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We study smooth projective hyperkähler fourfolds that are deformations of Hilbert

squares of K3 surfaces and are equipped with a polarization of fixed degree and

divisibility. They are parametrized by a quasi-projective irreducible 20-dimensional

moduli space and Verbitksy’s Torelli theorem implies that their period map is an open

embedding. Our main result is that the complement of the image of the period map is a

finite union of explicit Heegner divisors that we describe. We also prove that infinitely

many Heegner divisors in a given period space have the property that their general

points correspond to fourfolds which are isomorphic to Hilbert squares of a K3 surfaces,

or to double EPW (Eisenbud–Popescu–Walter) sextics. In two appendices, we determine

the groups of biregular or birational automorphisms of various projective hyperkähler

fourfolds with Picard number 1 or 2.

1 Introduction

We consider smooth projective hyperkähler fourfolds X which are deformations of

Hilbert squares of K3 surfaces (one says that X is of K3[2]-type). The abelian group

H2(X,Z) is free of rank 23 and it is equipped the Beauville–Bogomolov–Fujiki form

qX, a nondegenerate Z-valued quadratic form of signature (3, 20) ([6, Théorème 5]).
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2 O. Debarre and E. Macrì

A polarization H on X is the class of an ample line bundle on X that is primitive (i.e.,

nondivisible) in the group H2(X, Z). The square of H is the positive even integer 2n :=
qX(H) and its divisibility is the integer γ ∈ {1, 2} such that H · H2(X, Z) = γZ (the case

γ = 2 only occurs when n ≡−1 (mod 4)).

Smooth polarized hyperkähler fourfolds (X, H) of K3[2]-type of degree 2n and

divisibility γ admit an irreducible quasi-projective coarse moduli space M
(γ )
2n of

dimension 20. The period map (see Section 3.2)

℘
(γ )

2n : M
(γ )

2n −→ P
(γ )

2n

is algebraic and it is an open embedding by Verbitsky’s Torelli Theorem 3.2. Our main

result is that the image of ℘
(γ )

2n is the complement of a finite union of Heegner divisors

(this can also be deduced from the general results in [2]) which can be explicitly listed

(Theorem 6.1).

The main ingredient in the proof is the explicit determination of the nef

and movable cones of smooth projective hyperkähler fourfolds of K3[2]-type (see

Theorem 5.1). This is a simple consequence of previous results by Markman ([34]),

Bayer–Macrì ([5]), Bayer–Hassett–Tschinkel ([3]), and Mongardi ([38]).

The Noether–Lefschetz locus is the inverse image by the period map in M
(γ )
2n

of the union of all Heegner divisors. Its irreducible components were shown in [9,

Theorem 1.5] to generate (over Q) the Picard group of M
(γ )

2n . As an application of our

Theorem 5.1, we study in Section 7 birational isomorphisms between some of these

components. In particular, we show that points corresponding to Hilbert squares of K3

surfaces are dense in the moduli spaces M
(γ )
2n .

In the two appendices, we collect results on biregular and birational automor-

phisms of certain projective hyperkähler fourfolds with Picard number 1 or 2. These

results are needed in some of the arguments in Section 7.

Since the nef and movable cones can be described in all dimensions, many of our

results extend with some modifications to smooth projective hyperkähler manifolds of

K3[n]-type. More details in the higher dimensional case will appear in [16].

2 Lattices

A lattice is a free abelian group � of finite rank endowed with a Z-valued nondegenerate

quadratic form q. It is even if q only takes even values. We extend q to a Q-valued

quadratic form on � ⊗ Q, hence also on the dual

�∨ := HomZ(�,Z) = {x ∈ � ⊗ Q | ∀y ∈ � x · y ∈ Z}.
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On the Period Map for Polarized Hyperkähler Fourfolds 3

The discriminant group of � is the finite abelian group

D(�) := �∨/�.

The lattice � is unimodular if the group D(�) is trivial. If x is a nonzero element of �, we

define the integer div�(x) (the divisibility of x) as the positive generator of the subgroup

x · � of Z. We also consider x/div�(x), a primitive (i.e., nonzero and nondivisible) element

of �∨, and its class x∗ = [x/div�(x)] in the group D(�), an element of order div�(x).

If t is a nonzero integer, we let �(t) be the lattice (�, tq). We let I1 be the

lattice Z with the quadratic form q(x) = x2 and we let U (the hyperbolic plane) be the

even unimodular lattice Z2 with the quadratic form q(x1,x2) = 2x1x2. There is a unique

positive definite even unimodular lattice of rank 8, which we denote by E8.

Assume now that the lattice � is even. Following [40], we define a quadratic form

q̄ : D(�) → Q/2Z by setting q̄([x]) := q(x) ∈ Q/2Z. The stable orthogonal group ˜O(�,q) is

the kernel of the canonical map

O(�,q) −→ O(D(�), q̄).

This map is surjective when � is indefinite and its rank is at least the minimal number

of generators of the finite abelian group D(�) plus 2 ([40, Theorem 1.14.2]).

We will use the following classical result (see [20, Lemma 3.5]).

Theorem 2.1. (Eichler’s criterion). Let � be an even lattice that contains at least two

orthogonal copies of U. The ˜O(�,q)-orbit of a primitive vector x ∈ � is determined by

the integer q(x) and the element x∗ of D(�).

3 Moduli Spaces, Period Spaces, and Period Maps

3.1 Moduli spaces

Let X be a (smooth) hyperkähler (also called irreducible symplectic) fourfold of K3[2]-

type (see [21, Section 3] for the main definitions). The lattice (H2(X, Z), qX) defined in the

introduction is isomorphic to the even lattice

�K3[2] := U⊕3 ⊕ E8(−1)⊕2 ⊕ I1(−2)

with signature (3, 20) and discriminant group Z/2Z. The divisibility of a primitive

element is therefore 1 or 2, and ˜O(�K3[2]) = O(�K3[2]).
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4 O. Debarre and E. Macrì

As recalled in the introduction, hyperkähler fourfolds X of K3[2]-type

with a polarization of fixed (positive) square 2n and divisibility γ in the lattice

(H2(X, Z), qX) have a quasi-projective coarse moduli space M(γ )

2n which is irreducible and

20-dimensional when γ = 1, or when γ = 2 and n ≡−1 (mod 4) ([21, Remark 3.17]).

3.2 Period spaces and period maps

By Eichler’s criterion (Theorem 2.1), primitive elements of the lattice �K3[2] with fixed

positive square 2n and fixed divisibility γ ∈ {1, 2} form a single O(�K3[2])-orbit. We fix

one such element h0.

If γ = 1, we have

h⊥
0 � U⊕2 ⊕ E8(−1)⊕2 ⊕ I1(−2) ⊕ I1(−2n) =: �

(1)

K3[2],2n
, (1)

a lattice with discriminant group Z/2Z × Z/2nZ, with q̄(1, 0) = −1
2 and q̄(0, 1) = − 1

2n (see

the proof of Proposition 4.1).

If γ = 2, we have n ≡ −1 (mod 4) and

h⊥
0 � U⊕2 ⊕ E8(−1)⊕2 ⊕

(

−2 −1

−1 −n+1
2

)

=: �
(2)

K3[2],2n
, (2)

a lattice with discriminant group Z/nZ, with q̄(1) = − 2
n (see the proof of Proposition 4.1).

We now describe the period map for polarized hyperkähler fourfolds of

K3[2]-type. The complex variety

�h0 := {

x ∈ P(�K3[2] ⊗ C) | x · h0 = 0, x · x = 0, x · x̄ > 0
}

has two connected components, interchanged by complex conjugation, which are

Hermitian symmetric domains of type IV. It is acted on by the group

O(�K3[2] ,h0) := {

� ∈ O(�K3[2]) | �(h0) = h0
}

.

By results of Baily–Borel and Griffiths, the quotient P
(γ )
2n := O(�K3[2] ,h0)\�h0 is an

irreducible quasi-projective variety and the period map

℘
(γ )
2n : M

(γ )
2n −→ P

(γ )
2n (3)
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On the Period Map for Polarized Hyperkähler Fourfolds 5

is algebraic. Alternatively, one has

�h0 � {

x ∈ P
(

�
(γ )

K3[2],2n
⊗ C

)∣

∣ x · x = 0, x · x̄ > 0
}

and the group O(�K3[2] ,h0) can be identified with the stable orthogonal group ˜O(�
(γ )

K3[2],2n
)

([20, Proposition 3.12 and Corollary 3.13]).

The full orthogonal group O(�
(γ )

K3[2],2n
) also acts on �h0 , hence the quotient group

O
(

�
(γ )

K3[2],2n

)/

˜O
(

�
(γ )

K3[2],2n

) � O
(

D
(

�
(γ )

K3[2],2n

))

acts on the period space P
(γ )

2n (where −Id acts trivially). We determine this group and

describe this action in the next proposition, assuming for simplicity that n is odd. For

any nonzero integer r, we denote by ρ(r) the number of prime factors of r.

Proposition 3.1. Assume that n is odd. The period space P
(γ )

2n is acted on generically

freely by the following groups:

• if n ≡ 1 (mod 4) (so that γ = 1), by the group (Z/2Z)max{ρ(n),1};
• if n ≡−1 (mod 4), by the group (Z/2Z)ρ(n)−1.

Proof. Case γ = 1. Since n is odd, (1) implies D
(

�
(γ )

K3[2],2n

) � Z/2Z × Z/2Z × Z/nZ. This

decomposition is still orthogonal for q̄ and the values of q̄ at the points of order 2 are

q̄(1, 0, 0) = −1
2 , q̄(0, 1, 0) = −n

2 , and q̄(1, 1, 0) = −n+1
2 in Q/2Z.

When n ≡ −1 (mod 4), these three values are all distinct and any isometry � of
(

D
(

�
(1)

K3[2],2n

)

, q̄
)

must therefore be the identity on both Z/2Z factors, hence must preserve

their orthogonal Z/nZ. Write �(0, 0, 1) = (0, 0, a); since q̄(0, 0, 1) = − 2
n , we have 2

n = 2a2

n

(mod 2Z), hence a2 = 1 (mod n). Since n is odd, the group O
(

D
(

�
(1)

K3[2],2n

))

is therefore

isomorphic to (Z/2Z)ρ(n). The proposition follows since only −Id acts trivially.

When n ≡ 1 (mod 4), there are extra isometries given by (1, 0, 0) ↔ (0, 1, 0) and

(0, 0, 1) ↔ (0, 0, a), where a2 ≡ 1 (mod n) (and when n = 1, we have −Id = Id).

