
Phriky-Units: A Lightweight, Annotation-Free Physical Unit
Inconsistency Detection Tool

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum
Computer Science and Computer Engineering

University of Nebraska-Lincoln
Lincoln, Nebraska, USA 68588-0150
jore,carrick,elbaum@cse.unl.edu

ABSTRACT

Systems that interact with the physical world use so�ware that rep-

resents and manipulates physical quantities. To operate correctly,

these systems must obey the rules of how quantities with physical

units can be combined, compared, and manipulated. Incorrectly ma-

nipulating physical quantities can cause faults that go undetected

by the type system, likely manifesting later as incorrect behav-

ior. Existing approaches for inconsistency detection require code

annotation, physical unit libraries, or specialized programming

languages. We introduce Phriky-Units1, a static analysis tool that

detects physical unit inconsistencies in robotic so�ware without

developer annotations. It does so by capitalizing on existing shared

libraries that handle standardized physical units, common in the

cyber-physical domain, to link class a�ributes of shared libraries to

physical units. In this work, we describe how Phriky-Units works,

provide details of the implementation, and explain how Phriky-

Units can be used. Finally we present a summary of an empirical

evaluation showing it has an 87% true positive rate for a class of

inconsistencies we detect with high-con�dence.

CCS CONCEPTS

•So�ware and its engineering→ So�ware testing and debug-

ging;

KEYWORDS

physical units; program analysis; static analysis; unit consistency;

dimensional analysis; type checking; robotic systems

ACM Reference format:

John-Paul Ore, Carrick Detweiler, Sebastian Elbaum. 2017. Phriky-Units: A

Lightweight, Annotation-Free Physical Unit Inconsistency Detection Tool.

In Proceedings of 26th ACM SIGSOFT International Symposium on So�ware

Testing and Analysis, Santa Barbara, CA, USA, July 10-14, 2017 (ISSTA’17),

4 pages.

DOI: 10.1145/3092703.3098219

1Phrikê (”freaky”) is the Greek spirit of horror (φϱικη).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’17, Santa Barbara, CA, USA

© 2017 ACM. 978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3098219

Figure 1: Example of code that incorrectly adds

meters-squared to meters at line 30.

source: https://git.io/vytcm

1 INTRODUCTION

So�ware for systems that interact with the physical world manipu-

lates quantities that have a physical meaning, like length, time, and

velocity. One category of faults in robotic so�ware is dimensional

and unit inconsistencies [4], those associated with violations of the

rules governing how physical quantities can be combined and ma-

nipulated while retaining their physical meaning. Figure 1 shows

such a violation, incorrectly adding meters to meters-squared.

�e �gure shows unit decorations to aid understanding. Although

this code is syntactically correct and compiles, it hides a latent fault.

Developers can reduce the likelihood of physical unit inconsisten-

cies by using annotations [15] or specialized languages with phys-

ical unit support built-in, like F# [8]. However, these approaches

come with code migration or annotation costs, discouraging wide-

spread use. Phriky-units is a tool that performs a lightweight static

analysis to help developers detect these kinds of faults without

requiring additional programmer annotations or code changes.

�e high-level �ow of Phriky-Units is shown in Figure. 2. As

shown in the �gure, Phriky-Units takes as input a target program

and a mapping from a�ributes in shared libraries to units. Phriky-

Units uses the mapping to decorate code with physical units and

then propagates units in expressions. Phriky-Units uses the rules

of dimensional analysis [4] to �nd inconsistencies. By design, the

tool trades soundness and completeness for scalability and speed

while still detecting meaningful inconsistencies, mirroring many

popular static bug-�nding tools [3].

�e contributions of this work and tool are:

• Phriky-Units, a lightweight physical unit inconsistency

detection tool for C++

• An instantiation of Phriky-Units for C++ �les using the

popular Robot Operating System2 (ROS) [13].

2ROS is “maybe the most popular robotic middleware” [9], +3000 citations, +2500
systems, and nine million package downloads/month.

352

Phriky-Units: Lightweight Physical Unit Inconsistency Detection Tool ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

meters. During expression evaluation Phriky-Units propagates the

units to the assignment statement.

