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Abstract

In functional data analysis (FDA), the covariance function is fundamental not only as a critical
quantity for understanding elementary aspects of functional data but also as an indispensable in-
gredient for many advanced FDA methods. A new class of nonparametric covariance function
estimators in terms of various spectral regularizations of an operator associated with a reproducing
kernel Hilbert space is developed. Despite their nonparametric nature, the covariance estimators
are automatically positive semi-definite, which is an essential property of covariance functions, via
a one-step procedure. An unconventional representer theorem is established to provide a finite
dimensional representation for this class of covariance estimators based on data, although the so-
lutions are searched over infinite dimensional functional spaces. To further achieve a low-rank
representation, another desirable property, e.g., for dimension reduction and easy interpretation,
the trace-norm regularization is particularly studied, under which an efficient algorithm is devel-
oped based on the accelerated proximal gradient method. The outstanding practical performance
of the trace-norm-regularized covariance estimator is demonstrated by a simulation study and the
analysis of a traffic dataset. Under both fixed and random designs, an excellent rate of conver-
gence is established for a broad class of operator-regularized covariance function estimators, which
generalizes both the trace-norm-regularized covariance estimator and other popular alternatives.
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regularization.

1. Introduction

In recent decades, functional data analysis (FDA) has received substantial attention and be-

come increasingly important especially with the advent of the “Big Data” era. Representative

monographs on FDA include Ramsay and Silverman| (2005)), Ferraty and Vieu| (2006]), Horvath and|

Kokoszka (2012) and Hsing and Eubank (2015). Typically functional data are collected from n

curves {X; : i = 1,...,n} that are regarded as independent copies of a real-valued L? stochastic
process X defined on a compact domain 7 with mean function pug(t) = E{X(¢)},t € T, and co-
variance function Cy(s,t) = cov{X(s), X(t)},s,t € T. In reality, due to discrete recording and the
presence of noise, the data are often represented by {(7;;,Y;;) :i=1,...,n;j = 1,...m;}, where m;
is the number of observations from the i-th curve X;, and Yj; is the noisy observation from X; mea-
sured at the discrete time point Tj;, i.e., Yij = X;(Tij) + ;5. Here {g;;:i=1,...,n;5 =1,...m;}

2. For simplicity and without loss of

are independent errors with zero mean and finite variance o
generality we assume m; = m > 2 for all ¢, and m is nonrandom but may vary over n.

Among various population quantities, the covariance function Cy is fundamental in FDA. Gen-
erally Cy has two major roles. It is not only an important quantity that characterizes the temporal

dependency (Yao et al.l 2005a; [Li and Hsing, 2010; |Zhang and Wang), [2016), but also a build-

ing block for many advanced approaches in FDA, e.g., functional principal component analysis
(FPCA). Hence the FDA literature that involves covariance function estimation may accordingly
be categorized into two types depending on the role of Cjy. As for the estimation of Cpy, a variety
of nonparametric methods have been proposed, such as local polynomial smoothing
2010; Zhang and Wang], 2016)), B-splines (James et al.l [2000; Rice and Wul, 2001)), penalized splines
(Goldsmith et al., 2011; Xiao et al) 2013), and smoothing splines (Rice and Silverman) 1991)).

In this article we adopt the framework of a reproducing kernel Hilbert space (RKHS), which has

recently gained increasing popularity in FDA (e.g., (Cai and Yuan, 2010; |Avery et al., [2014; Zhu|

et al.| [2014; Wang and Ruppert|, 2015; Wong et al., 2017)).

Positive semi-definiteness is an essential characteristic of covariance functions. Therefore, a valid
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covariance estimator is usually desired to be positive semi-definite, especially when this feature is
indispensable in subsequent analyses, such as correlation estimation (see Section [5|) and functional
linear regression (Yao et all [2005b)). Meanwhile, having a low rank is another appealing feature
of a covariance estimator. First, a low rank can encourage dimension reduction, facilitate simple
interpretations (e.g., of FPCA), and alleviate computational and storage burdens. Moreover, a
low rank is often technically needed in trajectory prediction, functional linear regression and some
other FDA methods (e.g., [Yao et al., 2005a; Chiou, 2012; [Yao et all 2005bj Li et al 2013; Jiang
et al., 2016).

A majority of existing FDA methods cannot directly produce a covariance estimator that is
positive semi-definite or of low rank. In the literature there are roughly two types of indirect ap-
proaches that always involve multi-step procedures, apart from tuning parameter selection. The
first type begins with a constraint-free covariance function estimator, then followed by a reconstruc-
tion step, e.g., via FPCA and truncation. See Hall and Vial (2006) and Poskitt and Sengarapillai
(2013) for instances. For the other type, a small number of eigenvalues and eigenfunctions are
first estimated, e.g., by fitting a mixed-effects model (James et al., 2000; [Paul and Peng, 2009),
and then a positive semi-definite covariance function estimator of low rank can be reconstructed in
terms of eigen-decomposition. These methods, however, are unfavorable since they may not only
complicate the theoretical analysis of the final estimator, but also make computation unstable due
to the non-smooth truncation. Therefore, in this article, we aim to develop a coherent “one-step”
procedure that can automatically produce both a positive semi-definite and a low-rank covariance
function estimator.

To achieve this goal, we propose a novel class of tensor product RKHS covariance estimators
via a variety of spectral regularizations of an operator. The estimation framework respects the
semi-positive structure of covariance functions by imposing a constraint, so the resulting estima-
tor automatically inherits this characteristic. The spectral regularizations generalize the popular
Hilbert-Schmidt penalty (e.g., Cai and Yuan, 2010), and can easily enable low-rank representations,
e.g., when the trace-norm penalty is used. Given any penalty, the corresponding covariance estima-

tor is obtained by a single step, which can reduce the computational and theoretical complexities
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of the aforementioned indirect approaches.

We establish a crucial representer theorem that provides a finite dimensional representation
for this class of covariance estimators based on data, although the solutions of the corresponding
optimizations are searched over infinite dimensional functional spaces. Compared with its classical
counterparts (e.g., Wahbay, (1990; |Cai and Yuan), 2010), this representer theorem is unconventional
and technically innovative due to the semi-positivity constraint and a wide range of regularizations.
A byproduct of the theorem is an explicit expression of the L? eigen-decomposition admitted by
each covariance estimator, which avoids numerical approximations commonly needed in FPCA due
to discretization.

To encourage low rank, we particularly focus on the trace-norm regularization in our algorithmic
development although the underlying strategy could be applied to other convex regularizations. The
corresponding objective function is convex but non-differentiable. We develop an efficient algorithm
based on the representer theorem and accelerated proximal gradient method (Beck and Teboulle,
2009). The numerical performance of the resulting estimator is shown in a simulation study to
be the best among popular alternatives with respect to rank reduction, estimation accuracy, and
computational stability. Its applicability is convincingly illustrated in the analysis of a traffic
dataset. Note that, asymptotically, the use of trace-norm regularization does not rule out the case
when Cj is of high or infinite rank. Irrespective of the true rank, our estimator is consistent with
the optimal convergence rate, up to some order of log n, as implied by the theoretical results below.

