodes. The publishing edges

from a node that are “Independent” to the rate of incoming

messages do not propagate the effect of changes in terms

of rate, pruning the space of affected nodes. In fact, for the

example in Figure 2, this process results in the reduction of

2090

the impact set of nodes by 50%. In this work we develop

this impact analysis process focused on rate.

The benefits of the approach will vary based on the system

coupling and the nodes being changed. Figure 3 illustrates

the range of benefits for COB. The x-axis represents the 48

nodes in COB (leaf nodes are excluded since changing them

does not impact any other node), the y-axis represents the

impact set size assuming that the node in the x-axis changed.

The pluses represent the impact set size of traditional impact

analysis, the circles represent the impact set size for the

proposed rate-cognizant approach. The size of the impact

set will vary based on which node changed, ranging from 19

to 1 with an average of 8.3 nodes impacted. The differences

between the pluses and the circles show the potential of the

proposed approach, which is quite dramatic in some cases,

especially for those nodes with longer dependency chains.

Overall, the average reduction is 4.43 nodes and for impact

sets with a size of more than 10, the reduction is 9.82 nodes.

Crucial to the cost-effectiveness of this approach is the

analysis of nodes to identify whether their publishing edges

are independent. Through this work we identify a common

set of code patterns that are highly likely to render a publisher

independent. For a node like A, a sample code pattern

is shown in Code 1, where the publishing rate is fixed

as the semantics of the <rate var>.sleep()(line 8)

call enforce a wait period before the next iteration through

the loop to publish again. For a dependent node, like B,

a sample code pattern is shown in Code 2. In this ex-

ample, the call to <publisher>.publish(<msg>)

(line 2) occurs within a subscription callback function

so the publishing rate of this node will depend on the

rate of received messages. The identification of these code

patterns followed an iterative process, starting with a pool

of candidate patterns based on our development experience

and recommended practices, followed by several refinement

steps as we searched for those patterns in other code bases.

We have also built a tool that automatically recognizes

these patterns and labels the publish-subscribe graph. Further

details about the approach and the implemented tool are

provided in the next section.

III. APPROACH AND IMPLEMENTATION

Figure 4 shows the high-level architecture of the proposed

approach. It is divided into two phases: Dependency Analysis

(DA) and Impact Analysis (IA). DA takes as input the

system code and its launch file (a file to configure the

system deployment through parameters and node and topic

remappings). DA outputs a dependency graph where edges

from a publisher to a topic are labeled as either ‘dependent

on’ or ‘independent of’ the rate of incoming messages. IA

takes this rate dependency graph and the list of changed

component(s) as input. It then performs a depth-first traversal

of the graph, starting from those changed components and

stopping when a leaf node or a rate-independent publisher is

found. IA reports the reachable set of nodes that constitutes

the Impact Set for the changed component(s).

Fig. 4: High-Level Architecture of the proposed approach.

1 callback(...){

2 <publisher>.publish(<msg>);

3 }

4 foo(...){

5 <timer_var> = <nh>.createTimer(...,&callback,...

6 }

Code 3: Pseudocode from cob obstacle distance moveit

package exhibiting the Timer based pattern.

A. Dependency Analysis (DA)

The first step of DA is to generate the system dependency

graph where the vertices are the nodes or topics, and

the directed edges link the publishers and subscribers

with their topics. DA analyzes every function in the

system to produce a function summary containing a list

of every publisher or subscription used by the analyzed

function. The summary is produced by generating and

traversing the function control flow graph while searching

for function calls in a predefined set that depends on

the API and middleware being used. For ROS, this set

includes calls like advertise, advertiseCamera,

subscribe, subscribeCamera, sendTransform,

lookupTransform, RealTimePublisher and the

object of the predefined type (e.g., ros::NodeHandle,

image transport, tf::TransformerListener,

TransformerBroadcaster, message filter. Figure

5 presents a sample summary for the code of Node B in

Code 2. For subscribers, it contains the topic name and

the callback function name. For publishers, it has the topic

name and the variable name.

