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We study smooth projective hyperkahler fourfolds that are deformations of Hilbert
squares of K3 surfaces and are equipped with a polarization of fixed degree and
divisibility. They are parametrized by a quasi-projective irreducible 20-dimensional
moduli space and Verbitksy's Torelli theorem implies that their period map is an open
embedding. Our main result is that the complement of the image of the period map is a
finite union of explicit Heegner divisors that we describe. We also prove that infinitely
many Heegner divisors in a given period space have the property that their general
points correspond to fourfolds which are isomorphic to Hilbert squares of a K3 surfaces,
or to double EPW (Eisenbud-Popescu-Walter) sextics. In two appendices, we determine
the groups of biregular or birational automorphisms of various projective hyperkahler

fourfolds with Picard number 1 or 2.

1 Introduction

We consider smooth projective hyperkédhler fourfolds X which are deformations of
Hilbert squares of K3 surfaces (one says that X is of K3©-type). The abelian group
H?%(X,Z) is free of rank 23 and it is equipped the Beauville-Bogomolov-Fujiki form

gx, a nondegenerate Z-valued quadratic form of signature (3, 20) ([6, Théoreme 5]).
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2 0. Debarre and E. Macri

A polarization H on X is the class of an ample line bundle on X that is primitive (i.e.,
nondivisible) in the group H?(X, Z). The square of H is the positive even integer 2n :=
qx(H) and its divisibility is the integer y € {1, 2} such that H - H?(X, Z) = yZ (the case
y = 2 only occurs when n =—1 (mod 4)).

Smooth polarized hyperkihler fourfolds (X, H) of K3Z-type of degree 2n and
divisibility y admit an irreducible quasi-projective coarse moduli space ,//lz(fl) of

dimension 20. The period map (see Section 3.2)
». ) (v)
§2n - ‘//{211 - '@2n

is algebraic and it is an open embedding by Verbitsky’s Torelli Theorem 3.2. Our main
result is that the image of pgl) is the complement of a finite union of Heegner divisors
(this can also be deduced from the general results in [2]) which can be explicitly listed
(Theorem 6.1).

The main ingredient in the proof is the explicit determination of the nef
and movable cones of smooth projective hyperkahler fourfolds of K3P-type (see
Theorem 5.1). This is a simple consequence of previous results by Markman ([34]),
Bayer-Macri ([5]), Bayer-Hassett-Tschinkel ([3]), and Mongardi ([38]).

The Noether-Lefschetz locus is the inverse image by the period map in //12(3;)
of the union of all Heegner divisors. Its irreducible components were shown in [9,
Theorem 1.5] to generate (over Q) the Picard group of ///2(3;) As an application of our
Theorem 5.1, we study in Section 7 birational isomorphisms between some of these
components. In particular, we show that points corresponding to Hilbert squares of K3
surfaces are dense in the moduli spaces ///2(2)

In the two appendices, we collect results on biregular and birational automor-
phisms of certain projective hyperkéahler fourfolds with Picard number 1 or 2. These
results are needed in some of the arguments in Section 7.

Since the nef and movable cones can be described in all dimensions, many of our
results extend with some modifications to smooth projective hyperkdhler manifolds of

K3[M-type. More details in the higher dimensional case will appear in [16].

2 Lattices

A lattice is a free abelian group A of finite rank endowed with a Z-valued nondegenerate
quadratic form g. It is even if q only takes even values. We extend g to a Q-valued

quadratic form on A ® Q, hence also on the dual

AY :=Homz(A,Z)={xe A®Q|VyeA x-ycZ].
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On the Period Map for Polarized Hyperkédhler Fourfolds 3

The discriminant group of A is the finite abelian group

D(A) := AY/A.

The lattice A is unimodular if the group D(A) is trivial. If x is a nonzero element of A, we
define the integer div, (x) (the divisibility of x) as the positive generator of the subgroup
x - A of Z. We also consider x/div, (x), a primitive (i.e., nonzero and nondivisible) element
of AV, and its class x, = [x/div, (x)] in the group D(A), an element of order divy (x).

If t is a nonzero integer, we let A(t) be the lattice (A, tq). We let I, be the
lattice Z with the quadratic form g(x) = x> and we let U (the hyperbolic plane) be the
even unimodular lattice Z% with the quadratic form g(x1,x2) = 2x1x,. There is a unique
positive definite even unimodular lattice of rank 8, which we denote by Es.

Assume now that the lattice A is even. Following [40], we define a quadratic form
q: D(A) — Q/2Z by setting g([x]) := q(x) € Q/2Z. The stable orthogonal group 5(A,q) is

the kernel of the canonical map
O(A, @) — O(D(A), Q).

This map is surjective when A is indefinite and its rank is at least the minimal number
of generators of the finite abelian group D(A) plus 2 ([40, Theorem 1.14.2]).

We will use the following classical result (see [20, Lemma 3.5]).

Theorem 2.1. (Eichler's criterion). Let A be an even lattice that contains at least two
orthogonal copies of U. The 5(A,q)—orbit of a primitive vector x € A is determined by

the integer g(x) and the element x, of D(A).

3 Moduli Spaces, Period Spaces, and Period Maps
3.1 Moduli spaces

Let X be a (smooth) hyperkahler (also called irreducible symplectic) fourfold of K32
type (see [21, Section 3] for the main definitions). The lattice (H%2(X, Z), gx) defined in the

introduction is isomorphic to the even lattice

Agga = U @ Eg(-1)®* @ I (—2)

with signature (3, 20) and discriminant group Z/2Z. The divisibility of a primitive

element is therefore 1 or 2, and 5(AK3[21) = O(Agg).
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4 0. Debarre and E. Macri

As recalled in the introduction, hyperkdhler fourfolds X of K3@Z-type
with a polarization of fixed (positive) square 2n and divisibility y in the lattice
(H%(X, Z), gx) have a quasi-projective coarse moduli space M(ZJ;; which is irreducible and

20-dimensional when y = 1, or when y = 2 and n =—1 (mod 4) ([21, Remark 3.17]).

3.2 Period spaces and period maps

By Eichler's criterion (Theorem 2.1), primitive elements of the lattice Ayq= with fixed
positive square 2n and fixed divisibility y € {1, 2} form a single O(Ay42)-orbit. We fix
one such element hg.

If y =1, we have

hy ~ U2 @ By (—-1)®2 @1 (-2) @ i (—2n) = AL,

(1)

a lattice with discriminant group Z/2Z x Z/2nZ, with g(1,0) = —% and g(0,1) = —% (see
the proof of Proposition 4.1).
If y = 2, we have n = —1 (mod 4) and

-2 -1
1 o 7792 _1\P2 _. A2
hy ~ U @ Eg(—1)¥* @ (_1 _n_+1) = AK3121'2n, (2)
2
a lattice with discriminant group Z/nZ, with q(1) = —% (see the proof of Proposition 4.1).

We now describe the period map for polarized hyperkédhler fourfolds of
K3Z-type. The complex variety

Qp, = {XGP(AK3[21®C)|X~h0=0,X~X=0,X~)_(>O}

has two connected components, interchanged by complex conjugation, which are

Hermitian symmetric domains of type IV. It is acted on by the group
O(Agq1, ho) == {CD € O(Agg21) | @(ho) = ho }

By results of Baily-Borel and Griffiths, the quotient @é’;l) = O(Agg, ho)\R2p, is an

irreducible quasi-projective variety and the period map

o ) — ) g
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On the Period Map for Polarized Hyperkédhler Fourfolds 5

is algebraic. Alternatively, one has

Qpy ~ {x € P(A;’;m on

®C)|x-x=0, x-x > 0}
and the group O(Ay421, ho) can be identified with the stable orthogonal group O(A(
([20, Proposition 3.12 and Corollary 3.13]).

The full orthogonal group O(A(ys)[Z] on

)

X3 2n

) also acts on Qp,, hence the quotient group

( ;()/3)[2] 271)/0( ;();)[2] 2n ) O(D(Ai(yg)[ﬂ'zn))

acts on the period space ,@(V) (where —Id acts trivially). We determine this group and
describe this action in the next proposition, assuming for simplicity that n is odd. For

any nonzero integer r, we denote by p(r) the number of prime factors of r.

Proposition 3.1. Assume that n is odd. The period space 92’3 is acted on generically
freely by the following groups:

e ifn =1 (mod 4) (so that y = 1), by the group (Z/2Z)™ax{»r(0.1},
e if n=-1 (mod 4), by the group (Z/22)°™~1,

A;Qm on ) > Z/2Z x Z/2Z x Z/nZ. This

decomposition is still orthogonal for g and the values of g at the points of order 2 are
g(1,0,0) = —%,g(0,1,0) = —%, and g(1,1,0) = - in 0/22.

When n = —1 (mod 4), these three values are all distinct and any isometry @ of

Proof. Case y = 1. Since n is odd, (1) implies D(

(D(A g 5,

their orthogonal Z/nZ. Write (0, 0, 1) = (0, 0, a); since g(0,0,1) = ——, we have

(mod 2Z), hence a? = 1 (mod n). Since n is odd, the group O( (A;{;m o

isomorphic to (Z/2Z)?™. The proposition follows since only —Id acts trivially.

), @) must therefore be the identity on both Z/2Z factors, hence must preserve

2a
n

) is therefore

When n = 1 (mod 4), there are extra isometries given by (1,0,0) < (0,1,0) and
(0,0,1) < (0, 0, a), where a2 = 1 (mod n) (and when n = 1, we have —Id = Id).

Case y = 2 (hence n = —1 (mod 4)). We have D(Ag;m on ) ~ Z/nZ, with g(1) = —2
and we proceed as in the first case. This proves the proposition. [ |

3.3 The Torelli theorem

Verbitsky's Torelli theorem takes the following form ([50], [21, Theorem 3.14]).
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6 O. Debarre and E. Macri

Theorem 3.2. (Verbitsky)  For each positive integer n and each divisibility y € {1, 2},
the period map

). ) )
F2n ‘///271 - gZZn

is an open embedding.