Despite the lack of a closed form due to the semi-positivity constraint and possibly non-
differentiable penalties, we develop the empirical L? rate of convergence for a class of operator-
regularized covariance function estimators in the tensor product Sobolev-Hilbert spaces. The
asymptotic results are broad since they hold for both fixed and random designs, and incorpo-
rate a variety of spectral regularizations, where the trace-norm and Hilbert-Schmidt regulariza-
tions are both special cases. Generally, the rate is comparable to the optimal rate of standard
two-dimensional nonparametric smoothers. If X is additionally periodic, we can improve the re-
sult significantly and achieve the optimal one-dimensional nonparametric rate, up to some order

of logn, which is comparable to the minimax rate obtained by |Cai and Yuan| (2010) and the L?
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rate achieved by Paul and Peng| (2009) for sparse functional data. In contrast to these two pioneer
works, our objective function is not necessarily differentiable, which thus requires different technical
treatments. Our theoretical results are established in terms of empirical processes techniques. The
success of the proofs depends on the upper bound of the entropy for tensor product Sobolev-Hilbert
spaces, which is the first appearance in the FDA literature to our best knowledge.

To summarize, the main contribution of this article is three-fold. First, we propose a new and
broad class of RKHS covariance estimators via a variety of spectral regularizations of an operator.
The resulting estimator is automatically positive semi-definite through a one-step procedure. Ad-
ditionally, low-rank estimation is encouraged when a proper penalty is chosen, e.g., the trace-norm
penalty. Second, we establish an unconventional representer theorem that provides a finite dimen-
sional representation for the covariance estimator. This theorem makes the estimation procedure
practically computable and facilitates our algorithmic development. Lastly, we develop the asymp-
totic results for a broad class of covariance function estimators in tensor product Sobolev-Hilbert
spaces, which hold for both fixed and random designs, and incorporate a variety of spectral regu-
larizations. For periodic functional spaces, in particular, the estimators can be shown to achieve a
one-dimensional rate for a two-dimensional target, based on a new entropy upper bound.

The rest of the article is organized as follows. The proposed methodology is presented in
Section [2] and computational issues are discussed in Section [3] The empirical performance of the
trace-norm-regularized estimator is evaluated by a simulation study in Section [4] and a real data
application is given in Section [5] Section [6] provides theoretical results and the article is concluded
with Section [7]] Additional materials, including technical details, more simulation results and
further algorithmic descriptions, are provided in separate supplementary material. An R package

“rkhscovfun” based on this article is available at https://github.com/raymondkww/rkhscovfun.

2. Methodology

In the same vein as penalized splines (e.g., Pearce and Wand, 2006) and smoothing splines
(e.g., Wahbay, [1990; Eggermont and LaRiccial [2009; (Gul [2013), we suppose that the sample path

of X belongs to a RKHS H(K) equipped with an inner product (-, )y k) and corresponding norm
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| - ll7(x), which is associated with a continuous and square-integrable reproducing kernel K(-,)

defined on 7 x T. A key property of K is the so-called reproducing property:

(K(t, ), f(- )y = f(t), foranyteT and f € H(K).

Moreover, K also uniquely determines both (-, )3 x) and [ - |l3(x)- A canonical example of RKHS

is the r-th order Sobolev-Hilbert space on 7 = [0, 1]:
W' ={g: g, v=0,...,r — 1, are absolutely continuous; ¢\") € L%([0,1])},

equipped with the squared norm

r—1

=S { [l + [ {sow) a

v=0
Under the assumption EHXH?_[(K) < 00,|Cai and Yuan|(2010) showed that Cy € H(K®K), where
H(K ® K) is the tensor product RKHS equipped with the norm || - ||3(xgx) and the reproducing
kernel

K ® K((s1,t1), (s2,t2)) = K(s1,52)K (t1,t2), 51,52, t1,t2€ T.

This motivates us to adopt a tensor product RKHS modeling of Cy. With slight abuse of notation,

we hereafter also use the notation ® to denote the tensor product of functions, i.e., f ® g(s,t) =

f(s)g(t).

2.1. Spectral decomposition on RKHS

We first introduce spectral decomposition in RKHS and then define a variety of spectral regu-
larizations which we will use to obtain a class of covariance function estimators.

For a bivariate function C(-,-) on T x T, define its transpose, denoted by CT, as C (s,t) =
C(t,s) for any s,t € T. Due to the symmetry of covariance functions, we focus on the space
S(K) ={C € HHK® K) : C = CT}. For any C € S(K), define its self-adjoint operator C¢ :
H(K) — H(K) by

(Caf)(s) =(C(s,), f (D),  forany feH(K)andseT. (1)
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Note that [|C|lyxex) < oo since C' € S(K) and that the Hilbert-Schmidt norm of Cc coincides
with [|Cll3(keK). Therefore, Cc is a Hilbert-Schmidt operator and hence admits a spectral decom-
position. In Section we will define a penalty function based on this spectral decomposition.

Note that the spectral decomposition of C¢ is different from that of the Hilbert-Schmidt integral
operator L¢ : L2(T) — L*(T) as is often used in the FDA literature:

(Lcf)(s) =(C(s,), fF( N2y = /TC(s,t)f(t) dt, forany f e L*(T) and s € T. (2)

There are two reasons why we adopt C¢ instead of L. First, Co is more aligned with the RKHS
modeling of X, especially when the inner product of H(K) is chosen to mimic the physical real-
ity. Many examples can be found in the work on L-splines, e.g., Chapter 4.5 in |Gu| (2013]) and
Chapter 21 of Ramsay and Silverman| (2005). Second, using Cc enables a finite dimensional repre-
sentation of our proposed covariance estimators as in Theorem [I] below, and thus simplifies practical

computation.

2.2. Spectrally regularized covariance estimator

For any C' € S(K), let 71(C), 72(C), ... be the eigenvalues corresponding to the spectral decom-

position of C¢ such that |71 (C)| > |m2(C)| > ---. We propose the following covariance estimator:
C = argmin {{(C) + \U(C)}, (3)
CeS+(K)

where ST(K) = {C € S(K) : (Cof, f)uw) > 0, forall f € H(K)} contains all positive semi-
definite functions in H(K ® K), ¢ is a convex and smooth loss function that depends on C
through {C(T3;,Tix) : ¢ = 1,...,n;5,k = 1,...,m}, A > 0 is a tuning parameter, and ¥(C) =
> k>1 Y(|T(C)]) with ¢ being a non-decreasing penalty function satisfying ¢(0) = 0 (Abernethy
et al., 2009).

Obviously, the covariance estimator C'is obtained by one step for a given A\. Moreover, regardless
of the form of W, the estimator is always positive semi-definite since the solution to the minimization
is searched only within ST (K).

The choice of 1, and thus W, is broad. Below we list a few interesting forms and briefly discuss

their effects on the estimator.



152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Example 1 (Rank regularization). If (1) = I(7 # 0) where I(-) is the indicator function, ¥(C)
is the rank of the operator Co. This penalty obviously encourages a low-rank solution. However,
the minimization is now difficult owing to its non-convexity, and over-fitting may occur since

no regularizations are imposed on non-zero eigenvalues.