To generate the dependency graph of published and sub-

scribed messages, the approach first performs a union of all

the summaries of the functions in a node. Then, the approach

adds a vertex for each node, an edge from the node to a topic

for each publisher, and an edge from a topic to the node for

each subscriber. At this point, we have a graph on which to

run impact analysis. We now discuss the additional analysis

performed to label certain edges as rate-independent, which

will help to reduce the size of the impact set.

Once the approach has generated the graph, it further

examines the source code, analyzing every path leading to a

publisher’s publish call to identify certain code patterns that

render those edges as rate-independent. We now introduce

three initial patterns (others are mentioned in Section VII)

Summary : Node B
S u b s c r i b e r : s c a n i n : c a l l b a c k
P u b l i s h e r : s c a n o u t : <p u b l i s h e r >

Fig. 5: Summary for Source Code 2.

2091

Algorithm 1: Labeling publishers in a node.

1 Function LabelPublishers(publisher[])
33 foreach pub ∈ publisher[] do
55 pub.label = Independent
77 foreach path2pub ∈ callGraphSearch(pub) do
99 if not findPatterns(path2pub) then

1111 pub.label = Dependent
1313 break foreach

with their particular instantiation in ROS.

1. No Subscribers. If a node does not subscribe to any

topics, then the outgoing edges of that node are labeled

Independent. This pattern is common for sensing nodes that

capture environmental data and publish it. In Figure 2, the

node shown as a star belongs to this class.

2. Timer. Robotic middleware often provides support for

a function to be invoked at fixed intervals. In ROS, such

a function can be registered as a callback function against

ros::Timer or ros::WallTimer. The registered call-

back function is invoked every time the given duration

equivalent to the ros::Timer has passed, executing the

callback function at fixed intervals. Code 3, shows an ex-

ample of such a pattern. Since the callback function will

be invoked at fixed time intervals, the publisher’s publish

call will also be invoked at fixed intervals making the path

from the timer callback to the publisher’s publish call an

independent publisher path. To detect this pattern, we locate

a call to function createTimer and then we extract the

argument which gives the callback function name which will

be invoked at a fixed rate.

3. Adaptive Sleep. Robotic middleware like ROS often

provides adaptive sleep functions which take execution time

of a cycle into account and sleep for the leftover time of

the initialized duration, ensuring that the loop is executed

at a fixed rate. In ROS, this can be done by initializing an

ros::Rate object which specifies the rate at which the

loop should be executed. Then, inside a loop, ros::Rate

object’s sleep function is called to sleep until the next

execution should start. For example, in Code 1, the function

publishTransform is called at a fixed rate as the loop

will be executed at a fixed rate because of the adaptive

ros::Rate based sleep call. To detect this pattern, we

locate a ros::Rate object followed by a loop and a

ros::Rate based sleep call. Then we label any function

call or publish call independent within the loop body.

In the second step of DA, for each node, for each publisher

to a topic, the approach gathers all loop-free paths from

each publishing location to each root node (either a callback

function or the main function in the node). It then analyzes

each path, searching for one of the three defined patterns. If a

path conforms to a pattern, then it is labeled as such. If it does

not, then that path is deemed as dependent, and consequently

the edge is labeled as Dependent. In the case that all paths

to a publisher are labeled to have the Independent pattern,

then the publisher is labeled as Independent. This process is

succinctly described in Algorithm 1.

Algorithm 2: Impact Analysis. ISG represents the

impact set considering all changes, IS represents the

impact set of a changed node.

1 Function ImpactAnalysis(changed components[], G)
33 ISG = IS = φ

// Reset outgoing edges of changed component as dependent

4 foreach c ∈ changed components[] do
66 foreach edge e ∈ getOutgoingEdges(G, c) do
88 e.dependent = True

1010 foreach vertex v ∈ G do
1212 v.visited = False
1414 foreach c ∈ changed components[] do
1616 IS = DFSV isit(c, IS)
1818 ISG = ISG ∪ IS
2020 return ISG

