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Abstract

In functional data analysis (FDA), the covariance function is fundamental not only as a critical

quantity for understanding elementary aspects of functional data but also as an indispensable in-

gredient for many advanced FDA methods. A new class of nonparametric covariance function

estimators in terms of various spectral regularizations of an operator associated with a reproducing

kernel Hilbert space is developed. Despite their nonparametric nature, the covariance estimators

are automatically positive semi-definite, which is an essential property of covariance functions, via

a one-step procedure. An unconventional representer theorem is established to provide a finite

dimensional representation for this class of covariance estimators based on data, although the so-

lutions are searched over infinite dimensional functional spaces. To further achieve a low-rank

representation, another desirable property, e.g., for dimension reduction and easy interpretation,

the trace-norm regularization is particularly studied, under which an efficient algorithm is devel-

oped based on the accelerated proximal gradient method. The outstanding practical performance

of the trace-norm-regularized covariance estimator is demonstrated by a simulation study and the

analysis of a traffic dataset. Under both fixed and random designs, an excellent rate of conver-

gence is established for a broad class of operator-regularized covariance function estimators, which

generalizes both the trace-norm-regularized covariance estimator and other popular alternatives.
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regularization.

1. Introduction1

In recent decades, functional data analysis (FDA) has received substantial attention and be-2

come increasingly important especially with the advent of the “Big Data” era. Representative3

monographs on FDA include Ramsay and Silverman (2005), Ferraty and Vieu (2006), Horváth and4

Kokoszka (2012) and Hsing and Eubank (2015). Typically functional data are collected from n5

curves {Xi : i = 1, . . . , n} that are regarded as independent copies of a real-valued L2 stochastic6

process X defined on a compact domain T with mean function µ0(t) = E{X(t)}, t ∈ T , and co-7

variance function C0(s, t) = cov{X(s), X(t)}, s, t ∈ T . In reality, due to discrete recording and the8

presence of noise, the data are often represented by {(Tij , Yij) : i = 1, . . . , n; j = 1, . . .mi}, wheremi9

is the number of observations from the i-th curve Xi, and Yij is the noisy observation from Xi mea-10

sured at the discrete time point Tij , i.e., Yij = Xi(Tij) + εij . Here {εij : i = 1, . . . , n; j = 1, . . .mi}11

are independent errors with zero mean and finite variance σ2. For simplicity and without loss of12

generality we assume mi = m ≥ 2 for all i, and m is nonrandom but may vary over n.13

Among various population quantities, the covariance function C0 is fundamental in FDA. Gen-14

erally C0 has two major roles. It is not only an important quantity that characterizes the temporal15

dependency (Yao et al., 2005a; Li and Hsing, 2010; Zhang and Wang, 2016), but also a build-16

ing block for many advanced approaches in FDA, e.g., functional principal component analysis17

(FPCA). Hence the FDA literature that involves covariance function estimation may accordingly18

be categorized into two types depending on the role of C0. As for the estimation of C0, a variety19

of nonparametric methods have been proposed, such as local polynomial smoothing (Li and Hsing,20

2010; Zhang and Wang, 2016), B-splines (James et al., 2000; Rice and Wu, 2001), penalized splines21

(Goldsmith et al., 2011; Xiao et al., 2013), and smoothing splines (Rice and Silverman, 1991).22

In this article we adopt the framework of a reproducing kernel Hilbert space (RKHS), which has23

recently gained increasing popularity in FDA (e.g., Cai and Yuan, 2010; Avery et al., 2014; Zhu24

et al., 2014; Wang and Ruppert, 2015; Wong et al., 2017).25

Positive semi-definiteness is an essential characteristic of covariance functions. Therefore, a valid26
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covariance estimator is usually desired to be positive semi-definite, especially when this feature is27

indispensable in subsequent analyses, such as correlation estimation (see Section 5) and functional28

linear regression (Yao et al., 2005b). Meanwhile, having a low rank is another appealing feature29

of a covariance estimator. First, a low rank can encourage dimension reduction, facilitate simple30

interpretations (e.g., of FPCA), and alleviate computational and storage burdens. Moreover, a31

low rank is often technically needed in trajectory prediction, functional linear regression and some32

other FDA methods (e.g., Yao et al., 2005a; Chiou, 2012; Yao et al., 2005b; Li et al., 2013; Jiang33

et al., 2016).34

A majority of existing FDA methods cannot directly produce a covariance estimator that is35

positive semi-definite or of low rank. In the literature there are roughly two types of indirect ap-36

proaches that always involve multi-step procedures, apart from tuning parameter selection. The37

first type begins with a constraint-free covariance function estimator, then followed by a reconstruc-38

tion step, e.g., via FPCA and truncation. See Hall and Vial (2006) and Poskitt and Sengarapillai39

(2013) for instances. For the other type, a small number of eigenvalues and eigenfunctions are40

first estimated, e.g., by fitting a mixed-effects model (James et al., 2000; Paul and Peng, 2009),41

and then a positive semi-definite covariance function estimator of low rank can be reconstructed in42

terms of eigen-decomposition. These methods, however, are unfavorable since they may not only43

complicate the theoretical analysis of the final estimator, but also make computation unstable due44

to the non-smooth truncation. Therefore, in this article, we aim to develop a coherent “one-step”45

procedure that can automatically produce both a positive semi-definite and a low-rank covariance46

function estimator.47

To achieve this goal, we propose a novel class of tensor product RKHS covariance estimators48

via a variety of spectral regularizations of an operator. The estimation framework respects the49

semi-positive structure of covariance functions by imposing a constraint, so the resulting estima-50

tor automatically inherits this characteristic. The spectral regularizations generalize the popular51

Hilbert-Schmidt penalty (e.g., Cai and Yuan, 2010), and can easily enable low-rank representations,52

e.g., when the trace-norm penalty is used. Given any penalty, the corresponding covariance estima-53

tor is obtained by a single step, which can reduce the computational and theoretical complexities54
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of the aforementioned indirect approaches.55

We establish a crucial representer theorem that provides a finite dimensional representation56

for this class of covariance estimators based on data, although the solutions of the corresponding57

optimizations are searched over infinite dimensional functional spaces. Compared with its classical58

counterparts (e.g., Wahba, 1990; Cai and Yuan, 2010), this representer theorem is unconventional59

and technically innovative due to the semi-positivity constraint and a wide range of regularizations.60

A byproduct of the theorem is an explicit expression of the L2 eigen-decomposition admitted by61

each covariance estimator, which avoids numerical approximations commonly needed in FPCA due62

to discretization.63

To encourage low rank, we particularly focus on the trace-norm regularization in our algorithmic64

development although the underlying strategy could be applied to other convex regularizations. The65

corresponding objective function is convex but non-differentiable. We develop an efficient algorithm66

based on the representer theorem and accelerated proximal gradient method (Beck and Teboulle,67

2009). The numerical performance of the resulting estimator is shown in a simulation study to68

be the best among popular alternatives with respect to rank reduction, estimation accuracy, and69

computational stability. Its applicability is convincingly illustrated in the analysis of a traffic70

dataset. Note that, asymptotically, the use of trace-norm regularization does not rule out the case71

when C0 is of high or infinite rank. Irrespective of the true rank, our estimator is consistent with72

the optimal convergence rate, up to some order of logn, as implied by the theoretical results below.73