Case γ = 2 (hence n ≡ −1 (mod 4)). We have D
(

�
(γ )

K3[2],2n

) � Z/nZ, with q̄(1) = − 2
n ,

and we proceed as in the first case. This proves the proposition. �

3.3 The Torelli theorem

Verbitsky’s Torelli theorem takes the following form ([50], [21, Theorem 3.14]).
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6 O. Debarre and E. Macrì

Theorem 3.2. (Verbitsky) For each positive integer n and each divisibility γ ∈ {1, 2},
the period map

℘
(γ )

2n : M
(γ )

2n −→ P
(γ )

2n

is an open embedding.

In particular, the commuting involutions of P
(γ )
2n described in Proposition 3.1

induce rational involutions on the moduli space M
(γ )

2n . In the case n = γ = 1 (double EPW

sextics; see Example 6.3), the unique nontrivial involution was described geometrically

in [42] in terms of projective duality.

4 Special Polarized Hyperkähler Fourfolds

A hyperkähler fourfold corresponding to a very general point of M
(γ )

2n has Picard

number 1. The Noether–Lefschetz locus (or special locus) is the subset of M
(γ )

2n corre-

sponding to hyperkähler fourfolds with Picard number at least 2. It can be described as

follows.

Let K be a primitive, rank-2, signature-(1, 1) sublattice of �K3[2] containing the

class h0 chosen in Section 3.2. The codimension-2 subspace P(K⊥ ⊗C) in P(�K3[2] ⊗ C)

cuts out an irreducible hypersurface in �h0 whose image in P
(γ )

2n will be denoted by

D
(γ )

2n,K and called a Heegner divisor. The Noether–Lefschetz locus is then the inverse

image in M
(γ )
2n by the period map ℘

(γ )
2n of the countable union

⋃

K D
(γ )

2n,K of irreducible

hypersurfaces.

For each integer d, the union

D
(γ )

2n,d :=
⋃

disc(K⊥)=−d

D
(γ )

2n,K ⊂ P
(γ )

2n

of Heegner divisors is finite, hence it is either empty or of pure codimension 1. Following

Hassett, we say that the polarized hyperkähler fourfolds whose period point is in D
(γ )

2n,d

are special of discriminant d (the lattice K⊥ has signature (2, 19), hence d is positive).

We use the notation C
(γ )

2n,d := (℘
(γ )

2n )−1(D
(γ )

2n,d) ⊂ M
(γ )

2n .

We now describe the irreducible components of the loci D
(γ )

2n,d (the case n = 3

and γ = 2 was originally studied by Hassett in [23] and the case n = γ = 1 in [18]).
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On the Period Map for Polarized Hyperkähler Fourfolds 7

Proposition 4.1. Let n and d be positive integers and let γ ∈ {1, 2}. If the locus D
(γ )

2n,d is

nonempty, the integer d is even; we set e := d/2.

(1) (a) The locus D (1)
2n,2e is nonempty if and only if either e or e − n is a square

modulo 4n.

(b) If n is square-free and e is divisible by n and satisfies the conditions in (a),

the locus D (1)
2n,2e is irreducible, except when

• either n ≡ 1 (mod 4) and e ≡ n (mod 4n),

• or n ≡ −1 (mod 4) and e ≡ 0 (mod 4n),

in which cases D (1)
2n,2e has two irreducible components.

(c) If n is prime and e satisfies the conditions in (a), D (1)
2n,2e is irreducible, except

when n ≡ 1 (mod 4) and e ≡ 1 (mod 4), or when n ≡ −1 (mod 4) and e ≡ 0

(mod 4), in which cases D (1)
2n,2e has two irreducible components.

(2) Assume moreover n ≡ −1 (mod 4).

(a) The locus D (2)
2n,2e is nonempty if and only if e is a square modulo n.

(b) If n is square-free and n | e, the locus D (2)
2n,2e is irreducible.

(c) If n is prime and e satisfies the conditions in (a), D (2)
2n,2e is irreducible.

Remark 4.2. In cases (1)(b) and (1)(c), when the hypersurface D (1)
2n,2e is reducible, its

two components are exchanged by one of the involutions of the period space described

in Proposition 3.1 when n ≡ 1 (mod 4), but not when n ≡ −1 (mod 4) (in that case, these

involutions are in fact trivial when n is prime).

Proof of Proposition 4.1. Case γ = 1. Let (u, v) be a standard basis for a hyperbolic

plane U contained in �K3[2] and let � be a basis for the I1(−2) factor. We may take h0 := u +

nv (it has the correct square and divisibility), in which case h⊥
0 = Z(u − nv) ⊕ Z� ⊕ M,

where M := {u, v, �}⊥ = U⊕2 ⊕ E8(−1)⊕2 is unimodular. The discriminant group D(h⊥
0 ) �

Z/2Z× Z/2nZ is generated by �∗ = �/2 and (u−nv)∗ = (u − nv)/2n, with q̄(�∗) = −1/2 and

q̄((u − nv)∗) = −1/2n.

Let κ be a generator of K ∩ h⊥
0 . We write

κ = a(u − nv) + b� + cw,

where w ∈ M is primitive. Since K has signature (1, 1), we have κ2 < 0 and the formula

from [21, Lemma 7.5] reads

d =
∣

∣

∣disc(K⊥)

∣

∣

∣ =
∣

∣

∣

∣

∣

κ2disc(h⊥
0 )

s2

∣

∣

∣

∣

∣

= 8n(na2 + b2 + mc2)

s2 ≡ 8n(na2 + b2)

s2 (mod 8n), (4)
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8 O. Debarre and E. Macrì

where m := −1
2w

2 and s := gcd(2na, 2b, c) is the divisibility of κ in h⊥
0 . If s | b, we obtain

d ≡ 2
(2na

s

)2
(mod 8n), which is the first case of (1)(a): d is even and e := d/2 is a square

modulo 4n. Assume s � b and, for any nonzero integer x, write x = 2v2(x)xodd, where xodd

is odd. One has then ν2(s) = ν2(b) + 1 and

d ≡ 2
(

2na

s

)2

+ 2n
(

bodd

sodd

)2

≡ 2
(

2na

s

)2

+ 2n (mod 8n),

which is the second case of (1)(a): d is even and d/2 − n is a square modulo 4n. It is then

easy, taking suitable integers a, b, c, and vector w, to construct examples that show that

these necessary conditions on d are also sufficient, thereby proving (1)(a).

We now prove (1)(b) and (1)(c).

Given a lattice K containing h0 with disc(K⊥) = −2e, we let as above κ be

a generator of K ∩ h⊥
0 . By Eichler’s criterion (Theorem 2.1), the group ˜O(h⊥

0 ) acts

transitively on the set of primitive vectors κ ∈ h⊥
0 of given square and fixed κ∗ ∈ D(h⊥

0 ).

Since κ and − κ give rise to the same lattice K (obtained as the saturation of Zh0 ⊕
Zκ), the locus D (1)

2n,2e will be irreducible (when nonempty) if we show that the integer e

determines κ2, and κ∗ up to sign.

We write as above κ = a(u − nv) + b� + cw ∈ h⊥
0 , with gcd(a,b, c) = 1 and

s = divh⊥
0
(κ) = gcd(2na, 2b, c). From (4), we get

κ2 = −es2/2n = −2(na2 + b2 + mc2) and κ∗ = (2na/s, 2b/s) ∈ Z/2nZ × Z/2Z. (5)

If s = 1, we have e ≡ 0 (mod 4n) and κ∗ = 0.

If s = 2, the integer c is even and a and b cannot be both even (because κ is

primitive). We have e = n(na2 + b2 + mc2) and

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

e ≡ n2 (mod 4n) and κ∗ = (n, 0) if b is even (and a is odd);

e ≡ n (mod 4n) and κ∗ = (0, 1) if b is odd and a is even;

e ≡ n(n + 1) (mod 4n) and κ∗ = (n, 1) if b and a are odd.

Assume now that n is square-free and n|e. From (4), we get n | (2na
s

)2
, hence s2 |

4na2, and s | 2a because n is square-free. This implies s = gcd(2a, 2b, c) ∈ {1, 2}.
When n is even (i.e., n ≡ 2 (mod 4)), we see from the discussion above that both

s (hence also κ2) and κ∗ are determined by e, so the corresponding hypersurfaces D (1)
2n,2e

are irreducible.
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On the Period Map for Polarized Hyperkähler Fourfolds 9

If n is odd, we have the following coincidences:

• when n ≡ 1 (mod 4), we have n ≡ n2 (mod 4n), hence D (1)
2n,2e is irreducible

when e ≡ 0 or 2n (mod 4n), has two irreducible components (corresponding

to κ∗ = (n, 0) and κ∗ = (0, 1)) when e ≡ n (mod 4n), and is empty otherwise;

• when n ≡ −1 (mod 4), we have n(n + 1) ≡ 0 (mod 4n), hence D (1)
2n,2e is

irreducible when e ≡ −n or n (mod 4n), has two irreducible components

(corresponding to κ∗ = 0 and κ∗ = (n, 1)) when e ≡ 0 (mod 4n), and is empty

otherwise.

This proves (1)(b).

We now assume that n is prime and prove (1)(c). Since s| 2 n, we have s ∈ {1, 2, n,

2n}; the cases s = 1 and s = 2 were explained above. If s = n (and n is odd), we have n |
b, n | c, n � a, and

e ≡ 4a2 (mod 4n) and κ∗ = (2a, 0).

If s = 2n, the integer c is even, a and b cannot be both even, n | b, and n � a. We have
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

e ≡ a2 (mod 4n) and κ∗ = (a, 0) if 2n | b (hence a is odd);

e ≡ a2 + n (mod 4n) and κ∗ = (a, 1) if b is odd (and n is odd);

e ≡ a2 + 2 (mod 8) and κ∗ = (a, 1) if 4 � b is odd and n = 2.

When n = 2, one checks that the class of e modulo 8 (which is in {0, 1, 2, 3,

4, 6}) completely determines s, and κ∗ up to sign. The corresponding divisors D (1)
4,2e are

therefore all irreducible.

When n ≡ 1 (mod 4), we have n ≡ n2 (mod 4n) and a2 ≡ (n−a)2 + n (mod 4n)

when a is odd (in which case a2 ≡ 1 (mod 4)). When n ≡ −1 (mod 4), we have n(n + 1) ≡
0 (mod 4n) and a2 ≡ (n−a)2 + n (mod 4n) when a is even (in which case a2 ≡ 0 (mod 4)).

Together with changing a into − a (which does not change the lattice K), these

are the only coincidences: the corresponding hypersurfaces D (1)
2n,2e therefore have two

components and the others are irreducible. This proves (1)(c).

Case γ = 2 (hence n ≡ −1 (mod 4)). We may take h0 := 2
(

u + n+1
4 v

) + �, in which

case h⊥
0 = Zw1 ⊕ Zw2 ⊕ M, with w1 := v + � and w2 := −u + n+1

4 v. The matrix of

the intersection form on Zw1 ⊕ Zw2 is
( −2 −1

−1 −n+1
2

)

as in (2) and the discriminant group

D(h⊥
0 ) � Z/nZ is generated by (w1−2w2)∗ = (w1 − 2w2)/n, with q̄((w1 − 2w2)∗) = −2/n.