21 Function DFSVisit(c, IS)
2323 c.visited = True
2525 foreach v ∈ adjacent[c] do
2727 if v.visited is False then

// Exand impact set only over Dependent edges

28 if edge(c, v).dependent is True then
3030 IS = IS ∪ v
3232 DFSV isit(v, IS)
3434 return IS

B. Impact Analysis (IA)

As shown in Algorithm 2, IA takes a list of changed

components and the system dependency graph as input. Since

changed components may impact the publishing rates, we

re-label their outgoing edges as dependent (lines 4-8). Next

we set all the nodes as not visited yet (lines 10-12) to then

initiate a depth first graph traversal rooted at each changed

component (lines 14-18). A global impact set, ISG, contains

the union of all impact sets IS of every changed component.

IS is computed for each changed node in the function DFS-

VISIT (line 21-34). Nodes adjacent to a changed node are

visited, extending the traversal and impact set over dependent

edges (lines 28-32).

C. Implementation

Our approach implementation builds heavily on the source

code analysis tool Clang [2], which works as a compiler

front-end for C++. We use Clang to help us detect the

subscribing and publishing channels and identify the patterns

associated with independent publishing edges. More specif-

ically, we use AnalysisDeclContext to generate the code’s

Control Flow Graph (CFG), the CFG object for code traver-

sal, CXXMemberCallExpr for detecting member function

calls, getArg to retrieve the required argument values, Call-

Expr to identify regular function calls, CXXCtorInitializer to

identify the base or member initializer for ROS objects, and

DeclStmt to retrieve variable names. We utilize the YAML-

CPP library [6] to store and parse the summaries as YAML

files, and PUGI XML [12] for parsing and extracting partial

information from ROS launch configuration files. Finally,

we use Graphviz DOT [9] to generate visual depictions of

the dependency graphs to facilite their interpretation and

debugging of the tool. Our tool RSIA (Rate based Static

2092

Impact Analysis) is available for download from http:

//nimbus.unl.edu/tools/

IV. STUDY SETUP

To assess the tool that implements the proposed approach,

we performed a study on three robotic systems. The study

evaluates the tool’s precision and recall when compared

with a traditional impact analysis approach, and the ideal

implementation of the proposed approach (obtained through

a combination of manual and automated analysis).

The analyzed systems are Care-O-Bot [1], PR2 [3], and

an autonomous aerial water sampler (H2OS) [17]. PR2 is

a mobile manipulation platform developed by Clearpath

Robotics. H2OS is a drone-based water sampling solution

[17] from our own NIMBUS Lab1. Both PR2 and COB

systems are open-sourced, and the three systems are written

almost entirely in C++ using ROS extensively.

We assess the proposed approach in three phases. First,

we evaluate the precision and recall of the tool at generating

the dependency graph. To do this, we manually generated

a ground truth dependency graph. Generating the graph

entailed the inspection of each system (source code, launch

files, and also runtime publish-subscribe graphs) through a

mixed process of automated and manual analysis, intermin-

gled with sessions where all authors reviewed code samples

and hard-to-determine dependencies. This process resulted

in a dependency graph, with edges labeled as dependent or

independent, that we deemed to be correct and treated as the

ground truth for the study. First part of the study compared

this ground truth graph versus the one constructed by the

tool. We also break down the evaluation among publishers

and subscribers that were detected and named.

Second, to compare the impact sets, we implemented the

traditional IA approach by performing a DFS from a changed

node on the ground truth dependency graph of each system.

We used the same ground truth graph to assess the ideal

implementation of our approach. To evaluate the IA portion

of the tool, we used the tool’s generated graph with user input

to complete the names of those topics that the tool recognized

but could not name unequivocally (because the names were

defined in configuration files or used code constructs or API

calls not yet supported by the tool implementation).

Third, to assess the runtime performance, we measured

the duration of the tool implementing the approach and

compared it against the time to compile the systems.