Despite the lack of a closed form due to the semi-positivity constraint and possibly non-74

differentiable penalties, we develop the empirical L2 rate of convergence for a class of operator-75

regularized covariance function estimators in the tensor product Sobolev-Hilbert spaces. The76

asymptotic results are broad since they hold for both fixed and random designs, and incorpo-77

rate a variety of spectral regularizations, where the trace-norm and Hilbert-Schmidt regulariza-78

tions are both special cases. Generally, the rate is comparable to the optimal rate of standard79

two-dimensional nonparametric smoothers. If X is additionally periodic, we can improve the re-80

sult significantly and achieve the optimal one-dimensional nonparametric rate, up to some order81

of log n, which is comparable to the minimax rate obtained by Cai and Yuan (2010) and the L2
82
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rate achieved by Paul and Peng (2009) for sparse functional data. In contrast to these two pioneer83

works, our objective function is not necessarily differentiable, which thus requires different technical84

treatments. Our theoretical results are established in terms of empirical processes techniques. The85

success of the proofs depends on the upper bound of the entropy for tensor product Sobolev-Hilbert86

spaces, which is the first appearance in the FDA literature to our best knowledge.87

To summarize, the main contribution of this article is three-fold. First, we propose a new and88

broad class of RKHS covariance estimators via a variety of spectral regularizations of an operator.89

The resulting estimator is automatically positive semi-definite through a one-step procedure. Ad-90

ditionally, low-rank estimation is encouraged when a proper penalty is chosen, e.g., the trace-norm91

penalty. Second, we establish an unconventional representer theorem that provides a finite dimen-92

sional representation for the covariance estimator. This theorem makes the estimation procedure93

practically computable and facilitates our algorithmic development. Lastly, we develop the asymp-94

totic results for a broad class of covariance function estimators in tensor product Sobolev-Hilbert95

spaces, which hold for both fixed and random designs, and incorporate a variety of spectral regu-96

larizations. For periodic functional spaces, in particular, the estimators can be shown to achieve a97

one-dimensional rate for a two-dimensional target, based on a new entropy upper bound.98

The rest of the article is organized as follows. The proposed methodology is presented in99

Section 2 and computational issues are discussed in Section 3. The empirical performance of the100

trace-norm-regularized estimator is evaluated by a simulation study in Section 4 and a real data101

application is given in Section 5. Section 6 provides theoretical results and the article is concluded102

with Section 7. Additional materials, including technical details, more simulation results and103

further algorithmic descriptions, are provided in separate supplementary material. An R package104

“rkhscovfun” based on this article is available at https://github.com/raymondkww/rkhscovfun.105

2. Methodology106

In the same vein as penalized splines (e.g., Pearce and Wand, 2006) and smoothing splines107

(e.g., Wahba, 1990; Eggermont and LaRiccia, 2009; Gu, 2013), we suppose that the sample path108

of X belongs to a RKHS H(K) equipped with an inner product ⟨·, ·⟩H(K) and corresponding norm109
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∥ · ∥H(K), which is associated with a continuous and square-integrable reproducing kernel K(·, ·)110

defined on T × T . A key property of K is the so-called reproducing property:111

⟨K(t, ·), f(·)⟩H(K) = f(t), for any t ∈ T and f ∈ H(K).

Moreover, K also uniquely determines both ⟨·, ·⟩H(K) and ∥ · ∥H(K). A canonical example of RKHS112

is the r-th order Sobolev-Hilbert space on T = [0, 1]:113

Wr = {g : g(v), v = 0, . . . , r − 1, are absolutely continuous; g(r) ∈ L2([0, 1])},

equipped with the squared norm114

∥g∥2 =
r−1∑
v=0

{∫ 1

0
g(v)(t)dt

}2

+

∫ 1

0

{
g(r)(t)

}2
dt.

Under the assumption E∥X∥2H(K) <∞, Cai and Yuan (2010) showed that C0 ∈ H(K⊗K), where115

H(K ⊗K) is the tensor product RKHS equipped with the norm ∥ · ∥H(K⊗K) and the reproducing116

kernel117

K ⊗K((s1, t1), (s2, t2)) = K(s1, s2)K(t1, t2), s1, s2, t1, t2 ∈ T .

This motivates us to adopt a tensor product RKHS modeling of C0. With slight abuse of notation,118

we hereafter also use the notation ⊗ to denote the tensor product of functions, i.e., f ⊗ g(s, t) =119

f(s)g(t).120

2.1. Spectral decomposition on RKHS121

We first introduce spectral decomposition in RKHS and then define a variety of spectral regu-122

larizations which we will use to obtain a class of covariance function estimators.123

For a bivariate function C(·, ·) on T × T , define its transpose, denoted by C⊤, as C⊤(s, t) =124

C(t, s) for any s, t ∈ T . Due to the symmetry of covariance functions, we focus on the space125

S(K) = {C ∈ H(K ⊗ K) : C = C⊤}. For any C ∈ S(K), define its self-adjoint operator CC :126

H(K)→ H(K) by127

(CCf)(s) = ⟨C(s, ·), f(·)⟩H(K), for any f ∈ H(K) and s ∈ T . (1)
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Note that ∥C∥H(K⊗K) < ∞ since C ∈ S(K) and that the Hilbert-Schmidt norm of CC coincides128

with ∥C∥H(K⊗K). Therefore, CC is a Hilbert-Schmidt operator and hence admits a spectral decom-129

position. In Section 2.2, we will define a penalty function based on this spectral decomposition.130

Note that the spectral decomposition of CC is different from that of the Hilbert-Schmidt integral131

operator LC : L2(T )→ L2(T ) as is often used in the FDA literature:132

(LCf)(s) = ⟨C(s, ·), f(·)⟩L2(T ) =

∫
T
C(s, t)f(t) dt, for any f ∈ L2(T ) and s ∈ T . (2)

There are two reasons why we adopt CC instead of LC . First, CC is more aligned with the RKHS133

modeling of X, especially when the inner product of H(K) is chosen to mimic the physical real-134

ity. Many examples can be found in the work on L-splines, e.g., Chapter 4.5 in Gu (2013) and135

Chapter 21 of Ramsay and Silverman (2005). Second, using CC enables a finite dimensional repre-136

sentation of our proposed covariance estimators as in Theorem 1 below, and thus simplifies practical137

computation.138

2.2. Spectrally regularized covariance estimator139

For any C ∈ S(K), let τ1(C), τ2(C), . . . be the eigenvalues corresponding to the spectral decom-140

position of CC such that |τ1(C)| ≥ |τ2(C)| ≥ · · · . We propose the following covariance estimator:141

Ĉ = argmin
C∈S+(K)

{ℓ(C) + λΨ(C)} , (3)

where S+(K) = {C ∈ S(K) : ⟨CCf, f⟩H(K) ≥ 0, for all f ∈ H(K)} contains all positive semi-142

definite functions in H(K ⊗ K), ℓ is a convex and smooth loss function that depends on C143

through {C(Tij , Tik) : i = 1, . . . , n; j, k = 1, . . . ,m}, λ > 0 is a tuning parameter, and Ψ(C) =144 ∑
k≥1 ψ(|τk(C)|) with ψ being a non-decreasing penalty function satisfying ψ(0) = 0 (Abernethy145

et al., 2009).146

Obviously, the covariance estimator Ĉ is obtained by one step for a given λ. Moreover, regardless147

of the form of Ψ, the estimator is always positive semi-definite since the solution to the minimization148

(3) is searched only within S+(K).149

The choice of ψ, and thus Ψ, is broad. Below we list a few interesting forms and briefly discuss150

their effects on the estimator.151
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Example 1 (Rank regularization). If ψ(τ) = I(τ ̸= 0) where I(·) is the indicator function, Ψ(C)152

is the rank of the operator CC . This penalty obviously encourages a low-rank solution. However,153

the minimization (3) is now difficult owing to its non-convexity, and over-fitting may occur since154

no regularizations are imposed on non-zero eigenvalues.155

Example 2 (Hilbert-Schmidt-norm regularization). If ψ(τ) = τ2, Ψ(C) becomes the squared156