Let (h0, κ ′) be a basis for K, so that disc(K) = 2nκ ′2 − (h0·κ ′)2. Since div(h0) = γ = 2,

the integer h0·κ ′ is even and since κ ′2 is also even (because �K3[2] is an even lattice), we

have 4 | disc(K) and −disc(K)/4 is a square modulo n. Since the discriminant of �K3[2]
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10 O. Debarre and E. Macrì

is 2, the integer d = |disc(K⊥)| is either 2|disc(K)| or 1
2 | disc(K)|, hence it is even and

e = d/2 is a square modulo n, as desired.

Conversely, it is easy to construct examples that show that these necessary

conditions on d are also sufficient. This proves (2)(a).

We now prove (2)(b) and (2)(c). To prove that the loci D (2)
2n,2e are irreducible (when

nonempty), we need to show that e determines κ2, and κ∗ up to sign (where κ is a

generator of K ∩ h⊥
0 ).

With the notation above, we have κ = ((h0 · κ ′)h0 − 2nκ ′)/t, where t :=gcd(h0 ·κ ′, 2n)

is even and κ2 = 2n
t2

disc(K). Formula (1) then gives

2e =
∣

∣

∣disc(K⊥)

∣

∣

∣ =
∣

∣

∣

∣

∣

κ2disc(h⊥
0 )

divh⊥
0
(κ)2

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

2n2disc(K)

t2divh⊥
0
(κ)2

∣

∣

∣

∣

∣

.

Since n is odd and t is even, and, as we saw above, disc(K) ∈ {−e, −4e}, the only

possibility is disc(K) = −4e and tdivh⊥
0
(κ) = 2n.

Assume that n is square-free and n|e. Since − 4e = disc(K) = 2nκ ′2 − (h0·κ ′)2, we

get 2n | (h0·κ ′)2 hence, since n is square-free and odd, 2n | h0 · κ ′. This implies t = 2n

and divh⊥
0
(κ) = 1; in particular, κ∗ = 0 and κ2 = −2e/n are uniquely determined. This

proves (2)(b).

We now assume that n is prime. Since tdivh⊥
0
(κ) = 2n and t is even,

• either (t, divh⊥
0
(κ), κ2) = (2n, 1, −2e/n) and n | e;

• or (t, divh⊥
0
(κ), κ2) = (2,n, −2ne) and n � e (because n � h0 · κ ′ and

d = −1
2disc(K) ≡ 1

2 (h0 · κ ′)2 (mod n)).

Given e = a2 + nn′, the integer κ2 is therefore uniquely determined by e:

• either n | a, κ2 = −2e/n, and κ∗ = 0;

• or n � a, κ2 = −2ne, κ∗ = κ/n, and q̄(κ∗) = −2a2/n (mod 2Z).

In the second case, κ∗ = ±a(w1−2w2)∗; it follows that in all cases, κ∗ is also uniquely

defined, up to sign, by e. This proves (2)(c). �

5 The Nef Cone of a Projective Hyperkähler Fourfold of K3[2]-Type

Cones of divisors on projective hyperkähler manifolds of K3[n]-type were described in

[3, 5, 34, 38]. When n = 2, these results take a very special form.

Let X be a projective hyperkähler fourfold of K3[2]-type. The positive cone

Pos(X) ⊂ Pic(X) ⊗ R
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On the Period Map for Polarized Hyperkähler Fourfolds 11

is the connected component of the open subset {x ∈ Pic(X) ⊗ R | x2 > 0} containing the

class of an ample divisor. The movable cone

Mov(X) ⊂ Pic(X) ⊗ R

is the (not necessarily open nor closed) convex cone generated by classes of movable

divisors (i.e., those divisors whose base locus has codimension at least 2). We have

inclusions Int(Mov(X)) ⊂ Pos(X) of the interior of the movable cone into the positive

cone, and Amp(X) ⊂ Mov(X) of the ample cone into the movable cone.

We set

DivX := {a ∈ Pic(X) | a2 = −2},

F lopX := {a ∈ Pic(X) | a2 = −10, divH2(X,Z)(a) = 2}.

Given a divisor class a ∈ Pic(X) ⊗ R, we denote by Ha the hyperplane

Ha := {x ∈ Pic(X) ⊗ R | x · a = 0}.

Theorem 5.1. Let X be a hyperkähler fourfold of K3[2]-type.

(a) The interior Int(Mov(X)) of the movable cone is the connected component of

Pos(X) \
⋃

a∈DivX

Ha

that contains the class of an ample divisor.

(b) The ample cone Amp(X) is the connected component of

Int(Mov(X)) \
⋃

a∈F lopX

Ha

that contains the class of an ample divisor.

Proof. Statement (a) follows from the general result [34, Lemma 6.22]. We sketch

instead the proof of (b).

There is an extension H2(X,Z) ⊂ ˜�X of lattices and weight-2 Hodge structures,

where the lattice ˜�X is isomorphic to the lattice U⊕4 ⊕ E8(−1)⊕2 and the orthogonal

H2(X,Z)⊥ ⊂ ˜�X is generated by a primitive vector vX of square 2 ([34, Section 9],
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12 O. Debarre and E. Macrì

[3, Section 1]). We denote by ˜�alg,X the algebraic (i.e., (1, 1)-type) part of ˜�X , so that

Pic(X) = v⊥
X ∩ ˜�alg,X . Finally, we set

F lop′
X := {ã ∈ ˜�alg,X | ã2 = −2, ã · vX = 1}.

The dual statement to [3, Theorem 1] is then the following: the ample cone Amp(X) is the

connected component of

Int(Mov(X)) \
⋃

ã∈F lop′
X

Hã

containing the class of an ample divisor, where the hyperplane Hã is defined as before

by Hã := {x ∈ Pic(X)⊗R | x · ã = 0}. We notice that the actual statement of [3, Theorem 1]

says that we need to exclude the hyperplanes Ha, where a2 ≥ −2 and |a · vX | ≤ 1. We

may in fact only consider classes with a2 = −2, as explained in [5, Sections 12 and 13].

Given a class ã ∈ F lopX , we let a := 2ã − vX . Then a ∈ F lopX and Ha = Hã.

Conversely, given a ∈ F lopX , we let b̃ := a + vX ∈ ˜�alg. Since divH2(X,Z)(a) = 2, we have

b̃ = 2ã, and ã ∈ F lop′
X with Hã = Ha. This proves (b). �

Remark 5.2. We can make the description in Theorem 5.1 more precise.

(a) As explained in [34, Section 6], it follows from [35] that there is a group of

reflections WExc acting on Pos(X). Using the Zariski decomposition ([13]), one shows

([34, Lemma 6.22]) that WExc acts faithfully and transitively on the set of connected

components of

Pos(X) \
⋃

a∈DivX

Ha.

In particular, Mov(X) ∩ Pos(X) is a fundamental domain for the action of WExc on Pos(X).

(b) By [37, Proposition 2.1] (see also [25, Theorem 7]), each connected compo-

nent of

Int(Mov(X)) \
⋃

a∈F lopX

Ha

corresponds to the ample cone of a hyperkähler fourfold X′ of K3[2]-type via a birational

map X ��� X ′ which is a composition of Mukai flops with respect to numerically

equivalent Lagrangian planes ([51, Theorem 1.1]).

(c) By [1, Proposition 4] (generalized to the twisted case in [29, Proof of

Proposition 4.1]) and [4, 5], if DivX �= ∅, the fourfold X is isomorphic to a moduli
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On the Period Map for Polarized Hyperkähler Fourfolds 13

space M of stable sheaves on a (possibly twisted) K3 surface (S, α). The moduli space

M is birational to the Hilbert square of a K3 surface if there exists a ∈ DivX with

divH2(X,Z)(a) = 2; otherwise, M is birational to a moduli space of rank-2 torsion-free

sheaves.

(d) Similarly, if there exists a nonzero class w ∈ Pic(X) with w2 = 0, the fourfold

X is birational to a moduli space M of torsion sheaves on a (possibly twisted) K3 surface

(S, α). If the divisor class w is also nef and primitive, X is actually isomorphic to such

an M and the Beauville integral system f : X
∼→M → P2 is a Lagrangian fibration on X

such that w = [f ∗OP2(1)].

Before discussing a few examples of Theorem 5.1 when Pic(X) has rank 2, we

briefly review Pell-type equations (see [39, Chapter VI]). Given nonzero integers e and t

with e > 0, we denote by Pe(t) the equation

a2 − eb2 = t, (6)

where a and b are integers. A solution (a, b) of this equation is called positive if a > 0 and

b > 0. If e is not a perfect square, (a, b) is a solution if and only if the norm N
(

a + b
√
e
)

in

the quadratic number field Q
(√

e
)

is t. The positive solution with minimal a is called the

minimal solution; it is also the positive solution (a, b) for which the ratio a/b is minimal

when t < 0, maximal when t > 0.

Assume that e is not a perfect square. There is always a minimal solution (a1, b1)

to the Pell equation Pe(1) and if x1 := a1 + b1
√
e, all the solutions of the equation Pe(1)

correspond to the “mth powers” ±xm1 in Z
[√

e
]

, for m ∈ Z.

The following example is [5, Proposition 13.1 and Lemma 13.3]. Parts of the

results were first proved in [25, Theorem 22] and the rationality of the nef cone was

also proved, by very different methods, in [47, Corollary 5.2]. Note that there is a typo in

[5, Lemma 13.3(b)]: one should replace d with 2d.

Example 5.3. Let (S, L) be a polarized K3 surface such that Pic(S) = ZL and L2 =: 2e.

Then Pic(S[2]) = ZL2 ⊕ Zδ, where L2 is the class on S[2] induced by L and 2δ is the class of

the divisor in S[2] that parametrizes nonreduced length-2 subschemes of S ([6, Remarque,

p. 768]). In the lattice (H2(S[2],Z),qS[2]), we have the following products:

L2
2 = 2e, δ2 = −2, L2 · δ = 0.

Cones of divisors on S[2] can be described as follows.
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14 O. Debarre and E. Macrì

(a) The extremal rays of the (closed) movable cone Mov(S[2]) are spanned by L2

and L2 − μeδ, where

• if e is a perfect square, μe = √
e;

• if e is not a perfect square and (a1, b1) is the minimal solution of

the equation Pe(1), μe = e b1
a1

.

(b) The extremal rays of the nef cone Nef(S[2]) are spanned by L2 and L2 − νeδ,

where

• if the equation P4e(5) is not solvable, νe = μe;

• if the equation P4e(5) is solvable and (a5, b5) is its minimal

solution, νe = 2e b5
a5

.

