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Abstract. All-dielectric metamaterials comprised of identical resonators draw a lot of attention as
low-loss media providing for negative refraction, which is commonly attributed to double
negativity of effective material parameters caused by overlapping of Mie resonances. We study
dispersion diagrams of such metamaterials composed of dielectric rod arrays and show that
bandwidths of positive and negative refraction and its type are irrelevant to negativity of effective
parameters; instead, they are unambiguously defined by the shape and the location of the 2™
transmission branch in dispersion diagrams and thus can be controlled by the lattice constants.

1. Introduction
Rapid progress in the field of photonics causes increased interest in all-dielectric metamaterials (adMMs),

which can be practically lossless at optical frequencies [1, 2]. In difference from conventional microwave
MMs composed of complementary metallic resonators, adMMs usually consist of identical “atoms” and
thus are expected to demonstrate common features with ordinary photonic crystals (PhCs). Such specifics
should be accounted for at the analysis of the most intriguing phenomenon of negative refraction
observed in adMMs, which are composed of Mie-type resonators [3-11]. Originally, Mie theory [12]
described wave scattering by single dielectric particles (spheres or infinite rods), and its extension to

resonances in arrays implied negligible interaction between particles.

Before emergence of MM concepts, it was thought that Mie resonances in PhCs could create their own
photonic states with localization lengths comparable to lattice constants [13]. These states were expected
to contribute to transmission due to wave transfer/hopping between neighboring resonators. Further
studies [14] conveyed that respective states could define transmission branches in PhC’s dispersion

diagrams and even control bandgaps.

After MMs’ implementation, PhCs with Mie resonances became typically viewed as MMs, complying
with the effective medium theory and the Lorentz’s dispersion model. Although Veselago et al. [15]
expressed doubts in such views, which neglected the role of periodicity in PhCs, it became common
practice to analyze adMMs’ properties by using spectra of effective parameters, retrieved from scattering
data for one cell [3-11]. Justification of this practice was based on the assumption that resonators’
dimensions were relatively small compared to wavelengths of radiation. As the result, negative refraction
in adMMs [3-11] was attributed to double negativity of effective material parameters, which could be
expected at overlapping of the “tails” of electric- and magnetic-type Mie resonances, although no proofs
of the “double negativity” effect and no data about the formation of hybrid modes, which had to combine

electric and magnetic resonance modes in particles of one type, were presented. Serious problems with



application of the effective medium concepts to the description of wave propagation in adMMs were
revealed in [16], where it was proposed to relate the observed phenomenon of negative refraction to the
Bragg diffraction, although no investigation of the band diagrams of respective adMMs was performed.

In this work, we investigate the origin of negative refraction in adMMs by analyzing their dispersive
properties defined by the structure periodicity, along with Mie resonances. The objects of our studies
were represented by 2D arrays of infinitely long round dielectric rods. The diameters of rods and the
properties of rod dielectrics were taken similar to those used in either [3] or [11] to represent the range of
parameters covered by the set of works [3-11]. In particular, relative dielectric permittivity of rods & was
taken equal to either 100 or to 600. As in all works of this set, TM wave incidence, with E-field directed
along the axes of rods and wave propagation vector (k-vector) normal to these axes, was employed.

2. Methodology of conducted studies

To simulate electromagnetic responses of adMMs, we employed various models of rod arrays and used
various software. In particular, we worked as with the single cell models typically used for characterizing
homogenized MMs (figure 1(a)), so with models better suitable for PhCs representation, such as a row of
cells stacked in the k-vector direction (figure 1(b)). The row was usually composed of 5 cells as,
according to [17], it was sufficient for representing PhC’s response. However, models involving 9 and
even 11 cells were also employed. Periodicity in the directions normal to k-vector was provided by proper
boundary conditions at cell faces. Two full-wave software packages (COMSOL Multiphysics and CST
Microwave Studio) were used for the studies of S-parameter spectra, wave propagation patterns and
distributions of field intensities in arrays at the resonances. CST Microwave Studio was found preferable
for monitoring field distributions in cross-sections of the basic models and for obtaining spectra of S-
parameters and spectra of signals from field probes used to control resonance fields in the rods. Figure lc
allows for comparing S21 spectra obtained for the single-cell model and for the model composed of 5
cells. As seen in the figure, the spectrum obtained for the latter model clearly demonstrates a set of
transmission bands divided by bandgaps and thus, provides the data comparable with those resulting from
dispersion diagrams, although calculation of the latter suggests infinite array samples. In difference from
dispersion diagrams, S21 spectra demonstrate transmission fringes caused by Fabry-Perot (F-P)
resonances characteristic for PhCs of finite size [17]. COMSOL Multiphysics software was mostly used
for studying multi-cell chains representing wave processes in adMMs with close-to-zero index values
(snap-shot exemplifying wave pattern in such chain is presented in figure 1(d)). Snap-shots similar to that