Hilbert-Schmidt norm of the operator CC , which equals ∥C∥2H(K⊗K). Similar to the ℓ2-norm reg-157

ularization for vectors, the Hilbert-Schmidt-norm regularization ensures the convexity of the ob-158

jective function in (3), but does not encourage sparsity in eigenvalues, so the resulting covariance159

estimator is usually of high rank. Cai and Yuan (2010) used this regularization to estimate C0160

under the RKHS framework, but did not impose the constraint C ∈ S+(K), so neither positive161

semi-definiteness nor low rank can be guaranteed for their estimator.162

Example 3 (Trace-norm regularization). If ψ(τ) = τ , Ψ(C) is the trace norm of CC . Similar to the163

celebrated ℓ1-regularization for vectors and the trace-norm regularization for matrices, the trace-164

norm penalty Ψ for operators not only promotes the sparsity of eigenvalues and hence low-rank165

solutions, but also regularizes non-zero eigenvalues. The minimization (3) now becomes convex but166

nondifferentiable, which allows leveraging recent developments in non-smooth convex optimizations167

(e.g., Beck and Teboulle, 2009) to achieve feasible computations. See Section 3 for more details.168

2.3. Representer theorem169

Since commonly used H(K), e.g., Wr, are infinite dimensional, solving (3) is typically an170

infinite dimensional optimization problem. Therefore, it is not obvious whether Ĉ can be computed171

in practice. To answer this question, we establish a representer theorem that provides a finite172

dimensional representation of Ĉ. This theorem holds for the entire class of estimators in (3).173

Write N = nm and (T̃1, . . . , T̃N ) = (T11, . . . , T1m, T21, . . . , T2m, . . . , Tn1, . . . , Tnm).174
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Theorem 1 (Representer theorem). If the solution set of (3) is not empty, then there always175

exists a solution lying in the space K ⊗ K = span{K(·, T̃i) ⊗ K(·, T̃j) : i, j = 1, . . . , N}, where176

K = span{K(·, T̃i) : i = 1, . . . , N}. Moreover, the solution takes the form:177

C(s, t) = z(s)⊤Az(t), (4)

where A is an N ×N symmetric matrix and z(·) = (K(·, T̃1), . . . ,K(·, T̃N ))⊤.178

Classical representer theorems (e.g., Wahba, 1990), as adopted in Cai and Yuan (2010), do not179

cover the scenario addressed by Theorem 1 due to the semi-positivity constraint and a wide choice180

of regularizations, e.g., the trace-norm regularization. To show this theorem, we significantly utilize181

the fact that the spectral analysis is based on the RKHS geometry. This is the main reason for182

using the operator CC in (1) instead of LC in (2). We remark that the conclusion of Theorem 1 also183

holds when the semi-positivity is not imposed, i.e., S+(K) is replaced by S(K) in (3). In Section184

4, this fact will be used to compute unconstrained estimators for comparison.185

At a first glance, a significant number of scalar parameters, i.e., (N + 1)N/2, is involved in186

the solution (4). However, if a low-rank inducing penalty, such as the trace-norm regularization, is187

used, the resulting estimator is often of low rank, which will benefit computation and storage of its188

estimation, and subsequent uses.189

2.4. Parametrization190

By Theorem 1, we are able to parametrize the solution to (3) in terms of a finite dimen-191

sional representation since it suffices to merely focus on covariance functions of the form C(·, ·) =192 ∑N
i=1

∑N
j=1AijK(·, T̃i) ⊗ K(·, T̃j). The eigenvalues of the operator CC , {τj(C) : j ≥ 1}, are the193

eigenvalues of the matrix B = M⊤AM , where M is any N × q matrix such that MM⊤ = K̃ =194

[K(T̃i, T̃j)]1≤i,j≤N with q = rank(K̃). The matrix M provides a representation based on an or-195

thonormal basis (of K) {v1, . . . , vq}:196

K(·, T̃i)⊗K(·, T̃j) =
q∑

k=1

q∑
l=1

MikMjlvk ⊗ vl, 1 ≤ i, j ≤ N.
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Therefore C =
∑q

k=1

∑q
l=1Bklvk⊗vl. As C(s, t) = ⟨K(·, s), CCK(·, t)⟩H(K), we have [C(T̃i, T̃j)]1≤i,j≤N =

MBM⊤. Moreover, write M = (M⊤
1 , . . . ,M

⊤
n )⊤, where {Mi : i = 1, . . . , n} are m × q matrices.

Then the loss function depends on C through [C(Tij , Tik)]1≤j,k≤m =MiBM
⊤
i for i = 1, . . . , n. Com-

pared with A, the new parametrization B is unique even when {Tij : i = 1, . . . , n; j = 1, . . . ,m} are

not all unique. Now (3) can be rewritten as

argmin
B∈S+

q

{
ℓ̃(B) + λΨ̃(B)

}
, (5)

where S+q is the set of all q×q positive semi-definite matrices, ℓ̃(B) = ℓ(
∑q

k=1

∑q
l=1Bklvk⊗vl), and197

Ψ̃(B) =
∑q

k=1 ψ(|ξk(B)|) with ξ1(B), . . . , ξq(B) being the eigenvalues of the matrix B such that198

|ξ1(B)| ≥ · · · ≥ |ξq(B)|. Conversely, with the new parametrization B, we can represent C(s, t) =199

z(s)⊤(M+)⊤BM+z(t) where M+ is the Moore-Penrose pseudoinverse of M . Consequently, solving200

(3) is equivalent to solving (5), a finite-dimensional optimization.201

2.5. Explicit expression of L2 eigen-decomposition202

By Mercer’s theorem, we can represent an arbitrary covariance function C ∈ S+(K) in terms203

of the typical spectral decomposition via the L2 inner product, i.e., C(s, t) =
∑

k≥1 ζkϕk(s)ϕk(t),204

where {ϕk : k ≥ 1} are the L2 eigenfunctions and {ζk : k ≥ 1} are the corresponding L2 eigenvalues.205

This eigen-decomposition is a key component of FPCA among other FDA methods. In the liter-206

ature, approximate computations are commonly involved where the eigen-decomposition is based207

on the discretized covariance function estimator (e.g., Rice and Silverman, 1991). In contrast, due208

to Theorem 1, our covariance estimator leads to an explicit expression of this eigen-decomposition209

so that such computational complication can be avoided.210

Following the notation in Sections 2.3 and 2.4, let Q = [
∫
T K(s, T̃i)K(s, T̃j) ds]1≤i,j≤N =211

MRM⊤ where R = [
∫
T vk(s)vl(s) ds]1≤k,l≤q = M+Q(M+)⊤. Similar to Lemma 3 of Cai and212

Yuan (2010), once B̂ is obtained from (5), the L2 eigenfunctions of Ĉ =
∑q

k=1

∑q
l=1 B̂klvk ⊗ vl can213

be expressed as ϕ̂k(·) = U⊤
k z(·), k = 1, . . . , n, where Uk is the k-th column of U = (M+)⊤R−1/2V214

and V is the eigenvectors of R1/2B̂R1/2. The L2 eigenvalues of Ĉ coincide with those of R1/2B̂R1/2,215

and the number of nonzero eigenvalues is exactly the rank of B̂.216
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3. Computational issues217

To achieve a desirable low-rank covariance estimator, in this section we only focus on the trace-218

norm regularization and develop Algorithm 1 below. A similar algorithm can be obtained for the219

Hilbert-Schmidt-norm regularization, which will be implemented in Section 4, and its details are220

given in Section S1 of the supplementary material.221

3.1. Algorithm222

By (5), with the trace-norm regularization in (3), it is equivalent to solving223

argmin
B∈S+

q

{
ℓ̃(B) + λ∥B∥∗

}
, (6)

where ∥ · ∥∗ represents the typical trace norm for matrices. We can also rewrite (6) as224

argmin
B∈Sq

{
ℓ̃(B) + λh(B)

}
, where h(B) =

⎧⎪⎨⎪⎩
∥B∥∗, B ∈ S+q

∞, B ̸∈ S+q
. (7)

Here Sq represents the set of all q × q matrices.225

The objective function in (7) is the sum of a smooth function ℓ̃(·) and a non-smooth function226