Example 5.4. Let n be a positive integer such that n ≡−1 (mod 4). Let (X, H) be

a polarized hyperkähler fourfold of K3[2]-type with H of divisibility 2 and Pic(X) =
ZH ⊕ZL, with intersection matrix

(

2n 0
0 −2e′

)

. Since any two embeddings of the lattice

K = I1(2n) ⊕ I1(−2e′) into �K3[2] for which the image of a generator of I1(2n) has

divisibility 2 differ by an isometry of �K3[2] , they represent very general elements of

one component of the special divisor C (2)

2n,2e′n (we will prove in Theorem 6.1 that they

exist if and only if n > 0 and e′ > 1). Indeed, in the notation of the second part of the

proof of Proposition 4.1 (case γ = 2), a generator of I1(2n) can be sent to the class h0; a

generator of I1(−2e′) is then sent to the class κ ′ = κ. We have t := gcd(h0 · κ ′, 2n) = 2n

and the formula tdivh⊥
0
(κ) = 2n implies divh⊥

0
(κ) = 1, that is, κ∗ = 0 in D(K⊥). We

then apply Eichler’s criterion again in K⊥ and conclude by using the isomorphism

O
(

�K3[2] ,h0
) � ˜O(K⊥).

We assume in the rest of this example that n is square-free. The hypersurface

C (2)

2n,2e′n is then irreducible by Proposition 4.1(2)(b) and very general elements of C (2)

2n,2e′n
are of the type described above. Cones of divisors on X can be described as follows (we

set e := e′n).

(a) The extremal rays of the closure of the movable cone Mov(X) are spanned

by H − μn,eL and H + μn,eL, where

• if the equation Pe(−n) is not solvable, μn,e = n/
√
e;

• if the equation Pe(−n) is solvable and (a−n, b−n) is its minimal

solution, μn,e = a−n
e′b−n

.
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On the Period Map for Polarized Hyperkähler Fourfolds 15

(b) The extremal rays of the nef cone Nef(X) are spanned by H − νn,eL and

H + νn,eL, where

• if the equation P4e(−5n) is not solvable, νn,e = μn,e;

• if the equation P4e(−5n) is solvable and (a−5n, b−5n) is its

minimal solution, νn,e = a−5n
2e′b−5n

.

To prove these statements, it is enough to notice that, in the notation of

Theorem 5.1, a class in DivX corresponds to a solution to the equation Pe(−n); similarly,

a class in F lopX corresponds to a solution to the equation P4e(−5n). The description

of the cones of divisors on X then follows from Theorem 5.1 by a direct computation.

6 The Image of the Period Map

The description of the cones of divisors for hyperkähler fourfolds of K3[2]-type given in

Section 5 easily implies our main result on the images of their period maps.

Theorem 6.1. Let n be a positive integer and let γ ∈ {1, 2}. The image of the period map

℘
(γ )

2n : M
(γ )

2n −→ P
(γ )

2n

is exactly the complement of the union of finitely many Heegner divisors. More precisely,

these Heegner divisors are

• if γ = 1,

– some irreducible components of the hypersurface D (1)
2n,2n (two components

if n ≡ 0 or 1 (mod 4), one component if n ≡ 2 or 3 (mod 4));

– one irreducible component of the hypersurface D (1)
2n,8n;

– one irreducible component of the hypersurface D (1)
2n,10n;

– and, if n = 52α+1n
′ ′
, with α ≥ 0 and n

′ ′≡ ±1 (mod 5), some irreducible

components of the hypersurface D (1)
2n,2n/5;

• if γ = 2 (and n ≡ −1 (mod 4)), one irreducible component of the hypersurface

D (2)
2n,2n.

Remark 6.2. We proved in Proposition 4.1 that when n is square-free (so in particular

n �≡ 0 (mod 4)),

• the hypersurface D (1)
2n,2n has two components if n ≡ 1 (mod 4), one component

otherwise;
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16 O. Debarre and E. Macrì

• the hypersurface D (1)
2n,8n has two components if n ≡ −1 (mod 4), one compo-

nent otherwise;

• the hypersurface D (1)
2n,10n has two components if n ≡ 1 (mod 4), one component

otherwise;

• the hypersurface D (2)
2n,2n is irreducible (when n ≡ −1 (mod 4)).

Proof of Theorem 6.1. Take a point x ∈ P
(γ )
2n . Since the period map for smooth compact

(not necessarily projective) hyperkähler fourfolds is surjective ([28, Theorem 8.1]), there

exists a compact hyperkähler fourfold X′ with the given period point x. Since the class

h0 is algebraic and has positive square, X′ is projective by [28, Theorem 3.11]. Moreover,

the class h0 corresponds to the class of an integral divisor H in the positive cone of

X′. By Remark 5.2(a), we can let an element in the group WExc act and assume that

the pair (X′, H), representing the period point x and the class h0, is such that H is in

Mov(X ′) ∩ Pos(X ′). By Remark 5.2(b), we can find a projective hyperkähler fourfold X

which is birational to X′ (hence still has period x), such that the divisor H, with class

h0, is nef and big on X and has divisibility γ . Note that, since X′ is birational to X, it is

deformation equivalent to X ([28, Theorem 4.6]), hence still of K3[2]-type.

To summarize, the point x is in the image of the period map ℘
(γ )

2n if and only

if H is actually ample on X. We now use Theorem 5.1: H is ample if and only if it is

not orthogonal to any algebraic class either with square −2, or with square −10 and

divisibility 2.

If H is orthogonal to an algebraic class κ with square −2, the Picard group

of X contains a rank-2 lattice K with intersection matrix
(

2n 0
0 −2

)

; the fourfold X is

therefore special of discriminant 2e := −disc(K⊥) (its period point is in the hypersurface

D
(γ )

2n,K ).

If γ = 1, the divisibility s := divK⊥(κ) is either 1 or 2. By (2), we have es2 = −2nκ2

= 4n, hence

• either s = 1, e = 4n, and κ∗ = 0: the period point is then in one irreducible

component of the hypersurface D (1)
2n,8n;

• or s = 2, e = n, and

– either κ∗ = (0, 1);

– or κ∗ = (n, 0) and n ≡ 1 (mod 4);

– or κ∗ = (n, 1) and n ≡ 0 (mod 4).

The period point x is in one irreducible component of the hypersurface D (1)
2n,2n if

n ≡ 2 or 3 (mod 4), or in the union of two such components otherwise.
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On the Period Map for Polarized Hyperkähler Fourfolds 17

If γ = 2, we have e = −disc(K)/4 = n, t =
√

2ndisc(K)/κ2 = 2n, and div(κ) = 2n/t

= 1, hence κ∗ = 0: the period point x is in one irreducible component of the hypersurface

D (2)
2n,2n.

If H is orthogonal to an algebraic class with square −10 and divisibility 2, the

Picard group of X contains a rank-2 lattice K with intersection matrix
(

2n 0
0 −10

)

, hence

X is special of discriminant 2e := −disc(K⊥). Again, we distinguish two cases, keeping

the same notation.

If γ = 1, the divisibility s := divK⊥(κ) is even (because the divisibility in H2(X, Z)

is 2) and divides κ2 = −10, hence it is either 2 or 10 . Moreover, es2 = −2nκ2 = 20n,

hence

• either s = 2, e = 5n, and κ∗ = (0, 1): the period point x is then in one

irreducible component of the hypersurface D (1)
2n,10n;

• or s = 10 and e = n/5: the period point is then in the hypersurface D (1)
2n,n/5.

In the second case, since the divisibility of κ in H2(X, Z) is 2, a and c are even, so that

b is odd and κ∗ = (a, 1). Set a′ := a/2 and n′ := n/5; we have e ≡ a2 + n (mod 4n),

hence a′2 ≡ −n′ (mod 5n′). Write a′ = 5αa′′ and n′ = 5βn′′, with a′′ and n′′ prime to 5.

This congruence then reads 52αa′′2 ≡−5βn′′ (mod 5β+1n′′), which implies β = 2α and

a′′2 ≡ −n′′ (mod 5n′′). Finally, this last congruence is equivalent to a′′2 ≡ 0 (mod n′′)
and a′′2 ≡ −n′′ (mod 5); these congruences are solvable (in a′′) if and only if n′′≡ ±1

(mod 5).

In general, there are many possibilities for a = 2 · 5αa′′ (modulo 2n). However, if

n′′ is square-free, we have a′′≡ 0 (mod n′′) and ± a (hence also ± κ∗) is well determined

(modulo 2n), so we have a single component of D (1)
2n,n/5.

If γ = 2, we have e = −disc(K)/4 = 5n and t2 = 2ndisc(K)/κ2 = n2/10, which is

impossible.

Conversely, in each case described above, it is easy to construct a class κ with

the required square and divisibility which is orthogonal to H. �

Example 6.3. (Double EPW sextics: n = γ = 1) Double EPW sextics were defined in [43]

as ramified double covers of certain singular sextic hypersurfaces in P5. When smooth,

they are hyperkähler fourfolds of K3[2]-type with a polarization of degree 2. They fill

out a dense open subset U (1)
2 of M (1)

2 whose complement contains the irreducible

hypersurface H (1)
2 whose general points correspond to pairs (S[2], L2 − δ), where

(S, L) is a polarized K3 surface of degree 4 ([44, Section 5.3]).
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18 O. Debarre and E. Macrì

O’Grady proved that the image of U (1)
2 in the period space does not meet D (1)

2,2,

D (1)
2,4, D (1)

2,8, and one component of D (1)
2,10 ([44, Theorem 1.3]; O’Grady’s hypersurfaces S′

2∪S′′
2,

S�
2, S4 are our D (1)

2,2, D (1)
2,4, D (1)

2,8); moreover, by [18, Theorem 8.1], this image does meet all

the other components of the nonempty hypersurfaces D (1)

2,d. The hypersurface H (1)
2 maps

to D (1)
2,4. These results agree with Theorem 6.1 and Remark 6.2, which say that the image

of M (1)
2 in the period space is the complement of the union of D (1)

2,2, D (1)
2,8, and one of the

two components of D (1)
2,10. However, our theorem says nothing about the image of U (1)

2 .

O’Grady conjectures that it is the complement of the hypersurfaces D (1)
2,2, D (1)

2,4, D (1)
2,8, and

one component of D (1)
2,10; this would follow if one could prove M (1)

2 = U (1)
2 ∪ H (1)

2 .

Example 6.4. (Varieties of lines on cubic fourfolds: n = 3 and γ = 2). If W ⊂ P5 is a

smooth cubic fourfold, the variety F(W) of lines contained in W is a hyperkähler fourfold

and its Plücker polarization has square 6 and divisibility 2 ([8], [23, Proposition 2.1.2]).