Example 2 (Hilbert-Schmidt-norm regularization). If ¥(7) = 72, ¥(C) becomes the squared
Hilbert-Schmidt norm of the operator Cc, which equals ||C H%( KoK): Similar to the f3-norm reg-
ularization for vectors, the Hilbert-Schmidt-norm regularization ensures the convexity of the ob-
jective function in , but does not encourage sparsity in eigenvalues, so the resulting covariance
estimator is usually of high rank. |Cai and Yuan| (2010) used this regularization to estimate Cjy
under the RKHS framework, but did not impose the constraint C' € ST(K), so neither positive

semi-definiteness nor low rank can be guaranteed for their estimator.

Example 3 (Trace-norm regularization). If ¢)(7) = 7, ¥(C) is the trace norm of C¢. Similar to the
celebrated ¢i-regularization for vectors and the trace-norm regularization for matrices, the trace-
norm penalty ¥ for operators not only promotes the sparsity of eigenvalues and hence low-rank
solutions, but also regularizes non-zero eigenvalues. The minimization now becomes convex but
nondifferentiable, which allows leveraging recent developments in non-smooth convex optimizations

(e.g., Beck and Teboullel 2009) to achieve feasible computations. See Section [3| for more details.

2.3. Representer theorem

Since commonly used H(K), e.g., W', are infinite dimensional, solving is typically an
infinite dimensional optimization problem. Therefore, it is not obvious whether C can be computed
in practice. To answer this question, we establish a representer theorem that provides a finite
dimensional representation of C. This theorem holds for the entire class of estimators in .

Write N = nm and (T1,...,T8) = (Ti1, -, Tims Doty oo s Toms - - s Tty - - - Trum).
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Theorem 1 (Representer theorem). If the solution set of (@ s not empty, then there always
exists a solution lying in the space K @ K = span{K(-,Ti) ® K(,TJ) 24,7 = 1,..., N}, where

K =span{K(-,T;) :i=1,...,N}. Moreover, the solution takes the form:

C(s,t) = z(s) " Az(t), (4)

where A is an N x N symmetric matriz and z(-) = (K(-,T1), ..., K(-,Tnx))".

Classical representer theorems (e.g., [Wahba, 1990), as adopted in |Cai and Yuan| (2010), do not
cover the scenario addressed by Theorem [1| due to the semi-positivity constraint and a wide choice
of regularizations, e.g., the trace-norm regularization. To show this theorem, we significantly utilize
the fact that the spectral analysis is based on the RKHS geometry. This is the main reason for
using the operator C¢ in instead of Lo in . We remark that the conclusion of Theorem [1|also
holds when the semi-positivity is not imposed, i.e., ST(K) is replaced by S(K) in . In Section
this fact will be used to compute unconstrained estimators for comparison.

At a first glance, a significant number of scalar parameters, i.e., (N + 1)N/2, is involved in
the solution . However, if a low-rank inducing penalty, such as the trace-norm regularization, is
used, the resulting estimator is often of low rank, which will benefit computation and storage of its

estimation, and subsequent uses.

2.4. Parametrization

By Theorem we are able to parametrize the solution to in terms of a finite dimen-
sional representation since it suffices to merely focus on covariance functions of the form C(-,-) =
Zﬁil Zj\;l A K (-, T;) ® K(-,Tj). The eigenvalues of the operator Cc, {7;(C) : j > 1}, are the
eigenvalues of the matrix B = M " AM, where M is any N X ¢ matrix such that MM T = K =
[K (Ti,f})hgi’jg ~ with ¢ = rank(K). The matrix M provides a representation based on an or-

thonormal basis (of K) {v1,...,v,}:

q
K(T)@K(Tj) =Y > MygMjv,®v, 1<ij<N.
k=1 1=1
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Therefore C = Zzzl Z?:l Bklvk@)vl- AS C(S, t) = <K(, S), CcK(-, t)>7-[(K)v we have [C(TZ, Tj)]lgi,jSN =

MBMT. Moreover, write M = (M]",...,M,])", where {M; : i = 1,...,n} are m x ¢ matrices.
Then the loss function depends on C through [C(Ti;, Tik)|1<jk<m = MiBMi—r fori=1,...,n. Com-
pared with A, the new parametrization B is unique even when {7;; : i =1,...,n;j =1,...,m} are

not all unique. Now can be rewritten as

alj;ger;ljn {é(B) + )\\T/(B)} , (5)

where S;f is the set of all ¢ x ¢ positive semi-definite matrices, £(B) = ¢(3¢_, S°7_ | Byv,®v;), and
U(B) = 1 ¥(|&(B)]) with &1(B),. .., & (B) being the eigenvalues of the matrix B such that
|€1(B)| > -+ > [£(B)]. Conversely, with the new parametrization B, we can represent C(s,t) =
2(s) T (M*)T BM*z(t) where M* is the Moore-Penrose pseudoinverse of M. Consequently, solving

is equivalent to solving , a finite-dimensional optimization.

2.5. Explicit expression of L? eigen-decomposition

By Mercer’s theorem, we can represent an arbitrary covariance function C' € S*(K) in terms
of the typical spectral decomposition via the L? inner product, i.e., C(s,t) = > k>1 CkPr(8) P (t),
where {¢y : k > 1} are the L? eigenfunctions and {( : k > 1} are the corresponding L? eigenvalues.
This eigen-decomposition is a key component of FPCA among other FDA methods. In the liter-
ature, approximate computations are commonly involved where the eigen-decomposition is based
on the discretized covariance function estimator (e.g., |[Rice and Silverman, [1991). In contrast, due
to Theorem [1} our covariance estimator leads to an explicit expression of this eigen-decomposition
so that such computational complication can be avoided.

Following the notation in Sections and let Q = [fTK(s,TZ-)K(s,Tj) dsli<ij<n =
MRM" where R = [ ve(s)ui(s) dsli<ri<q = M+Q(M*)T. Similar to Lemma 3 of (Cai and
Yuan (2010), once B is obtained from 1) the L2 eigenfunctions of ' = Ao >, Bjvi @ v, can
be expressed as ¢y (+) = Ul2(-),k =1,...,n, where Uy is the k-th column of U = (M*)T R™Y/2V
and V is the eigenvectors of RY/2BRY/2. The L? cigenvalues of C coincide with those of RY/2BRY/2,

and the number of nonzero eigenvalues is exactly the rank of B.

10
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3. Computational issues

To achieve a desirable low-rank covariance estimator, in this section we only focus on the trace-
norm regularization and develop Algorithm [I] below. A similar algorithm can be obtained for the
Hilbert-Schmidt-norm regularization, which will be implemented in Section [ and its details are

given in Section S1 of the supplementary material.

3.1. Algorithm

By , with the trace-norm regularization in , it is equivalent to solving

argmin {(B) + A| B}, (6)
BeSS
where || - ||« represents the typical trace norm for matrices. We can also rewrite (6)) as
: IBll.. Bes;
arg min {E(B) + )\h(B)} , where h(B)= . (7)
BeS, 0, B g 8;—

Here S, represents the set of all ¢ x ¢ matrices.