Detect Inconsistencies. �e fourth, �nal phase detects three

kinds of inconsistencies: 1) addition (and subtraction) of inconsis-

tent units; 2) comparison of inconsistent units; and 3) assignment of

multiple units. During this phase, Phriky-Units makes a �nal pass

over the whole program, looking for statements with addition or

comparison of inconsistent units. Finally, Phriky-Units performs a

linear scan of the symbol table looking for variables that have been

assigned multiple units. Note that multiplication by itself cannot

be inconsistent since all unit combinations are allowed, but that the

units resulting from a multiplication might cause an assignment of

multiple units inconsistency.

For the inconsistency in Fig. 1, the error message is:

Addition of inconsistent units on line 30 with

high-confidence. Attempting to add [’meter’: 2.0] to

[’meter’: 1.0]

3 IMPLEMENTATION DETAILS

Phriky-Units is a command-line tool implemented in 3300 lines of

Python. It makes external calls to CPPCheck [10] to parse and pre-

process source �les, using default parameters: cppcheck --dump

-I ../include myfile.cpp, which generates an XML ‘dump’ �le

using the default compiler directives. We imagine that Phriky-Units

will be used in three ways: 1) to apply physical unit information

to existing CPP �les and access the physical-unit information at

runtime, so so�ware researchers can explore connections between

so�ware analysis and the physical quantities represented by pro-

gram variables; 2) to check for physical unit inconsistencies either

by robot so�ware developers (who create new code) as well as

so�ware researchers looking to measure the frequency and kinds

of these inconsistencies across corpora or in relation to other so�-

ware quality metrics; 3) to teach about hazards speci�c to so�ware

representing physical quantities, especially by so�ware educators

teaching so�ware for robotic systems.

To facility the �rst of these ways, accessing the physical unit

assigned to variables at runtime, we structured Phriky-Units so that

the main �le cps units checker.py has a decoration phase and

an inconsistency detection phase. Researchers looking to access the

physical units at runtime can add their own code a�er Phriky-Units

has decorated and propagated physical units in expressions. �is

new code might strengthen inference with new constraints or apply

new detection techniques.

�e second and the third ways to use Phriky-Units both involve

simply using the tool at the command line with a target C++ �le

with the default parameters mentioned above.

Users of Phriky-Units can also explore the command line options

that enable: 1) changing the con�dence level for inconsistencies

from high to low; 2) writing results to a SQL database; 3) printing

program statements with the physical units assigned to each vari-

able and the con�dence of the unit assignment. Additionally, the

command line options expose some experimental features: 1) using

variable naming heuristics to decorate with units (i.e. x accel for

acceleration); 2) creating unit annotation ‘placeholders’ that can be

used add units to variables and constants by hand; and 3) optionally

applying these hand annotations.

Creating the mapping for ROS was an iterative process, aided

by our familiarity with it. Overall, it took 3-4 days to build the

mapping for 7 shared libraries, 82 classes, with 246 a�ributes repre-

senting 17 distinct physical units. Our mapping e�ort was aided

by the fact that two of the authors are pro�cient users of ROS. We

followed an iterative process, �nding an individual a�ribute that

represents quantities with physical units, and then examining the

shared library containing that a�ribute and looking for other at-

tributes with physical units, and then looking for more a�ributes

in both the ROS documentation and ROS source code.

Extending Phriky-Units to other domains requires making a

new mapping. �e �le mapping.py contains the encoding of the

mapping. As shown in Figure 3, we encode units as a python

dictionary and use strings like ‘meters’ for readability. �e �gure

shows an example of the FQN to unit mapping. �e �rst entry is

for the shared library nav msgs containing the structure odometry

with �ve a�ributes that have physical units. A�ributes without

units are omi�ed.

During the design and implementation of Phriky-Units, we made

several decisions a�ecting the trade-o� between precision, recall,

speed, and scalability. Since this is an initial version, we steered

toward a tool that could demonstrate the potential of this approach

without including all possible features. Speci�cally, we chose a �ow-

insensitive analysis to enable a quick, linear scan, and we reason

with incomplete information (where incomplete information results

in ‘low-con�dence’ unit assignments and inconsistencies) to explore

the space. Although these decisions compromise soundness and

completeness, many other useful static analysis tools make this

compromise as well [3], and we believe Phriky-Units can be useful

in the burgeoning robotic so�ware development community.