We recognize that the study presents several threats that

will limit the validity of the results. From an external validity

perspective, we only studied three systems using ROS. The

selected systems and ROS, however, are quite popular and

large, covering a range of similar systems. Furthermore, we

note that the cost of studying more systems and middleware

is non-trivial. It requires extensive and careful manual anal-

ysis to determine the ground truth that took months for the

studied systems. From an internal perspective, we recognize

that analyses involving a manual process are susceptible to

1nimbus.unl.edu, but programmed by another researcher

TABLE I: A-Tool Edge Detection for Subscribers

System Total Detected and Mapped Detected Undetected

PR2 23 20 2 1
COB 40 26 13 1
H2OS 36 32 4 0

TABLE II: A-Tool Edge Detection for Publishers

System Total Detected and Mapped Detected Undetected

PR2 53 50 1 2
COB 58 45 8 5
H2OS 35 30 5 0

bias. We attempted to control that bias by having multiple

participants examining sample code. For cases that were hard

to interpret, we compared the manual and automated results

to address any potential incompleteness in the manually

computed graph. Similarly, the code may exhibit other de-

pendencies that we failed to identify either manually or with

the provided tool. We provide a link to the analyzed code

to enable the reproduction and assessment of the results. We

acknowledge that the performance of the approach may not

be indicative of what happens in practice as the engineer’s

familiarity with the code may introduce more variability into

the IA process. With these limitations in mind, we proceed

to share and analyze the study results.

V. STUDY RESULTS

We present the results in three stages. First, we present the

tool’s capability to detect system component dependencies.

Second, we perform a three-way comparison of the generated

impact sets by traditional impact analysis using the ground

truth dependency graph (Trad) generated manually, the pro-

posed approach using the ground truth dependency graph

(A-GT) generated manually, and the automated version of

the proposed approach as implemented in the tool (A-Tool)

which generates the dependency graph through code analysis.

Third, we compute the overhead of the automated approach.

A. Dependency Graph

We break down these results for publishers and sub-

scribers. For subscribers, we are interested in determining

whether we can correctly detect the topics involved. For

publishers, we care about topic detection as well as the

label assignment. Given this differentiation, we assess them

separately. A-Tool, the automated approach, has 96% recall,

that is, it identifies almost all publish and subscribe edges.

However, some edges are identified, but their names are not

mapped because of certain limitations in the tool that we will

discuss next. We examine this more closely by classifying

edges into three groups: Detected and Mapped to the right

topic, Detected but without a mapping, or Undetected.

Subscribers. Table I presents the subscription edge detec-

tion information. A-Tool detected and mapped 87% of the

subscribers with their right mappings for PR2. Topic names

for two detected subscribers remained unmapped because

their names were provided through a launch file variable

2093

TABLE III: Edge Classification for the ground truth instance

of the approach (A-GT) by the instance of the approach

implemented tool (A-Tool)

(a) PR2 - 51 Published Edges Detected

A-Tool

Independent Dependent

A-GT
Independent 17 11

Dependent 0 23

(b) COB - 53 Published Edges Detected

A-Tool

Independent Dependent

A-GT
Independent 13 1

Dependent 1 38

(c) H2OS - 35 Published Edges Detected

A-Tool

Independent Dependent

A-GT
Independent 3 6

Dependent 0 26

within a data structure not supported by the current tool

implementation. A-Tool missed a subscriber edge because

the tool did not have the relevant API call information to

retrieve it. For COB, A-Tool detected and mapped 65% of

the subscribers. 33% subscriber edges were not mapped as

their names were defined in launch files. One edge went

undetected. For H2OS, the tool detected all edges and

mapped 89% of them. The rest had names defined in launch

files.

Publishers. Table II presents the publisher edge detection

performance. A-Tool detected and mapped 94% publisher

edges for PR2. A-Tool missed two publishing edges (4%)

again because of a missing API call implementation not

registered with Clang. The remaining edge was detected,

but the tool was not able to map the right edge name. For

COB, the detection and mapping percentage was 69% mainly

because of the use of dynamic configuration options and the

use of C++ constructs like pointers to functions that the

current tool implementation cannot handle. 23% of COB

publishers were detected but unmapped. The last 9% (5)

undetected topics were caused by included files that the tool

failed to reach. For H2OS, A-Tool detected all edges and 86%

(30) were detected and mapped. The remaining 14.3% of the

edges had names defined as part of launch file parameters.