These fourfolds fill out a dense open subset U (2)
6 of M (2)

6 whose complement contains an

irreducible hypersurface H (2)
6 whose general points correspond to pairs (S[2], 2L2 − δ),

where (S, L) is a polarized K3 surface of degree 2 (see Proposition 7.9).

Theorem 6.1 and Remark 6.2 say that the image of M (2)
6 in the period space is the

complement of the irreducible hypersurface D (2)
6,6. This (and much more) was first proved

by Laza in [32, Theorem 1.1], together with the fact that M (2)
6 = U (2)

6 ∪ H (2)
6 ; since H (2)

6

maps onto D (2)
6,2, the image of U (2)

6 is the complement of D (2)
6,2 ∪ D (2)

6,6.

7 Unexpected Isomorphisms Between Hyperkähler Fourfolds

In this section, we study birational isomorphisms between components of various

Noether–Lefschetz loci induced by “unexpected” isomorphisms between hyperkähler

fourfolds. We treat first the case of Hilbert squares.

7.1 Special hyperkähler fourfolds isomorphic to Hilbert squares of K3 surfaces

If a polarized hyperkähler fourfold is isomorphic to the Hilbert square of a K3 surface,

it is special in the sense defined in Section 4. We use standard notation for cohomology

classes on a Hilbert square (see Example 5.3). The slope νe was defined in the same

example and the special loci C
(γ )
2n,2e ⊂ M

(γ )
2n in Section 4.

Proposition 7.1. Let n and e be positive integers. Assume that the equation Pe(−n)

(see (6)) has a positive solution (a, b) that satisfies the conditions

a

b
< νe and gcd(a,b) = 1. (7)
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On the Period Map for Polarized Hyperkähler Fourfolds 19

If K2e is the moduli space of polarized K3 surfaces of degree 2e, the rational map

� : K2e ���M (γ )

2n

(S, L) �−→(S[2], bL2 − aδ),

where γ = 2 if b is even, and γ = 1 if b is odd, induces a birational isomorphism onto an

irreducible component of C
(γ )

2n,2e.

Proof. If (S, L) is a polarized K3 surface of degree 2e and K := ZL2 ⊕ Zδ ⊂ H2(S[2], Z),

the lattice K⊥ is the orthogonal in H2(S, Z) of the class L. Since the lattice H2(S, Z) is

unimodular, K⊥ has discriminant − 2e, hence S[2] is special of discriminant 2e.

The class H := bL2 − aδ has divisibility γ and square 2n. It is primitive, because

gcd(a,b) = 1, and ample on S[2] when Pic(S) = ZL because of the inequality in (7).

Therefore, the pair (S[2], H) corresponds to a point of C
(γ )

2n,2e.

The map � therefore sends a very general point of K2e to C
(γ )
2n,2e. To prove that

� is generically injective, we assume to the contrary that there is an isomorphism

ϕ : S[2] ∼→S′[2] such that ϕ∗(bL′
2 − aδ′) = bL2 − aδ, although (S, L) and (S′, L′) are not

isomorphic. It is straightforward to check that this implies ϕ∗δ′ �= δ and that the

extremal rays of the nef cone of S[2] are spanned by the primitive classes L2 and ϕ∗L′
2.

Comparing this with the description of the nef cone given in Example 5.3, we see that e

is not a perfect square, ϕ∗L′
2 = a1L2 − eb1δ and ϕ∗(a1L′

2 − eb1δ′) = L2, where (a1, b1) is

the minimal solution to the Pell equation Pe(1). The same proof as that of Theorem B.1

implies e > 1, the equation Pe(−1) is solvable, and the equation P4e(5) is not.

By Theorem B.1 again, S[2] has a nontrivial involution σ and (ϕ ◦σ)∗(L′
2) = L2 and

(ϕ◦σ )∗(δ′) = δ. This implies that ϕ ◦ σ is induced by an isomorphism (S, L)
∼→(S′, L′), which

contradicts our hypothesis. The map � is therefore generically injective and since K2e

is irreducible of dimension 19, its image is a component of C
(γ )

2n,2e. �

Remark 7.2. Assume that n is prime. The locus C (2)
2n,2e is irreducible by Proposition 4.1.

Therefore, under the assumptions of Proposition 7.1 and when b is even, we have a

birational isomorphism K2e
∼���C (2)

2n,2e. When e > 61, the varieties K2e are known to be

of general type ([19]), hence so is C (2)
2n,2e. More precise results on the geometry of the

varieties C (2)
6,2e can be found in [41, 49, 31].

Example 7.3. Assume n = 1. Under the assumptions of Proposition 7.1, b is odd. The

locus C (1)
2,2e has either one or two components, according to whether e is even or odd

(Proposition 4.1). If e is odd, we have e > 1 and one checks that the image of � is the
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component of C (1)
2,2e denoted by C (1)′′

2,2e in [44, Section 4.3]. Therefore, we have birational

isomorphisms

� : K2e
∼���

⎧

⎨

⎩

C (1)
2,2e if e is even;

C (1)′′
2,2e if e is odd.

Remark 7.4. When e is a perfect square, the positive solutions (a, b) to the equation

Pe(−n) satisfy a − b
√
e = −n′′ and a + b

√
e = n′, with n = n′n′ ′

. This implies a =
1
2 (n′ −n′′) and b

√
e = 1

2 (n′ +n′′), hence 0 < n
′ ′

< n′. We then have a
b = n′−n′′

n′+n′′
√
e <

√
e = νe

hence Proposition 7.1 applies to all positive solutions (a, b) of the equation Pe(−n) with

gcd(a,b) = 1. In particular, when n is odd and n > 1, we obtain a geometric description

of the fourfolds corresponding to general points of some component of C
(γ )

2n,2, where γ =
1 if n ≡ 1 (mod 4), and γ = 2 if n ≡ −1 (mod 4) (take n′ = n and n

′ ′ = 1).

Remark 7.5. Under the hypotheses of Proposition 7.1, one can show that all polarized

hyperkähler fourfolds (X, H) with Picard number 2 which are in the component of

C
(γ )

2n,2e dominated by K2e are actually isomorphic to a Hilbert square S[2]; however, some

generality condition on X is needed: the varieties of lines of some smooth cubic fourfolds

of discriminant 14 (n = 3, γ = 2, e = 7) are not isomorphic to the Hilbert square of a K3

surface.

We deduce from Proposition 7.1 a characterization of Hilbert squares of general

polarized K3 surfaces that are isomorphic to double EPW sextics.

Corollary 7.6. Let e be an integer such that e ≥ 3 and let (S, L) be a general polarized

K3 surface of degree 2e. The following conditions are equivalent:

(i) the equation Pe(−1) is solvable and the equation P4e(5) is not;

(ii) the equation Pe(−1) has a positive solution (a, b) such that a
b < νe;

(iii) the Hilbert square S[2] is isomorphic to a double EPW sextic of discrimi-

nant 2e;

(iv) the variety S[2] has a nontrivial automorphism.

When these conditions are realized, S[2] has a nontrivial involution σ , the

quotient S[2]/σ is an EPW sextic Y ⊂ P5, and the complete linear system |bL2 − aδ| defines

a morphism which factors as S[2] � S[2]/σ = Y ↪→ P5.
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Proof. The equivalence (i) ⇔ (iv) is Theorem B.1. The implication (iv) ⇒ (ii) comes

from the facts that the equation Pe(−1) has a minimal solution (a−1, b−1) and, if σ is

the nontrivial automorphism of S[2] (Theorem B.1), the class b−1L2 − a−1δ is positively

proportional to L2 + σ ∗L2, hence ample. The implication (ii) ⇒ (iii) is Proposition 7.1 and

Example 6.3. The implication (iii) ⇒ (iv) is obvious. The consequences stated at the end

follow from [45, Section 4], which explains why dim(|H|) = 5, where H is the canonical

polarization on the double EPW sextic. �

Remark 7.7. When e = 2, all the conditions of Corollary 7.6 hold except for (iii). The

fourfold S[2] carries the nontrivial Beauville involution σ (Example B.2) and the complete

linear system |L2 − δ| defines a morphism which factors as S[2] � S[2]/σ
3:1
� Gr(2, 4) ↪→ P5.

This fits with the fact that 3Gr(2, 4) is a (degenerate) EPW sextic ([46, Claim 2.14]).

Example 7.8. When e = 13, the equivalent conditions of Corollary 7.6 are satisfied,

hence the Hilbert square of a general polarized K3 surface (S, L) of degree 26 is a double

EPW sextic, with canonical involution σ . Moreover, two positive solutions, (7, 2) and

(137, 38), of the equation P13(−3) satisfy the conditions (7) of Proposition 7.1 with b

even. It follows that S[2] is also isomorphic to a general element of C (2)
6,26, that is, to the

variety of lines F(W) on a special cubic hypersurface W ⊂ P5 of discriminant 26 (the two

isomorphisms S[2] � F(W) differ by σ , and σ ∗(2L2 − 7δ) = 38L2 − 137δ).

We now show that given any positive integer n, Proposition 7.1 applies to

infinitely many integers e.

Proposition 7.9. Let n be a positive integer. There are infinitely many distinct hyper-

surfaces in the moduli spaces M (1)
2n , and M (2)

2n if n ≡ −1 (mod 4), whose general

points correspond to Hilbert squares of K3 surfaces. In both cases, the union of these

hypersurfaces is dense in the moduli space for the euclidean topology.

Sketch of proof. When m > 0, the pair (m, 1) is a solution of the equation Pe(−n),

with e = m2 + n, and one easily checks that the inequality m < νe holds when

(n, m) �= (1, 2).

When m ≥ 0, the pair (2m + 1, 2) is a solution of the equation Pe(−n), with

e = m2 + m + n+1
4 and one easily checks that the inequality m + 1

2 < νe holds when

(n, m) �= (3, 1).

Finally, the density statement follows from a powerful result of Clozel and Ullmo

(Theorem 7.10 below). �
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Theorem 7.10. (Clozel–Ullmo) The union of infinitely many Heegner divisors in any

moduli space M
(γ )

2n is dense for the euclidean topology.

Proof. This follows from the main result of [14]: the space M
(γ )
2n is a Shimura variety

and each Heegner divisor Dx is a “strongly special” subvariety, hence is endowed with

a canonical probability measure μDx . Given any infinite family (Dxa)a∈N of Heegner

divisors, there exists a subsequence (ak)k∈N , a strongly special subvariety Z ⊂ M
(γ )

2n

which contains Dxak
for all k � 0 such that (μDxak

)k∈N converges weakly to μZ ([14,

Théorème 1.2]). For dimensional reasons, we have Z = M
(γ )
2n ; this implies that

⋃

a Dxa is

dense in M
(γ )

2n . �

Remark 7.11. It was proved in [36] that Hilbert schemes of projective K3 surfaces are

dense in the coarse moduli space of all (possibly non-algebraic) hyperkähler manifold s

of K3[n]-type.