Phriky-Units can be installed with pip install phriky units

(tested on Ubuntu 16.04 and OSX 10.12.4), and requires CPPCheck

1.75 or higher. For additional details including source, visit h�p:

//nimbus.unl.edu/tools/.

4 EXAMPLES AND EVALUATION SUMMARY

In this section we provide examples of the kinds of inconsistencies

Phriky-Units can detect. We also summarize our empirical evalua-

tion previously published in [12]. Note that our previous work also

provides measurements of Phriky-Units’ speed.

Figure 4 shows an example of an inconsistent comparison, where

on line 20 the variable max vx receives the units meters by as-

signment. �e meters source is from the a�ribute x from the

structure Point in the shared library geometry msgs. �en on

line 53, the code compares max vx with msg.linear.x, which has

units meters-per-second. �is comparison is inconsistent be-

cause these variables do not have the same physical units, as re-

quired by dimensional analysis.

Figure 5 shows an assignment of multiple units inconsistency

arising when a variable with meters-per-second is assigned to

a variable that already has di�erent units, per-second (angular

velocity). Both of these variables are decorated with units because

they are a�ributes of the structure Twist::linear in the shared

library geometry msgs. �is is likely a simple copy-and-paste error.

However, without specialized unit inconsistency detection, this

code compiles and might be only revealed by incorrect behavior of

the system in the physical world.

354

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA John-Paul Ore, Carrick Detweiler, Sebastian Elbaum

Figure 4: Example of inconsistent comparison found by

Phriky-Units that incorrectly compares meters-per-second

to meters on line 53.

source: https://git.io/v9RRM

Figure 5: Example of multiple units inconsistency found by

Phriky-Units that incorrectly assigns meters-per-second to

per-second on line 267.

Summary of E�ectiveness. As reported previously [12], we eval-

uated Phriky-Units on a corpus of 213 open-source robotics projects,

containing 934, 124 non-blank non-commented lines of C/C++ as

reported by CLOC [6]. �e projects in the corpus are listed at

h�p://nimbus.unl.edu/tools. We found 217 physical unit inconsis-

tencies in 11% of the 213 projects, and manually labeled them as

True Positive (TP) or False Positive (FP) for each inconsistency. We

calculated precision TP% = 100 ∗TP/(TP + FP) and found an 87%

TP rate for inconsistencies we can detect with high con�dence,

including ‘Addition of Inconsistent Units’ (Figure 1), ‘Comparison

of Inconsistent Units’ and ‘Assignment of Multiple Units.’ We do

not calculate recall because the true number of False Negatives in

this corpus is unknown.

5 RELATED WORK

Supporting physical units through type checking has been studied

since at least the late 1970s [7], and language or compiler support

has been proposed for C [17], Java [18], and most recently realized

in F# [8]. �ese approaches require either annotations or special-

ized languages. Roşu’s and Feng proposed dynamic physical unit

checking in C [14]. Static support for C++ through templates is

built into Schabel and Watanabe’s boost::units [15] for C++. Un-

like these approaches, Phriky-Units requires neither programmer

annotations nor compiler extensions, and works with existing code

without modi�cation.

We are not aware of an authoritative study of the frequency

or severity of these kinds of unit inconsistencies, but there are

instances of spectacular failures like the crash of the 1998 Mars

Climate Orbiter [16].

6 CONCLUSION AND FUTUREWORK

�e next steps for Phriky-Units focus on strengthening the analysis

while maintaining speed and scalability. We intend to construct

mappings for other robotic middleware like Orocos [5], Open-

RTM [1], MOOS [2], and Yarp [11]. We would like to explore

more sophisticated and robust analysis frameworks like Clang, to

increase precision. Variable names are a potential source of units

information because developers reuse idiomatic variables names for

position, velocity, or duration (i.e. x pos, y vel, d t). We intend to

modify Phriky-Units to measure the percentage of variables that are

decorated with units by automatic inference, and howmany remain

unannotated. Since no fully-labeled datasets of unit inconsistencies

are presently available, we would like to exhaustively label a small

dataset identifying all true positives to determine the recall. We

also intend to analyze successive versions of systems to see explore

if unit inconsistencies are introduced and later corrected, and use

this to inform repair recommendation.