The objective function in is the sum of a smooth function ¢(-) and a non-smooth function
Ah(+). A popular approach to such optimizations is the accelerated proximal gradient (APG)
method (Beck and Teboulle, 2009). To apply this method, define an operator svec : S; — Ra(a+1)/2
by

svec(B) = [B11,V2Bai, ..., V2By1, Bag, V2Bsa, ..., V2Bya, ..., By,

for any B = [Byj]1<ij<q € Sq- This operator provides an isometry between S, and R%+1)/2, Denote
its inverse by svec™! and write £(b) = £(svec™1(b)) for any b € R7@+D/2 The APG algorithm of

our case involves the proximal operator prox,, : R9(4+1)/2 — Ra(@+1)/2 defined by

1
prox, (b) = argmin {Hd —b||% + Vh(SVGC_l(d))}
deRala+1)/2 2

1
= gvec |arg min {||D ~ B|% + 1/||DH*} ,
DeSF 2

11
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for any b € RI+)/2 and v > 0. Here || - |g and || - || represent the Euclidean norm and
Frobenius norm respectively. The following proposition states the closed-form solution of this

proximal operator.

Proposition 1. For anyv > 0 and b € R14TD/2 with eigen-decomposition svec ™ (b) = Pdiag(lNJ)PT,
prox, (b) = svec(Pdiag(¢)P "),

where &= (g, (b1), ..., 9u(by)) " and b= (by,...,by)". Here g,(x) = (x — v); for any = € R.

Due to this closed-form solution, we can avoid an inner numerical optimization within every
iteration of the APG algorithm. The proof uses the same technique as in the proof of Lemma 1 in
Mazumder et al.| (2010), and is thus omitted.

The standard APG method requires the knowledge of the Lipschitz constant of V¢, which
directly relates to the step size in each iteration of the algorithm. For many choices of the loss
function ¢, the corresponding Lipschitz constant of V¢ is difficult to obtain. Moreover, even when
the Lipschitz constant is known (e.g., the choice of ¢ described in Section, the algorithm usually
suffers from conservative step sizes (Becker et al., [2011). Hence the APG with backtracking steps
is usually preferred. Following the suggestions of Becker et al. (2011]), we adopt a modified version
of the APG method and develop Algorithm

Modifying lines 7-8 in Algorithm [I] will result in other variants of proximal gradient methods.
More discussions are in Section 5.2 of |Becker et al.| (2011)). For convergence properties of the APG

method, we refer interested readers to Beck and Teboulle (2009).

3.2. A choice of £

The choice of ¢ is broad, but hereafter we only focus on the following quadratic loss:

K(C) = W Z Z {Zijk: - C(Tijy Tzk)}2 ) (8)

i=1 1<j#k<m

12



Algorithm 1: The APG algorithm with backtracking for trace-norm-regularized covari-
ance estimation

Input:BoeSj,[:>0,77>1,a<1

by < SVGC(B()), 50 < by, 01 + 400, L_1 + L
for k=0,1,2,... do

Lk — OéLk_l

repeat

Ok < 2/[1+ {1 + 4L/ (L1067 1)}/
e < (1 — ek)bk + Qki)k

bk+1 — pI‘OXA/Lk (ek — Vf(ek)/Lk)

b1 < {brr1 — (1 — 0r)br}/ 0k

L 2|(ex — breyr) {VE(br11) — VE(er)}/lbrsr — exl3
10 if L, > L then

11 L break

12 Ly, < max{nL, ﬁ}
13 until convergence;

© ® N O otk W N =

where Z;;, = {Yi; — o(Ti;) H{Yir — f(Tix)} and i is an estimator of the mean function pp. Since
[C(T3j, Tik) 1<je<m = M,-BM;r as shown in Section ¢(C) becomes

1

{(B) = =1 Z Ip(Z; — M;BM;) ||
i=1

n T
— %vec(B)TVQZ(B)vec(B) - (; MiTZZ-Ml) vec(B),

up to an additive constant independent of B. Here Z; = [Z;ji]1<jk<m, p is an operator setting the

diagonal entries of its input to zero, and
. 9 n -
VE) = gy 20T 0 ag{vee(D} (04 © 08,

7

with I € R?%? consisting of elements INij = I(i # j). By simple derivations, one can obtain the

closed-form expressions of £ and V/ as required in Algorithm (I} which we omit here.
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4. Numerical experiments

Numerical experiments were conducted to illustrate the practical performance of the proposed
methodology. We generated {X; :i =1,...,n} from a Gaussian process with pg(t) = 3sin{3n(t +
0.5)} + 263 and Cy(s,t) = Sk, Cuor(s)or(t), with ¢, = 1/(k + 1), ¢or_1(t) = 2/2 cos(2nlt),
and ¢y (t) = 2Y/2sin(2nlt) for any positive integers k,I. We also sampled {Tij:i=1,....,n;j =
1,...m} independently from the uniform distribution on [0,1] and {e;; :i=1,...,n;5 =1,...m}
independently from N (0,0?) with 02 = 0.01 to produce Y;; = X;(T;;) +&;;. We studied 18 settings
in total, where L = 2, 4 or 10, n = 50, 100 or 200, and m = 10 or 20. In each setting, we simulated
300 datasets where we compared various covariance function estimators. Other than our proposed
estimators, we also studied popular alternatives, including the covariance smoothing estimators by
local polynomial regression (Yao et al.,|2005a) and bivariate P-splines (Goldsmith et al., 2011} |Xiao
et al., 2018)) respectively, and the restricted maximum likelihood (REML) estimator by |[Peng and
Paul (2009). For the first two alternative methods, a raw smoothed estimate is first computed.
Then a truncation step via FPCA is applied to reconstruct a covariance function that is both
positive semi-definite and of low rank. That means, the reconstructed covariance estimator, which
we refer to as a truncated estimator below, takes the form: Z,‘izl (Akqgk(s)&k(t) where (;’s and éy’s
are the largest J positive estimated eigenvalues and corresponding estimated eigenfunctions based
on the raw smoothed estimate.

Altogether we compared the following ten estimators, of which the first five are based on our
proposed framework while the rest are popular alternatives: 1) C’{tace: obtained from with
the trace-norm regularization; 2) C’trace: obtained from with the trace-norm regularization but
without the semi-positivity constraint, i.e., ST(K) replaced by S(K); 3) CA'JS: obtained from
with the Hilbert-Schmidt norm regularization; 4) C’Hs: obtained from with the Hilbert-Schmidt
norm regularization but without the semi-positivity constraint. 5) Cey: the estimator proposed
by (Cai and Yuan| (2010)) and implemented in their R package (http://stat.wharton.upenn.edu/
~tcai/paper/html/Covariance-Function.html); 6) Crace: the raw smoothed covariance esti-
mator using local polynomial regression (Yao et al., 2005a)), implemented in the R package fdapace;

7) C’,fACE’BlC: the truncated estimator based on C’pACE with J selected by Baysian Information
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Criterion (BIC), implemented in fdapace; 8) CFACE the truncated estimator based on a generalized
version of bivariate P-spline smoothing (Xiao et al., [2018) with J selected by fraction of variation
explained FVE= 0.99 by default, implemented in the R package face; 9) C’grcz the truncated estima-
tor based on tensor product bivariate P-spline smoothing (Goldsmith et al.l 2011) with J selected
by FVE= 0.99 by default, implemented in the R package refund; 10) CA'FJ,FP: the REML estimator
based on a Newton-Raphson procedure on the Stiefel manifold (Peng and Paul, 2009)), implemented
in the R package fpca, with the number of B-spline basis functions and rank ranging in [4,20] and
[2, 7] respectively. We remark that, for the estimators based on local polynomial regression, fdapace
provides other methods for choosing J such as Akaike Information Criterion and FVE in addition to
BIC. Since these three methods give similar results, here we only report O;ACE,BIC which achieves
the best numerical performance among them. Besides, both refund and face do not output raw
smoothed estimates so we did not compare them.

