Phriky-Units: A Lightweight, Annotation-Free Physical Unit
Inconsistency Detection Tool

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum
Computer Science and Computer Engineering
University of Nebraska-Lincoln
Lincoln, Nebraska, USA 68588-0150
jore,carrick,elbaum@cse.unl.edu

ABSTRACT

Systems that interact with the physical world use software that rep-
resents and manipulates physical quantities. To operate correctly,
these systems must obey the rules of how quantities with physical
units can be combined, compared, and manipulated. Incorrectly ma-
nipulating physical quantities can cause faults that go undetected
by the type system, likely manifesting later as incorrect behav-
ior. Existing approaches for inconsistency detection require code
annotation, physical unit libraries, or specialized programming
languages. We introduce Phriky-Units!, a static analysis tool that
detects physical unit inconsistencies in robotic software without
developer annotations. It does so by capitalizing on existing shared
libraries that handle standardized physical units, common in the
cyber-physical domain, to link class attributes of shared libraries to
physical units. In this work, we describe how Phriky-Units works,
provide details of the implementation, and explain how Phriky-
Units can be used. Finally we present a summary of an empirical
evaluation showing it has an 87% true positive rate for a class of
inconsistencies we detect with high-confidence.

CCS CONCEPTS
«Software and its engineering — Software testing and debug-
ging;

KEYWORDS

physical units; program analysis; static analysis; unit consistency;
dimensional analysis; type checking; robotic systems

ACM Reference format:

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum. 2017. Phriky-Units: A
Lightweight, Annotation-Free Physical Unit Inconsistency Detection Tool.
In Proceedings of 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Santa Barbara, CA, USA, July 10-14, 2017 (ISSTA’17),
4 pages.

DOI: 10.1145/3092703.3098219

!Phriké (“freaky”) is the Greek spirit of horror (potkn).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’17, Santa Barbara, CA, USA

© 2017 ACM. 978-1-4503-5076-1/17/07...$15.00

DOI: 10.1145/3092703.3098219

352

meters unknown meters
28 “ferr x =‘x'_'t_i_....-"
29 Jerr_y|=|y_t|-{Y;|---meters
30 err_d=sqrt (lerr_x x err_x|+lerr_y|+err_y);
meters I ¥
meters-squared meters
Figure 1: Example of code that incorrectly adds

meters-squared to meters at line 30.

source: https://git.io/vytem

1 INTRODUCTION

Software for systems that interact with the physical world manipu-
lates quantities that have a physical meaning, like length, time, and
velocity. One category of faults in robotic software is dimensional
and unit inconsistencies [4], those associated with violations of the
rules governing how physical quantities can be combined and ma-
nipulated while retaining their physical meaning. Figure 1 shows
such a violation, incorrectly adding meters to meters-squared.
The figure shows unit decorations to aid understanding. Although
this code is syntactically correct and compiles, it hides a latent fault.

Developers can reduce the likelihood of physical unit inconsisten-
cies by using annotations [15] or specialized languages with phys-
ical unit support built-in, like F# [8]. However, these approaches
come with code migration or annotation costs, discouraging wide-
spread use. Phriky-units is a tool that performs a lightweight static
analysis to help developers detect these kinds of faults without
requiring additional programmer annotations or code changes.

The high-level flow of Phriky-Units is shown in Figure. 2. As
shown in the figure, Phriky-Units takes as input a target program
and a mapping from attributes in shared libraries to units. Phriky-
Units uses the mapping to decorate code with physical units and
then propagates units in expressions. Phriky-Units uses the rules
of dimensional analysis [4] to find inconsistencies. By design, the
tool trades soundness and completeness for scalability and speed
while still detecting meaningful inconsistencies, mirroring many
popular static bug-finding tools [3].

The contributions of this work and tool are:

o Phriky-Units, a lightweight physical unit inconsistency
detection tool for C++

e An instantiation of Phriky-Units for C++ files using the
popular Robot Operating System? (ROS) [13].

2ROS is “maybe the most popular robotic middleware” [9], +3000 citations, +2500
systems, and nine million package downloads/month.