In particular, the commuting involutions of 33%) described in Proposition 3.1
induce rational involutions on the moduli space ///2(1’1) In the case n =y =1 (double EPW
sextics; see Example 6.3), the unique nontrivial involution was described geometrically

in [42] in terms of projective duality.

4 Special Polarized Hyperkédhler Fourfolds

A hyperkédhler fourfold corresponding to a very general point of ///2(3’1) has Picard
number 1. The Noether-Lefschetz locus (or special locus) is the subset of //12(,’;) corre-
sponding to hyperkéahler fourfolds with Picard number at least 2. It can be described as
follows.

Let K be a primitive, rank-2, signature-(1, 1) sublattice of A g2 containing the
class ho chosen in Section 3.2. The codimension-2 subspace P(K ® C) in P(Agg2 ® C)
cuts out an irreducible hypersurface in Qj, whose image in ﬁgf will be denoted by
.@2(’,?1{ and called a Heegner divisor. The Noether-Lefschetz locus is then the inverse
image in //lz(fl) by the period map pé},’l) of the countable union | Jg .@%)K of irreducible
hypersurfaces.

For each integer d, the union

20 ) )
Dond = U Donk C Pon
disc(KL)=—d

of Heegner divisors is finite, hence it is either empty or of pure codimension 1. Following
Hassett, we say that the polarized hyperkdhler fourfolds whose period point is in 92(7;301
are special of discriminant d (the lattice K+ has signature (2, 19), hence d is positive).
: W) _ S Wh=1,5W) )
We use the notation %Zn’d = ($g,) (@2n’d) C My, -
We now describe the irreducible components of the loci @2();1)01 (the case n = 3

and y = 2 was originally studied by Hassett in [23] and the case n = y =1 in [18]).
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On the Period Map for Polarized Hyperkédhler Fourfolds 7

Proposition 4.1. Let n and d be positive integers and let y € {1, 2}. If the locus Qéz)d is
nonempty, the integer d is even; we set e := d/2.
(1) (a) The locus .@é,ll)zg is nonempty if and only if either e or e — n is a square
modulo 4n.
(b) If n is square-free and e is divisible by n and satisfies the conditions in (a),

the locus ‘@gz)Ze is irreducible, except when

e eithern =1 (mod 4) and e = n (mod 4n),

e orn=-1(mod4) and e =0 (mod 4n),

in which cases 93329 has two irreducible components.
(c) If nis prime and e satisfies the conditions in (a), .@é,ll)zg is irreducible, except
when n =1 (mod 4) and e = 1 (mod 4), or when n = —1 (mod 4) ande=0

(mod 4), in which cases @SL),Ze has two irreducible components.
(2) Assume moreover n = —1 (mod 4).

(@ The locus @2(,21)’26 is nonempty if and only if e is a square modulo n.
(b) If nis square-free and n | e, the locus @éi),ze is irreducible.

(c) If nis prime and e satisfies the conditions in (a), .@2(31)29 is irreducible.

Remark 4.2. In cases (1)(b) and (1)(c), when the hypersurface le)zg is reducible, its
two components are exchanged by one of the involutions of the period space described
in Proposition 3.1 when n = 1 (mod 4), but not when n = —1 (mod 4) (in that case, these

involutions are in fact trivial when n is prime).

Proof of Proposition 4.1. Case y = 1. Let (u, v) be a standard basis for a hyperbolic
plane U contained in A2 and let £ be a basis for the I} (—2) factor. We may take ho :=u +
nv (it has the correct square and divisibility), in which case hé =Z(u—nv)®ZLDd M,
where M := {u, v, £}* = U®? @ Eg(—1)®? is unimodular. The discriminant group D(hy) =~
Z/2Z x Z/2nZ is generated by ¢, = £/2 and (u—nv), = (u — nv)/2n, with q(¢,) = —1/2 and
q((u —nv).) = —1/2n.

Let « be a generator of K N k3. We write
Kk = a(u —nv) + bl + cw,

where w € M is primitive. Since K has signature (1, 1), we have k2 < 0 and the formula

from [21, Lemma 7.5] reads

r?disc(hy)

_ 8n(na®+b*+mc?) _ 8n(na®+ b?)
52 o -

52 52

d= ‘disc(Ki)‘ = (mod 8n), ()
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8 0. Debarre and E. Macri

where m := —Jw? and s := gcd(2na, 2b, ¢) is the divisibility of « in hg. If s | b, we obtain

d=2 (2%)2 (mod 8n), which is the first case of (1)(a): d is even and e := d/2 is a square
modulo 4n. Assume s { b and, for any nonzero integer x, write x = 2"2® x4, where Xoqq

is odd. One has then vs(s) = vo(b) + 1 and

9 2 2 9 2
d=2 (%) +2n (boﬂ> =2 <$> +2n (mod 8n),

Sodd

which is the second case of (1)(a): d is even and d/2 — n is a square modulo 4n. It is then
easy, taking suitable integers a, b, ¢, and vector w, to construct examples that show that
these necessary conditions on d are also sufficient, thereby proving (1)(a).

We now prove (1)(b) and (1)(c).

Given a lattice K containing hg with disc(Kt) = —2e, we let as above x be
a generator of K N hol. By Eichler’s criterion (Theorem 2.1), the group 5(hé) acts
transitively on the set of primitive vectors «x € hg of given square and fixed «, € D(hg).
Since ¥ and — « give rise to the same lattice K (obtained as the saturation of Zhy &
Zk), the locus 951329 will be irreducible (when nonempty) if we show that the integer e
determines «?, and « up to sign.

We write as above k = a(u — nv) + bl + cw € ht, with gcd(a,b,c¢) = 1 and

s = dithL (k) = gcd(2na, 2b, c¢). From (4), we get
K? = —es?/2n = —2(ma® + b*> + mc?) and k. = (2na/s,2b/s) € Z/2nZ x Z/2Z. (5)

If s =1, we have e = 0 (mod 4n) and «, = 0.
If s = 2, the integer c is even and a and b cannot be both even (because « is

primitive). We have e = n(na? + b? + mc?) and

e=n? (mod4n) and«, = (n,0) if b is even (and a is odd);
e=n (mod4n) and«x, =(0,1) if b is odd and a is even;

e=nn+1) (mod4n) andk,=(n,1) ifb and a are odd.

2na

2
s |

Assume now that n is square-free and n|e. From (4), we get n | ( )2, hence s

4na?, and s | 2a because n is square-free. This implies s = gcd(2a, 2b, ¢) € {1, 2}.
When n is even (i.e., n = 2 (mod 4)), we see from the discussion above that both

s (hence also «?) and «, are determined by e, so the corresponding hypersurfaces @é,{gk

are irreducible.

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnx333/4835212

by guest

on 02 February 2018



On the Period Map for Polarized Hyperkédhler Fourfolds 9

If n is odd, we have the following coincidences:

e when n = 1 (mod 4), we have n = n? (mod 4n), hence 922)’26 is irreducible
when e = 0 or 2n (mod 4n), has two irreducible components (corresponding
to k, = (n, 0) and «, = (0, 1)) when e = n (mod 4n), and is empty otherwise;

e when n = —1 (mod 4), we have n(n + 1) = 0 (mod 4n), hence 921),29 is
irreducible when e = —n or n (mod 4n), has two irreducible components
(corresponding to «, = 0 and «, = (n, 1)) when e = 0 (mod 4n), and is empty

otherwise.

This proves (1)(b).
We now assume that n is prime and prove (1)(c). Since s| 2 n, we have s € {1, 2, n,
2n}; the cases s = 1 and s = 2 were explained above. If s = n (and n is odd), we have n |

b,n|c,nta,and
e = 4a> (mod 4n) and «. = (2a,0).

If s = 2n, the integer c is even, a and b cannot be both even, n | b, and n t a. We have

e=a? (mod4n) and«, = (a,0) if 2n | b (hence a is odd);
e=a’+n (mod4n) andk,=(a,1) ifbis odd (and n is odd);
e=a’+2 (mod8) andk,=(a,1) if4{bisoddandn=2.

When n = 2, one checks that the class of e modulo 8 (which is in {0, 1, 2, 3,
4, 6}) completely determines s, and «, up to sign. The corresponding divisors _@‘(}’12)9 are
therefore all irreducible.

When n = 1 (mod 4), we have n = n? (mod 4n) and a? = (n—a)? + n (mod 4n)
when a is odd (in which case a2 = 1 (mod 4)). When n = —1 (mod 4), we have n(n + 1) =
0 (mod 4n) and a? = (n—a)? + n (mod 4n) when a is even (in which case a? = 0 (mod 4)).
Together with changing a into — a (which does not change the lattice K), these
are the only coincidences: the corresponding hypersurfaces 921),29 therefore have two
components and the others are irreducible. This proves (1)(c).

Case y = 2 (hence n = —1 (mod 4)). We may take ko := 2 (u + nT“V) + ¢, in which
case hol = Zw; ® Zwy, & M, with w; ;= v + £ and wy (= —u + ”T“V. The matrix of
_@) as in (2) and the discriminant group

the intersection form on Zw; @ Zw is (_1
D(hOL) ~ Z/nZ is generated by (w;—2w3), = (w1 — 2wy)/n, with g((w; — 2wy),) = —2/n.

Let (ho, ') be a basis for K, so that disc(K) = 2n«’? — (hg-«’)2. Since div(ho) =y = 2,
the integer ho-«’ is even and since «’2 is also even (because Agsm2 is an even lattice), we

have 4 | disc(K) and —disc(K)/4 is a square modulo n. Since the discriminant of Aygm
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10 O. Debarre and E. Macri

is 2, the integer d = |disc(K')| is either 2|disc(K)| or 3 |disc(K)|, hence it is even and
e = d/2 is a square modulo n, as desired.

