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ABSTRACT

As a powerful representation paradigm for networked and multi-

typed data, the heterogeneous information network (HIN) is ubiq-

uitous. Meanwhile, defining proper relevance measures has always

been a fundamental problem and of great pragmatic importance for

network mining tasks. Inspired by our probabilistic interpretation

of existing path-based relevance measures, we propose to study

HIN relevance from a probabilistic perspective. We also identify,

from real-world data, and propose to model cross-meta-path syn-

ergy, which is a characteristic important for defining path-based

HIN relevance and has not been modeled by existing methods. A

generative model is established to derive a novel path-based rele-

vance measure, which is data-driven and tailored for each HIN. We

develop an inference algorithm to find the maximum a posteriori

(MAP) estimate of the model parameters, which entails non-trivial

tricks. Experiments on two real-world datasets demonstrate the

effectiveness of the proposed model and relevance measure.

CCS CONCEPTS

•Information systems→ Data mining; Similarity measures;

•Computing methodologies→ Maximum a posteriori modeling;

KEYWORDS

Heterogeneous information networks, graph mining, meta-paths,

relevance measures.

1 INTRODUCTION

In real-world applications, objects of various types are often in-

terconnected with each other. These objects, together with their

relationship, form numerous heterogeneous information networks

(HINs) [14, 16]. Bibliographical information network is a typical

example, where researchers, papers, organizations, and publication
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venues are interrelated. A fundamental problem in HIN analysis is

to define proper measures to characterize the relevance between

node pairs in the network, which also benefits various downstream

applications, such as similarity search, recommendation, and com-

munity detection [14, 16].

Most existing studies derive their HIN relevance measures on the

basis of meta-path [14, 16, 17], which is defined as a concatenation

of multiple node types linked by corresponding edge types. Based

on the concept ofmeta-path, researchers have proposed PathCount,

PathSim [17], and path constrained random walk [10] to measure

relevance between node pairs. On top of these studies, people have

explored the ideas of incorporating richer information [6, 21] and

more complex typed structures [4, 7, 13] to define more effective

relevance scoring functions, or adding supervision to derive task-

specific relevance measures [2, 19, 23].

The probabilistic perspective. While building upon this pow-

erful meta-path paradigm, we aim to additionally understand and

model relevance from the probabilistic point of view. In this regard,

we establish a probabilistic interpretation of existing HIN relevance

measures, which is achieved by modeling the generating process of

all path instances in an HIN and deriving the relevance of a node

pair from the likelihood of observing the path instances connecting

them. Relevance and likelihood can be connected by this approach

because only a small portion of node pairs in an HIN are actually

relevant; and a proper generating process has low likelihood to

generate the path instances between each of these relevant node

pairs. We will detailedly discuss this probabilistic interpretation

in Sec. 3. Moreover, as a starting point for studying HIN relevance

from the probabilistic perspective, we focus the scope of this paper

on the basic unsupervised scenario. Meanwhile, we assume that

the meta-paths of interest are already given. That is, we defer the

study on the cases with label information and meta-path selection

to future work.

In order to determine relevance between any pair of nodes, we

have the key insight that a path-based HIN relevance should contain

three characteristics – node visibility, path selectivity, and cross-

meta-path synergy – which we describe in the following paragraphs.

Node visibility. One straightforward way to derive relevance in

an HIN is PathCount [17]. For a meta-path t ∈ {1, . . . ,T }, Path-
Count is defined as the number of paths, Pst or equivalently P〈uv〉t ,
under this meta-path between a node pair s = (u,v ) ∈ V ×V , i.e.,
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Figure 1: (a)The same composite score (x) may be aggregated

from different number of meta-paths, where score is repre-

sented by the length of the rectangles and each fill pattern

represents a meta-path. (b) An observation made from an

entity resolution task on theDBLP dataset that if linear com-

bination is used to compute the composite score, node pairs

with paths under multiple meta-paths are more likely to be

relevant than those under only one meta-path. Prevalence

is defined as the number of relevant node pairs divided by

the total number of node pairs.