λh(·). A popular approach to such optimizations is the accelerated proximal gradient (APG)227

method (Beck and Teboulle, 2009). To apply this method, define an operator svec : Sq → Rq(q+1)/2
228

by229

svec(B) = [B11,
√
2B21, . . . ,

√
2Bq1, B22,

√
2B32, . . . ,

√
2Bq2, . . . , Bqq]

⊤,

for any B = [Bij ]1≤i,j≤q ∈ Sq. This operator provides an isometry between Sq and Rq(q+1)/2. Denote

its inverse by svec−1 and write ℓ̌(b) = ℓ̃(svec−1(b)) for any b ∈ Rq(q+1)/2. The APG algorithm of

our case involves the proximal operator proxν : Rq(q+1)/2 → Rq(q+1)/2 defined by

proxν(b) = argmin
d∈Rq(q+1)/2

{
1

2
∥d− b∥2E + νh(svec−1(d))

}
= svec

[
argmin
D∈S+

q

{
1

2
∥D −B∥2F + ν∥D∥∗

}]
,
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for any b ∈ Rq(q+1)/2 and ν > 0. Here ∥ · ∥E and ∥ · ∥F represent the Euclidean norm and230

Frobenius norm respectively. The following proposition states the closed-form solution of this231

proximal operator.232

Proposition 1. For any ν > 0 and b ∈ Rq(q+1)/2 with eigen-decomposition svec−1(b) = Pdiag(b̃)P⊤,233

proxν(b) = svec(Pdiag(c̃)P⊤),

where c̃ = (gν(b̃1), . . . , gν(b̃q))
⊤ and b̃ = (b̃1, . . . , b̃q)

⊤. Here gν(x) = (x− ν)+ for any x ∈ R.234

Due to this closed-form solution, we can avoid an inner numerical optimization within every235

iteration of the APG algorithm. The proof uses the same technique as in the proof of Lemma 1 in236

Mazumder et al. (2010), and is thus omitted.237

The standard APG method requires the knowledge of the Lipschitz constant of ∇ℓ̌, which238

directly relates to the step size in each iteration of the algorithm. For many choices of the loss239

function ℓ, the corresponding Lipschitz constant of ∇ℓ̌ is difficult to obtain. Moreover, even when240

the Lipschitz constant is known (e.g., the choice of ℓ described in Section 3.2), the algorithm usually241

suffers from conservative step sizes (Becker et al., 2011). Hence the APG with backtracking steps242

is usually preferred. Following the suggestions of Becker et al. (2011), we adopt a modified version243

of the APG method and develop Algorithm 1.244

Modifying lines 7–8 in Algorithm 1 will result in other variants of proximal gradient methods.245

More discussions are in Section 5.2 of Becker et al. (2011). For convergence properties of the APG246

method, we refer interested readers to Beck and Teboulle (2009).247

3.2. A choice of ℓ248

The choice of ℓ is broad, but hereafter we only focus on the following quadratic loss:249

ℓ(C) =
1

nm(m− 1)

n∑
i=1

∑
1≤j ̸=k≤m

{Zijk − C(Tij , Tik)}2 , (8)

12



Algorithm 1: The APG algorithm with backtracking for trace-norm-regularized covari-
ance estimation

Input: B0 ∈ S+q , L̂ > 0, η > 1, α < 1

1 b0 ← svec(B0), b̄0 ← b0, θ−1 ← +∞, L−1 ← L̂
2 for k = 0, 1, 2, . . . do
3 Lk ← αLk−1

4 repeat

5 θk ← 2/[1 + {1 + 4Lk/(Lk−1θ
2
k−1)}1/2]

6 ek ← (1− θk)bk + θk b̄k
7 bk+1 ← proxλ/Lk

(ek −∇ℓ̌(ek)/Lk)

8 b̄k+1 ← {bk+1 − (1− θk)bk}/θk
9 L̂← 2|(ek − bk+1)

⊤{∇ℓ̌(bk+1)−∇ℓ̌(ek)}|/∥bk+1 − ek∥2E
10 if Lk ≥ L̂ then
11 break

12 Lk ← max{ηLk, L̂}
13 until convergence;

where Zijk = {Yij − µ̂(Tij)}{Yik − µ̂(Tik)} and µ̂ is an estimator of the mean function µ0. Since

[C(Tij , Tik)]1≤j,k≤m =MiBM
⊤
i as shown in Section 2.4, ℓ(C) becomes

ℓ̃(B) =
1

nm(m− 1)

n∑
i=1

∥ρ(Zi −MiBM
⊤
i )∥2F

=
1

2
vec(B)⊤∇2ℓ̃(B)vec(B)−

(
n∑

i=1

M⊤
i ZiMi

)⊤

vec(B),

up to an additive constant independent of B. Here Zi = [Zijk]1≤j,k≤m, ρ is an operator setting the250

diagonal entries of its input to zero, and251

∇2ℓ̃(B) =
2

nm(m− 1)

n∑
i=1

(M⊤
i ⊗M⊤

i )diag{vec(Ĩ)}(Mi ⊗Mi),

with Ĩ ∈ Rq×q consisting of elements Ĩij = I(i ̸= j). By simple derivations, one can obtain the252

closed-form expressions of ℓ̌ and ∇ℓ̌ as required in Algorithm 1, which we omit here.253
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4. Numerical experiments254

Numerical experiments were conducted to illustrate the practical performance of the proposed255

methodology. We generated {Xi : i = 1, . . . , n} from a Gaussian process with µ0(t) = 3 sin{3π(t+256

0.5)} + 2t3 and C0(s, t) =
∑L

k=1 ζkϕk(s)ϕk(t), with ζk = 1/(k + 1)2, ϕ2l−1(t) = 21/2 cos(2πlt),257

and ϕ2l(t) = 21/2 sin(2πlt) for any positive integers k, l. We also sampled {Tij : i = 1, . . . , n; j =258

1, . . .m} independently from the uniform distribution on [0, 1] and {εij : i = 1, . . . , n; j = 1, . . .m}259

independently from N(0, σ2) with σ2 = 0.01 to produce Yij = Xi(Tij)+ εij . We studied 18 settings260

in total, where L = 2, 4 or 10, n = 50, 100 or 200, and m = 10 or 20. In each setting, we simulated261

300 datasets where we compared various covariance function estimators. Other than our proposed262

estimators, we also studied popular alternatives, including the covariance smoothing estimators by263

local polynomial regression (Yao et al., 2005a) and bivariate P-splines (Goldsmith et al., 2011; Xiao264

et al., 2018) respectively, and the restricted maximum likelihood (REML) estimator by Peng and265

Paul (2009). For the first two alternative methods, a raw smoothed estimate is first computed.266

Then a truncation step via FPCA is applied to reconstruct a covariance function that is both267

positive semi-definite and of low rank. That means, the reconstructed covariance estimator, which268

we refer to as a truncated estimator below, takes the form:
∑J

k=1 ζ̂kϕ̂k(s)ϕ̂k(t) where ζ̂k’s and ϕ̂k’s269

are the largest J positive estimated eigenvalues and corresponding estimated eigenfunctions based270

on the raw smoothed estimate.271

Altogether we compared the following ten estimators, of which the first five are based on our272

proposed framework while the rest are popular alternatives: 1) Ĉ+
trace: obtained from (3) with273

the trace-norm regularization; 2) Ĉtrace: obtained from (3) with the trace-norm regularization but274

without the semi-positivity constraint, i.e., S+(K) replaced by S(K); 3) Ĉ+
HS: obtained from (3)275

with the Hilbert-Schmidt norm regularization; 4) ĈHS: obtained from (3) with the Hilbert-Schmidt276

norm regularization but without the semi-positivity constraint. 5) ĈCY: the estimator proposed277

by Cai and Yuan (2010) and implemented in their R package (http://stat.wharton.upenn.edu/278