Conversely, it is easy to construct examples that show that these necessary
conditions on d are also sufficient. This proves (2)(a).

We now prove (2)(b) and (2)(c). To prove that the loci .@éi)zg are irreducible (when

nonempty), we need to show that e determines «?

, and k. up to sign (where « is a
generator of K N hg).
With the notation above, we have k =((hg - «')hg — 2n«’)/t, where t :=gcd(hg-«’, 2n)

is even and «2 = %disc(K). Formula (1) then gives

r?disc(hy)
: 2
dlthL (k)

2n2disc(K)

2e = )disc(Ki)‘ =

Since n is odd and t is even, and, as we saw above, disc(K) € {—e, —4e}, the only
possibility is disc(K) = —4e and tdivhé (k) = 2n.

Assume that n is square-free and n|e. Since — 4e = disc(K) = 2n«’?> — (ho-«')?, we
get 2n | (ho-«’)? hence, since n is square-free and odd, 2n | hg - «’. This implies t = 2n
and divhé () = 1; in particular, «, = 0 and «? = —2e/n are uniquely determined. This
proves (2)(b).

We now assume that n is prime. Since tdithL (k) = 2n and t is even,

o either (z,div,, k), k%) = (2n,1,—2e/n) and n | ¢
e oOr (t,divhé_(K),Kz) = (2,n,—2ne) and n t e (because n { ho - ¥ and
d = —%disc(K) = $(ho - ¥)? (mod n)).

Given e = a? + nn’, the integer «? is therefore uniquely determined by e:

2:

e cithern|a,« —2e/n, and «, = 0;

e ornfta,«x?=-2ne, k. =k/n,and q(ks) = —2a®/n (mod 2Z).
In the second case, xx = +alw;—2wy),; it follows that in all cases, «, is also uniquely
defined, up to sign, by e. This proves (2)(c). |
5 The Nef Cone of a Projective Hyperkihler Fourfold of K3!?-Type

Cones of divisors on projective hyperkahler manifolds of K3™-type were described in
[3, 5, 34, 38]. When n = 2, these results take a very special form.
Let X be a projective hyperkahler fourfold of K3®-type. The positive cone

Pos(X) C Pic(X) ® R
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On the Period Map for Polarized Hyperkdhler Fourfolds 11

is the connected component of the open subset {x € Pic(X) ® R | x> > 0} containing the

class of an ample divisor. The movable cone
Mov(X) C Pic(X) ® R

is the (not necessarily open nor closed) convex cone generated by classes of movable
divisors (i.e., those divisors whose base locus has codimension at least 2). We have
inclusions Int(Mov(X)) C Pos(X) of the interior of the movable cone into the positive
cone, and Amp(X) C Mov(X) of the ample cone into the movable cone.

We set

Pivy = {a € Pic(X) | a? = =2},

Flopy := {a € Pic(X) | a* = 10, divyzx 2 (a) = 2}.
Given a divisor class a € Pic(X) ® R, we denote by H, the hyperplane
H;, = {xePicX) QR |x-a=0}.

Theorem 5.1. Let X be a hyperkahler fourfold of K3/-type.

(a) The interior Int(Mov(X)) of the movable cone is the connected component of

PosX)\ | J Ha

aePivy

that contains the class of an ample divisor.

(b) The ample cone Amp(X) is the connected component of

Int(Mov(X)) \ U H,
acFlopy

that contains the class of an ample divisor.

Proof. Statement (a) follows from the general result [34, Lemma 6.22]. We sketch
instead the proof of (b).

There is an extension H? (X,2) C KX of lattices and weight-2 Hodge structures,
where the lattice Ay is isomorphic to the lattice U®* @ Eg(—1)®? and the orthogonal

H2?(X,Z)' C Ax is generated by a primitive vector vy of square 2 ([34, Section 9],
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12 0. Debarre and E. Macri

[3, Section 1]). We denote by Kalg,X the algebraic (i.e., (1, 1)-type) part of T\X, so that
Pic(X) = vx N T\alg,X. Finally, we set

Flopy :=1{a € Aggx | @*> = ~2, @-vx = 1}.

The dual statement to [3, Theorem 1] is then the following: the ample cone Amp(X) is the

connected component of

Int(Mov(X)) \ U H;
aeFlopy
containing the class of an ample divisor, where the hyperplane H; is defined as before
by H; := {x € Pic(X) ® R | x-a = 0}. We notice that the actual statement of [3, Theorem 1]

2> 2and|a-vx|<1 We

says that we need to exclude the hyperplanes H,, where a

may in fact only consider classes with a? = —2, as explained in [5, Sections 12 and 13].
Given a class a € Flopy, we let a := 2a — vx. Then a € Flopy and H, = Hj.

Conversely, given a € Zlopy, we let b:=a+vxe Kalg. Since divyzx,z (a) = 2, we have

b =2a, and a € Zlop with H; = H,. This proves (b). [ |

Remark 5.2. We can make the description in Theorem 5.1 more precise.

(a) As explained in [34, Section 6], it follows from [35] that there is a group of
reflections Wgye acting on Pos(X). Using the Zariski decomposition ([13]), one shows
([34, Lemma 6.22]) that Wgyc acts faithfully and transitively on the set of connected

components of

Pos(X)\ (] Ha.
ac9ivy
In particular, Mov(X) N Pos(X) is a fundamental domain for the action of Wgx, on Pos(X).
(b) By [37, Proposition 2.1] (see also [25, Theorem 7]), each connected compo-

nent of

Int(Mov (X)) \ U Hg
acFlopy
corresponds to the ample cone of a hyperkahler fourfold X' of K3?-type via a birational
map X --» X' which is a composition of Mukai flops with respect to numerically
equivalent Lagrangian planes ([51, Theorem 1.1]).
(c) By [1, Proposition 4] (generalized to the twisted case in [29, Proof of
Proposition 4.1]) and [4, 5], if Zivx # @, the fourfold X is isomorphic to a moduli
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On the Period Map for Polarized Hyperkahler Fourfolds 13

space M of stable sheaves on a (possibly twisted) K3 surface (S, «). The moduli space
M is birational to the Hilbert square of a K3 surface if there exists a € Zivx with
divgsx z(a) = 2; otherwise, M is birational to a moduli space of rank-2 torsion-free
sheaves.

(d) Similarly, if there exists a nonzero class w € Pic(X) with w? = 0, the fourfold
X is birational to a moduli space M of torsion sheaves on a (possibly twisted) K3 surface
(S, ). If the divisor class w is also nef and primitive, X is actually isomorphic to such
an M and the Beauville integral system f: X—M — P2 is a Lagrangian fibration on X
such that w = [f*Op2(1)].

Before discussing a few examples of Theorem 5.1 when Pic(X) has rank 2, we
briefly review Pell-type equations (see [39, Chapter VI]). Given nonzero integers e and ¢

with e > 0, we denote by Z.(t) the equation
a’ —eb? =t, (6)

where a and b are integers. A solution (a, b) of this equation is called positive if a > 0 and
b > 0.If eis not a perfect square, (a, b) is a solution if and only if the norm Vv (a + bﬁ) in
the quadratic number field Q (JE) is t. The positive solution with minimal a is called the
minimal solution; it is also the positive solution (a, b) for which the ratio a/b is minimal
when t < 0, maximal when ¢ > 0.

Assume that e is not a perfect square. There is always a minimal solution (a1, b;)
to the Pell equation (1) and if x; := a; + b1+/e, all the solutions of the equation (1)
correspond to the “mth powers” £x7" in Z[\/e], for m € Z.

The following example is [5, Proposition 13.1 and Lemma 13.3]. Parts of the
results were first proved in [25, Theorem 22] and the rationality of the nef cone was
also proved, by very different methods, in [47, Corollary 5.2]. Note that there is a typo in
[5, Lemma 13.3(b)]: one should replace d with 2d.

Example 5.3. Let (S, L) be a polarized K3 surface such that Pic(S) = ZL and L? =: 2e.
Then Pic(S?) = ZL, @ Z§, where L; is the class on S induced by L and 26 is the class of
the divisor in S'? that parametrizes nonreduced length-2 subschemes of S ({6, Remarque,

p. 768)). In the lattice (H?(S'?, Z), g=1), we have the following products:
L3=2e,82=-2,1,-§=0.

Cones of divisors on S can be described as follows.
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14 O. Debarre and E. Macri

(a) The extremal rays of the (closed) movable cone Mov(S?) are spanned by L,

and Ly — ued, where

o if eis a perfect square, e = +/€;

e if eis not a perfect square and (a;, b;) is the minimal solution of
b

the equation Z.(1), e = eqr.
(b) The extremal rays of the nef cone Nef(S?)) are spanned by Ly and Ly — veé,

where

e if the equation P4.(5) is not solvable, ve = e;

e if the equation P24.(5) is solvable and (a5, bs) is its minimal

solution, ve = 232—2.

Example 5.4. Let n be a positive integer such that n =—1 (mod 4). Let (X, H) be
a polarized hyperkihler fourfold of K3-type with H of divisibility 2 and Pic(X) =
ZH ®ZL, with intersection matrix (20n —(Z)e’
K = I1(2n) @ I;(—2€) into Aggzr for which the image of a generator of I;(2n) has

). Since any two embeddings of the lattice

divisibility 2 differ by an isometry of Ay,u, they represent very general elements of

2)

one component of the special divisor ng(n 2e'n

(we will prove in Theorem 6.1 that they
exist if and only if n > 0 and € > 1). Indeed, in the notation of the second part of the
proof of Proposition 4.1 (case y = 2), a generator of I1(2n) can be sent to the class hg; a
generator of I;(—2¢€') is then sent to the class ¥’ = x. We have t := gcd(hg - «/,2n) = 2n
and the formula tdivhé_(K) = 2n implies divhé(;c) = 1, that is, x, = 0 in D(KL). We
then apply Eichler’s criterion again in K+ and conclude by using the isomorphism
O (Agar, ho) =~ O(K™Y).