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

(1.Preprocessing
| +Call CPPCheck
L\ *Build and reverse sort call graph

(2.Decorate with Units
| +Lookup variable fully-qualified-names l

L in mapping to find units
N —

3.Evaluate Expressions

*Apply expression unit propagation rules
*Add new units to symbol table (assignment)

~— ——

— S N

4. Detect Thconcistencies

*Scan decorated ASTs for inconsistent
addition or comparison
*Scan symbol table for vars w. multiple units

H}END

Figure 2: Approach Overview

=
Physical Unit
Inconsistencies

e Source available at http://nimbus.unl.edu/tools.

e A summary of an empirical evaluation of Phriky-Units
previously presented in [12].

e Examples of inconsistencies detected by Phriky-Units.

2 TOOL APPROACH

This section describes our approach to building a tool to detect
physical unit inconsistencies. We first describe the goals and design
considerations of the tool approach at a high level, then discuss the
‘mapping’ between attributes of shared libraries and units that is
the source of unit information.

The goal of our approach is to provide lightweight detection of
physical unit inconsistencies that is fast enough to be part of the
build process while still detecting meaningful inconsistencies. Dur-
ing design, we explored tradeoffs between precision and feasibility
and we accept design choices that compromise soundness and com-
pleteness to keep our approach lightweight and practical. Phriky-
Units implements a static analysis that is semi-flow-sensitive (a
simplified forward dataflow), path-insensitive, context-insensitive,
and intra-procedural. For full details of our analysis please see [12].
We now discuss the mapping between attributes in shared libraries
and units.

Mapping. Our approach requires a one-time effort per domain to
create a mapping from attributes in shared libraries to physical
units, so the whole domain of ROS programs can be checked as
the result of this one-time effort. The mapping is a lookup table
between attributes of shared libraries and physical units. Since
many robot developers use shared libraries, the one-time effort to
create the mapping enables physical unit inconsistency checking
for all programs that use those libraries. This approach has larger

353

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum

ros_unit_dictionaryl 'nav_msgs::0dometry'] =
{'position': {'meter': 1.},
'orientation': {'quaternion':1.},

'stamp': {'second':1.},
'linear': {'meter':1.,'second':-1.},
'angular': {'second':-1.}}

ros_unit_dictionary['geometry_msgs::Pose'] =
{'position': {'meter': 1.},
'orientation': {'quaternion':1.}}

Figure 3: Mapping implementation as Python dictionary-of-
dictionaries showing two entries. Each entry links an at-
tribute from a shared library to units.

efficiencies at larger scales. Unlike annotation, the mapping is
separate from the code, offering several advantages to developers:
1) do not need to annotate their own code with physical units; 2)
avoids the need for special annotated copies of shared libraries; and
3) unnecessary to have specialized build tools.

This mapping achieves the same effect as if all developers added
unit annotations to their shared libraries.

Figure 3 shows the implementation of the mapping for two
shared library structures in ROS. As shown in the figure, the map-
ping is a lookup table from Fully-Qualified Names (FQNs) to corre-
sponding units.

Phriky-Units takes the mapping and a target program an input,
as shown in Figure 2. Then Phriky-Units works in four phases as
shown in the figure, and we now discuss each of the four phases.
Pre-processing. First, Phriky-Units pre-processes the file using
CPPCheck [10] to create an XML representation of the AST and
symbol table. Phriky-Units then constructs a context-insensitive
call graph (without alias analysis) and sorts the call graph in reverse
topological order to analyze procedures bottom-up. This yields a
sorted list of procedures for Phriky-Units to analyze.

Decorate with Units. In the second phase Phriky-Units decorates
variables with units. For each procedure, every statement is rep-
resented in the CPPCheck XML file as an Abstract Syntax Tree
(AST). Phriky-Units implements a visitor pattern, and visits every
node in a statement’s AST, looking for variables. Phriky-Units
associates variables with units in two ways: 1) by searching the
symbol table for previously assigned units; and 2) with the mapping.
Phriky-Units uses CPPCheck’s symbol table to associate variables
with FQNs, and the mapping associates FQNs to physical units,
and shown in Figure reffig:mapping-dictionary. Once all variables
have been decorated, Phriky-Units can examine and evaluate a
statement’s expressions.