7.2 Isomorphisms between various special hyperkähler fourfolds

We now apply a similar construction with the polarized hyperkähler fourfolds (X, H)

studied in Example 5.4, whose notation we keep. For the sake of simplicity, we assume

that n is square-free; these fourfolds then correspond to points of the irreducible

hypersurface C (2)

2n,2e′n.

Proposition 7.12. Let n, m, and e be positive integers. Assume that n is square-free,

n ≡ −1 (mod 4), n | e, and n �= e. Assume further that the equation Pe(nm) has a solution

(na, b) with a > 0 that satisfies the conditions

|b|
a

< νn,e and gcd(a,b) = 1. (8)

There is a rational map

� : C (2)
2n,2e ���M

(γ )

2m

(X,H) �−→(X,aH + bL),

where γ = 2 if b is even, and γ = 1 if b is odd. This map induces a birational isomorphism

onto an irreducible component of C
(γ )

2m,2e.

In the proposition, the locus C (2)
2n,2e is nonempty and irreducible by

Proposition 4.1 and Theorem 6.1.
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Proof. The proof is the same as that of Proposition 7.1 and is based on the fact that if

(X, H) corresponds to a very general point of C (2)
2n,2e, the class aH + bL is primitive, has

square 2a2n − 2b2e′ = 2m and divisibility γ , and is ample on X because of the inequality

in (8). Therefore, the pair (X, aH + bL) corresponds to a point of C
(γ )

2m,2e.

To prove that � is generically injective, assume that there is an isomorphism

ϕ : X
∼→X ′ such that ϕ∗(aH′ + bL′) = aH + bL. If ϕ∗H ′ �=H, the matrix of ϕ∗ in the bases

(H′, L′) and (H, L) is that of a nontrivial isometry with a fixed vector, hence a reflection.

As we will see during the proof of Proposition A.3, the matrix of such an

isometry that extends to an isometry between H2(X′, Z) and H2(X, Z) must be of the

form
(

2s2e′+1 −2e′rs
2nrs −(2s2e′+1)

)

, where (nr, s) is a solution to the equation Pe(n), both equations

Pe(−n) and P4e(−5n) are not solvable, and e is not a perfect square. We then have

ϕ∗(rH′ + sL′) = rH + sL. Since ϕ∗(aH′ + bL′) = aH + bL and aH′ + bL′ is primitive, we must

have m = 1 (and a = r, b = s). In that case, by Proposition A.3, X does have an involution

σ that acts as on Pic(X) as the reflection with axis spanned by rH + sL. The isomorphism

ϕ ◦ σ : X
∼→X ′ then pulls back H′ to H. This proves the proposition. �

Example 7.13. Under the assumptions of Proposition 7.12, when m is prime and b is

even, the locus C (2)
2m,2e is irreducible by Proposition 4.1. Therefore, there is a birational

isomorphism C (2)
2n,2e

∼���C (2)
2m,2e.

Example 7.14. Assume m = 1. As in Example 7.3, we have, under the assumptions of

Proposition 7.12, birational isomorphisms

� : C (2)
2n,2e

∼���

⎧

⎨

⎩

C (1)
2,2e if e is even;

C (1)′′
2,2e if e is odd.

Remark 7.15. Given a pair (a, b) that satisfies the conditions (8), we can construct two

maps �± by sending (X, H) either to (X, aH + bL) or to (X, aH − bL). These two maps are

distinct unless there exists an automorphism ϕ of X that sends aH + bL to aH − bL. One

checks using the computations of the proof of Proposition A.3 that this is only possible

when we are in case (a) of that proposition, ϕ∗ acts as a rotation
(

2s2e+1 2e′rs
2nrs 2s2e+1

)

on Pic(X),

with r2 − es2 = 1, and moreover, a = r, b = ns, and m = n. The maps �± : C (2)
2n,2e

∼−→C (2)
2n,2e

then correspond to changing the polarization by an automorphism of X: they are just

particular cases of an infinite family of such maps.
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As in Section 7.2, we characterize which of our special hyperkähler fourfolds are

isomorphic to double EPW sextics.

Corollary 7.16. Let n and e be positive integers. Assume that n is square-free, n ≡ −1

(mod 4), n | e, and n �= e. Let (X, H) be a polarized hyperkähler fourfold corresponding to

a general point of C (2)
2n,2e. Then X is isomorphic to a double EPW sextic if and only if the

equation Pe(n) is solvable but the equation P4e(−5n) is not.

Under the hypotheses of the corollary, the automorphism group of X is isomor-

phic to Z � Z/2Z hence contains infinitely many involutions (σm)m∈Z (Proposition A.3).

When X is very general, all the quotients X/σm are EPW sextics.

Proof. We may assume that (X, H) is very general in C (2)
2n,2e. If X is isomorphic to a

double EPW sextic, it has a nontrivial automorphism and the conclusion follows from

Proposition A.3. Conversely, if the equation Pe(n) is solvable but the equation P4e(−5n)

is not, one checks that e is not a perfect square, hence X has, by Proposition A.3,

a nontrivial involution σ (and in fact, countably many such involutions) that fixes a

square-2 class rH + sL which is positively proportional to H + νn,eL + σ ∗(H + νn,eL),

hence ample. By Proposition 7.12, the pair (X, rH + sL) is a general element of C (1)
2,2e,

hence X is a double EPW sextic by Example 6.3 (note that e ≥ 2n ≥ 6). �

Remark 7.17. Assume that both equations P4e(−5n) and Pe(n) are solvable. As in

Remark A.5, let X′ be the other birational model of a general X in an irreducible

component of C (2)
2n,2e. Then X′ is isomorphic to a double EPW sextic by the same proof as

above.

Finally, we show that given any positive integer n, Proposition 7.12 applies to

infinitely many integers e.

Corollary 7.18. Let n be a positive square-free integer such that n ≡ −1 (mod 4). There

are infinitely many distinct hypersurfaces in the moduli space M (2)
2n whose general

points correspond to double EPW sextics. Their union is dense in M (2)
2n .

Proof. When m > 0 and e = n(nm2 − 1), the pair (nm, 1) is a solution to the equation

Pe(n).

If 5 | n, we will show in the proof of Proposition A.3 that P4e(−5n) is not

solvable. If 5 � n, we can choose m such that n(nm2 − 1) ≡ ±2 (mod 5) and by reducing

modulo 5, we see that the equation P4e(−5n) is then not solvable.
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We can therefore apply Corollary 7.16. Since there are infinitely many such m,

this concludes the proof, using Theorem 7.10 for the density statement. �

Appendix A. Automorphisms of special hyperkähler fourfolds

We determine the group Aut(X) of biregular automorphisms and the group Bir(X) of

birational automorphisms for some hyperkähler fourfolds X of K3[2]-type with Picard

number 1 or 2. The case of Hilbert squares of very general polarized K3 surfaces is in

Appendix B.

Let X be a hyperkähler fourfold. There are natural morphisms

�A
X : Aut(X) → O(H2(X,Z),qX) and �B

X : Bir(X) → O(H2(X,Z),qX) (A1)

that send a (birational) automorphism ϕ of X to its action ϕ∗ on cohomology (see [22,

Proposition 25.14] for �B
X ). Elements of Im(�A

X ) preserve the nef cone Nef(X), elements of

Im(�B
X) preserve the movable cone Mov(X), and both preserve the Picard lattice and the

Hodge structure.

The kernel of �B
X is contained in Aut(X), hence in the kernel of �A

X ([47,

Proposition 2.4]). The group Ker(�A
X ) is a finite group which is invariant by smooth

deformations ([27, Theorem 2.1]) and is trivial for the Hilbert square of a K3 surface

([7, Proposition 10]). It follows that for any hyperkähler fourfold X of K3[2]-type, both �A
X

and �B
X are injective.

Proposition A.1. Let X be a hyperkähler fourfold corresponding to a very general point

of a moduli space M
(γ )

2n . The group Bir(X) of birational automorphisms of X is trivial,

unless n = 1, in which case Aut(X) = Bir(X) �Z/2Z.

Proof. As we saw in Section 4, the Picard group of X is generated by the class h of the

polarization. Any birational automorphism leaves this class fixed, hence is in particular

biregular of finite order. Let ϕ be a nontrivial automorphism of X. Since ϕ extends to

small deformations of X, the restriction of ϕ∗ to h⊥ is a homothety whose ratio is, by

[7, Proposition 7], a root of unity; since it is real and nontrivial (by injectivity of �A
X ),

it must be −Id. We will prove that such an isometry of Zh ⊕ h⊥ does not extend to an

isometry � of H2(X, Z) unless h2 = 2n = 2.

When γ = 1, we may take h = u + nv, where (u, v) is a standard basis for a

hyperbolic plane U contained in H2(X, Z). Then, u − nv is in h⊥, hence the isometry �,

if it exists, must satisfy

�(u + nv) = u + nv and �(u − nv) = −u + nv,
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which yields 2n�(v) = 2u. This is possible only when n = 1. Conversely, in the case

n = 1, the fourfold X is a double EPW sextic and does carry a nontrivial involution

(Example 6.3). Moreover, this involution is the only nontrivial automorphism of a very

general double EPW sextic (see the end of the proof of [17, Proposition B.9]).

When γ = 2 (so that n ≡ −1 (mod 4)), we let � be an element of H2(X, Z) orthogonal

to U and such that �2 = −2. We may take, as in the proof of Proposition 4.1, h = 2u +
n+1

2 v + �, and h⊥ contains v + � and u − n+1
4 v. The isometry � must then satisfy

�
(

2u + n+1
2 v + �

) = 2u + n+1
2 v + �, �(v + �) = −v − �, �

(

u − n+1
4 v

) = −u + n+1
4 v,

hence n�(v) = 4u + v + 2�; this is absurd since n ≥ 3. �

Remark A.2. The conclusion of the proposition does not necessarily hold if we assume

only that the Picard number of X is 1. In fact, Proposition A.1 is also proved in [11,

Theorem 3.1] and the proof given there implies that Bir(X) is trivial when the Picard

number of X is 1, unless n ∈ {1, 3, 23}. These three cases are actual exceptions: we

just saw that all fourfolds corresponding to points of M (1)
2 carry a nontrivial biregular

involution; there is a 10-dimensional subfamily of M (2)
6 whose elements consists of

fourfolds that have a biregular automorphism of order 3 and whose very general

elements have Picard number 1 ([11, Section 7.1]); there is a (unique) fourfold in M (2)
46

with Picard number 1 and a biregular automorphism of order 23 ([10, Theorem 1.1]).

We now turn our attention to the polarized hyperkähler fourfolds studied in

Example 5.4.