We assume in the rest of this example that n is square-free. The hypersurface
%2(721)2 o, 18 then irreducible by Proposition 4.1(2)(b) and very general elements of %2(721)2 on

are of the type described above. Cones of divisors on X can be described as follows (we

set e := €'n).

(a) The extremal rays of the closure of the movable cone Mov(X) are spanned

by H — upneL and H + pp L, where

e if the equation #2.(—n) is not solvable, une = n/J/e;

e if the equation &.(—n) is solvable and (a_,, b_y) is its minimal

solution, pne = gp-.
—n
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On the Period Map for Polarized Hyperkahler Fourfolds 15

(b) The extremal rays of the nef cone Nef(X) are spanned by H — v, L and

H + vpeL, where

e if the equation P4.(—5n) is not solvable, vy e = Un,e;

e if the equation Z4.(—5n) is solvable and (a_s,, b_s,) is its

a—sn
2e'b_sp *

minimal solution, vy e =

To prove these statements, it is enough to notice that, in the notation of
Theorem 5.1, a class in Zivy corresponds to a solution to the equation &,(—n); similarly,
a class in Flopy corresponds to a solution to the equation Z24.(—5n). The description

of the cones of divisors on X then follows from Theorem 5.1 by a direct computation.

6 The Image of the Period Map

The description of the cones of divisors for hyperkéhler fourfolds of K3[!-type given in

Section 5 easily implies our main result on the images of their period maps.
Theorem 6.1. Let n be a positive integer and let y € {1, 2}. The image of the period map
(r) . (¥) (¥)
$2n + Mom —> P

is exactly the complement of the union of finitely many Heegner divisors. More precisely,

these Heegner divisors are
o ify=1,

— some irreducible components of the hypersurface @é,ll)m

if n = 0 or 1 (mod 4), one component if n = 2 or 3 (mod 4));

— one irreducible component of the hypersurface @2(28,1;
— one irreducible component of the hypersurface 95;)10,1,‘

(two components

— and, if n = 5%2¢+1p" with « > 0 and n'= +1 (mod 5), some irreducible

components of the hypersurface @531)2”/5;

e ify =2 (and n = —1 (mod 4)), one irreducible component of the hypersurface
175
2n,2n"
Remark 6.2. We proved in Proposition 4.1 that when n is square-free (so in particular
n # 0 (mod 4)),

e the hypersurface 9&}1)2” has two components if n = 1 (mod 4), one component

otherwise;
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16 O. Debarre and E. Macri

e the hypersurface @éysn has two components if n = —1 (mod 4), one compo-
nent otherwise;

e the hypersurface @2(2 1on, h@s two components if n = 1 (mod 4), one component
otherwise;

e the hypersurface @2(33,211 is irreducible (when n = —1 (mod 4)).

Proof of Theorem 6.1. Take a pointx € &2,’. Since the period map for smooth compact

(¥)
2n
(not necessarily projective) hyperkédhler fourfolds is surjective ([28, Theorem 8.1]), there
exists a compact hyperkahler fourfold X’ with the given period point x. Since the class
ho is algebraic and has positive square, X' is projective by [28, Theorem 3.11]. Moreover,
the class hgp corresponds to the class of an integral divisor H in the positive cone of
X'. By Remark 5.2(a), we can let an element in the group Wgx. act and assume that
the pair (X', H), representing the period point x and the class hg, is such that H is in
Mov(X’) N Pos(X’). By Remark 5.2(b), we can find a projective hyperkéhler fourfold X
which is birational to X’ (hence still has period x), such that the divisor H, with class
ho, is nef and big on X and has divisibility y. Note that, since X is birational to X, it is
deformation equivalent to X ([28, Theorem 4.6]), hence still of K3[2]—type.

To summarize, the point x is in the image of the period map pé’;) if and only
if H is actually ample on X. We now use Theorem 5.1: H is ample if and only if it is
not orthogonal to any algebraic class either with square —2, or with square —10 and
divisibility 2.

If H is orthogonal to an algebraic class k with square —2, the Picard group
of X contains a rank-2 lattice K with intersection matrix (2(;1 _02); the fourfold X is
therefore special of discriminant 2e := —disc(K) (its period point is in the hypersurface
Do)

If y = 1, the divisibility s := divg. (k) is either 1 or 2. By (2), we have es? = —2n«?

= 4n, hence

e either s = 1, e = 4n, and «, = 0: the period point is then in one irreducible

component of the hypersurface @2(:1)871,

e ors=2,e=n,and

— either«, = (0, 1);
— orky=I(n,0 andn =1 (mod 4);

— orkys=I(n,1) and n =0 (mod 4).

The period point x is in one irreducible component of the hypersurface @é}%Zn if

n = 2 or 3 (mod 4), or in the union of two such components otherwise.
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On the Period Map for Polarized Hyperkahler Fourfolds 17

If y = 2, we have e = —disc(K)/4=n, t = \/W = 2n, and divik) = 2n/t
=1, hence «, = 0: the period point x is in one irreducible component of the hypersurface
Diman

If H is orthogonal to an algebraic class with square —10 and divisibility 2, the
Picard group of X contains a rank-2 lattice K with intersection matrix (2(;“ _?0), hence
X is special of discriminant 2e := —disc(K+). Again, we distinguish two cases, keeping
the same notation.

If y =1, the divisibility s := divg. (k) is even (because the divisibility in H%(X, Z)
is 2) and divides «%2 = —10, hence it is either 2 or 10 . Moreover, es? = —2n«? = 20n,

hence

e ceither s = 2, e = 5n, and «, = (0, 1): the period point x is then in one

irreducible component of the hypersurface @éiﬁmn;

e ors =10 and e = n/5: the period point is then in the hypersurface ‘@éiz)n/&

In the second case, since the divisibility of « in H?%(X, Z) is 2, a and c are even, so that

2

b is odd and x4 = (a, 1). Set @’ := a/2 and n’ := n/5;, we have e = a* + n (mod 4n),

2

hence a’? = —n’ (mod 5n/). Write @’ = 5@’ and n’ = 5°n”, with a”” and n” prime to 5.

This congruence then reads 5°*a’’? =—5fn" (mod 5/*!n”), which implies 8 = 2« and

a’? = —n” (mod 5n”). Finally, this last congruence is equivalent to a’? = 0 (mod n”)
and a”’? = —n” (mod 5); these congruences are solvable (in a”') if and only if n"’= +1
(mod 5).

In general, there are many possibilities for a = 2 - 5*a” (modulo 2n). However, if
n’’ is square-free, we have a”’= 0 (mod n”) and + a (hence also =+ «,) is well determined
(modulo 2n), so we have a single component of 9;1),"/5.

If y = 2, we have e = —disc(K)/4 = 5n and t? = 2ndisc(K)/«? = n?/10, which is
impossible.

Conversely, in each case described above, it is easy to construct a class « with

the required square and divisibility which is orthogonal to H. |

Example 6.3. (Double EPW sextics:n =y =1) Double EPW sextics were defined in [43]
as ramified double covers of certain singular sextic hypersurfaces in P°. When smooth,
they are hyperkihler fourfolds of K32-type with a polarization of degree 2. They fill
out a dense open subset %2(1) of ///2(1) whose complement contains the irreducible
hypersurface %(1) whose general points correspond to pairs (S, L, — §), where
(S, L) is a polarized K3 surface of degree 4 ([44, Section 5.3]).
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18 O. Debarre and E. Macri

O’Grady proved that the image of %2(1) in the period space does not meet .@2(’12),
@2(2, .@éylg, and one component of .@&)0 ([44, Theorem 1.3]; O’'Grady's hypersurfaces S/Z US/Z/,
S5, S4 are our 9;12), @élli, _@2(2); moreover, by [18, Theorem 8.1], this image does meet all
the other components of the nonempty hypersurfaces 9;1;. The hypersurface ji”z(l) maps
to @é}i. These results agree with Theorem 6.1 and Remark 6.2, which say that the image
of ///2(1) in the period space is the complement of the union of 9212), 9;1&, and one of the
two components of 9;11)0. However, our theorem says nothing about the image of %2(1).
O’Grady conjectures that it is the complement of the hypersurfaces 9;12), 9&2, @é}g, and

one component of @2(11)0; this would follow if one could prove //12(1) = %2(1) U %”2(1).

Example 6.4. (Varieties of lines on cubic fourfolds: n =3 and y =2). If W Cc P? is a
smooth cubic fourfold, the variety F(W) of lines contained in W is a hyperkahler fourfold
and its Pliicker polarization has square 6 and divisibility 2 ([8], [23, Proposition 2.1.2]).
These fourfolds fill out a dense open subset %6(2) of (//16(2) whose complement contains an
irreducible hypersurface %%(2) whose general points correspond to pairs (S, 2L, — §),
where (S, L) is a polarized K3 surface of degree 2 (see Proposition 7.9).

Theorem 6.1 and Remark 6.2 say that the image of ///éz) in the period space is the
complement of the irreducible hypersurface 9&2. This (and much more) was first proved
by Laza in [32, Theorem 1.1], together with the fact that ///6(2) = %6(2) U ji’g(z); since %(2)
maps onto @é?z), the image of 02/6(2) is the complement of .@é?z) U 9&2.

7 Unexpected Isomorphisms Between Hyperkéahler Fourfolds

In this section, we study birational isomorphisms between components of various
Noether-Lefschetz loci induced by “unexpected” isomorphisms between hyperkédhler

fourfolds. We treat first the case of Hilbert squares.