Table III presents confusion matrices for all the analyzed

systems, comparing the label assignments for the detected

edges of the publishers2 between A-Tool and the ones as-

signed by A-GT. For PR2 (Table IIIa), all 23 dependent labels

are recognized as such by A-Tool. However, A-Tool is overly

conservative and marks 11 independent edges as dependent.

This will end up reducing the benefits of the approach, but it

was the result of a conscious trade-off between the tool being

2Recall that this is only done for publishers as they are the only ones to
rate-dependency labels.

COB PR2 H2OS

R
e

d
u

c
e

d
 T

o
 %

0

20

40

60

80

100
Trad

A-GT

A-Tool

Fig. 6: Impact set reduction ratio of A-GT and A-Tool over

Trad.

more precise versus less accurate in the implementation

of the edge marking scheme. Table IIIb presents the label

matching results for the COB system. Out of 39 dependent

edges, A-Tool mismarked one as independent, and out of

14 dependent edges, it marked one as independent. The

mismarked of a dependent edge as an independent edge was

caused by a dynamically loaded library that was beyond

the scope of the tool’s analysis, and we further assess its

impact in the next section. For one component, subscribers

were defined in the dynamically loaded library that went

undetected. Therefore, the publisher that was defined in the

analyzed component got labeled as Independent since there

were no detected subscribers for the node (conforming to the

first pattern). For H2OS (Table IIIc), all 26 dependent labels

are recognized correctly. However, A-Tool conservatively

marked six (6) independent edges as dependent.

B. Impact Analysis Sets

Figure 6 summarizes the impact set reduction for all three

systems. In this figure, the size of the impact set returned

by Trad is the baseline (100%). To compute the data in this

graph summary, we executed each approach as many times as

nodes in a system, assuming that one distinct node changed

each time. We compute the ratio between the accumulated

size of the impact sets of A-GT and A-Tool over Trad.

For COB, the impact set was reduced to 45% by A-GT,

and to 75% by A-Tool. The single false-positive in COB

(edge was declared as independent when it was not) did not

have an impact on recall because there were no subscribers to

that topic. For PR2, the impact set is barely reduced by either

version of our approach as most independent edges belong to

components that are not coupled to many other components.

H2OS shows the highest impact set reduction. This is in

part because Trad struggles to provide any reduction as

the system data-flow is highly coupled. A-GT and A-Tool

can de-couple some central communication components by

defining some edges as independent, reducing the impact to

approximately 40% of the Trad set.

We now look at those results in more detail, checking

the range of impact set sizes as different components in a

2094

0 10 20 30 40

Node Number

0

5

10

15

20
S

iz
e
 o

f
Im

p
a
c
t

S
e
t

Trad

A-GT

A-Tool

(a) COB

0 10 20 30 40 N0

ode uomb r 5

0

N

10

1N

S
iz

ud

fu
Ib

p
a
c
tu

S

t

T5ae

A-GT

A-Tddl

(b) PR2

0 5 10 15 20 25 30

Node Number

0

5

10

15

20

25

S
iz

e
 o

f
Im

p
a
c
t

S
e
t

Trad

A-GT

A-Tool

(c) H2OS

Fig. 7: Impact set size reduction when applying an approach

assuming the component in the x-axis changed.

system change. Figure 7a presents the results for COB, with

the components on the x-axis, and the impact set size on the

y-axis. Components are arranged in the decreasing order of

Trad A-GT A-Tool

T
im

e
 (

in
 M

in
s

)

0

5

10

15

20

25

Compilation

DA+IA

Fig. 8: Overhead Analysis.

their impacted depth in the dependency graph. Leaf nodes

in the dependency graph have no impact when changed, so

they are not shown. Pluses represent the impact set produced

by Trad, circles represent the impact set produced by A-

GT, and the crosses represent the size of the impact set

generated by A-Tool. Five (5) of COB’s 46 nodes, all with

large impact sets under Trad, are noticeably reduced by the

proposed approach. A-Tool, however, could not improve on

Trad when the reported sets had a handful of components.