in figure 1(d) were used to estimate wavelengths and, then, absolute index values at frequencies of

interest: ‘n‘ —_% . Considering figure 1(d) it is easy to ensure that the depicted snap-shot represents the
A-f

wavelength of 470 microns, i.e. of 0.047 cm. Such wavelength corresponds to the absolute index value of
0.5, which is exactly the same as defined by the retrieval procedure at respective frequency of 1.28 THz
(shown below in figure 2(d)). The retrieval procedure operating with S-parameter spectra was the basic
one in this work for obtaining spectra of index values. For this procedure, we usually employed S-

parameter spectra simulated for 5-cell models. However, one-cell models were also checked for



comparison with the results in [3] and [11]. Index spectra for two types of models did not demonstrate

significant differences.
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Figure 1. (a) One-cell model of adMM, (b) model of 5 stacked cells, (c) simulated S21 spectra for the
models presented in (a) - thin curve, and (b) - bold curve, for 2D square-lattice rod array with =100, rod
radius 10 pum, and the lattice constant o =100 pm, and (d) snap-shot of E-field intensity at wave
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propagation through multi-cell model of adMMs with rod and lattice parameters similar to those in (c),
sampled at f=1.28 THz.

As in many other works on MMs, index retrieval was based on employing the equation given in [18]:

n= I%Ld[{[ln(ef’%"d )]" 4 2m7r}— i[ln(ef’%"d )H (1)

where symbols (-)’ and ()" denote, respectively, real and imaginary parts of the refractive index, and ‘m’

is an integer number,
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Correct choice of adjustable coefficient ‘m” in (1) is challenging, since this coefficient has to be changed,

for instance, from 0 to 1, at such frequency, at which the value m=0 causes discontinuity in the spectrum
of real index component. We usually preferred to avoid such changes of coefficient ‘m’ and, following
[19], used m=0 for the entire spectrum. However, in the cases of doubts in the accuracy of retrieved
results, we controlled obtained index values by employing alternative options for index determination. It
is worth noting here, that while verifying the retrieved index values, we followed [20, 21] to account

properly for the effects of array periodicity on index spectra.



Obtained by using retrieval procedure index spectra along with spectra of S-parameters and probe signals
were analyzed in comparison with dispersion diagrams of infinite rod arrays and with spectra of Mie
resonances in single infinitely long dielectric rods. For calculation of dispersion diagrams, we used the
latest editions of MPB software developed at MIT [22]. This software was also employed for calculating
equi-frequency contours (EFCs), which were basically used for distinguishing bands with positive and
negative indices. In addition, EFCs were used for verifying the retrieved index values. Spectra of Mie

resonances were calculated by using the expression for scattering coefficients from [12]:

& Ju U R)T (2, koR) = I, (koR) T, (e, ko R) 3
" e, H, (kR (e, koR) — H (ko R)J,, (2, koR)

where ko is wavenumber in free space, R is the radius and &, is relative permittivity of rods, J, and H,

}’l

represent Bessel function of the first kind and Hankel function of the second kind, respectively, while

Lagrange’s notation ()" is used here to denote first derivatives of these functions.