7.1 Special hyperkéahler fourfolds isomorphic to Hilbert squares of K3 surfaces

If a polarized hyperkahler fourfold is isomorphic to the Hilbert square of a K3 surface,
it is special in the sense defined in Section 4. We use standard notation for cohomology
classes on a Hilbert square (see Example 5.3). The slope v, was defined in the same

example and the special loci 4}, C ., in Section 4.

Proposition 7.1. Let n and e be positive integers. Assume that the equation &.(—n)
(see (6)) has a positive solution (a, b) that satisfies the conditions
a

5 < Ve and ged(a,b) = 1. (7)
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On the Period Map for Polarized Hyperkahler Fourfolds 19
If 2. is the moduli space of polarized K3 surfaces of degree 2¢, the rational map

w: Hoe "*///2(;:)

(S, L) —> (S, bLy — as),

where y = 2 if b is even, and y = 1 if b is odd, induces a birational isomorphism onto an

irreducible component of %2(3’;)26‘

Proof. If (S, L) is a polarized K3 surface of degree 2e and K := ZL, @ Z§ c H%(S?, z),
the lattice K is the orthogonal in H?(S, Z) of the class L. Since the lattice H?(S, Z) is
unimodular, K+ has discriminant — 2e, hence S? is special of discriminant 2e.

The class H := bLy — ad has divisibility y and square 2n. It is primitive, because
gcd(a,b) = 1, and ample on S when Pic(S) = ZL because of the inequality in (7).
Therefore, the pair (S'?, H) corresponds to a point of ng(i/z)z i

The map @ therefore sends a very general point of %2, to %2(2?26. To prove that
w is generically injective, we assume to the contrary that there is an isomorphism
@: Sl215 5121 gyuch that ¢*(bL, — ad’) = bLy — aé, although (S, L) and (S’, L) are not
isomorphic. It is straightforward to check that this implies ¢*8'# § and that the
extremal rays of the nef cone of S?! are spanned by the primitive classes L, and @*L.
Comparing this with the description of the nef cone given in Example 5.3, we see that e
is not a perfect square, ¢*L), = a1Lz — eb18 and ¢*(a1L, — eb18’) = Ly, where (ai, b1) is
the minimal solution to the Pell equation £2.(1). The same proof as that of Theorem B.1
implies e > 1, the equation &,(—1) is solvable, and the equation $24.(5) is not.

By Theorem B.1 again, S has a nontrivial involution o and (¢ o 0)*(Ly) =Ly and
(¢oo)*(8') = 8. This implies that ¢ o o is induced by an isomorphism (S, L)— (S, L’), which
contradicts our hypothesis. The map @ is therefore generically injective and since %2,

is irreducible of dimension 19, its image is a component of (52(3;)29- |

Remark 7.2. Assume that n is prime. The locus (52(2),29 is irreducible by Proposition 4.1.
Therefore, under the assumptions of Proposition 7.1 and when b is even, we have a
birational isomorphism %6—1%2(721326. When e > 61, the varieties %5, are known to be
of general type ([19]), hence so is %2(,21)'23. More precise results on the geometry of the

varieties %élzz)e can be found in [41, 49, 31].

Example 7.3. Assume n = 1. Under the assumptions of Proposition 7.1, b is odd. The
locus %2(12)6 has either one or two components, according to whether e is even or odd

(Proposition 4.1). If e is odd, we have e > 1 and one checks that the image of @ is the
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20 O. Debarre and E. Macri

component of %2(12)9 denoted by %élz)g in [44, Section 4.3]. Therefore, we have birational

isomorphisms

1 . .
%2( Z)e if e is even;

w: %/26_?, 1
%5 ifeisodd.

Remark 7.4. When e is a perfect square, the positive solutions (a, b) to the equation
Po(—n) satisfy a — by/e = —n” and a + by/e = n/, with n = n'n". This implies a =
%(n’ —n') and by/e = %(n’—i—n”), hence 0 < n’ < n'. We then have &= %\/_e < Je=ve
hence Proposition 7.1 applies to all positive solutions (a, b) of the equation &,(—n) with
gcd(a,b) = 1. In particular, when n is odd and n > 1, we obtain a geometric description
of the fourfolds corresponding to general points of some component of %2(3;?2, where y =
lifn =1 (mod 4), and y = 2 if n = —1 (mod 4) (take n’ = n and n' =1).

Remark 7.5. Under the hypotheses of Proposition 7.1, one can show that all polarized
hyperkéahler fourfolds (X, H) with Picard number 2 which are in the component of
‘52(3’1)2 . dominated by .72 are actually isomorphic to a Hilbert square S12I: however, some
generality condition on X is needed: the varieties of lines of some smooth cubic fourfolds
of discriminant 14 (n = 3, y = 2, e = 7) are not isomorphic to the Hilbert square of a K3

surface.

We deduce from Proposition 7.1 a characterization of Hilbert squares of general

polarized X3 surfaces that are isomorphic to double EPW sextics.

Corollary 7.6. Let e be an integer such that e > 3 and let (S, L) be a general polarized

K3 surface of degree 2e. The following conditions are equivalent:

(i) the equation £.(—1) is solvable and the equation $4.(5) is not;
(ii) the equation &,(—1) has a positive solution (a, b) such that % < Vg;

(iii) the Hilbert square S is isomorphic to a double EPW sextic of discrimi-

nant 2e;

(iv) the variety S? has a nontrivial automorphism.

When these conditions are realized, S?! has a nontrivial involution o, the
quotient S®?/o is an EPW sextic ¥ c P%, and the complete linear system |bL, — a8| defines

a morphism which factors as S — S?l/o = ¥ < P5,
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On the Period Map for Polarized Hyperkdhler Fourfolds 21

Proof. The equivalence (i) < (iv) is Theorem B.1. The implication (iv) = (ii) comes
from the facts that the equation &,(—1) has a minimal solution (a_;, b_;) and, if o is
the nontrivial automorphism of S (Theorem B.1), the class b_1L, — a_,8 is positively
proportional to Ly + 0*Ly, hence ample. The implication (ii) = (iii) is Proposition 7.1 and
Example 6.3. The implication (iii) = (iv) is obvious. The consequences stated at the end
follow from [45, Section 4], which explains why dim(|H|) = 5, where H is the canonical

polarization on the double EPW sextic. |

Remark 7.7. When e = 2, all the conditions of Corollary 7.6 hold except for (iii). The
fourfold S carries the nontrivial Beauville involution o (Example B.2) and the complete
linear system |L, — §| defines a morphism which factors as S — s? /o % Gr(2,4) — P°.
This fits with the fact that 3Gr(2, 4) is a (degenerate) EPW sextic ([46, Claim 2.14]).

Example 7.8. When e = 13, the equivalent conditions of Corollary 7.6 are satisfied,
hence the Hilbert square of a general polarized K3 surface (S, L) of degree 26 is a double
EPW sextic, with canonical involution o. Moreover, two positive solutions, (7, 2) and
(137, 38), of the equation #;3(—3) satisfy the conditions (7) of Proposition 7.1 with b
even. It follows that S is also isomorphic to a general element of %6(,22)6, that is, to the
variety of lines F(W) on a special cubic hypersurface W C P° of discriminant 26 (the two
isomorphisms S© ~ F(Ww) differ by o, and o*(2L, — 78) = 38Ly — 1375).

We now show that given any positive integer n, Proposition 7.1 applies to

infinitely many integers e.

Proposition 7.9. Let n be a positive integer. There are infinitely many distinct hyper-
surfaces in the moduli spaces ///2(,11), and //12(,21) if n = —1 (mod 4), whose general
points correspond to Hilbert squares of K3 surfaces. In both cases, the union of these

hypersurfaces is dense in the moduli space for the euclidean topology.

Sketch of proof. When m > 0, the pair (m, 1) is a solution of the equation Z.(—n),
with e = m?
(n,m) # (1, 2).

When m > 0, the pair (2m + 1, 2) is a solution of the equation %.(—n), with

+ n, and one easily checks that the inequality m < v, holds when

e = m? + m + 1 and one easily checks that the inequality m + < v holds when
(n, m) # (3, 1).
Finally, the density statement follows from a powerful result of Clozel and Ullmo

(Theorem 7.10 below). [ |
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22 0. Debarre and E. Macri

Theorem 7.10. (Clozel-Ullmo) The union of infinitely many Heegner divisors in any

moduli space //lz(i’l) is dense for the euclidean topology.

Proof. This follows from the main result of [14]: the space ///2(2) is a Shimura variety
and each Heegner divisor %y is a “strongly special” subvariety, hence is endowed with
a canonical probability measure 11y,. Given any infinite family (Zy,)qen of Heegner
divisors, there exists a subsequence (ag)xcy, a strongly special subvariety Z C Mlz(fl)
which contains @Xak for all k > 0 such that (M@Xak)keN converges weakly to uz ([14,
Théoréme 1.2]). For dimensional reasons, we have Z = ///2(3;); this implies that | J, Zx, is
dense in .#"). [

Remark 7.11. It was proved in [36] that Hilbert schemes of projective K3 surfaces are
dense in the coarse moduli space of all (possibly non-algebraic) hyperkahler manifold s
of K3M-type.