In Figure 7b, for PR2, we note that the reduction achieved

by A-Tool over Trad is limited. A-GT does not provide any

reductions either as the code patterns are not observed as

frequently. The exceptions (i.e., node 1 presents a reduction

from 14 to 10 nodes) occur mostly when sensing nodes

in the periphery of the system are changed. Figure 7c, for

H2OS, illustrates yet a different scenario with major gains

in reduction independent of what component was changed.

The architecture of H2O is such that most nodes are highly

data-coupled but not always rate-coupled, which means that

A-Tool can provide on average impact sets of less than 8

nodes while Trad delivers sets of 19 nodes on average.

C. Overhead Analysis

We measure the tool’s runtime performance regarding the

analysis overhead when compared against that of compiling

the system (without our analysis). Figure 8 shows, for each

system, the time to compile the system and to analyze it.

The time to analyze a system was computed as the average

of the analysis times where each component was assumed to

be changed. Out tool took approximately 30% longer than

compilation, ranging from three to eight extra minutes when

ran on a laptop with Intel i7-2670QM processor (8 cores,

2.20 GHz) running Ubuntu 16.04 with 12 GB RAM.

VI. RELATED WORK

Section I and II provide an overview of the relevance of

communication rate in robotic systems. In this section, we

discuss work related to impact analysis and provide details

on the novelty of the proposed approach.

2095

Arnold and Bohner [5] defined Impact Analysis (IA) as

the approach for identifying what to modify to accomplish

a change or the potential consequences of a change. In this

work, we focused on the latter. Impact Analysis techniques

can be classified as static, dynamic, or hybrid. Static im-

pact analysis techniques analyze the code to generate data

or control flow representations. They mimic some of the

parsing and analysis performed by a compiler, and traverse

that representation based on the changes made to a code

base. Because static techniques ignore system input, they

tend to overestimate the impact sets by considering every

potential input. They can vary in the type and granularity

of dependency captured. For example, Imp [4] uses static

program slicing with impact analysis to analyze larger code-

base. While Chianti [21] captures atomic changes in source

code and uses the system call graph to report the impact

sets. Within the realm of distributed system analysis, others

have performed static analysis that can generate alternative

and more detail representations of publish and subscribe

systems (e.g., [11], [19]). Incorporating such a more detailed

representation is part of our future work.

Dynamic impact analysis techniques rely on the execution

of the code, rendering results that depend on particular

inputs used to drive the execution. They typically consume

execution trace data, where trace can be, for example,

executed functions [13]. Given such traces, these techniques

analyze the temporal relations of the elements in the trace

(e.g., always before, always after) to derive their potential

dependencies. In the context of distributed systems, Cai

and Thain [7] recently introduced a dynamic IA targeting

communication channels. Our work is different in that we

focus on publish and subscribe constructs, and in particular

their rates. From the perspective of the proposed approach,

we recognize the potential of dynamic impact analysis to

help us observe the publish and subscribe channels linked

to launch configuration files. Incorporating such information

into our tool would result in a hybrid impact analysis

approach, conceptually similar to others like SD-Impala [16]

but still unique in its focus on the rates of publish and

subscribe channels.

VII. CONCLUSION & FUTURE WORK

We presented an approach to support developers of robotic

systems in understanding the subtle impacts of code changes

that affect the rate at which data is produced or consumed.

The approach is more precise than existing impact analysis

approaches. We have shown its potential through a manual

examination and an automated tool for ROS. In the three

case studies, the tool reduced the impact set that developers

must process by up to 41% of alternative approaches.

The approach and tool, however, are still at an early

development stage. The approach could incorporate a richer

set of patterns, including those that attempt to synchronize

different communication channels, concurrency publishing

patterns, and special real-time publishing patterns. The tool

could also be improved by adding support for dynamic

library detection and by performing a more precise code

analysis. We are also interested in extending the approach

to analyze the effect of changes on the system performance,

as well as exploring the potential of incorporating dynamic

analysis to improve the effectiveness of the approach. We

will be exploring such improvements and further applying

the tool to a larger number of systems.