~tcai/paper/html/Covariance-Function.html); 6) ĈPACE: the raw smoothed covariance esti-279

mator using local polynomial regression (Yao et al., 2005a), implemented in the R package fdapace;280

7) Ĉ+
PACE,BIC: the truncated estimator based on ĈPACE with J selected by Baysian Information281
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Criterion (bic), implemented in fdapace; 8) Ĉ+
FACE: the truncated estimator based on a generalized282

version of bivariate P-spline smoothing (Xiao et al., 2018) with J selected by fraction of variation283

explained fve= 0.99 by default, implemented in the R package face; 9) Ĉ+
SC: the truncated estima-284

tor based on tensor product bivariate P-spline smoothing (Goldsmith et al., 2011) with J selected285

by fve= 0.99 by default, implemented in the R package refund; 10) Ĉ+
PP: the REML estimator286

based on a Newton-Raphson procedure on the Stiefel manifold (Peng and Paul, 2009), implemented287

in the R package fpca, with the number of B-spline basis functions and rank ranging in [4, 20] and288

[2, 7] respectively. We remark that, for the estimators based on local polynomial regression, fdapace289

provides other methods for choosing J such as Akaike Information Criterion and fve in addition to290

bic. Since these three methods give similar results, here we only report Ĉ+
PACE,BIC which achieves291

the best numerical performance among them. Besides, both refund and face do not output raw292

smoothed estimates so we did not compare them.293

To obtain Ĉ+
trace, Ĉtrace, Ĉ

+
HS, ĈHS and ĈCY, a smoothing spline was first applied to estimate294

µ, where its smoothing parameter was selected by generalized cross-validation (gcv), ignoring the295

functional data structure. To obtain each of these five covariance estimators, we always used the loss296

function ℓ as in Section 3.2, and H(K) =W2 with the squared norm ∥g∥2 =
∑1

v=0{
∫ 1
0 g

(v)(t)dt}2+297 ∫ 1
0 {g

(2)(t)}2dt. The tuning parameters λ of the first four methods were chosen by five-fold cross-298

validation (cv), with n/5 curves in each fold. The computations of Ĉtrace, Ĉ
+
HS andd ĈHS were299

achieved by Algorithm 1 with different proximal operators (line 7 of Algorithm 1) due to the300

change of penalty and semi-positivity constraint. For the remaining five methods, µ is estimated301

by the corresponding computational packages. See their documentation for further implementation302

details.303

4.1. Comparisons between variations of (3)304

First, we restrict our attention to the first five methods which can all be regarded as variations305

of (3). Table 1 shows the average integrated squared errors (aise) and average ranks of these306

covariance estimators over 300 simulated data sets, which reflect their performances in estimation307

accuracy and rank reduction respectively. Due to space limitations, we only present those settings308

with n = 50 and m = 20, which have an n-to-m ratio most similar to the real data in Section309
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5. We can obtain similar conclusions in other settings, which are reported in the supplementary310

material. Although ĈCY and ĈHS share the same definition, they differ in various implementation311

details and hence the practical performance. However, their differences in aise are too small to312

affect subsequent comparisons, so hereafter it suffices to simply focus only on ĈHS, rather than313

both of them, to study rank reduction and the effect of the semi-positivity constraint.314

When we compare the two pairs, Ĉ+
trace versus Ĉtrace, and Ĉ+

HS versus ĈHS, obviously the co-315

variance estimators with the positivity constraint always achieve smaller aise values than their316

counterparts. This suggests that not only can the semi-positivity constraint produce a valid esti-317

mator, but also improve estimation accuracy. Notice in Table 1 that rank reduction can also be318

observed for Ĉ+
HS because the semi-positivity constraint often results in the truncation of eigenval-319

ues at zero. When Ĉ+
trace is compared with Ĉ+

HS, the former performs slightly worse in aise, but320

significantly better in rank reduction. For settings with L = 2 or 4, the average ranks of Ĉ+
trace are321

in fact the closest to the true rank among the three rank-reduced estimators. This highlights the322

benefits of trace-norm regularizations in computation, storage and subsequent uses as mentioned323

in Section 1. Next we only compare Ĉ+
trace and Ĉ+

HS with popular alternatives.324

Table 1: aise (×103) values with standard errors (×103) in parentheses for the five variations of (3), and average ranks
with standard errors in parentheses for those estimators with rank reduction. Only settings with n = 50,m = 20 are
presented. See full results in the supplementary material.

L n m Ĉ+
trace Ĉtrace Ĉ+

HS ĈHS ĈCY

2 50 20 AISE 6.88 (0.290) 7.66 (0.266) 6.70 (0.260) 8.07 (0.263) 7.77 (0.263)
rank 2.6 (0.051) 7.5 (0.158) 13.0 (0.051) - -

4 50 20 AISE 11.64 (0.338) 14.97 (0.311) 11.27 (0.317) 14.98 (0.285) 12.36 (0.316)
rank 3.8 (0.045) 13.2 (0.614) 13.5 (0.048) - -

10 50 20 AISE 15.99 (0.398) 19.12 (0.367) 15.20 (0.370) 19.37 (0.354) 15.74 (0.371)
rank 3.7 (0.061) 9.7 (0.515) 14.5 (0.045) - -

4.2. Comparisons with popular alternatives325

Due to space constraints, here we only present the results for the settings with n = 50 or 200,326

and defer the remaining ones (with n = 100) to the supplementary material. In Table 2, we report327

aise values and average ranks for Ĉ+
trace, Ĉ

+
HS, Ĉ

+
PACE,BIC, Ĉ

+
FACE, and Ĉ

+
SC. We exclude ĈPACE here328

since it is uniformly worse than Ĉ+
PACE,BIC in both estimation accuracy and rank reduction, which329

illustrates the benefit of the reconstruction step. We also omit Ĉ+
PP in Table 2 since it suffers the330
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most from computational instability, probably due to the algorithmic convergence issue as reported331

in Peng and Paul (2009). The fpca package for computing Ĉ+
PP failed to provide an output in some332

simulation runs, and the failure rate may be very high, e.g., 38% when (L, n,m) = (4, 200, 20). See333

the supplementary material for full results with both ĈPACE and Ĉ+
PP included.334

We first focus on the settings with L = 2 or 4 in Table 2. As also observed in Table 1, Ĉ+
trace has335

slightly larger aise values than Ĉ+
HS but is considerably superior in rank reduction. The average336

ranks and aise values of Ĉ+
trace are both much lower than those of Ĉ+

PACE,BIC in most settings. When337

compared with Ĉ+
FACE, the performance of Ĉ+

trace is better throughout all settings in Table 2 except338

for the estimation accuracy when (L, n,m) = (4, 50, 10). Compared with Ĉ+
SC, Ĉ

+
trace achieves similar339

aise values and performs slightly but uniformly better in rank reduction. Table 2 also shows that340

Ĉ+
trace is numerically more stable than Ĉ+

SC, since no computational error appeared for Ĉ+
trace, but341

some occurred in a fraction of simulation runs where no output was returned to obtain Ĉ+
SC. Here342

the results for Ĉ+
SC were computed based on successful runs which has no computational error.343

Next we turn to the settings with a high rank L = 10, where the covariance function estimation is344

more difficult. All estimators, except for Ĉ+
HS, generally shrink the rank to some extent. Regarding345

estimation accuracy, the performance Ĉ+
trace is not as strong as Ĉ+

HS, which is expected due to the346

penalization of the trace-norm regularization on high-rank solutions. However, Ĉ+
trace surprisingly347

remains very competitive compared to the other three: It is significantly better than Ĉ+
PACE,BIC and348

Ĉ+
FACE for n = 200, and similar to, if not slightly better than, Ĉ+

SC for n = 50.349

At last we compare the performances of the five covariance estimators in estimating the principal350

eigenvalue ζ1 and principal eigenfunction ϕ1 in Table 3, where the bias and mean squared error351