3. Surface resonances in energy bandgaps versus Mie resonances

Figure 2 presents a set of spectra, described in Section II, for an adMM represented by a square lattice of
rods with radius R=10 pm and relative permittivity =100, at lattice constant 100 pum. Similar adMM in
[11] demonstrated negativity of real index values in the retrieved index spectra at about 1.1 THz. As seen
in figure 2(a), dispersion diagram of this array features as separated by bandgaps transmission branches,
so independent on k-vector photonic states at frequencies 1.15 THz and 1.82 THz, which are close to
characteristic frequencies for coefficients (|bi]) and (|by|), defined by (3), in the spectrum of Mie
resonances of a single rod (figure 2(b)). These coefficients correspond to the magnetic resonance and to
the higher order resonance, respectively [12], for which characteristic simulated field patterns are shown
in inserts above figure 2(b). Similar independent on k-vector photonic states, which could be also related
to Mie resonances, were observed in dispersion diagrams of 3D arrays composed of dielectric spheres and

were called “localized states™ [23].
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Figure 2. Spectral characteristics obtained for models of 2D square-lattice rod array with =100, R=10 pm, and
lattice constant 100 pm: (a) dispersion diagram for infinite array, (b) Mie scattering by a single rod (inserts show
field patterns at the maxima of Mie coefficients), (¢) S21 magnitude (solid curve) and phase (dashed curve) for the
model of five cells in a row, (d) retrieved index components for one-cell model, and (e) signals from E- and H-field
probes in one-cell model.
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No localized states, which could be associated with electric-type Mie resonance were observed as in our
studies, so in [23]. The electric Mie resonance represented by the coefficient |bg| in figure 2(b) could be
associated only with the position of fundamental band edge. Figures 3(a) and 3(b) present, respectively,
E- and H-field patterns in the array cross-section at the frequency of band edge. Field patterns in each cell
look corresponding to the patterns observed at the electric Mie resonance in a single rod (first insert above
figure 2(b)). However, in neighboring cells, they demonstrate 180" phase difference that allows for
relating the respective transmission mode to the odd type. In addition, field magnitude is changing from
cell to cell along the chain with maximal fields observed in the third cell. These changes can be related to
the formation of F-P resonance, which are common for PhCs of restricted lengths [18]. As known, F-P
resonances cause formation of standing waves, and figures 3(a) and (b) just represent the snapshots of the
half-wavelength standing wave. Conserved at F-P resonance out-of-phase arrangement of neighboring
Mie resonances excludes a possibility of their meaningful effect on effective medium parameters and

thus, excludes any contribution of the electric resonance in double negativity of effective parameters.
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Figure 3. E- and H-field patterns in the cross-section of 2D rod array: (a)-(b) at the edge frequency of

fundamental band (0.42 THz); (c)-(d) at the 1% dip in S21 spectrum (figure 2(c) - 0.8 THz); (e)-(f) at the
2" dip in S21 spectrum (1.05 THz).

As seen in figure 2(c), S21 spectrum of the respective rod array demonstrates two dips at 0.8 THz and
1.05 THz. Similar dips were observed in S-parameter spectra by authors of [3-11], and in some cases
were assumed to be related to Mie resonances in rods. However, comparison of figures 2(b) and 2(c) does
not support such assumption. In addition, it can be seen from comparison of figures 2(a) and 2(c) that
resonance-type dips in S21 are observed at frequencies corresponding to the bandgap in the dispersion
diagram, when waves should not penetrate inside the array. Furthermore, the spectra of signals from E-
and H-field probes (figure 2(e)) do not demonstrate typical for resonances enhancement of field
magnitudes at dip frequencies. Field patterns in figures 3(c)-3(f) confirm that at dip frequencies,
evanescent waves do not penetrate further than the first cell, where they cause weak responses barely
comparable with resonance fields. This means that wave phenomena, which occur at the dips, could only
be related to responses in the surface layer and not to resonance phenomena in the array volumes. It is
worth noting here that observed distortions of surface responses against the patterns in inserts, placed
above figure 2(b), could be caused by interaction between resonance fields at two Mie resonances. As
seen in figure 2(d), this interaction reveals itself in overlapping of frequency ranges, in which imaginary

components of index at two “dip resonances” are defined.