To obtain Ctraceyctraceyé:[saéHS and Ccy, a smoothing spline was first applied to estimate
1, where its smoothing parameter was selected by generalized cross-validation (GCV), ignoring the
functional data structure. To obtain each of these five covariance estimators, we always used the loss
function ¢ as in Section and H(K) = W? with the squared norm |[|g||* = O{fo (t)dt}? +
f {9(2 t)}2dt. The tuning parameters A of the first four methods were chosen by five-fold cross-
validation (c¢v), with n/5 curves in each fold. The computations of Clrace, CHS andd Cys were
achieved by Algorithm [1] with different proximal operators (line 7 of Algorithm due to the
change of penalty and semi-positivity constraint. For the remaining five methods, p is estimated
by the corresponding computational packages. See their documentation for further implementation

details.

4.1. Comparisons between variations of (@

First, we restrict our attention to the first five methods which can all be regarded as variations
of ( . Table [I] I shows the average integrated squared errors (AISE) and average ranks of these
covariance estimators over 300 simulated data sets, which reflect their performances in estimation
accuracy and rank reduction respectively. Due to space limitations, we only present those settings

with n = 50 and m = 20, which have an n-to-m ratio most similar to the real data in Section
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We can obtain similar conclusions in other settings, which are reported in the supplementary
material. Although Ccy and Cys share the same definition, they differ in various implementation
details and hence the practical performance. However, their differences in AISE are too small to
affect subsequent comparisons, so hereafter it suffices to simply focus only on C’Hs, rather than
both of them, to study rank reduction and the effect of the semi-positivity constraint.

When we compare the two pairs, C’:{ace versus C’trace, and C’:{S versus C’Hs, obviously the co-
variance estimators with the positivity constraint always achieve smaller AISE values than their
counterparts. This suggests that not only can the semi-positivity constraint produce a valid esti-
mator, but also improve estimation accuracy. Notice in Table [I| that rank reduction can also be
observed for C’,js because the semi-positivity constraint often results in the truncation of eigenval-
ues at zero. When Ctrace is compared with CHS, the former performs slightly worse in AISE, but
significantly better in rank reduction. For settings with L = 2 or 4, the average ranks of C’:[ace are
in fact the closest to the true rank among the three rank-reduced estimators. This highlights the
benefits of trace-norm regularizations in computation, storage and subsequent uses as mentioned

in Section |1} Next we only compare C’:{ace and C’:[S with popular alternatives.

Table 1: AISE (x 10%) values with standard errors (x10%) in parentheses for the five variations of , and average ranks
with standard errors in parentheses for those estimators with rank reduction. Only settings with n = 50, m = 20 are
presented. See full results in the supplementary material.

L n m C?r»ace Chtrace C:[S CHS CCY
2 50 20 AISE 6. 88 (0. ) 7. 66 (0.266) 6.70 (0.260) 8.07 (0.263) 7.77 (0.263)
rank 6 (0. ) 5 (0.158) 13.0 (0.051) -
4 50 20 AISE 11. 64 (0.338) 14. 97 (0.311) 11.27 (0.317) 14.98 (0.2 12.36 (0.
rank 8 (0.045) 13.2 (0.614) 13.5 (0.048) -
9 (0.398) (
7( ) 7(0

85) 0.316)
10 50 20 AISE 159 0.398) 19. 12 0.367)  15.20 (0.370) 19.37 (0.354)  15.74 (0.371)
rank 0.061 515)  14.5 (0.045) - -

4.2. Comparisons with popular alternatives

Due to space constraints, here we only present the results for the settings with n = 50 or 200,
and defer the remaining ones (with n = 100) to the supplementary material. In Table [2| we report
AISE values and average ranks for CA'tJﬁace, CA':S, CA?ACE,BIO CA';TACE’ and C’;FC We exclude Cpacg here
since it is uniformly worse than CA’;ACEBIC in both estimation accuracy and rank reduction, which

illustrates the benefit of the reconstruction step. We also omit C’;rp in Table [2| since it suffers the
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most from computational instability, probably due to the algorithmic convergence issue as reported
in [Peng and Paul| (2009). The fpca package for computing CA'FTP failed to provide an output in some
simulation runs, and the failure rate may be very high, e.g., 38% when (L,n,m) = (4,200, 20). See
the supplementary material for full results with both Cpace and C’ﬁp included.

We first focus on the settings with L = 2 or 4 in Table[2l As also observed in Table [1} C;, . has
slightly larger AISE values than CA'JS but is considerably superior in rank reduction. The average

ranks and AISE values of C.

race &€ both much lower than those of OS'ACE gic in most settings. When

compared with CA’F+ACE, the performance of C’Qﬁace is better throughout all settings in Table [2 except
for the estimation accuracy when (L, n, m) = (4, 50, 10). Compared with C’g“c, Cif e achieves similar
AISE values and performs slightly but uniformly better in rank reduction. Table 2] also shows that
C‘tface is numerically more stable than C’;“C, since no computational error appeared for CA'tface, but
some occurred in a fraction of simulation runs where no output was returned to obtain C’;rc Here
the results for C’;C were computed based on successful runs which has no computational error.

Next we turn to the settings with a high rank L = 10, where the covariance function estimation is
more difficult. All estimators, except for C’,js, generally shrink the rank to some extent. Regarding
estimation accuracy, the performance C’t'face is not as strong as CA‘l_JfS, which is expected due to the
penalization of the trace-norm regularization on high-rank solutions. However, CA’tface surprisingly
remains very competitive compared to the other three: It is significantly better than é;rACE,BIC and
CA’,?ACE for n = 200, and similar to, if not slightly better than, C’;C for n = 50.

At last we compare the performances of the five covariance estimators in estimating the principal
eigenvalue (3 and principal eigenfunction ¢, in Table [3] where the bias and mean squared error
(MSE) for (1, and the AISE for ¢; are given for each method. Here we only report those settings
with n = 50 and m = 20, since similar patterns can be seen in other settings. The full results are
reported in the supplementary material, together with those for the second eigen-component. Both
C‘;ACE,BIC and CA';;CE perform well in estimating ¢1, but their eigenvalue estimations are significantly

worse than C CA*l_TS and C’grc The biases for (7 are negative for most methods, which indicates

trace»
that their eigenvalue estimates are on average smaller than the true value. The performances of

Cirace and C,js are very similar in both eigenvalue and eigenfunction estimations. Despite not
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always being the smallest, the magnitude of their biases for (; is sufficiently small (< 1.5 x 1072)
compared with the true principal eigenvalue (; = 0.25. Their MSEs for (; and AISEs for ¢, are
usually smaller than those of C’grc, and always among the smallest.