(mse) for ζ1, and the aise for ϕ1 are given for each method. Here we only report those settings352

with n = 50 and m = 20, since similar patterns can be seen in other settings. The full results are353

reported in the supplementary material, together with those for the second eigen-component. Both354

Ĉ+
PACE,BIC and Ĉ+

FACE perform well in estimating ϕ1, but their eigenvalue estimations are significantly355

worse than Ĉ+
trace, Ĉ

+
HS and Ĉ+

SC. The biases for ζ1 are negative for most methods, which indicates356

that their eigenvalue estimates are on average smaller than the true value. The performances of357

Ĉ+
trace and Ĉ+

HS are very similar in both eigenvalue and eigenfunction estimations. Despite not358
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always being the smallest, the magnitude of their biases for ζ1 is sufficiently small (< 1.5 × 10−2)359

compared with the true principal eigenvalue ζ1 = 0.25. Their mses for ζ1 and aises for ϕ1 are360

usually smaller than those of Ĉ+
SC, and always among the smallest.361

In summary, the overall performance of Ĉ+
trace is the best regarding rank reduction, estimation362

accuracy, and computational stability. This conclusion is also confirmed by an additional simulation363

study in the supplementary material with a higher error variance σ2 = 0.1. This motivates us to364

use Ĉ+
trace in the following real data application.365

Table 2: aise (×103) values with standard errors (×103) in parentheses, and average ranks with standard errors in
parentheses, for Ĉ+

trace, Ĉ
+
HS, Ĉ

+
PACE,BIC, Ĉ

+
FACE, and Ĉ+

SC. For Ĉ
+
SC, its statistics in each setting are computed only based

on successful runs, that is, those simulation runs where its corresponding package does not return an output due to
computational errors are not counted, with the proportion of successful runs additionally shown in square brackets.

L n m Ĉ+
trace Ĉ+

HS Ĉ+
PACE,BIC Ĉ+

FACE Ĉ+
SC

2 50 10 aise 9.25 (0.327) 9.00 (0.310) 11.94 (0.314) 9.37 (0.616) 10.64 (0.364)
rank 2.6 (0.031) 13.4 (0.049) 5.2 (0.047) 4.0 (0.036) 4.2 (0.039)

2 50 20 aise 6.88 (0.290) 6.70 (0.260) 9.54 (0.253) 9.73 (0.967) 7.59 (0.296)
rank 2.6 (0.051) 13.0 (0.051) 4.5 (0.044) 3.7 (0.033) 3.9 (0.037)

2 200 10 aise 2.85 (0.092) 2.81 (0.089) 6.37 (0.126) 3.40 (0.294) 3.18 (0.098)
rank 2.7 (0.033) 14.5 (0.043) 4.9 (0.045) 4.1 (0.033) 4.1 (0.037)

2 200 20 aise 2.07 (0.078) 2.04 (0.077) 5.56 (0.112) 3.58 (0.393) 2.23 (0.080)
rank 2.7 (0.036) 14.3 (0.045) 4.4 (0.044) 4.0 (0.025) 3.9 (0.034)

4 50 10 aise 17.04 (0.416) 15.94 (0.395) 15.56 (0.335) 14.69 (0.555) 16.09 (0.516) [99.7%]
rank 3.1 (0.055) 13.8 (0.047) 5.7 (0.049) 5.0 (0.036) 5.1 (0.039) [99.7%]

4 50 20 aise 11.64 (0.338) 11.27 (0.317) 12.34 (0.294) 12.87 (0.869) 11.42 (0.360)
rank 3.8 (0.045) 13.5 (0.048) 5.2 (0.047) 5.2 (0.029) 5.0 (0.032)

4 200 10 aise 4.94 (0.107) 4.74 (0.097) 8.61 (0.136) 6.50 (0.495) 4.64 (0.104)
rank 4.4 (0.032) 14.9 (0.046) 5.5 (0.047) 5.6 (0.030) 5.4 (0.032)

4 200 20 aise 3.27 (0.081) 3.20 (0.080) 7.58 (0.116) 4.70 (0.295) 3.14 (0.081)
rank 4.5 (0.029) 15.0 (0.044) 5.0 (0.042) 5.7 (0.030) 5.1 (0.030)

10 50 10 aise 19.99 (0.491) 18.45 (0.420) 17.74 (0.409) 18.70 (0.847) 20.83 (0.718) [99.7%]
rank 3.1 (0.054) 14.3 (0.045) 6.1 (0.048) 5.2 (0.041) 6.0 (0.036) [99.7%]

10 50 20 aise 15.99 (0.398) 15.20 (0.370) 14.84 (0.308) 20.08 (1.754) 16.00 (0.445)
rank 3.7 (0.061) 14.5 (0.045) 6.1 (0.045) 5.6 (0.040) 6.7 (0.033)

10 200 10 aise 8.08 (0.158) 7.54 (0.144) 10.41 (0.160) 10.35 (0.694) 7.14 (0.166) [96.0%]
rank 4.7 (0.052) 15.9 (0.048) 6.4 (0.045) 6.4 (0.036) 6.9 (0.035) [96.0%]

10 200 20 aise 5.42 (0.099) 5.09 (0.087) 9.23 (0.124) 10.52 (0.611) 4.57 (0.096)
rank 5.8 (0.068) 16.5 (0.044) 6.5 (0.040) 7.2 (0.031) 7.7 (0.030)

4.3. Computation times366

In this section we performed a simple experiment to evaluate the practicality of our positive367

semi-definite estimators and popular alternatives in terms of computational times. The time in368

seconds was recorded for each method to fit the real data described in Section 5, with n = 78 and369

m = 31, on a laptop computer (Macbook Pro with a 2.8 GHz Intel Core i7 processor). We repeated370
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Table 3: Bias (×102) and mse (×104) values with their standard errors (multiplied by 102 and 104 respectively) in
parentheses for the principal eigenvalue ζ1, and aise (×102) values with standard errors (×102) in parentheses for
the principal eigenfunction ϕ1.

L n m Ĉ+
trace Ĉ+

HS Ĉ+
PACE,BIC Ĉ+

FACE Ĉ+
SC

2 50 20 ζ1(bias) -1.166 (0.29) -1.464 (0.29) -4.971 (0.25) -0.188 (0.41) -0.675 (0.30)
ζ1(mse) 27.16 (2.32) 26.71 (2.23) 43.13 (2.43) 49.96 (6.64) 26.89 (2.34)
ϕ1(aise) 5.53 (0.410) 5.34 (0.378) 4.85 (0.263) 5.89 (0.509) 6.09 (0.448)

4 50 20 ζ1(bias) -0.485 (0.29) -0.761 (0.29) -4.865 (0.25) 0.864 (0.39) -0.021 (0.30)
ζ1(mse) 25.90 (2.16) 25.51 (2.06) 43.03 (2.50) 45.34 (6.26) 27.52 (2.39)
ϕ1(aise) 7.66 (0.481) 7.41 (0.477) 6.34 (0.317) 7.84 (0.637) 8.39 (0.484)