4. Refraction controlled by dispersion of transmission branches

After establishing irrelevance of surface resonances to wave phenomena in the volume of 2D rod arrays,
we had to exclude from further consideration those parts of the retrieved index spectra, which were
defined by surface responses due to rod interaction with evanescent waves. To do that, we took into
consideration only those areas of the spectra of real index component, in which imaginary component was
equal to zero, i.e. in which the index had physically meaningful values. In addition, we restricted our
analysis by the frequency range around 1.1 THz, since, according to [11], negative refraction for arrays
under study was expected just in this range. Our data presented in figure 2(d) for arrays with the lattice
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constant ¢ =100 um demonstrate a region with negative values of real index component just below 1.1
THz that agrees with the results in [11]. In order to clarify the reasons for appearance of index negativity,
we compared changes in the dispersion diagrams and in the retrieved index spectra at decreasing the array
lattice constant from 120 pm down to 80 um. As seen in figure 4, at @ =120 pm the values of real index
component near 1 THz have positive sign and are defined in relatively wide band from 0.95 THz up to
1.07 THz. At a =110 pum, these values remain positive, however, in a narrower band between 1.04 THz
and 1.1 THz. At a =105 um, the band with positive indices disappears and a trend of switching to a
negative index is observed at 1.08 THz. Further decrease of lattice constant leads to formation of a band,
in which the values of real index component are negative. While at @ =100 um this band can be found
between 1.08 THz and 1.12 THz, then at ¢ =90 pm it extends from 1.08 THz to 1.17 THz and remains

almost unchanged at a = 80 pm.
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Figure 4. Dispersion diagrams and spectra of real (solid curves) and imaginary (dashed curves) index
components obtained for the models of 2D rod arrays (=100 and R=10 um) at various array lattice
constants a in the range from 120 um to 80 pm: (a)-(b) 120 pum, (¢)-(d) 110 um, (e)-(f) 105 um, (g)-(h)
100 pm, (i)-(G) 90 um, (k)-(1) 80pum.

It is well seen in figure 4 that described above bands with physically meaningful index values exactly
coincide with the bands, in which the dispersion diagrams of arrays with respective lattice constants
exhibit the 2™ transmission branch. Additionally, it is well seen that at 120 pm > @ > 105 um, the 2™
branch has the slope corresponding to positive indices, at @ =105 um it becomes flat, and at 105 pm > a >

80 um it acquires a slope corresponding to negative indices. It should be noted here that the bands in
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figure 4, in which physically meaningful indices are defined, have no relation to surface resonances, since
the latter affect index components in frequency ranges located far from these bands. Index spectra
observed at ¢ = 80 um in [11] did not correspond neither to changes of the dispersion diagram (figure
4(k)), nor to index spectra presented in figure 4(l). This discrepancy could possibly be caused by
employing a step-function for adjustable coefficient ‘m’ in [11] in the expression used for index retrieval.

Although obtained changes of retrieved index spectra at decreasing the lattice constant of the array
exactly corresponded to respective changes of the 2™ branch shape, we decided to additionally verify
obtained index data by using another well-known approach [23,24], taking into account mentioned above
discrepancy with the data in [11]. In particular, we calculated and compared EFCs for adMM with a =
100 pm in 2" and 3™ bands located just below and above 1.17 THz (see figure 4(g)) and characterized in
retrieved spectrum (figure 4(h)) by negative and positive indices, respectively. We also compared EFCs
for adMM with @ = 80 um in the fundamental and 2™ bands observed below and above the bandgap
(figure 4(k)) and also presented in retrieved index spectrum (figure 4(1)) by positive and negative indices,
respectively. As seen in figures 5(a) and 5(b) for adMM with @ = 100 pm, moving from lower to high kx
or ky values along the axes of EFCs for the band below 1.17 THz leads to crossing contours for lower
frequencies, while for the band above 1.17 THz, such movement, just opposite, leads to crossing
contours for higher frequencies. This confirms that the band below 1.17 THz can be characterized by
negative indices, while the band above 1.17 THZ - by positive indices, in correspondence with retrieved
index spectra in figure 4h. EFCs presented in figures 5(c) and 5(d) for adMM with a = 80 pm demonstrate
opposite difference between two bands chosen for comparison. In the first band, increase of k-values
leads to crossing EFCs for higher frequencies, while in the 2™ band we see inverse trend. These data
confirm that the lower (fundamental) band can be characterized by positive indices, while the 2™ band -
by negative indices, in exact correspondence with our retrieved index spectra (and in contrary with the
data in [11]).
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Figure 5. Equi-frequency contours in various frequency bands: (a) and (b) for adMM with a = 100 um, (c)
and (d) for adMM with a =80 pm. (a) 2nd band, (b) 3rd band, (c) 1st band, (d) 2nd band.