7.2 Isomorphisms between various special hyperkahler fourfolds

We now apply a similar construction with the polarized hyperkahler fourfolds (X, H)
studied in Example 5.4, whose notation we keep. For the sake of simplicity, we assume
that n is square-free; these fourfolds then correspond to points of the irreducible

hypersurface %2

2n,2e'n’

Proposition 7.12. Let n, m, and e be positive integers. Assume that n is square-free,
n=—1(mod4),n|e andn # e. Assume further that the equation &.(nm) has a solution

(na, b) with a > 0 that satisfies the conditions
— < ne and gced(a,b) = 1. (8)
There is a rational map

. o(2) (62
w. Can,Ze _")‘//ZZm

(X,H) —(X,aH + bL),

where y =2 if bis even, and y =1 if b is odd. This map induces a birational isomorphism

onto an irreducible component of %z(fn) 26"

In the proposition, the locus (52(2)213 is nonempty and irreducible by

Proposition 4.1 and Theorem 6.1.
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Proof. The proof is the same as that of Proposition 7.1 and is based on the fact that if
(X, H) corresponds to a very general point of “52(72226, the class aH + DL is primitive, has
square 2a’n — 2b%e’ = 2m and divisibility y, and is ample on X because of the inequality
in (8). Therefore, the pair (X, aH + bL) corresponds to a point of ‘52(;2126.
To prove that @ is generically injective, assume that there is an isomorphism
¢: X—>X' such that ¢*(aH + bL') = aH + bL. If ¢*H ' +#H, the matrix of ¢* in the bases
(H, L') and (H, L) is that of a nontrivial isometry with a fixed vector, hence a reflection.
As we will see during the proof of Proposition A.3, the matrix of such an
isometry that extends to an isometry between H?%(X', Z) and H?%(X, Z) must be of the
2nrs  —(2s%2e/+1)
Po(—n) and P4.(—5n) are not solvable, and e is not a perfect square. We then have

2,/ / . . . .
form (25 e+l —2ers ), where (nr, s) is a solution to the equation %.(n), both equations

@*(rH + sL') = rH + sL. Since ¢*(aH + bL') = aH + bL and aH + bl is primitive, we must
have m =1 (and a = r, b = s). In that case, by Proposition A.3, X does have an involution
o that acts as on Pic(X) as the reflection with axis spanned by rH + sL. The isomorphism

¢ 00 : X—X' then pulls back H' to H. This proves the proposition. |

Example 7.13. Under the assumptions of Proposition 7.12, when m is prime and b is
even, the locus (52(226 is irreducible by Proposition 4.1. Therefore, there is a birational

; : (2) T, (2
isomorphism Con.2e™ " Com 2¢-

Example 7.14. Assume m = 1. As in Example 7.3, we have, under the assumptions of

Proposition 7.12, birational isomorphisms

@ ~ %2(12)6 if e is even;

65 if eis odd.

Remark 7.15. Given a pair (a, b) that satisfies the conditions (8), we can construct two
maps w* by sending (X, H) either to (X, aH + bL) or to (X, aH — bL). These two maps are
distinct unless there exists an automorphism ¢ of X that sends aH + bL to aH — bL. One
checks using the computations of the proof of Proposition A.3 that this is only possible

. . . 2 / .
when we are in case (a) of that proposition, ¢* acts as a rotation (252:;;1 2§Zeerjl> on Pic(X),

with 72 — es? = 1, and moreover, a = r, b = ns, and m = n. The maps w™: ‘52(,21)28%%”2(72329

then correspond to changing the polarization by an automorphism of X: they are just

particular cases of an infinite family of such maps.

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnx333/4835212

by guest

on 02 February 2018



24 0. Debarre and E. Macri

As in Section 7.2, we characterize which of our special hyperkéhler fourfolds are

isomorphic to double EPW sextics.

Corollary 7.16. Let n and e be positive integers. Assume that n is square-free, n = —1
(mod 4), n | e, and n #e. Let (X, H) be a polarized hyperkahler fourfold corresponding to
a general point of %2(72326. Then X is isomorphic to a double EPW sextic if and only if the

equation Ze(n) is solvable but the equation &4.(—5n) is not.

Under the hypotheses of the corollary, the automorphism group of X is isomor-
phic to Z x Z/2Z hence contains infinitely many involutions (o ;,;)mez (Proposition A.3).

When X is very general, all the quotients X/o,, are EPW sextics.

Proof. We may assume that (X, H) is very general in ‘52(,?26. If X is isomorphic to a
double EPW sextic, it has a nontrivial automorphism and the conclusion follows from
Proposition A.3. Conversely, if the equation &,(n) is solvable but the equation $4.(—5n)
is not, one checks that e is not a perfect square, hence X has, by Proposition A.3,
a nontrivial involution o (and in fact, countably many such involutions) that fixes a
square-2 class rH + sL which is positively proportional to H + vpel + 0*(H + vpel),
hence ample. By Proposition 7.12, the pair (X, rH + sL) is a general element of (52(12)6
hence X is a double EPW sextic by Example 6.3 (note that e > 2n > 6). [ |

Remark 7.17. Assume that both equations $24.(—5n) and Z.(n) are solvable. As in
Remark A.5, let X' be the other birational model of a general X in an irreducible
component of 552(721)29. Then X is isomorphic to a double EPW sextic by the same proof as

above.

Finally, we show that given any positive integer n, Proposition 7.12 applies to

infinitely many integers e.

Corollary 7.18. Let n be a positive square-free integer such that n = —1 (mod 4). There
are infinitely many distinct hypersurfaces in the moduli space %2(,21) whose general

points correspond to double EPW sextics. Their union is dense in ///2(,21)

Proof. When m > 0 and e = n(nm? — 1), the pair (nm, 1) is a solution to the equation
Pe(n).

If 5 | n, we will show in the proof of Proposition A.3 that £4.(—5n) is not
solvable. If 5 { n, we can choose m such that n(nm? — 1) = 2 (mod 5) and by reducing

modulo 5, we see that the equation $24.(—5n) is then not solvable.
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We can therefore apply Corollary 7.16. Since there are infinitely many such m,

this concludes the proof, using Theorem 7.10 for the density statement. |

Appendix A. Automorphisms of special hyperkidhler fourfolds

We determine the group Aut(X) of biregular automorphisms and the group Bir(X) of
birational automorphisms for some hyperkahler fourfolds X of K3?-type with Picard
number 1 or 2. The case of Hilbert squares of very general polarized K3 surfaces is in
Appendix B.

Let X be a hyperkéahler fourfold. There are natural morphisms
W4 Aut(X) - O(H*(X,Z),qx) and VE:Bir(X) » OH?*(X,2),qx) (A1)

that send a (birational) automorphism ¢ of X to its action ¢* on cohomology (see [22,
Proposition 25.14] for \Ilg). Elements of Im(\ll)“}) preserve the nef cone Nef(X), elements of
Im(¥2) preserve the movable cone Mov(X), and both preserve the Picard lattice and the
Hodge structure.

The kernel of lllg is contained in Aut(X), hence in the kernel of \IJ)“} ([47,
Proposition 2.4]). The group Ker(\IJ)“}) is a finite group which is invariant by smooth
deformations ([27, Theorem 2.1]) and is trivial for the Hilbert square of a K3 surface
([7, Proposition 10]). It follows that for any hyperkdhler fourfold X of K3%?\-type, both W%

and VE are injective.

Proposition A.1. Let X be a hyperkéahler fourfold corresponding to a very general point
of a moduli space ///2(,’;) . The group Bir(X) of birational automorphisms of X is trivial,
unless n = 1, in which case Aut(X) = Bir(X) ~Z/2Z.

Proof. As we saw in Section 4, the Picard group of X is generated by the class h of the
polarization. Any birational automorphism leaves this class fixed, hence is in particular
biregular of finite order. Let ¢ be a nontrivial automorphism of X. Since ¢ extends to
small deformations of X, the restriction of ¢* to hlis a homothety whose ratio is, by
[7, Proposition 7], a root of unity; since it is real and nontrivial (by injectivity of \113?),
it must be —Id. We will prove that such an isometry of Zh @ h' does not extend to an
isometry ® of H2(X, Z) unless h? = 2n = 2.

When y = 1, we may take h = u + nv, where (u, v) is a standard basis for a
hyperbolic plane U contained in H?(X, Z). Then, u — nv is in h*, hence the isometry &,

if it exists, must satisfy

d(u+nv)y=u+nv and O(u-—nv)=-u-+nv,
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which yields 2n®(v) = 2u. This is possible only when n = 1. Conversely, in the case
n = 1, the fourfold X is a double EPW sextic and does carry a nontrivial involution
(Example 6.3). Moreover, this involution is the only nontrivial automorphism of a very
general double EPW sextic (see the end of the proof of [17, Proposition B.9]).

When y = 2 (so that n = —1 (mod 4)), we let £ be an element of H?(X, Z) orthogonal
to U and such that ¢? = —2. We may take, as in the proof of Proposition 4.1, h = 2u +

n+l n+l

>~V +¢, and h' contains v + £ and u — 7 V. The isometry ® must then satisfy

<I>(2u+"T+1V+€) =2u+2lv+e, o+ =-v—+(, ®(u-2Hv)= —u+”T+1V,
hence n®(v) = 4u + v + 2¢; this is absurd since n > 3. [ |

Remark A.2. The conclusion of the proposition does not necessarily hold if we assume
only that the Picard number of X is 1. In fact, Proposition A.1 is also proved in [11,
Theorem 3.1] and the proof given there implies that Bir(X) is trivial when the Picard
number of X is 1, unless n € {1, 3, 23}. These three cases are actual exceptions: we
just saw that all fourfolds corresponding to points of //lzm carry a nontrivial biregular
involution; there is a 10-dimensional subfamily of ///éz) whose elements consists of
fourfolds that have a biregular automorphism of order 3 and whose very general
elements have Picard number 1 ([11, Section 7.1]); there is a (unique) fourfold in //lig)

with Picard number 1 and a biregular automorphism of order 23 ([10, Theorem 1.1]).

We now turn our attention to the polarized hyperkéahler fourfolds studied in

Example 5.4.

Proposition A.3. Let n be a positive square-free integer such that n = —1 (mod 4). Let
(X, H) be a polarized hyperkahler fourfold of K32-type of degree 2n and divisibility 2,
such that Pic(X) = ZH & ZL, with intersection matrix (2(? 7(2)e’ ). Set e := e'n.