Proposition A.3. Let n be a positive square-free integer such that n ≡ −1 (mod 4). Let

(X, H) be a polarized hyperkähler fourfold of K3[2]-type of degree 2n and divisibility 2,

such that Pic(X) = ZH ⊕ ZL, with intersection matrix
( 2n 0

0 −2e′
)

. Set e := e′n.

(a) If neither equations Pe(−n) and P4e(−5n) are solvable and e is not a perfect

square, the groups Aut(X) and Bir(X) are equal. They are infinite cyclic, except when the

equation Pe(n) is solvable, in which case these groups are isomorphic to the infinite

dihedral group Z� Z/2Z.

(b) If the equation Pe(−n) is not solvable but the equation P4e(−5n) is, the

group Aut(X) is trivial and the group Bir(X) is infinite cyclic, except when the equation

Pe(n) is solvable, in which case it is infinite dihedral.

(c) If the equation Pe(−n) is solvable or if e is a perfect square, the group Bir(X)

is trivial.
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Proof. We saw that the map �A
X : Aut(X) → O(H2(X,Z)) is injective. Its image consists

of isometries which preserve Pic(X) and the ample cone and, since b2(X) − ρ(X) is

odd, restrict to ±Id on Pic(X)⊥ ([48, proof of Lemma 4.1]). Conversely, by the Torelli

Theorem 3.2, any isometry with these properties is in the image of �A
X . We begin with

some general remarks on the group G of isometries of H2(X,Z) which preserve Pic(X) and

the components of the positive cone, and restrict to εId on Pic(X)⊥, with ε ∈ {−1, 1}.
The orthogonal group of the rank-2 lattice (Pic(X), qX) � I1(2n) ⊕ I1(−2e′) is easily

determined: if we let δ := gcd(n, e′) and we write n = δn′ and e′ = δe
′ ′
, we have

O(Pic(X), qX) =
{(

a αe′′b
n′b αa

)

∣

∣

∣

∣

a,b ∈ Z, a2 − n′e′′b2 = 1, α ∈ {−1, 1}
}

.

Note that α is the determinant of the isometry and

• such an isometry preserves the components of the positive cone if and only

if a > 0; we denote the corresponding subgroup by O+(Pic(X));

• when e is not a perfect square, the group SO+(Pic(X)) is infinite cyclic,

generated by the isometry R corresponding to the minimal solution to the

equation Pn′e′′(1) and the group O+(Pic(X)) is infinite dihedral;

• when e is a perfect square, so is n′e′ ′ = e/δ2, and O+(Pic(X)) = {

Id,
(

1 0
0 −1

)}

.

As we saw during the proof of Proposition 4.1, there exist standard bases (u1, v1)

and (u2, v2) for two orthogonal hyperbolic planes in �K3[2] , a generator � for the I1(−2)

factor, and an isometric identification H2(X,Z)
∼→�K3[2] such that

H = 2u1 + n + 1

2
v1 + � and L = u2 − e′v2.

The elements � of G must then have a > 0 and satisfy

�(2u1 + n+1
2 v1 + �) = a(2u1 + n+1

2 v1 + �) + n′b(u2 − e′v2)

�(u2 − e′v2) = αe′′b(2u1 + n+1
2 v1 + �) + αa(u2 − e′v2)

�(v1 + �) = ε(v1 + �)

�(u1 − n+1
4 v1) = ε(u1 − n+1

4 v1)

�(u2 + e′v2) = ε(u2 + e′v2)
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(the last three lines correspond to vectors in Pic(X)⊥). From this, we deduce

n�(v1) = 2(a − ε)u1 + (

(a + ε)n+1
2 − ε

)

v1 + (a − ε)� + n′b(u2 − e′v2)

2�(u2) = 2αe′′bu1 + αe′′bn+1
2 v1 + αe′′b� + (ε + αa)u2 + e′(ε − αa)v2

2e′�(v2) = −2αe′′bu1 − αe′′bn+1
2 v1 − αe′′b� + (ε − αa)u2 + e′(ε + αa)v2.

From the first equation, we get δ|b and a ≡ ε (mod n); from the second equation, we

deduce that e
′ ′
b and ε + αa are even; from the third equation, we get 2δ | b and a ≡ αε

(mod 2e′). All this is equivalent to a > 0 and

2δ | b , a ≡ ε (mod n) , a ≡ αε (mod 2e′). (A2)

Conversely, if these conditions are realized, one may define � uniquely on Zu1 ⊕
Zv1 ⊕ Zu2 ⊕ Zv2 ⊕ Z� using the formulas above, and extend it by εId on the orthogonal

of this lattice in �K3[2] to obtain an element of G.

The first congruence in (A2) tells us that the identity on Pic(X) extended by −Id

on its orthogonal does not lift to an isometry of H2(X, Z). This means that the restriction

G→O+(Pic(X)) is injective. Moreover, the two congruences in (A2) imply a≡ ε ≡αε (mod δ).

If δ > 1, since n, hence also δ, is odd, we get α = 1, hence the image of G is contained in

SO+(Pic(X)).

Assume α = 1. The relations (A2) imply that a − ε is divisible by n and 2e′, hence by

their least common multiple 2δn′e′′. We write b = 2δb′ and a = 2δn′e′′a′ + ε and obtain

from the equality a2 − n′e′′b2 = 1 the relation

4δ2n′2e′′2a′2 + 4εδn′e′′a′ = 4δ2n′e′′b′2,

hence

δn′e′′a′2 + εa′ = δb′2.

In particular, a′′ := a′/δ is an integer and b
′2 = a′′(ea′′ + ε).

Since a > 0 and a′′ and ea′′ + ε are coprime, both are perfect squares and there

exist coprime integers r and s, with r > 0, such that

a′′ = s2 , ea′′ + ε = r2 , b′ = rs.

Since − 1 is not a square modulo n, we obtain ε = 1; the pair (r, s) satisfies the

Pell equation r2 − es2 = 1, and a = 2es2 + 1 and b = 2δrs. In particular, either e is not
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a perfect square and there are always infinitely many solutions, or e is a perfect square

and we get r = 1 and s = 0, so that � = Id.

Assume α = −1. As observed before, we have δ = 1, that is, n and e′ are coprime.

Using (A2), we may write b = 2b′ and a = 2a′e′− ε. Since 2 � n and a ≡ ε (mod n), we

deduce gcd(a′,n) = 1. Substituting into the equation a2 − ne′b2 = 1, we obtain

a′(e′a′ − ε) = nb′2,

hence there exist coprime integers r and s, with r ≥ 0, such that b′ = rs, a′ = s2, and

e′a′− ε = nr2. The pair (r, s) satisfies the equation nr2 − e′s2 = −ε, and a = 2e′s2 − ε and

b = 2rs. In particular, one of the two equations Pe(±n) is solvable. Note that at most

one of the equations Pe(±n) may be solvable: if Pe(−εn) is solvable, εe′ is a square

modulo n, while −1 is not. These isometries are all reflections and, since n ≥ 2 and

e′ ≥ 2,
(

1 0
0 −1

)

is not one of them. In particular, if e is a perfect square, G = {Id}.
We now go back to the proof of the proposition. We proved that the composition

Aut(X) → G → O+(Pic(X)) is injective and so is the morphism Bir(X) → G → O+(Pic(X))

(any element of its kernel is in Aut(X)).

Under the hypotheses of (a), both slopes of the nef cone are irrational

(Example 5.4). By [47, Theorem 1.3], the groups Aut(X) and Bir(X) are then equal and

infinite. The calculations above allow us to be more precise: in this case, the ample cone

is just one component of the positive cone and the groups Aut(X) and G are isomorphic.

The proposition then follows from the discussions above (note that when there are

involutions, the equation Pe(n) has a solution (nr, s) hence, in the notation above,

ε = −1 and these involutions act on H2(X, Z) as the symmetries about ample square-2

classes rH + sL).

Under the hypotheses of (c), the slopes of the extremal rays of the nef and

movable cones are rational (Example 5.4) hence, by [47, Theorem 1.3] again, Bir(X) is

a finite group. By [47, Proposition 3.1(2)], any nontrivial element � of its image in

O+(Pic(X)) is an involution which satisfies �(Mov(X)) = Mov(X), hence switches the two

extremal rays of this cone. This means �(H ± μn,eL) = H ∓ μn,eL, hence �(H) = H, so that

� =
(

1 0
0 −1

)

. Since we saw that this is impossible, the group Bir(X) is trivial.

Under the hypotheses of (b), the slopes of the nef cone are both rational and the

slopes of the movable cone are both irrational (Example 5.4). By [47, Theorem 1.3] again,

Aut(X) is a finite group and Bir(X) is infinite. The same reasoning as in case (c) shows

that the group Aut(X) is in fact trivial; moreover, the group Bir(X) is a subgroup of Z,

except when the equation Pe(n) is solvable, where it is a subgroup of Z� Z/2Z.
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In the latter case, such an infinite subgroup is isomorphic either to Z or to Z �

Z/2Z and we exclude the first case by showing that there is indeed a regular involution

on a birational model of X (this generalizes the case n = 3 and e = 6 treated in [26]).

We denote by (nan, bn) the minimal solution to the equation Pe(n) and set xn := nan +
bn

√
e ∈ Z[

√
e].

As observed in Remark 5.2(b), the set of all positive solutions (a, b) to the

equation na2 − 4e′b2 = −5 (so that aH±2bL ∈ F lopX , or equivalently, (na, b) is a solution

to the equation P4e(−5n)) determines an infinite sequence of rays R≥0(2e′bH ± naL) in

Mov(X) and the nef cones of hyperkähler fourfolds birational to X can be identified with

the chambers with respect to this collection of rays. For example, if (na5n, b5n) is the

minimal solution to the equation P4e(−5n), the two extremal rays of the cone Nef(X)

are spanned by α0 := 2e′b−5nH − na−5nL and α1 := 2e′b−5nH + na−5nL. We want to

describe all solutions (a, b).

Lemma A.4. The minimal solution to the Pell equation Pe(1) is given by y1 = na2
n +

e′b2
n + 2anbn

√
e and all the solutions (na, b) to the equation P4e(−5n) are given by the

two disjoint families

na + 2b
√
e = ±x−5ny

m
1 or ± x−5ny

m
1 , m ∈ Z,

where x−5n := na−5n + 2b−5n
√
e.

�

Proof. Let (a, b) ∈ Z2 and set x := na + b
√
e ∈ Z[

√
e] and y := 1

nxxn. We have

y = naan + e′bbn + (abn + anb)
√
e =: a′ + b′√e ∈ Z[

√
e]

and, if N is the norm in the ring Z[
√
e], we have N(xn) = n and, if t is any nonzero integer,

(na,b) solution to Pe(tn) ⇔ N(x) = tn ⇔ N(y) = t ⇔ (a′, b′) solution to Pe(t).