5. Origin of the 2" transmission branch in adMMs and its irrelevance to Lorentz’-type responses

The 2™ branch in the dispersion diagram, which affects the sign and the value of refractive index, needs
to be considered in more details. It could be noticed that near points X of the dispersion diagrams these
branches, for all used lattice constants, tend to become parallel to the branch for @ =105 pm, which is flat

and independent on k-vector. The shape of this branch makes possible its association with photonic state
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comparable to the localized state described in section III (observed at 1.15 THz for a =100 pum) as
associated with magnetic Mie resonances in arrays. It is worth noting here that the latter state
demonstrated full transmission for all arrays, while the former state observed at a =105 pum showed
transmission at the level less than -50 dB that made phase changes along the rod chain unstable. This
created problems for obtaining field patterns, and we were compelled to compare field patterns at two
photonic states using arrays with ¢ =100 um. As seen in figures 6(a) and 6(b), photonic state at 1.15 THz,
which, following [25], we called a localized state, represented coherent magnetic Mie resonances in all
rods of the array. This state could be related to wave propagation with superluminal phase velocity and to
the even transmission mode [26]. To characterize the second state, although the 2™ branch was not flat at
a =100 pm, we used this branch near the point X in the dispersion diagram (figure 4(g)), where it still
kept the same slope as that at @ =105 um. As seen in figures 6(c) and 6(d), obtained field patterns for the
second state appeared corresponding to the odd transmission mode, in which incorporated local Mie

resonances in neighboring rods were shifted in phase by 180",
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Figure 6. E- and H-field patterns in the cross-section of 2D rod array with ¢ =100 um: (a)-(b) at the
frequency of localized photonic state (1.15 THz); (c)-(d) at the lower edge (X-point) of the 2™ branch in
the dispersion diagram.

Since both even and odd transmission modes are related to the same type of Mie resonances, the
formation of two modes could be considered as the result of splitting of the resonance photonic states due
to difference in energy of interaction between magnetic dipoles representing resonance responses at even
and odd transverse orientations [27]. Observed transition from positive refraction in the 2™ transmission
band in arrays with @ >105 pm to negative refraction in arrays with smaller lattice constants apparently is

also related to increased interaction between resonators.

Based on the revealed rigorous correlation between the transformation of the 2™ branch in the dispersion
diagrams and the reversal of the index sign occurring at changes of the array lattice constant, it can be
concluded that negative refraction in adMMs is defined by the specifics of their dispersive properties and
not by double negativity of their effective parameters, as it is typically expected at observation of Mie
resonances [28]. It should be noted that none of the investigated here array properties, affected by
occurrence of Mie resonances, appeared related to the Lorentz-type dispersion model or to the specifics of
effective material parameters defined by this model. In fact, it is simply impossible to expect that dipoles

formed in rod arrays at Mie resonances and incorporated in odd transmission modes could contribute to
9



effective medium parameters. In contrary, such contribution could be expected at even modes. However,
as seen in figure 4, for lattice constants in the range 120 um > a > 100 um we observe another
transmission band in dispersion diagrams above even localized states, instead of a bandgap, which should

appear due to negative effective permeability at the Lorentz-type resonance response.

Considering as established the dispersive origin of negative refraction in adMMs and its irrelevance to the
double negativity of effective parameters, we have also confirmed that this phenomenon is related to
lefthanded wave propagation. To do this, we simulated spectra of phase changes at wave transmission
through multi-cell models with different quantity of stacked cells. Such spectra can be used to
demonstrate either phase delay in “longer” model compared to phase in “shorter” model, which is
characteristic for forward wave propagation, or respective phase advance characteristic for backward
wave propagation [29]. Figure 7 compares spectra of phase changes for models composed of 9 and 11
cells of adMM with @ = 100 pm in the bands located below and above 1.17 THz (2™ and 3™ bands in
figure 4(g)). As seen in figure, the spectrum obtained for the model composed of 11 cells at frequencies
corresponding to the 2™ band appears shifted forward along the frequency axis with respect to the
spectrum obtained for the model composed of 9 cells. This means that at any frequency in this band,
waves passing through the longer model attain phase advance with respect to waves passing through the
shorter model, which is specific for the backward wave propagation. In contrast, at frequencies
corresponding to the 3™ band, the phases of waves passing through the model composed of 11 cells
appears delayed with respect to that for the model of 9 cells. This behavior is specific for the forward
wave propagation. Thus, we can conclude that in adMM with @ = 100 pm wave transmission in the 2™