10 50 20 ζ1(bias) -0.176 (0.32) -0.509 (0.32) -4.430 (0.28) 1.506 (0.52) 0.635 (0.33)
ζ1(mse) 31.51 (2.48) 31.50 (2.44) 42.67 (2.61) 84.57 (14.41) 32.39 (2.66)
ϕ1(aise) 9.53 (0.740) 9.41 (0.765) 7.85 (0.520) 8.97 (0.726) 11.58 (0.874)

the experiment five times with the same seed of randomness, and report their average computing371

times shown in Table 4, so as to remove the random effect in the computing environment. Our372

proposed method takes advantage of parallel computing with five threads, each for an individual373

fold in the five-fold cv. Table 4 shows that among Ĉ+
trace, Ĉ

+
HS, Ĉ

+
PACE,BIC, Ĉ

+
FACE, Ĉ

+
SC and Ĉ+

PP,374

Ĉ+
SC is the fastest while Ĉ+

PP and Ĉ+
trace are the slowest, but all methods are practical since their375

computing times are up to 3.5 minutes on the tested laptop computer.376

Different from those faster estimators Ĉ+
PACE,BIC, Ĉ

+
FACE and Ĉ+

SC that adopt bic or fve to select377

tuning parameters, both Ĉ+
trace and Ĉ+

HS use five-fold cv for tuning parameter selection, which is378

the primary cause of their slowness. For illustration, we also report the average computing time of379

both estimators (without parallel computing) after the value of λ is selected by five-fold cv, which380

are only 4.82 seconds and 4.75 seconds. See Ĉ+
trace(λ fixed) and Ĉ

+
HS(λ fixed) in Table 4 respectively.381

Therefore, a computationally efficient approach to tuning parameter selection is an important future382

direction for our method.383

For situations when computation is an issue to apply our proposed method, an ad-hoc remedy384

is to tune down the maximum number of allowable iterations of Algorithm 1, which is set as385

10,000 by default (together with a strict stopping criterion.) If we allow up to 1,000 iterations, for386

instance, the average times for computing Ĉ+
trace and Ĉ+

HS, including five-fold cv, are reduced by387

about 2/3. See Ĉ+
trace,fast and Ĉ

+
HS,fast in Table 4 respectively. However, the impact of this change388

on the resulted estimators is not significant. The relative differences ∥Ĉ+
trace−Ĉ+

trace,fast∥F /∥Ĉ
+
trace∥F389

and ∥Ĉ+
HS − Ĉ

+
HS,fast∥F /∥Ĉ

+
HS∥F are only 0.020 and 0.007 respectively.390
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Table 4: Means and standard deviations (SD) of computing times (in seconds) with respect to various methods when
applied to the real data in Section 5.

Ĉ+
trace Ĉ+

HS Ĉ+
PACE,BIC Ĉ+

FACE Ĉ+
SC Ĉ+

PP Ĉ+
trace(λ fixed) Ĉ+

HS(λ fixed) Ĉ+
trace,fast Ĉ+

HS,fast

mean 205.49 133.21 1.31 3.34 0.16 210.66 4.82 4.75 77.32 42.69
SD 0.78 0.47 0.03 0.12 0.01 2.97 0.06 0.03 3.42 2.14

5. Real data application391

We apply the proposed method to a loop sensor dataset which contains vehicle counts recorded392

every five minutes at an on-ramp on the 101 North freeway in Los Angeles, U.S.A.. This on-ramp is393

located near Dodger Stadium, the home field of the Los Angeles Dodgers baseball team, so unusual394

traffic is expected after a Dodgers home game. These measurements were collected by the Freeway395

Performance Measurement System (PeMS, http://pems.dot.ca.gov) and can be obtained from396

the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Dodgers+397

Loop+Sensor). We focus on the after-game traffic measurements of 78 games between April 2005398

and October 2005 available in this dataset. For each game, we have 31 measurements that cover399

the time interval from 30 minutes before the end of the game, to 120 minutes after the end of the400

game. This time interval is presented as [−30, 120], where zero marks the end of a game.401
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Figure 1: Vehicle counts over a time interval from 30 minutes before the end of a game, to 120 minutes after the end
of the game. The black line represents a smoothing spline estimate of the mean function.
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The vehicle counts of the 78 games are displayed in Figure 1, where the mean function was402

estimated by smoothing splines with its tuning parameter determined by gcv. The estimated403

mean curve demonstrates a traffic peak that emerges at around 20 minutes after the end of a404

game. This characteristic is consistent with the finding of Zhang and Wang (2015) and conforms405

to common sense.406
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Figure 2: Contour plots of Ĉ+
trace (left) and its corresponding correlation function (right).

We provided the covariance estimator Ĉ+
trace of the vehicle counts, as described in Section 4,407

and constructed the corresponding correlation function estimate by the simple transformation:408

Ĉ(s, t)/{Ĉ(s, s)Ĉ(t, t)}1/2 for any covariance estimate Ĉ with Ĉ(s, s) > 0 for all s. Note that pos-409

itive semi-definiteness guarantees the validity of the correlation function estimate obtained by the410

above simple transformation. Namely, it has value between -1 and 1. However, this property could411

be violated for non-positive semi-definite estimators such as ĈCY. The covariance and correlation412

estimates for Ĉ+
trace are depicted in Figure 2. One intriguing feature with respect to the temporal413

dependency of the vehicle counts is the high correlations of traffic between time 0 and time points414

after around time 30. When compared with adjacent time points such as −20 and 20, this feature415

is so distinctive that a ridge is formed at time 0.416

To provide further insights of such phenomenon, we investigate the L2 eigen-decomposition of417

Ĉ+
trace. Due to the built-in low-rank estimation, Ĉ+

trace is automatically of rank 5 without further418

truncation of eigenvalues. Its corresponding five L2 eigenfunctions, as described in Section 2.5,419
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are shown in Figure 3 (Left). The first eigenfunction explains over 80% of the total variance, i.e.,420

the first eigenvalue is greater than 80% of the sum of all five eigenvalues. Therefore, the first421

eigenfunction plays a major role in the variation of the traffic profile. Of interest is that this422

eigenfunction possesses two peaks located near times 0 and 50, where the second peak is spanning423

over the time interval roughly between 30 and 120. This eigenfunction characterizes the high424

correlation we have observed between time 0 and the time interval between 30 and 120. Since425

a positive variation along this eigenfunction will add traffic to these two peaks, this implies that426

some audiences may choose to leave shortly after the game or even earlier, while some others take427

longer than usual to leave. As suggested by Zhang and Wang (2015), one possible explanation for428

this phenomenon is high game attendance. For games with high attendance, one may choose to429

leave earlier than usual to avoid traffic. Meanwhile, heavy traffic would also last longer due to high430

attendance. To further verify this explanation, we produced the functional principal component431

(FPC) scores by pre-smoothing individual vehicle count curves and then projecting them onto the432

first eigenfunction. Smoothing spline with gcv was used to implement the pre-smoothing. The433

scatter plot between FPC scores and game attendance as shown in Figure 3 (Right), together with434

the fact that their Pearson correlation is 0.57, indicates a positive association.435
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Figure 3: Left: L2 eigenfunctions of Ĉ+
trace. Right: Scatterplot of game attendance versus functional principal

component scores (with respect to the first eigenfunction).

22



6. Asymptotic properties436

In this section, we develop the empirical L2 rate of convergence for a variety of spectrally437

regularized covariance estimators in tensor product Sobolev-Hilbert spaces in Theorems 2 and 3438

below. The results are broad in three aspects. First, they hold for both fixed and random designs.439

Second, they allow a variety of spectral regularizations, where the trace-norm and Hilbert-Schmidt440

regularizations are both special cases. Third, these results are not restricted to positive semi-definite441

estimators.442

Without loss of generality T = [0, 1]. Here we focus on the r-th order Sobolev-Hilbert space on443

[0, 1] where r ≥ 2, i.e.,444

H(K) = {g : g(v), v = 0, . . . , r − 1, are absolutely continuous; g(r) ∈ L2([0, 1])},

equipped with squared norm ∥g∥2 =
∑r

v=0

∫ 1
0 {g

(v)(t)}2 dt. The asymptotic results also hold445

for its equivalent norms, e.g., ∥g∥2 =
∫ 1
0 {g(t)}

2 dt +
∫ 1
0 {g

(r)(t)}2 dt, ∥g∥2 = ([
∫ 1
0 {g(t)}

2 dt]1/2 +446

[
∫ 1
0 {g

(r)(t)}2 dt]1/2)2, and ∥g∥2 =
∑r−1

v=0{
∫ 1
0 g

(v)(t) dt}2 +
∫ 1
0 g

(r)(t)2 dt.447

We investigate the asymptotic property of a class of covariance estimators given by448