Evaluate Expressions. In the third phase, Phriky-Units evalu-
ates expressions in each statement’s AST and propagates units
according to unit propagation rules. For a full discussion of the unit
propagation rules, please refer to [12]. For example, the code in
Figure 1 on line 30 has been labeled with units for convenience and
shows the sqrt and addition of several terms. During the previous
decoration phase, each variable is labeled with meters based on
knowledge of variables X and Y from another part of the program.
During the evaluate expressions phase, the multiplication and addi-
tion operators are examined the resulting units are inferred. The
err_x = err_x yields meters-squared while the err_y +err_y yields

Phriky-Units: Lightweight Physical Unit Inconsistency Detection Tool

meters. During expression evaluation Phriky-Units propagates the
units to the assignment statement.

Detect Inconsistencies. The fourth, final phase detects three
kinds of inconsistencies: 1) addition (and subtraction) of inconsis-
tent units; 2) comparison of inconsistent units; and 3) assignment of
multiple units. During this phase, Phriky-Units makes a final pass
over the whole program, looking for statements with addition or
comparison of inconsistent units. Finally, Phriky-Units performs a
linear scan of the symbol table looking for variables that have been
assigned multiple units. Note that multiplication by itself cannot
be inconsistent since all unit combinations are allowed, but that the
units resulting from a multiplication might cause an assignment of
multiple units inconsistency.

For the inconsistency in Fig. 1, the error message is:

Addition of inconsistent units on line 30 with
high-confidence. Attempting to add [’meter’:
[’meter’: 1.0]

2.0] to

3 IMPLEMENTATION DETAILS

Phriky-Units is a command-line tool implemented in 3300 lines of
Python. It makes external calls to CPPCheck [10] to parse and pre-
process source files, using default parameters: cppcheck --dump
-I ../include myfile.cpp, which generates an XML ‘dump’ file
using the default compiler directives. We imagine that Phriky-Units
will be used in three ways: 1) to apply physical unit information
to existing CPP files and access the physical-unit information at
runtime, so software researchers can explore connections between
software analysis and the physical quantities represented by pro-
gram variables; 2) to check for physical unit inconsistencies either
by robot software developers (who create new code) as well as
software researchers looking to measure the frequency and kinds
of these inconsistencies across corpora or in relation to other soft-
ware quality metrics; 3) to teach about hazards specific to software
representing physical quantities, especially by software educators
teaching software for robotic systems.

To facility the first of these ways, accessing the physical unit
assigned to variables at runtime, we structured Phriky-Units so that
the main file cps_units_checker.py has a decoration phase and
an inconsistency detection phase. Researchers looking to access the
physical units at runtime can add their own code after Phriky-Units
has decorated and propagated physical units in expressions. This
new code might strengthen inference with new constraints or apply
new detection techniques.

The second and the third ways to use Phriky-Units both involve
simply using the tool at the command line with a target C++ file
with the default parameters mentioned above.

Users of Phriky-Units can also explore the command line options
that enable: 1) changing the confidence level for inconsistencies
from high to low; 2) writing results to a SQL database; 3) printing
program statements with the physical units assigned to each vari-
able and the confidence of the unit assignment. Additionally, the
command line options expose some experimental features: 1) using
variable naming heuristics to decorate with units (i.e. x_accel for
acceleration); 2) creating unit annotation ‘placeholders’ that can be
used add units to variables and constants by hand; and 3) optionally
applying these hand annotations.

354

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Creating the mapping for ROS was an iterative process, aided
by our familiarity with it. Overall, it took 3-4 days to build the
mapping for 7 shared libraries, 82 classes, with 246 attributes repre-
senting 17 distinct physical units. Our mapping effort was aided
by the fact that two of the authors are proficient users of ROS. We
followed an iterative process, finding an individual attribute that
represents quantities with physical units, and then examining the
shared library containing that attribute and looking for other at-
tributes with physical units, and then looking for more attributes
in both the ROS documentation and ROS source code.

Extending Phriky-Units to other domains requires making a
new mapping. The file mapping.py contains the encoding of the
mapping. As shown in Figure 3, we encode units as a python
dictionary and use strings like ‘meters’ for readability. The figure
shows an example of the FON to unit mapping. The first entry is
for the shared library nav_msgs containing the structure odometry
with five attributes that have physical units. Attributes without
units are omitted.