�is paper introduces Phriky-Units, a lightweight static analysis

tool to detect physical unit inconsistencies in so�ware systems that

interact with the physical world. We assume shared libraries with

a�ributes representing physical quantities. Phriky-Units has an

87% true positive rate for a class of inconsistencies we detect with

high-con�dence, and is available at h�p://nimbus.unl.edu/tools.

ACKNOWLEDGMENTS

�is work was supported in part by NSF awards #1638099, #1526253,

and #1526652, USDA-NIFA #2013-67021-20947, and USDA-NIFA

#2017-67021-25924

REFERENCES
[1] Noriaki Ando, Takashi Suehiro, and Tetsuo Kotoku. 2008. A so�ware platform

for component based Rt-system development: OpenRTM-AIST. In International
Conference on Simulation, Modeling, and Programming for Autonomous Robots.
Springer, 87–98.

[2] Michael R Benjamin, Henrik Schmidt, Paul M Newman, and John J Leonard. 2010.
Nested autonomy for unmanned marine vehicles with MOOS-IvP. Journal of
Field Robotics 27, 6 (2010), 834–875.

[3] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Sco�McPeak, and Dawson Engler. 2010. A few billion
lines of code later: using static analysis to �nd bugs in the real world. Commun.
ACM 53, 2 (2010), 66–75.

[4] Percy Williams Bridgman. 1922. Dimensional Analysis. Yale University Press.
[5] Herman Bruyninckx. 2001. Open robot control so�ware: the OROCOS project.

In Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on, Vol. 3. IEEE, 2523–2528.

[6] Al Danial. 2016. Count Lines Of Code. (2016). h�ps://github.com/AlDanial/cloc
[7] Michael Karr and David B Loveman III. 1978. Incorporation of units into pro-

gramming languages. Commun. ACM 21, 5 (1978), 385–391.
[8] Andrew Kennedy. 2008. Types for units-of-measure in F#: invited talk. In

Proceedings of the 2008 ACM SIGPLAN workshop on ML. ACM, 1–2.
[9] Gergely Magyar, Peter Sinčák, and Zoltán Krizsán. 2015. Comparison study of

robotic middleware for robotic applications. In Emergent Trends in Robotics and
Intelligent Systems. Springer, 121–128.

[10] Daniel Marjamäki. 2013. Cppcheck: a tool for static C/C++ code analysis. (2013).
[11] Giorgio Me�a, Paul Fitzpatrick, and Lorenzo Natale. 2006. Yarp: Yet another

robot platform. International Journal of Advanced Robotic Systems 3, 1 (2006), 8.
[12] John-Paul Ore, Carrick Detweiler, and Sebastian Elbaum. 2017. Lightweight

Detection of Physical Unit Inconsistencies without Program Annotations. In
Proceedings of the 2017 International Symposium on So�ware Testing and Analysis.
ACM. Accepted, to Appear.

[13] Morgan�igley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, and Andrew Y Ng. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source so�ware, Vol. 3.2. Kobe, Japan, 5.

[14] Grigore Rosu and Feng Chen. 2003. Certifying measurement unit safety policy.
In Automated So�ware Engineering, 2003. Proceedings. 18th IEEE International
Conference on. IEEE, 304–309.

[15] Ma�hias Christian Schabel and Steven Watanabe. 2008. Boost. Units 1, 0 (2008),
2003–2010.

[16] Arthur G Stephenson, Daniel R Mulville, Frank H Bauer, Greg A Dukeman, Peter
Norvig, LS LaPiana, PJ Rutledge, D Folta, and R Sackheim. 1999. Mars climate
orbiter mishap investigation board phase I report, 44 pp. NASA, Washington, DC
(1999).

[17] Zerksis D Umrigar. 1994. Fully static dimensional analysis with C++. ACM
SIGPLAN Notices 29, 9 (1994), 135–139.

[18] André Van Del�. 1999. A Java extension with support for dimensions. So�ware
Prac. Experience 29, 7 (1999), 605–616.

355