Since x = yxn, this establishes a one-to-one correspondance between the

solutions of the equation Pe(tn) and those of Pe(t). In particular, the minimal solution

to the Pell equation Pe(1) is given by y1 = 1
nx

2
n = na2

n + e′b2
n + 2anbn

√
e.

The solutions to the equation Pe(−5) were analyzed in [39, Theorem 110]: if y−5

corresponds to its minimal solution, they are all given by ±y−5ym1 , m ∈ Z, and their

conjugates. It follows that all the solutions (na, b) to the equation Pe(−5n) are given by

±y−5xnym1 and their conjugates. Since the “imaginary” part of y1 is even and its “real”
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part is odd, the parity of the “imaginary” parts of these solutions are all the same. Since

the equation P4e(−5n) is solvable, they are all even, and we therefore obtain all the

solutions to the equation P4e(−5n).

To prove that the conjugates provide a disjoint set of solutions, we need to check,

by [39, Theorem 110], that 5 does not divide 4e.

Assume first 5|e′. Since the equation Pe(n) is solvable, we have (n5 ) = 1;

moreover, since n ≡−1 (mod 4), we have ( e
′
n ) = −1. The solvability of the equation

P4e(−5n) implies ( 5
n ) = ( e

′
n ); putting all that together contradicts quadratic reciprocity.

Assume now 5 | n and set n′ := n/5. Since the equation Pe(n) is solvable, we have

( e
′

5 ) = 1; moreover, since n′≡ −1 (mod 4), we have ( e
′

n′ ) = −1. Since 5 � e′, the equation

Pn′,20e′(−1) is solvable, hence (5e′
n′ ) = 1; again, this contradicts quadratic reciprocity. �

We can reinterpret this as follows. Since gcd(n, e′) = 1 (because na2
n − e′b2

n=1),

the generator R of the group SO+(Pic(X)) previously defined is R=
(

na2
n+e′b2

n 2e′anbn
2nanbn na2

n+e′b2
n

)

. If

we set αi+2 := R(αi), the lemma means that the infinitely many rays in Mov(X) described

above are the (R≥0αi)i∈Z. The fact that the conjugate solutions form a disjoint family

means exactly that the ray R≥0α2 is “above” the ray R≥0α1; in other words, we have an

“increasing” infinite sequence of rays

· · · < R≥0α−1 < R≥0α0 < R≥0α1 < R≥0α2 < · · · .

It follows from the discussion above that the reflection R
(

1 0
0 −1

)

belongs to the

group G and preserves the nef cone of the birational model X′ of X whose nef cone is

generated by α1 and α2. It is therefore induced by a biregular involution of X′ which

defines a birational involution of X. This concludes the proof of the proposition.

Remark A.5. It follows from the proof above that in case (b), if both equations

P4e(−5n) and Pe(n) are solvable, X has exactly one nontrivial birational model.

It is obtained from X by a composition of Mukai flops with respect to Lagrangian planes

(Remark 5.2(b)).

Appendix B. Automorphisms of Hilbert squares of very general K3 surfaces

Since the extremal rays of the movable cone of the Hilbert square S[2] of a very general K3

surface S of given degree 2e are rational (Example 5.3), its group Bir(S[2]) of birational
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automorphisms is finite ([47, Theorem 1.3(2)]). Using the Torelli theorem 3.2, one can

determine the group Aut(S[2]) of its biregular automorphisms ([12, Theorem 1.1]) and

also, using the description of the nef and movable cones (Example 5.3), the group

Bir(S[2]).

Theorem B.1. (Boissière–Cattaneo–Nieper-Wißkirchen–Sarti) Let (S, L) be a polarized

K3 surface of degree 2e with Picard group ZL. The variety S[2] has a nontrivial

automorphism if and only if either e = 1, or the equation Pe(−1) is solvable and the

equation P4e(5) is not.

The nontrivial automorphism in Theorem B.1 is then unique and an anti-

symplectic involution. When e ≥ 2, this involution acts on H2(S[2], Z) as the symmetry

sD about the line spanned by the square-2 class D := b−1L2 − a−1δ, where (a−1, b−1) is

the minimal solution of the equation Pe(−1). When e = 1, this involution is induced

by an involution of (S, L) and its acts on H2(S[2], Z) as the symmetry about the plane

Pic(S[2]).

Example B.2. Theorem B.1 applies for example for e = m2 + 1 with m �= 2, or e = 13.

When e = 2, the surface S is a quartic in P3 which contains neither lines nor conics,

and the involution σ of S[2] is the Beauville involution: it sends a pair of points in S

to the residual intersection with S of the line that they span. We have D = L2 − δ and

sD(L2) = 3L2 − 4δ ([15, Théorème 4.1], [12, Section 6.1]); the quotient S[2]/σ is a triple cover

of the Plücker quadric Gr(2, 4) ⊂ P5. When e ≥ 3, the quotient S[2]/σ is an EPW sextic

(Corollary 7.6).

Proposition B.3. Let (S, L) be a polarized K3 surface of degree 2e with Picard group ZL.

The group Bir(S[2]) is trivial except in the following cases:

• e = 1, or the equation Pe(−1) is solvable and the equation P4e(5) is not, in

which cases Aut(S[2]) = Bir(S[2]) � Z/2Z;

• e > 1, and e = 5 or 5 � e, and both equations Pe(−1) and P4e(5) are solvable,

in which case Aut(S[2]) = {Id} and Bir(S[2]) � Z/2Z.

Notice that there are cases where both equations Pe(−1) and P4e(5) are solvable

and 5 � e; for example, e = 29. Moreover, there is a difference between the case e = 5 and

the case 5 � e: when 5 � e, there is a hyperkähler fourfold (in fact, a double EPW sextic)

birational to S[2] on which the involution is biregular, but not when e = 5.

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnx333/4835212
by guest
on 02 February 2018



On the Period Map for Polarized Hyperkähler Fourfolds 33

Proof. If ϕ ∈ Bir(S[2]) is not biregular, ϕ∗ acts on the movable cone Mov(S[2]) in such

a way that ϕ∗(Amp(S[2])) ∩ Amp(S[2]) = ∅. This implies Mov(S[2]) �= Nef(S[2]) hence, by

Example 5.3, the equation P4e(5) has a minimal solution (a5, b5). By Theorem B.1, the

group Aut(S[2]) is then trivial.

Moreover, ϕ∗ maps one extremal ray of the movable cone (spanned by L2) to the

other extremal ray (spanned by the primitive vector a1L2 − eb1δ). Therefore, we have

ϕ∗(L2) = a1L2 − eb1δ and, by applying this relation to ϕ−1, also ϕ∗(a1L2 − eb1δ) = L2. This

implies that ϕ∗ is a completely determined involution of Pic(S[2]). In particular, ϕ2 is an

automorphism, hence is trivial: ϕ is an involution.

The transcendental lattice Pic(S[2])⊥⊂ H2(S[2], Z) carries a simple rational Hodge

structure (this is a classical fact found for example in [30, Lemma 3.1]). Since the

eigenspaces of the involution ϕ∗ of H2(S[2], Z) are sub-Hodge structures, the restriction of

ϕ∗ to Pic(S[2])⊥ is εId, with ε ∈ {−1, 1}. On Pic(S[2]), we saw that ϕ∗ has matrix
(

a1 b1

−eb1 −a1

)

in the basis (L2, δ). The extension from Pic(S[2]) ⊕ Pic(S[2])⊥ to the overlattice H2(S[2], Z)

of such an involution can be studied as in the proof of Proposition A.3 (see also

[12, Lemma 5.2] when ε = −1). The conclusion is that there exist positive integers r

and s such that r2 − es2 = ε and a1 +b1
√
e = (r+s

√
e)2. The value ε = 1 would contradict

the minimality of the solution (a1, b1) to the equation Pe(1). Hence we have ε = −1 and

(r, s) is the minimal solution to the equation Pe(−1). In particular, ϕ∗ is a completely

determined involution of H2(S[2], Z) and, since �B
X is injective, Bir(S[2]) has at most

2 elements.

By [39, Theorem 110], the solutions to the equation P4e(5) are all given by

±x5xm1 , m ∈ Z, where x5 := a5 + 2b5
√
e and x1 := a1 + b1

√
e. The associated positive

elements of Z
[√

e
]

are ordered as follows:

· · · < x5x
−2
1 ≤ x5x

−1
1 < x5x

−1
1 ≤ x̄ <

√
5 < x5 ≤ x5x1 < x5x1 ≤ x5x

2
1 < x5x

2
1 < · · ·

Still by [39, Theorem 110],

(a) either 5|e, the conjugate solutions are the same, and x5 = x5x1;

(b) or 5 � e, the conjugate solutions are different, and x < x5x
−1
1 .

Set x−1 := r + s
√
e, so that x1 = x2

−1. In case (a), we have x5x−1 = −x5x−1 and since

x5x−1x5x−1 = −5, we obtain e = 5. In that case, there is indeed a nontrivial birational

involution on S[2] (Example B.4).

In terms of the rays generated by aL2 − 2ebδ, where (a, b) is a solution to the

equation P4e(5), multiplying x = a + 2b
√
e by x1 corresponds to applying the rotation
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R :=
(

a1 −b1

−eb1 a1

)

, which sends the extremal ray R≥0L2 of the movable cone to its other

extremal ray R≥0(a1L2 − eb1δ); the operation x �→ x̄x1 therefore corresponds to applying

the reflection R
(

1 0
0 −1

)

=
(

a1 b1

−eb1 −a1

)

, which is the symmetry sD about the line spanned

by the class D := b−1L2 − a−1δ

Geometrically, the situation is clear in case (b): we have exactly two rays inside

Mov(S[2]) which are symmetric about the line RD. As explained in Remark 5.2(b), the

three associated chambers correspond to the hyperkähler fourfolds birational to S[2]:

the “middle one” corresponds to a fourfold X whose nef cone is preserved by the

involution sD. There is a biregular involution on X which induces a birational involution

on S[2]. �

Example B.4. (The O’Grady involution) A general polarized K3 surface S of degree

10 is the transverse intersection of the Grassmannian Gr(2,C5) ⊂ P(
∧2C5) = P9, a

quadric Q ⊂ P9, and a P6 ⊂P9. A general point of S[2] corresponds to V2, W2 ⊂ V5.

Then

Gr(2,V2 ⊕ W2) ∩ S = Gr(2,V2 ⊕ W2) ∩ Q ∩ P6 ∩
2

∧

(V2 ⊕ W2)) ⊂ P2

is the intersection of two general conics in P2 hence consists of 4 points, including [V2]

and [W2]. The (birational) O’Grady involution S[2] ��� S[2] takes the pair of points ([V2],

[W2]) to the residual two points of this intersection.
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