In summary, the overall performance of C’t is the best regarding rank reduction, estimation

race
accuracy, and computational stability. This conclusion is also confirmed by an additional simulation
study in the supplementary material with a higher error variance o2 = 0.1. This motivates us to

use C’:[ace in the following real data application.

Table 2: AISE (x10%) values with standard errors (x10%) in parentheses, and average ranks with standard errors in
parentheses, for Ciye., C’,TS, é;—ACE,Blc’ CA'FJ;CE, and és+c For CA';'O its statistics in each setting are computed only based
on successful runs, that is, those simulation runs where its corresponding package does not return an output due to
computational errors are not counted, with the proportion of successful runs additionally shown in square brackets.

L n.om Cifce Ct—Ts CI;rACE BIC CF+ACE Cs+c
2 50 10 AISE 9. 25 (0.327) 9.00 (0.310) 11. 94 (0.314) 9.37 (0.616) 10. 64 (0.364)

RANK 6 (0.031)  13.4 (0.049) 2 (0.047) 4.0 (0.036) 2 (0.039)

2 50 20 AISE 6. 88 (0.290)  6.70 (0.260) 9. 54 (0.253)  9.73 (0.967) 7. 59 (0.296)

RANK 6 (0.051)  13.0 (0.051) 5(0.044) 3.7 (0.033) 9 (0.037)

2 200 10 ASE 2. 85 (0.092)  2.81 (0.089) 6. 37 (0.126)  3.40 (0.294) 3. 18 (0.098)

RANK 7 (0.033)  14.5 (0.043) 9 (0.045) 4.1 (0.033) 1 (0.037)

2 200 20 AsE 2. 07 (0.078)  2.04 (0.077) 5. 56 (0.112)  3.58 (0.393) 2. 23 (0.080)

RANK 7 (0.036)  14.3 (0.045) 4.4 (0.044) 4.0 (0.025) 3.9 (0.034)

1 50 10 A 17 04 (0.416) 15.04 (0.395) 15. 56 (0.335) 14.69 (0.555)  16.09 (0.516) [99.7%]

RANK 1(0.055)  13.8 (0.047) 7(0.049) 5.0 (0.036) 5.1 (0.039) [99.7%]

4 50 20 AISE  11. 64 (0.338) 11.27 (0.317) 12. 34 (0.294) 12.87 (0.869) 11. 42 (0.360)

RANK 8 (0.045)  13.5 (0.048) 2 (0.047) 5.2 (0.029) 0 (0.032)

4 200 10 AISE 4. 94 (0.107) 4.74 (0.097) 8. 61 (0.136) 6.50 (0.495) 4. 64 (0.104)

RANK 4(0.032)  14.9 (0.046) 5(0.047) 5.6 (0.030) 4 (0.032)

4 200 20 ASE 3. 27 (0.081)  3.20 (0.080) 7. 58 (0.116)  4.70 (0.295) 3. 14 (0.081)

RANK 5(0.029)  15.0 (0.044) 0(0.042) 5.7 (0.030) 1 (0.030)

10 50 10 ase 19 99 (0.491) 18.45 (0.420) 17 74 (0.409) 1870 (0.847)  20.83 (0. 718) [99.7%]
RANK 1(0.054)  14.3 (0.045) 1 (0.048) 5.2 (0.041) 6.0 (0.036) [99.7%]

10 50 20 asE 15 99 (0.398)  15.20 (0.370)  14. 84 (0.308)  20.08 (1.754) 16.00 (0.445)
RANK 7 (0.061)  14.5 (0.045) 1(0.045) 5.6 (0.040) 6.7 (0.033)

10 200 10 ASE 8. ()8 (0.158)  7.54 (0.144)  10. 41 (0.160)  10.35 (0.694)  7.14 (0.166) [96.0%]
RANK 7 (0.052)  15.9 (0.048) 4(0.045) 6.4 (0.036) 6.9 (0.035) [96.0%]

10 200 20 AISE 5, 42 (0.099) 5.09 (0.087) 9. 23 (0.124) 10.52 (0.611) 4.57 (0.096)
RANK 8 (0.068)  16.5 (0.044) 5(0.040) 7.2 (0.031) 7.7 (0.030)

4.8. Computation times

In this section we performed a simple experiment to evaluate the practicality of our positive
semi-definite estimators and popular alternatives in terms of computational times. The time in
seconds was recorded for each method to fit the real data described in Section |5, with n = 78 and

m = 31, on a laptop computer (Macbook Pro with a 2.8 GHz Intel Core i7 processor). We repeated
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Table 3: Bias (x10%) and MSE (x10*) values with their standard errors (multiplied by 10 and 10* respectively) in
parentheses for the principal eigenvalue (i, and AISE (><102) values with standard errors (><102) in parentheses for
the principal eigenfunction ¢;.

L n m Citace Cis Chace Bic Chace Cdc
2 50 20 (i(BIAS) -1.166 (0.20) -1.464 (0.29) -4.971 (0.25) -0.188 (0.41)  -0.675 (0.30)
Gr(MSE)  27.16 (2.32)  26.71 (2.23)  43.13 (2.43)  49.96 (6.64)  26.89 (2.34)
#1(A1SE)  5.53 (0.410)  5.34 (0.378)  4.85 (0.263)  5.89 (0.509)  6.09 (0.448)
4 50 20 ((BIAS) -0.485 (0.29) -0.761 (0.20) -4.865 (0.25)  0.864 (0.39)  -0.021 (0.30
G1(MSE)  25.90 (2.16)  25.51 (2.06)  43.03 (2.50)  45.34 (6.26)  27.52 (2.39

) )

) )

) )

) )

)

1 (AISE) 7.66 (0.481) 7.41 (0.477) 6.34 (0.317 7.84 (0.637 8.39 (0.484)

10 50 20 (¢i(Bias) -0.176 (0.32) -0.509 (0.32) -4.430 (0.28 1.506 (0.52 0.635 (0.33)
)
)

C1(MSE) 3151 (2.48)  31.50 (2.44)  42.67 (2.61) 84.57 (14.41 32.39 (2.66

p1(AlsE)  9.53 (0.740)  9.41 (0.765)  7.85 (0.520)  8.97 (0.726) 11.58 (0.874

the experiment five times with the same seed of randomness, and report their average computing
times shown in Table [4 so as to remove the random effect in the computing environment. Our
proposed method takes advantage of parallel computing with five threads, each for an individual
fold in the five-fold cv. Table |4| shows that among CA’tface, C’,js, OI;FACEBIC? CA’,:*ACE, C’;rc and C’;rp,

C’;C is the fastest while C’;P and O

race are the slowest, but all methods are practical since their

computing times are up to 3.5 minutes on the tested laptop computer.