(a) If neither equations Z,(—n) and P4.(—5n) are solvable and e is not a perfect
square, the groups Aut(X) and Bir(X) are equal. They are infinite cyclic, except when the
equation .(n) is solvable, in which case these groups are isomorphic to the infinite
dihedral group Z x Z/2Z.

(b) If the equation &,(—n) is not solvable but the equation P4.(—5n) is, the
group Aut(X) is trivial and the group Bir(X) is infinite cyclic, except when the equation
P(n) is solvable, in which case it is infinite dihedral.

(c) If the equation &.(—n) is solvable or if e is a perfect square, the group Bir(X)

is trivial.
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On the Period Map for Polarized Hyperkahler Fourfolds 27

Proof. We saw that the map lIJ)“}: Aut(X) — O(H?(X,Z)) is injective. Its image consists
of isometries which preserve Pic(X) and the ample cone and, since b2(X) — p(X) is
odd, restrict to +Id on Pic(X)! ([48, proof of Lemma 4.1]). Conversely, by the Torelli
Theorem 3.2, any isometry with these properties is in the image of W§. We begin with
some general remarks on the group G of isometries of H?(X,Z) which preserve Pic(X) and
the components of the positive cone, and restrict to ¢Id on Pic(X)*, with ¢ € {—1, 1}.
The orthogonal group of the rank-2 lattice (Pic(X), gx) >~ I1(2n) @ I;(—2¢€') is easily

determined: if we let § := gcd(n, €) and we write n = dn’ and €' = se’, we have

. a «we’b
O(Pic(X), gx) = {( , >
n'b «aa

Note that « is the determinant of the isometry and

abeZ a?—-neb*=1, ae{-1, 1}} )

e such an isometry preserves the components of the positive cone if and only
if a > 0; we denote the corresponding subgroup by O (Pic(X));

e when e is not a perfect square, the group SO (Pic(X)) is infinite cyclic,
generated by the isometry R corresponding to the minimal solution to the
equation £, (1) and the group O*(Pic( X)) is infinite dihedral;

e when e is a perfect square, so is n’e’ = e/82, and 0T (Pic(X)) = {1d, (§ %)}

As we saw during the proof of Proposition 4.1, there exist standard bases (v, v1)
and (ug, v2) for two orthogonal hyperbolic planes in A,q;, a generator ¢ for the I1(—2)

factor, and an isometric identification H? (X,Z); Aggi21 such that

n+1
H=2u; + vi+¢ and L=uy—¢€wvs.

The elements ® of G must then have a > 0 and satisfy

®2u; + vy + 0 = auy + Hlvy +0) + n'b(uz — €'vy)
d(ug — €'vy) = we’b2uy + "H ly +0) + aa(uy — €va)
DV +0) =e(vy + 0)
®(uy — vy = e(u; — vy)

Dd(ug + €'vy) = e(ua + €'vy)
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(the last three lines correspond to vectors in Pic(X)1). From this, we deduce

nd(vy) =2(a—eu; + ((@a+ 8)nT+1 —&)vy+ (a—e)l +n'buz — €'vy)
2d(uy) = 2a€e’buy + oee”b"Tﬂvl +ae’bl + (e +aa)us + €(e —aa)vy

26 ®(vy) = —2ce’bug — cxe”b”THVl —ae'bl + (¢ —aa)uy + € (e + aa)vs.

From the first equation, we get §|b and a = ¢ (mod n); from the second equation, we
deduce that €'b and ¢ + aa are even; from the third equation, we get 2§ | b and a = a¢

(mod 2¢). All this is equivalent to @ > 0 and
26|b , a=¢ (modn) , a=ae (mod 2¢). (A2)

Conversely, if these conditions are realized, one may define ® uniquely on Zu; &
Zv, ® Zuy @ Zvy @ ZL using the formulas above, and extend it by ¢Id on the orthogonal
of this lattice in A4z to obtain an element of G.

The first congruence in (A2) tells us that the identity on Pic(X) extended by —Id
on its orthogonal does not lift to an isometry of H 2(X, Z). This means that the restriction
G — O™ (Pic(X)) is injective. Moreover, the two congruences in (A2) imply a =& =ae (mod §).
If § > 1, since n, hence also §, is odd, we get @ = 1, hence the image of G is contained in
SO (Pic(X)).

Assume « = 1. The relations (A2) imply that a — ¢ is divisible by n and 2¢/, hence by
their least common multiple 26n’e”. We write b = 26b’ and a = 2én’e”’a’ + ¢ and obtain

from the equality a® — n’e”’b? = 1 the relation
48’n%e"?a? + 4ssn'e’a’ = 48°n'e’b’?

hence

sn'e’a? + ea’ = sb.

In particular, @’ := a'/$ is an integer and b2 = a’(ea” + ¢).
Since a > 0 and a” and ea” + ¢ are coprime, both are perfect squares and there

exist coprime integers r and s, with r > 0, such that

a'=s*> , ed'+e=r* , b =rs.

Since — 1 is not a square modulo n, we obtain ¢ = 1; the pair (r, s) satisfies the

2

Pell equation > — es? = 1, and a = 2es® + 1 and b = 25rs. In particular, either e is not

Downloaded from https://academic.oup.com/imrn/advance-article-abstract/doi/10.1093/imrn/rnx333/4835212

by guest

on 02 February 2018



On the Period Map for Polarized Hyperkahler Fourfolds 29

a perfect square and there are always infinitely many solutions, or e is a perfect square
and we get r = 1 and s = 0, so that & = Id.

Assume « = —1. As observed before, we have § = 1, that is, n and ¢ are coprime.
Using (A2), we may write b = 20’ and a = 2a’e’— ¢. Since 2 { n and a = ¢ (mod n), we

2

deduce gcd(a’, n) = 1. Substituting into the equation a? — ne’b? = 1, we obtain

a(ea —e)=nb?,

hence there exist coprime integers r and s, with r > 0, such that b’ =rs, a’ = s2, and

2 _¢'s? = —¢,and a = 2¢€'s? — ¢ and

€'a'— ¢ = nr?. The pair (r, s) satisfies the equation nr
b = 2rs. In particular, one of the two equations Z.(+n) is solvable. Note that at most
one of the equations Z,(+n) may be solvable: if Z,(—sn) is solvable, ¢€’ is a square
modulo n, while —1 is not. These isometries are all reflections and, since n > 2 and
e>2, ((1) _01) is not one of them. In particular, if e is a perfect square, G = {Id}.

We now go back to the proof of the proposition. We proved that the composition
Aut(X) - G — O'(Pic(X)) is injective and so is the morphism Bir(X) - G — O1(Pic(X))
(any element of its kernel is in Aut(X)).

Under the hypotheses of (a), both slopes of the nef cone are irrational
(Example 5.4). By [47, Theorem 1.3], the groups Aut(X) and Bir(X) are then equal and
infinite. The calculations above allow us to be more precise: in this case, the ample cone
is just one component of the positive cone and the groups Aut(X) and G are isomorphic.
The proposition then follows from the discussions above (note that when there are
involutions, the equation “.(n) has a solution (nr, s) hence, in the notation above,
¢ = —1 and these involutions act on H?(X, Z) as the symmetries about ample square-2
classes rH + sL).

Under the hypotheses of (c), the slopes of the extremal rays of the nef and
movable cones are rational (Example 5.4) hence, by [47, Theorem 1.3] again, Bir(X) is
a finite group. By [47, Proposition 3.1(2)], any nontrivial element & of its image in
O1(Pic(X)) is an involution which satisfies ®(Mov(X)) = Mov(X), hence switches the two
extremal rays of this cone. This means ®(H =+ up,L) = H F un,eL, hence ®(H) = H, so that
D = (é _01 ) Since we saw that this is impossible, the group Bir(X) is trivial.

Under the hypotheses of (b), the slopes of the nef cone are both rational and the
slopes of the movable cone are both irrational (Example 5.4). By [47, Theorem 1.3] again,
Aut(X) is a finite group and Bir(X) is infinite. The same reasoning as in case (c) shows
that the group Aut(X) is in fact trivial, moreover, the group Bir(X) is a subgroup of Z,

except when the equation & (n) is solvable, where it is a subgroup of Z x Z/2Z.
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In the latter case, such an infinite subgroup is isomorphic either to Z or to Z x
Z/2Z and we exclude the first case by showing that there is indeed a regular involution
on a birational model of X (this generalizes the case n = 3 and e = 6 treated in [26]).
We denote by (na,, b,) the minimal solution to the equation £2.(n) and set x,, := na, +
bpe € Zl/el.

As observed in Remark 5.2(b), the set of all positive solutions (a, b) to the
equation na? — 4e'b? = —5 (so that aH+2bL € Flopy, or equivalently, (na, b) is a solution
to the equation P4,(—5n)) determines an infinite sequence of rays R-o(2¢/bH + nal) in
Mov(X) and the nef cones of hyperkédhler fourfolds birational to X can be identified with
the chambers with respect to this collection of rays. For example, if (nas,, bsy) is the
minimal solution to the equation Z4.(—5n), the two extremal rays of the cone Nef(X)
are spanned by «g¢ := 2¢'b_5,H — na_syL and «; := 2¢/b_s,H + na_s,L. We want to

describe all solutions (a, b).

Lemma A.4. The minimal solution to the Pell equation Z(1) is given by y; = na? +
e’bfl + 2apbp+/e and all the solutions (na, b) to the equation P4.(—5n) are given by the

two disjoint families
na+ 2bve = £x_s5,y" or X 55y, meZ,

where x_sy, 1= na_s, + 2b_sp/e.

Proof. Let (a, b) € Z2 and set x := na + by/e € Z[/el and y := 1xx,. We have

n
y = naay, + €bby, + (ab, + anb)ve =:a’ +b' /e € Z[/el
and, if N is the norm in the ring Z[./e], we have N(x,) = n and, if ¢t is any nonzero integer,

(na, b) solution to Z(tn) & Nx)=tn & N(y) =t & (a/,b) solution to F.(t).