REFERENCES

[1] Care-o-bot robot. http://www.ros.org/wiki/Robots/Care-O-bot.

[2] “clang”: a C language family frontend for LLVM.
http://clang.llvm.org/.

[3] Pr2 robot. http://www.ros.org/wiki/Robots/PR2.

[4] M. Acharya and B. Robinson. Practical Change Impact Analysis
Based on Static Program Slicing for Industrial Software Systems.
In Proceedings of the 33rd International Conference on Software

Engineering, pages 746–755.

[5] R. Arnold and S. Bohner. Impact analysis-Towards a framework for
comparison. In , Conference on Software Maintenance, Proceedings,
pages 292–301, Sept. 1993.

[6] J. Beder. yaml-cpp, a yaml parser and emitter for c++.
https://github.com/jbeder/yaml-cpp.

[7] H. Cai and D. Thain. Distia: A cost-effective dynamic impact analysis
for distributed programs. In Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering, pages
344–355, 2016.

[8] D. T. Coleman, I. A. Sucan, S. Chitta, and N. Correll. Reducing the
barrier to entry of complex robotic software: a moveit! case study.
Journal of Software Engineering for Robotics, 5(1):3–16, 2014.

[9] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphviz—open source graph drawing tools. In International Sympo-

sium on Graph Drawing, pages 483–484. Springer, 2001.

[10] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The
many faces of publish/subscribe. ACM Computing Surveys, 2003.

[11] J. Garcia, D. Popescu, G. Safi, W. G. Halfond, and N. Medvidovic.
Identifying message flow in distributed event-based systems. In
Proceedings of the 9th Joint Meeting on Foundations of Software

Engineering, pages 367–377, 2013.

[12] A. Kapoulkine. pugixml: Light-weight, simple and fast xml parser for
c++ with xpath support. https://github.com/zeux/pugixml.

[13] J. Law and G. Rothermel. Incremental dynamic impact analysis
for evolving software systems. In 14th International Symposium on

Software Reliability Engineering, pages 430–441, Nov. 2003.

[14] E. A. Lee and S. A. Seshia. Introduction to embedded systems: A
cyber-physical systems approach. http://LeeSeshia.org, 2015. ISBN:
978-1-312-42740-2.

[15] I. Lütkebohle, R. Philippsen, V. Pradeep, E. Marder-Eppstein, and
S. Wachsmuth. Generic middleware support for coordinating robot
software components: The task-state-pattern. Journal of Software

Engineering for Robotics, 2(1):20–39, 2011.

[16] M. C. O. Maia, R. A. Bittencourt, J. C. A. d. Figueiredo, and
D. D. S. Guerrero. The Hybrid Technique for Object-Oriented
Software Change Impact Analysis. In 14th European Conference on

Software Maintenance and Reengineering, pages 252–255, Mar. 2010.

[17] J.-P. Ore, S. Elbaum, A. Burgin, and C. Detweiler. Autonomous aerial
water sampling. Journal of Field Robotics, 32(8):1095–1113, 2015.

[18] A. Paikan, U. Pattacini, D. Domenichelli, M. Randazzo, G. Metta, and
L. Natale. A best-effort approach for run-time channel prioritization
in real-time robotic application. In Intelligent Robots and Systems

(IROS), pages 1799–1805, Sept 2015.

[19] R. Purandare, J. Darsie, S. Elbaum, and M. Dwyer. Extracting
conditional component dependence for distributed robotic systems. In
Intelligent Robots and Systems (IROS), pages 1533–1540, Oct 2012.

[20] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng. Ros: an open-source robot operating system.
In ICRA workshop on open source software, volume 3, page 5, 2009.

[21] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip. Chianti: A Change
Impact Analysis Tool for Java Programs. In Proceedings of the 27th

International Conference on Software Engineering, pages 664–665,
2005.

[22] A. Rusakov, J. Shin, and B. Meyer. Concurrency patterns for easier
robotic coordination. In Intelligent Robots and Systems (IROS), pages

3500–3505, Sept 2015.

2096