During the design and implementation of Phriky-Units, we made
several decisions affecting the trade-off between precision, recall,
speed, and scalability. Since this is an initial version, we steered
toward a tool that could demonstrate the potential of this approach
without including all possible features. Specifically, we chose a flow-
insensitive analysis to enable a quick, linear scan, and we reason
with incomplete information (where incomplete information results
in ‘low-confidence’ unit assignments and inconsistencies) to explore
the space. Although these decisions compromise soundness and
completeness, many other useful static analysis tools make this
compromise as well [3], and we believe Phriky-Units can be useful
in the burgeoning robotic software development community.

Phriky-Units can be installed with pip install phriky_units
(tested on Ubuntu 16.04 and OSX 10.12.4), and requires CPPCheck
1.75 or higher. For additional details including source, visit http:
//mimbus.unl.edu/tools/.

4 EXAMPLES AND EVALUATION SUMMARY

In this section we provide examples of the kinds of inconsistencies
Phriky-Units can detect. We also summarize our empirical evalua-
tion previously published in [12]. Note that our previous work also
provides measurements of Phriky-Units’ speed.

Figure 4 shows an example of an inconsistent comparison, where
on line 20 the variable max_vx receives the units meters by as-
signment. The meters source is from the attribute x from the
structure Point in the shared library geometry_msgs. Then on
line 53, the code compares max_vx with msg.linear.x, which has
units meters-per-second. This comparison is inconsistent be-
cause these variables do not have the same physical units, as re-
quired by dimensional analysis.

Figure 5 shows an assignment of multiple units inconsistency
arising when a variable with meters-per-second is assigned to
a variable that already has different units, per-second (angular
velocity). Both of these variables are decorated with units because
they are attributes of the structure Twist: :linear in the shared
library geometry_msgs. This is likely a simple copy-and-paste error.
However, without specialized unit inconsistency detection, this
code compiles and might be only revealed by incorrect behavior of
the system in the physical world.

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

void limits_Callback(const|geometry_msgs::Point& msgp{

titt.meters

*ssasssasnss”

vx =|msg.linear.x| >[max_vx|? max_vx : msg.linear.x;
meters-per-second

Figure 4: Example of inconsistent comparison found by
Phriky-Units that incorrectly compares meters-per-second
to meters on line 53.

source: https://git.io/vORRM

264 void getAttackerPose(const geometry_msgs::Twist& msg) {
attacker_position.linear.x = msg.linear.x;

attacker position.linear.y = msg.linear.y;
[attacker_position.angular.z|=|msg.linear.z;|

per-second meters-per-second

Figure 5: Example of multiple units inconsistency found by
Phriky-Units that incorrectly assigns meters-per-second to
per-second on line 267.

Summary of Effectiveness. As reported previously [12], we eval-
uated Phriky-Units on a corpus of 213 open-source robotics projects,
containing 934, 124 non-blank non-commented lines of C/C++ as
reported by CLOC [6]. The projects in the corpus are listed at
http://nimbus.unl.edu/tools. We found 217 physical unit inconsis-
tencies in 11% of the 213 projects, and manually labeled them as
True Positive (TP) or False Positive (FP) for each inconsistency. We
calculated precision TP% = 100 = TP/(TP + FP) and found an 87%
TP rate for inconsistencies we can detect with high confidence,
including ‘Addition of Inconsistent Units’ (Figure 1), ‘Comparison
of Inconsistent Units’ and ‘Assignment of Multiple Units” We do
not calculate recall because the true number of False Negatives in
this corpus is unknown.

5 RELATED WORK

Supporting physical units through type checking has been studied
since at least the late 1970s [7], and language or compiler support
has been proposed for C [17], Java [18], and most recently realized
in F# [8]. These approaches require either annotations or special-
ized languages. Rosu’s and Feng proposed dynamic physical unit
checking in C [14]. Static support for C++ through templates is
built into Schabel and Watanabe’s boost: :units [15] for C++. Un-
like these approaches, Phriky-Units requires neither programmer
annotations nor compiler extensions, and works with existing code
without modification.

We are not aware of an authoritative study of the frequency
or severity of these kinds of unit inconsistencies, but there are
instances of spectacular failures like the crash of the 1998 Mars
Climate Orbiter [16].