Since x = yXy, this establishes a one-to-one correspondance between the
solutions of the equation Z.(tn) and those of Z2.(t). In particular, the minimal solution
to the Pell equation &,(1) is given by y; = %X,ZZ = na% + e’bfZ + 2a,bpa/e.

The solutions to the equation &2,(—5) were analyzed in [39, Theorem 110]: if y_5
corresponds to its minimal solution, they are all given by £y _sy{*, m € Z, and their
conjugates. It follows that all the solutions (na, b) to the equation 2,(—5n) are given by

+y_sX,y[" and their conjugates. Since the “imaginary” part of y; is even and its “real”
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part is odd, the parity of the “imaginary” parts of these solutions are all the same. Since
the equation Z4.(—5n) is solvable, they are all even, and we therefore obtain all the
solutions to the equation P4.(—5n).

To prove that the conjugates provide a disjoint set of solutions, we need to check,
by [39, Theorem 110], that 5 does not divide 4e.

Assume first 5|¢/. Since the equation Z%.(n) is solvable, we have (%) = 1;
moreover, since n =—1 (mod 4), we have (%) = —1. The solvability of the equation
P4e(—5n) implies (%) = (%); putting all that together contradicts quadratic reciprocity.

Assume now 5 | n and set n’ := n/5. Since the equation 2. (n) is solvable, we have
(%) = 1; moreover, since n’= —1 (mod 4), we have (%) = —1. Since 5 t €, the equation

P 20e(—1) is solvable, hence (573,/) = 1, again, this contradicts quadratic reciprocity. B

We can reinterpret this as follows. Since gecd(n,e’) = 1 (because na% - e’b%:l),
naZ+e'b? 2¢apby

2nanbn, nai+e'bi )’

we set @i := Rle;), the lemma means that the infinitely many rays in Mov(X) described

the generator R of the group SO*(Pic(X)) previously defined is R= <

above are the (R>pa;)icz. The fact that the conjugate solutions form a disjoint family
means exactly that the ray R>oaz is “above” the ray R>pa1; in other words, we have an

“increasing” infinite sequence of rays
- < Rsoa—1 < R>p00 < R>pa1 < Rspag < -+ -

It follows from the discussion above that the reflection R <(1) _01> belongs to the
group G and preserves the nef cone of the birational model X' of X whose nef cone is
generated by «; and «y. It is therefore induced by a biregular involution of X' which

defines a birational involution of X. This concludes the proof of the proposition.

Remark A.5. It follows from the proof above that in case (b), if both equations
Pre(—bn) and He(n) are solvable, X has exactly one nontrivial birational model.
It is obtained from X by a composition of Mukai flops with respect to Lagrangian planes
(Remark 5.2(b)).

Appendix B. Automorphisms of Hilbert squares of very general K3 surfaces

Since the extremal rays of the movable cone of the Hilbert square S? of a very general X3

surface S of given degree 2e are rational (Example 5.3), its group Bir(S'?)) of birational
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automorphisms is finite ([47, Theorem 1.3(2)]). Using the Torelli theorem 3.2, one can
determine the group Aut(S'?) of its biregular automorphisms ([12, Theorem 1.1]) and
also, using the description of the nef and movable cones (Example 5.3), the group
Bir(s!?).

Theorem B.1. (Boissiére-Cattaneo-Nieper-WilSkirchen-Sarti) Let (S, L) be a polarized
K3 surface of degree 2e with Picard group ZL. The variety S? has a nontrivial
automorphism if and only if either e = 1, or the equation £.(—1) is solvable and the

equation P4.(5) is not.

The nontrivial automorphism in Theorem B.1 is then unique and an anti-
symplectic involution. When e > 2, this involution acts on H? (S'21, 7) as the symmetry
sp about the line spanned by the square-2 class D := b_;Lys — a_18, where (a_1, b_1) is
the minimal solution of the equation &?,(—1). When e = 1, this involution is induced
by an involution of (S, L) and its acts on H%(S'?!, Z) as the symmetry about the plane
Pic(s!2).

Example B.2. Theorem B.1 applies for example for e = m? + 1 with m # 2, or e = 13.
When e = 2, the surface S is a quartic in P® which contains neither lines nor conics,
and the involution o of S is the Beauville involution: it sends a pair of points in S
to the residual intersection with S of the line that they span. We have D = L, — § and
sp(Ly) = 3Ly — 46 ([15, Théoreme 4.1], [12, Section 6.1]); the quotient S5 is a triple cover
of the Pliicker quadric Gr(2, 4) c P°. When e > 3, the quotient S12l/5 is an EPW sextic
(Corollary 7.6).

Proposition B.3. Let (S, L) be a polarized K3 surface of degree 2e with Picard group ZL.

The group Bir(S®?) is trivial except in the following cases:

e e =1, or the equation Z,(—1) is solvable and the equation %4.(5) is not, in
which cases Aut(S?) = Bir(Si?) ~ z/2Z;

e e>1,ande=>5o0r5¢te, and both equations F.(—1) and H4,.(5) are solvable,
in which case Aut(S"?) = {Id} and Bir(s'?) ~ z/2z.

Notice that there are cases where both equations #2,(—1) and $4.(5) are solvable
and 5 1 e; for example, e = 29. Moreover, there is a difference between the case e =5 and
the case 5 { e: when 5 1 e, there is a hyperkdhler fourfold (in fact, a double EPW sextic)

birational to S'?! on which the involution is biregular, but not when e = 5.
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Proof. If ¢ € Bir(S'?)) is not biregular, ¢* acts on the movable cone Mov(S*?)) in such
a way that ¢*(Amp(S?)) N Amp(S?) = @. This implies Mov(S?) # Nef(S?)) hence, by
Example 5.3, the equation 4.(5) has a minimal solution (as, bs). By Theorem B.1, the
group Aut(S?) is then trivial.

Moreover, ¢* maps one extremal ray of the movable cone (spanned by Ly) to the
other extremal ray (spanned by the primitive vector a;Ly — eb;§). Therefore, we have
¢*(L2) = a1Ly — eb16 and, by applying this relation to ¢!, also ¢*(a; Ly — eb18) = Lo. This
implies that ¢* is a completely determined involution of Pic(S'?)). In particular, ¢? is an
automorphism, hence is trivial: ¢ is an involution.

The transcendental lattice Pic(S®?)-c H?(S!?, Z) carries a simple rational Hodge
structure (this is a classical fact found for example in [30, Lemma 3.1]). Since the
eigenspaces of the involution ¢* of H%(S?, Z) are sub-Hodge structures, the restriction of
¢* to Pic(S¥)L is ¢Id, with ¢ € {—1, 1}. On Pic(S?), we saw that ¢* has matrix ( @ b )

—eb; —a;

in the basis (Ly, §). The extension from Pic(S'?) @ Pic(S?)L to the overlattice H%(S?, z)
of such an involution can be studied as in the proof of Proposition A.3 (see also
[12, Lemma 5.2] when ¢ = —1). The conclusion is that there exist positive integers r
and s such that r? — es? = ¢ and a; +b1/e = (r+s/e)?. The value ¢ = 1 would contradict
the minimality of the solution (a;, b;) to the equation &.(1). Hence we have ¢ = —1 and
(r, s) is the minimal solution to the equation #.(—1). In particular, ¢* is a completely
determined involution of H?(S?!, Z) and, since WE is injective, Bir(S®?)) has at most
2 elements.

By [39, Theorem 110], the solutions to the equation Z24¢(5) are all given by
+x5x{", m € Z, where x5 := as + 2bs+/e and x; := a; + bi/e. The associated positive

elements of Z [\/e] are ordered as follows:

— -1

- < X5X;2 < X5X; 1

< Xs5X| <x <+/5 < x5 <Xsx1 <X5X1§X_5X%<X5X%<~-~

Still by [39, Theorem 110],

(a) either 5|e, the conjugate solutions are the same, and x5 = X5x3;

(b) or5+1e, the conjugate solutions are different, and x < )T5xf1.

Set x_1 := r + s/e, so that x; = x2,. In case (a), we have xsx_; = —x5x_; and since
1

X5X_1X5X_1 = —b, we obtain e = 5. In that case, there is indeed a nontrivial birational
involution on S*?! (Example B.4).
In terms of the rays generated by aL, — 2ebs§, where (a, b) is a solution to the

equation P4.(5), multiplying x = a + 2b./e by x; corresponds to applying the rotation
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R = (—(231 _a}jl ), which sends the extremal ray R>oLz of the movable cone to its other
extremal ray R>g(a1Lz — eb;8); the operation x — Xxx; therefore corresponds to applying
the reflection R ((1) _01) = (lzl f;l ), which is the symmetry sp about the line spanned
by the class D:=b_1Ly; — a_14

Geometrically, the situation is clear in case (b): we have exactly two rays inside
Mov(S'?)) which are symmetric about the line RD. As explained in Remark 5.2(b), the
three associated chambers correspond to the hyperkahler fourfolds birational to S
the “middle one” corresponds to a fourfold X whose nef cone is preserved by the
involution sp. There is a biregular involution on X which induces a birational involution

on S121, [ |

Example B.4. (The O'Grady involution) A general polarized K3 surface S of degree
10 is the transverse intersection of the Grassmannian Gr(2,C%) c P(/\ZCS) =P a
quadric Q@ c P?, and a P® cP% A general point of S!? corresponds to V,, Wy C Vs.

Then

2
Gr(2, Vo ®@ W2) NS =Gr(2, Vo, @ Wy)NQNP°N /\(Vz @ Wy)) C P?

is the intersection of two general conics in P? hence consists of 4 points, including [V>]
and [W;]. The (birational) O'Grady involution szl __, si2 takes the pair of points ([V2],

[W3]) to the residual two points of this intersection.
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