Different from those faster estimators é;ACE,BIC’ CA’;;\CE and C’;rc that adopt BIC or FVE to select
tuning parameters, both é{face and C’,js use five-fold cv for tuning parameter selection, which is
the primary cause of their slowness. For illustration, we also report the average computing time of
both estimators (without parallel computing) after the value of A is selected by five-fold cv, which
are only 4.82 seconds and 4.75 seconds. See Ciiyee( fixed) and C‘:S()\ fixed) in Table {4 respectively.
Therefore, a computationally efficient approach to tuning parameter selection is an important future
direction for our method.

For situations when computation is an issue to apply our proposed method, an ad-hoc remedy
is to tune down the maximum number of allowable iterations of Algorithm [I} which is set as
10,000 by default (together with a strict stopping criterion.) If we allow up to 1,000 iterations, for
instance, the average times for computing C’tface and CA’JS, including five-fold cv, are reduced by

about 2/3. See C

trace,fast

and é:s,fast in Table |4| respectively. However, the impact of this change
on the resulted estimators is not significant. The relative differences ||Cif, .. — CF 17/ I1Ct el P

trace,fast
and ||Cits — Cils rastll 7/ ICHis || 7 are only 0.020 and 0.007 respectively.
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Table 4: Means and standard deviations (SD) of computing times (in seconds) with respect to various methods when
applied to the real data in Section

é;:ace é:s C;?ACE BIC C;;& CA’s+c é;P CAY;Z,CS(A fixed) é:{s (A fixed) C’;r:cefast C’FTS fast
mean 205.49 133.21 1.31 3.34 0.16 210.66 4.82 4.75 77.32 42.69
SD 0.78 0.47 0.03 0.12 0.01 2.97 0.06 0.03 3.42 2.14

5. Real data application

We apply the proposed method to a loop sensor dataset which contains vehicle counts recorded
every five minutes at an on-ramp on the 101 North freeway in Los Angeles, U.S.A.. This on-ramp is
located near Dodger Stadium, the home field of the Los Angeles Dodgers baseball team, so unusual
traffic is expected after a Dodgers home game. These measurements were collected by the Freeway
Performance Measurement System (PeMS, http://pems.dot.ca.gov) and can be obtained from
the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Dodgers+
Loop+Sensor). We focus on the after-game traffic measurements of 78 games between April 2005
and October 2005 available in this dataset. For each game, we have 31 measurements that cover
the time interval from 30 minutes before the end of the game, to 120 minutes after the end of the

game. This time interval is presented as [—30, 120], where zero marks the end of a game.

70
1

vehicle count
40 50

30
1

20

-20 0 20 40 60 80 100 120

time

Figure 1: Vehicle counts over a time interval from 30 minutes before the end of a game, to 120 minutes after the end
of the game. The black line represents a smoothing spline estimate of the mean function.

20


http://pems.dot.ca.gov
https://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor
https://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor
https://archive.ics.uci.edu/ml/datasets/Dodgers+Loop+Sensor

402

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

The vehicle counts of the 78 games are displayed in Figure [1] where the mean function was
estimated by smoothing splines with its tuning parameter determined by Gcv. The estimated

mean curve demonstrates a traffic peak that emerges at around 20 minutes after the end of a

game. This characteristic is consistent with the finding of Zhang and Wang| (2015) and conforms

to common sense.

Figure 2: Contour plots of CA’tTace (left) and its corresponding correlation function (right).

We provided the covariance estimator CA’t'tace of the vehicle counts, as described in Section
and constructed the corresponding correlation function estimate by the simple transformation:
C(s,t)/{C(s,s)C(t,t)}/? for any covariance estimate C' with C(s,s) > 0 for all s. Note that pos-
itive semi-definiteness guarantees the validity of the correlation function estimate obtained by the
above simple transformation. Namely, it has value between -1 and 1. However, this property could
be violated for non-positive semi-definite estimators such as C’cy. The covariance and correlation
estimates for C’:{ace are depicted in Figure 2 One intriguing feature with respect to the temporal
dependency of the vehicle counts is the high correlations of traffic between time 0 and time points
after around time 30. When compared with adjacent time points such as —20 and 20, this feature
is so distinctive that a ridge is formed at time 0.

To provide further insights of such phenomenon, we investigate the L? eigen-decomposition of
C’Q:ace. Due to the built-in low-rank estimation, CA’tface is automatically of rank 5 without further

truncation of eigenvalues. Its corresponding five L? eigenfunctions, as described in Section
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are shown in Figure [3| (Left). The first eigenfunction explains over 80% of the total variance, i.e.,
the first eigenvalue is greater than 80% of the sum of all five eigenvalues. Therefore, the first
eigenfunction plays a major role in the variation of the traffic profile. Of interest is that this
eigenfunction possesses two peaks located near times 0 and 50, where the second peak is spanning
over the time interval roughly between 30 and 120. This eigenfunction characterizes the high
correlation we have observed between time 0 and the time interval between 30 and 120. Since
a positive variation along this eigenfunction will add traffic to these two peaks, this implies that
some audiences may choose to leave shortly after the game or even earlier, while some others take
longer than usual to leave. As suggested by [Zhang and Wang| (2015)), one possible explanation for
this phenomenon is high game attendance. For games with high attendance, one may choose to
leave earlier than usual to avoid traffic. Meanwhile, heavy traffic would also last longer due to high
attendance. To further verify this explanation, we produced the functional principal component
(FPC) scores by pre-smoothing individual vehicle count curves and then projecting them onto the
first eigenfunction. Smoothing spline with GCV was used to implement the pre-smoothing. The
scatter plot between FPC scores and game attendance as shown in Figure 3| (Right), together with

the fact that their Pearson correlation is 0.57, indicates a positive association.

45000 50000 55000
I I I
o

game attendance
®
°

40000
I
o
°
o
o
°

— 1st eigenfunction
i --- 2nd eigenfunction
! - 3rd eigenfunction N £

--- 4th eigenfunction ?
——- 5th eigenfunction

35000
I
°
o
o

T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 -20 -10 0 10 20

time FPC scores

Figure 3: Left: L? eigenfunctions of C’;’ace. Right: Scatterplot of game attendance versus functional principal
component scores (with respect to the first eigenfunction).
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6. Asymptotic properties

In this section, we develop the empirical L? rate of convergence for a variety of spectrally
regularized covariance estimators in tensor product Sobolev-Hilbert spaces in Theorems [2| and
below. The results are broad in three aspects. First, they hold for both fixed and random designs.
Second, they allow a variety of spectral regularizations, where the trace-norm and Hilbert-Schmidt
regularizations are both special cases. Third, these results are not restricted to positive semi-definite
estimators.

Without loss of generality 7 = [0, 1]. Here we focus on the r-th order Sobolev-Hilbert space on

[0,1] where r > 2, i.e.,
H(K) ={g:9™,v=0,...,7 — 1, are absolutely continuous; g™ e L2([0,1])},

equipped with squared norm |g[*> = >I_, fo {g™)(t)}?dt. The asymptotic results also hold
for its equivalent norms, e.g., HgH2 fo {g(t }2 dt + fo {g™ }2 dt, |lg||* = fo {g(t)}? dt]*/? +
g™ (6)y2 de)/2)2, and |lgll? = YU g0 (0) ey + [ g ()2 dt.