6 CONCLUSION AND FUTURE WORK

The next steps for Phriky-Units focus on strengthening the analysis
while maintaining speed and scalability. We intend to construct
mappings for other robotic middleware like Orocos [5], Open-
RTM [1], MOOS [2], and Yarp [11]. We would like to explore
more sophisticated and robust analysis frameworks like Clang, to
increase precision. Variable names are a potential source of units

355

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum

information because developers reuse idiomatic variables names for
position, velocity, or duration (i.e. x_pos, y_vel, d_t). We intend to
modify Phriky-Units to measure the percentage of variables that are
decorated with units by automatic inference, and how many remain
unannotated. Since no fully-labeled datasets of unit inconsistencies
are presently available, we would like to exhaustively label a small
dataset identifying all true positives to determine the recall. We
also intend to analyze successive versions of systems to see explore
if unit inconsistencies are introduced and later corrected, and use
this to inform repair recommendation.

This paper introduces Phriky-Units, a lightweight static analysis
tool to detect physical unit inconsistencies in software systems that
interact with the physical world. We assume shared libraries with
attributes representing physical quantities. Phriky-Units has an
87% true positive rate for a class of inconsistencies we detect with
high-confidence, and is available at http://nimbus.unl.edu/tools.

ACKNOWLEDGMENTS

This work was supported in part by NSF awards #1638099, #1526253,
and #1526652, USDA-NIFA #2013-67021-20947, and USDA-NIFA
#2017-67021-25924

REFERENCES

[1] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. 2008. A software platform
for component based Rt-system development: OpenRTM-AIST. In International
Conference on Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 87-98.

Michael R Benjamin, Henrik Schmidt, Paul M Newman, and John J Leonard. 2010.
Nested autonomy for unmanned marine vehicles with MOOS-IVP. Journal of
Field Robotics 27, 6 (2010), 834-875.

Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to find bugs in the real world. Commun.
ACM 53, 2 (2010), 66-75.

Percy Williams Bridgman. 1922. Dimensional Analysis. Yale University Press.
Herman Bruyninckx. 2001. Open robot control software: the OROCOS project.
In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, Vol. 3. IEEE, 2523-2528.

Al Danial. 2016. Count Lines Of Code. (2016). https://github.com/AlDanial/cloc
Michael Karr and David B Loveman III. 1978. Incorporation of units into pro-
gramming languages. Commun. ACM 21, 5 (1978), 385-391.

Andrew Kennedy. 2008. Types for units-of-measure in F#: invited talk. In
Proceedings of the 2008 ACM SIGPLAN workshop on ML. ACM, 1-2.

Gergely Magyar, Peter Sin¢ak, and Zoltan Krizsan. 2015. Comparison study of
robotic middleware for robotic applications. In Emergent Trends in Robotics and
Intelligent Systems. Springer, 121-128.

Daniel Marjamaki. 2013. Cppcheck: a tool for static C/C++ code analysis. (2013).
] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. 2006. Yarp: Yet another
robot platform. International Journal of Advanced Robotic Systems 3, 1 (2006), 8.
John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Lightweight
Detection of Physical Unit Inconsistencies without Program Annotations. In
Proceedings of the 2017 International Symposium on Software Testing and Analysis.
ACM. Accepted, to Appear.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3.2. Kobe, Japan, 5.
Grigore Rosu and Feng Chen. 2003. Certifying measurement unit safety policy.
In Automated Software Engineering, 2003. Proceedings. 18th IEEE International
Conference on. IEEE, 304-309.

Matthias Christian Schabel and Steven Watanabe. 2008. Boost. Units 1, 0 (2008),
2003-2010.

Arthur G Stephenson, Daniel R Mulville, Frank H Bauer, Greg A Dukeman, Peter
Norvig, LS LaPiana, PJ Rutledge, D Folta, and R Sackheim. 1999. Mars climate
orbiter mishap investigation board phase I report, 44 pp. NASA, Washington, DC
(1999).

Zerksis D Umrigar. 1994. Fully static dimensional analysis with C++. ACM
SIGPLAN Notices 29, 9 (1994), 135-139.

André Van Delft. 1999. A Java extension with support for dimensions. Software
Prac. Experience 29, 7 (1999), 605-616.

[2

[12

[13

[14

(15]

[17

(18]