Ĉλ = argmin
C∈F

{ℓ(C) + λΨ(C)} , (9)

where Ψ(C) =
∑

k≥1 |τk(C)|p for 1 ≤ p ≤ 2, the loss function ℓ is chosen as (8), and F ⊆ H(K⊗K)449

is the hypothesis space for estimation.450

Apparently, the penalty term Ψ incorporates both trace-norm (p = 1) and Hilbert-Schmidt-451

norm (p = 2) regularizations, so the asymptotic results below are not restricted to low-rank452

estimators. Moreover, since the choice of F is flexible, the results hold for estimators that are453

positive semi-definite, e.g., when F = S+(K), as well as for those that are not. In particular, if454

F = H(K ⊗K) and p = 2, Ĉλ becomes the estimator by Cai and Yuan (2010) .455

6.1. Assumptions456

We list the assumptions needed for the asymptotic properties as follows.457

Assumption 1. C0 ̸= 0 and C0 ∈ F ⊆ H(K ⊗K).458
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Assumption 2. The time points {Tij : i = 1, . . . , n; j = 1, . . . ,m} are either fixed or random, and459

are independent of {Xi : i = 1, . . . , n}. The errors {εij : i = 1, . . . , n; j = 1, . . .m} are independent460

of both {Tij : i = 1, . . . , n; j = 1, . . . ,m} and {Xi : i = 1, . . . , n}.461

Assumption 3. For each t ∈ [0, 1], X(t) is sub-Gaussian with a parameter bX > 0 which does not462

depend on t, i.e., E(exp{βX(t)}) ≤ exp{b2Xβ2/2} for all β > 0 and t ∈ [0, 1].463

Assumption 4. For each i, j, εij is sub-Gaussian with a parameter bε independent of i and j.464

Assumption 2 is standard in FDA modeling. Assumptions 3 and 4 are sub-gaussian conditions465

of the stochastic process and noise.466

6.2. Rate of convergence467

For simplicity, we assume known µ0 = 0 so we let µ̂ = 0 and accordingly Zijk = YijYik. For468

arbitrary bivariate functions g1 and g2, define an empirical inner product and the corresponding469

empirical norm as follows:470

⟨g1, g2⟩n =
1

nm(m− 1)

n∑
i=1

∑
1≤j ̸=k≤m

g1(Tij , Tik)g2(Tij , Tik) and ∥g1∥2n = ⟨g1, g1⟩n.

Recall that we say a random variable Sn = Op(kn) if471

lim
L→∞

lim sup
n→∞

Pr(Sn ≥ Lkn) = 0.

To accommodate the flexibility of the design T = {Tij : i = 1, . . . , n; j = 1, . . . ,m} ∈ T nm, we472

denote Sn = OT
p (kn) if473

lim
L→∞

lim sup
n→∞

sup
T∈T nm

Pr(Sn ≥ Lkn | T) = 0.

We first provide the empirical L2 rate of convergence for Ĉλ from (9).474

Theorem 2. Under Assumptions 1–4, if Ψ(C0) > 0 and λ−1 = Op

{
nr/(1+r)

}
, we have ∥Ĉλ −475

C0∥n = Op(λ
1/2). Further, if λ−1 = OT

p

{
nr/(1+r)

}
, we have ∥Ĉλ − C0∥n = OT

p (λ
1/2).476
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In Theorem 2, the asymptotic accuracy of Ĉλ is guaranteed for both fixed and random designs.477

In particular, both independent and dependent designs are allowed if the design is random. Fur-478

thermore, Theorem 2 provides a uniform result over all designs under a stronger condition of λ. For479

instance, such OT
p -condition degenerates to the weaker Op-condition if the choice of λ is nonrandom480

or independent of the design.481

Theorem 2 incorporates a variety of regularizations as long as 1 ≤ p ≤ 2, where the commonly482

used trace-norm (p = 1) and Hilbert-Schmidt-norm (p = 2) penalties are both special cases. It483

shows that the empirical L2 rate of convergence of Ĉλ is comparable to that of standard two-484

dimensional nonparametric smoothers. For example, the rate of convergence is n1/3 for the second485

order Sobolev-Hilbert space, i.e., r = 2. The conclusion in Theorem 2 is generally true for all486

two-dimensional Sobolev spaces, but the rate is sub-optimal within the scope of tensor product487

Sobolev-Hilbert spaces. For periodic functions, however, we are able to significantly improve this488

rate by utilizing pinpoint entropy results for tensor product Sobolev-Hilbert spaces.489

Theorem 3. Suppose that F ⊆ {C ∈ H(K⊗K) : C is a periodic function}. Under Assumptions 1–490

4, if Ψ(C0) > 0, and λ−1 = Op{n2r/(1+2r)/log n}, we have ∥Ĉλ − C0∥n = Op(λ
1/2). Further, if491

λ−1 = OT
p {n2r/(1+2r)/log n}, we have ∥Ĉλ − C0∥n = OT

p (λ
1/2).492

Similar to Theorem 2, Theorem 3 also allows for both fixed and random designs. Theorem 3493

demonstrates that Ĉλ can achieve the empirical L2 rate of convergence for one-dimensional nonpara-494

metric estimation, up to some order of log n, although the target function C0 is two-dimensional.495

For instance, if we let r = 2, the rate of Ĉλ is (log n)−1/2n2/5, which is much faster than the two-496

dimensional nonparametric rate n1/3. For sparse functional data, i.e., m < ∞, up to some order497

of log n, the rate of Ĉλ is comparable to the minimax rate obtained by Cai and Yuan (2010) and498

the L2 rate achieved by Paul and Peng (2009) for r = 4. However, the rates in both theorems are499

sub-optimal for functional data that are not sparse (Zhang and Wang, 2016).500

The covariance estimator Ĉλ defined in (9) does not have a closed form due to the possible non-501

differentiability of the penalty term (e.g., when p = 1), and the flexibility of F . This explains the502

technical challenges and highlights the novelties of the proofs for Theorems 2 and 3. In Theorem 3,503

25



the particular structure of the tensor product RKHS accounts for the appealing rate of convergence504

of Ĉλ. The upper bound of the entropy for tensor product Sobolev-Hilbert spaces, as given in505

Lemma 1 of the supplementary material, is a crucial component for the technical success. To our506

best knowledge, this article is the first in the FDA literature that achieves this result.507

7. Conclusion508

In this article, we propose a new class of covariance function estimators under a tensor product509

RKHS framework in terms of a variety of spectral regularizations of an operator. All covariance510

estimators are automatically positive semi-definite via a one-step procedure. Low rank of the esti-511

mators can be additionally achieved if a proper penalty, e.g., the trace-norm penalty, is chosen. We512

establish an unconventional representer theorem for the entire class of covariance estimators, based513

on which we develop an efficient algorithm tailored for the trace-norm regularization. Through an514

asymptotic analysis, a simulation study and a real data application, the proposed estimators are515

shown to enjoy excellent theoretical and numerical performances.516

The focus of this article is covariance function estimation. Since covariance function estimation517

is usually an initial step to perform advanced FDA methods, such as trajectory prediction and518

functional linear regression, one direction for future work is to study how the proposed covariance519

estimators may improve the performances of those methods. Although the rates of convergence520

obtained in Theorems 2 and 3 are competitive under sparse functional data setups, such rates are521

not optimal in non-sparse settings. Consequently, another future exploration is to establish the522

optimal rate of convergence for all types of functional data following the work by Cai and Yuan523

(2010), Li and Hsing (2010), Zhang and Wang (2016) and Wang et al. (2018). Finally, as suggested524

by the above numerical experiments, a computationally efficient approaches for tuning parameter525

selection is also an important direction for future research.526

8. Supplementary Material527

The algorithm for Hilbert-Schmidt-norm regularization, additional simulation results, and all528

technical proofs are in the supplemental material.529
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