band represents a lefthanded phenomenon.
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Figure 7. Spectra of phase changes at wave transmission through two models of adMM with @ = 100 pm:
(a) at the same frequency scaling in all spectra, (b) at different frequency scaling in 2™ and 3d bands to
provide better resolution. In (b) the left side is related to the 2" band, while the right side — to the 3™ band
in the dispersion diagram. The model of 11 cells (dashed curves) demonstrates at the wave propagation
the phase advances in the 2™ band and phase delays in the 3rd band against the model of 9 cells (solid
curves).
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6. Confirming the dispersive nature of negative refraction in other adMMs.

To demonstrate that our conclusions are applicable to any other rod array from referenced above
publications [3-11], we present below the results of studying the dispersion diagrams and the retrieved
index spectra for microwave arrays of rods used in [3, 5], taking into account that [3] is the only work, in
which the phenomenon of negative refraction in adMMs was confirmed experimentally. In [3, 5], rod
arrays had the lattice constant of 3 mm, the relative rod permittivity of 600 and the radius of 0.68 mm.
The negative refraction was observed at frequencies around 7 GHz. Here, to ensure the possibility of
realizing the same, as in figure 4 effects of lattice changes on the array properties, the values of array

lattice constants were varied from 15 mm down to 3 mm.

As seen in figure 8, dispersion diagrams of all arrays incorporated, similar to that in figure 4, two
localized photonic states, the lower of which slightly changed its position from 6.8 GHz at a = 15 mm up
to 7.25 GHz at a = 3 mm, while the upper one remained located at the same frequency of 11 GHz. As in
the previously considered case, the frequencies of localized states could be associated with the magnetic
and the higher order Mie resonances in separate rods. No localized states, which could be related to
electric-type Mie resonances, were found in the diagrams. As in figure 4, physically meaningful index
values of arrays (registered, when imaginary index components were equal to zero) were observed at
frequencies close to 7 GHz within frequency bands corresponding to the locations of the 2™ branches in

dispersion diagrams.
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Figure 8. Dispersion diagrams and index spectra for real and imaginary components obtained for models
representing 2D rod arrays (€,=600 and R=0.68 mm) at various array lattice constants a in the range from
15 mm to 3 mm: (a)-(b) 15 mm, (¢)-(d) 3.3 mm, (e)-(f) 9 mm, (g)-(h) 3 mm.

At all lattice constants under study, the respective branches looked aligned to the lower of split photonic
states associated with the magnetic Mie resonance (although, in this case, at various points of the

dispersion diagram - either X or I'), while decreasing of the lattice constant caused changes of the branch

slopes with respective reversal of index sign, as well as increase of the branch bandwidth.
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The obtained data additionally confirm that negative refraction in adMMs is defined by their dispersion
properties, while double negativity of effective medium parameters due to Lorentz-type responses at
electric and magnetic Mie resonances is irrelevant to this phenomenon.

7. Conclusion

Comprehensive studies of appearance of negative refraction in adMMs at changes of their lattice
parameters have shown that there are no signs that Mie resonances cause Lorentz-type response of
adMMs’ effective parameters and their switching from positive to negative values. Thus, there are no data
allowing for relating negative refraction to double negativity of effective parameters. Instead, strict
correlation was observed between appearances of bands with negative refraction and respective
transformations of 2" transmission band in energy diagrams of adMMs at changes of their lattice
constants. Obtained data allowed for concluding that the bandwidths of both positive and negative
refraction in adMMs are unambiguously defined by the shape and the location of 2™ branch in dispersion
diagrams and thus could be governed by lattice constants. This conclusion provides an important
guidance for controlling the property of refraction in low-loss adMMs at various photonic applications.
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