We investigate the asymptotic property of a class of covariance estimators given by

Cy = argmin {£(C) + A¥(C)}, (9)
CeF
where W(C') = ;5 |7(C)[P for 1 < p < 2, the loss function £ is chosen as , and F CH(K®K)
is the hypothesis space for estimation.

Apparently, the penalty term ¥ incorporates both trace-norm (p = 1) and Hilbert-Schmidt-
norm (p = 2) regularizations, so the asymptotic results below are not restricted to low-rank
estimators. Moreover, since the choice of F is flexible, the results hold for estimators that are
positive semi-definite, e.g., when F = S*(K), as well as for those that are not. In particular, if

F=H(K®K) and p = 2, C) becomes the estimator by |Cai and Yuan| (2010) .

6.1. Assumptions

We list the assumptions needed for the asymptotic properties as follows.

Assumption 1. Cp # 0 and Cp € F C H(K ® K).
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Assumption 2. The time points {Tj; : ¢ =1,...,n;j = 1,...,m} are either fixed or random, and
are independent of {X; :i=1,...,n}. The errors {e;; : i =1,...,n;j = 1,...m} are independent

of both {T;; :i=1,...,n;5=1,...,m}and {X;:i=1,...,n}.

Assumption 3. For each t € [0,1], X(¢) is sub-Gaussian with a parameter bx > 0 which does not

depend on t, i.e., E(exp{8X(t)}) < exp{b%3%/2} for all >0 and t € [0, 1].

Assumption 4. For each ¢, 7, ¢;; is sub-Gaussian with a parameter b, independent of ¢ and j.

Assumption [2] is standard in FDA modeling. Assumptions [3] and [4] are sub-gaussian conditions

of the stochastic process and noise.

6.2. Rate of convergence
For simplicity, we assume known pg = 0 so we let i = 0 and accordingly Z;;r = Y;;Yj,. For
arbitrary bivariate functions g; and g3, define an empirical inner product and the corresponding

empirical norm as follows:

1

nm(m — 1)

n
Yo Y Ty Tiw)ga(Tiy, T and  gillr = (g1, 91)n-
i=1 1<j£k<m

(91,92)n =

Recall that we say a random variable S,, = Op(ky,) if

lim limsup Pr(S, > Lk,) = 0.

L—c0 n—co
To accommodate the flexibility of the design T = {T;; : ¢ = 1,...,n;5 = 1,...,m} € T™, we
denote S, = OF (ky) if
lim limsup sup Pr(S, > Lk, |T)=0.

L—0oo n—oo Te7nm

We first provide the empirical L? rate of convergence for C) from @)

Theorem 2. Under Assumptions if ¥(Co) > 0 and \7! = (’)p{nr/(“”)}, we have HCA',\ —

Colln = Op(AY2). Purther, if A\~ = OF {n"/(47)} we have ||C — Cylln = OL (A/2).

24



477

478

479

480

481

482

484

485

486

487

488

489

491

492

493

494

495

496

497

498

499

500

501

502

503

In Theorem |2, the asymptotic accuracy of Cy is guaranteed for both fixed and random designs.
In particular, both independent and dependent designs are allowed if the design is random. Fur-
thermore, Theorem [2| provides a uniform result over all designs under a stronger condition of X. For
instance, such Og—condition degenerates to the weaker O,-condition if the choice of A is nonrandom
or independent of the design.

Theorem [2] incorporates a variety of regularizations as long as 1 < p < 2, where the commonly
used trace-norm (p = 1) and Hilbert-Schmidt-norm (p = 2) penalties are both special cases. It
shows that the empirical L? rate of convergence of C, is comparable to that of standard two-
dimensional nonparametric smoothers. For example, the rate of convergence is n'/3 for the second
order Sobolev-Hilbert space, i.e., r = 2. The conclusion in Theorem [2| is generally true for all
two-dimensional Sobolev spaces, but the rate is sub-optimal within the scope of tensor product
Sobolev-Hilbert spaces. For periodic functions, however, we are able to significantly improve this

rate by utilizing pinpoint entropy results for tensor product Sobolev-Hilbert spaces.

Theorem 3. Suppose that F C {C € H(K®K) : C is a periodic function}. Under Assumptionsf
if U(Co) > 0, and A\~1 = O,{n?/0+2) /logn}, we have ||Cy — Colln = Op(AY?). Further, if

At = 0T {n?/0+2) /log n}, we have ||Cy — Colln = OF(AV/2).

Similar to Theorem [2] Theorem 3| also allows for both fixed and random designs. Theorem
demonstrates that Cy can achieve the empirical L? rate of convergence for one-dimensional nonpara-
metric estimation, up to some order of logn, although the target function Cy is two-dimensional.
For instance, if we let 7 = 2, the rate of Cy is (log n)*l/ 2p2/5 which is much faster than the two-
dimensional nonparametric rate n'/3. For sparse functional data, i.e., m < oo, up to some order
of log n, the rate of Cy is comparable to the minimax rate obtained by (Cai and Yuan (2010) and
the L? rate achieved by [Paul and Peng (2009) for » = 4. However, the rates in both theorems are
sub-optimal for functional data that are not sparse (Zhang and Wang, 2016).

The covariance estimator Cy defined in @) does not have a closed form due to the possible non-
differentiability of the penalty term (e.g., when p = 1), and the flexibility of F. This explains the
technical challenges and highlights the novelties of the proofs for Theorems [2] and 3] In Theorem
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the particular structure of the tensor product RKHS accounts for the appealing rate of convergence
of C\. The upper bound of the entropy for tensor product Sobolev-Hilbert spaces, as given in
Lemma 1 of the supplementary material, is a crucial component for the technical success. To our

best knowledge, this article is the first in the FDA literature that achieves this result.

7. Conclusion

In this article, we propose a new class of covariance function estimators under a tensor product
RKHS framework in terms of a variety of spectral regularizations of an operator. All covariance
estimators are automatically positive semi-definite via a one-step procedure. Low rank of the esti-
mators can be additionally achieved if a proper penalty, e.g., the trace-norm penalty, is chosen. We
establish an unconventional representer theorem for the entire class of covariance estimators, based
on which we develop an efficient algorithm tailored for the trace-norm regularization. Through an
asymptotic analysis, a simulation study and a real data application, the proposed estimators are
shown to enjoy excellent theoretical and numerical performances.

The focus of this article is covariance function estimation. Since covariance function estimation
is usually an initial step to perform advanced FDA methods, such as trajectory prediction and
functional linear regression, one direction for future work is to study how the proposed covariance
estimators may improve the performances of those methods. Although the rates of convergence
obtained in Theorems [2| and [3| are competitive under sparse functional data setups, such rates are
not optimal in non-sparse settings. Consequently, another future exploration is to establish the
optimal rate of convergence for all types of functional data following the work by |Cai and Yuan
(2010), Li and Hsing] (2010), Zhang and Wang| (2016]) and Wang et al.| (2018). Finally, as suggested
by the above numerical experiments, a computationally efficient approaches for tuning parameter

selection is also an important direction for future research.

8. Supplementary Material

The algorithm for Hilbert-Schmidt-norm regularization, additional simulation results, and all

technical proofs are in the supplemental material.
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