PathCount (t ) (u,v ) � P〈uv〉t . One obvious drawback of this mea-
sure is that it favors nodes with high node visibility, i.e., nodes with

a large number of paths. To resolve this problem, [17] proposed

to penalize PathCount by the arithmetic mean of the numbers of

cycles attached to the two involved nodes, i.e., PathSim(t ) (u,v ) �
2·P〈uv 〉t

P〈uu〉t+P〈vv 〉t . A similar design to model node visibility can be found

in JoinSim [20], which is defined as PathCount penalized by geo-

metric mean of the cycle numbers.

Path selectivity. Given any method defining relevance score

under one meta-path, a natural question is how to combine mul-

tiple meta-paths to derive a unified relevance score – henceforth

referred to as the composite score. To achieve this goal, Sun et al.

[17] proposed to assign different weights to different meta-paths,

and compute the composite score via linear combination. Let w =

{w1, . . . ,wT }withwt being the weight for meta-path t , the compos-
ite score of PathCount is given by PathCountw (u,v ) �

∑T
t=1wt ·

PathCount (t ) (u,v ). Similarly, one can define PathSimw (u,v ). This

linear combination approach is adopted by follow-up works with

multiple applications [14, 16], including personalized entity recom-

mendation problem [22], outlier detection [9, 24], etc. The weights

assigned or inferred in these cases specify how selective each meta-

path is. The larger the path selectivity, the more significant this

meta-path is in contributing to the composite score.

Cross-meta-path synergy. Suppose linear combination is used

to find the composite score as in the previous paragraph, the two

scenarios shown in Fig. 1a would receive the same composite score

(x ), where xi equals to the score from the i-th meta-path multiplied
by the corresponding weight. However, we have the observation

that, when meta-paths do not clearly correlate, the latter scenario

tends to imply a higher relevance. We take an entity resolution

task on the DBLP dataset as example, which aims to merge author

mentions that refer to the same entity. In this task, each node

stands for an author mention, and each meta-path represents that

two author mentions have both published papers in one particular

research area. We label two author mentions as relevant if and

only if they refer to the same entity, and we use PathCount with

uniform weights as an example to compute the composite score.

Results presented in Fig. 1 shows that with the same composite

score, node pairs associated by paths under multiple meta-paths

are more likely to be relevant than those under only one meta-

path. We refer to this phenomenon as cross-meta-path synergy. We

interpret this phenomenon as given the occurrence of one path,

the happenstance of another path under the same meta-path may

not be surprising, while the co-occurrence of two paths under

two uncorrelated meta-paths may be a strong signal of relevance.

Moreover, we should also realize that not necessarily all meta-path

pairs are uncorrelated, which has been observed in a special type of

HIN [15]. This implies cross-meta-path synergy does not necessarily

exist between all pairs of meta-paths, and we deem a good relevance

measure should reflect this difference.

Challenges and contributions. Regarding the three pivotal

characteristics for path-based HIN relevance discussed above, the

major challenge lies in how to integrate all these characteristics in a

unified framework. We tackle this challenge by studying path-based

relevance from a probabilistic perspective, and deriving relevance

measure from a generative model. Since the model parameters

are trained to fit each HIN, the derived relevance measure enjoys

the property of being data-driven. That is, the derived relevance

measure is tailored for each HIN. Lastly, we summarize our contri-

butions as follows:

(1) We establish the probabilistic interpretation of existing path-

based HIN relevance measures.

(2) We identify and propose to model cross-meta-path synergy,

an important characteristic in path-based HIN relevance.

(3) We propose a novel relevance measure based on a generative

model, which is data-driven and tailored for each HIN, and

develop an inference algorithm with non-trivial tricks.

(4) Experiments on two real-world HINs corroborate the effec-

tiveness of our proposed model and relevance measure.

2 PRELIMINERIES

In this section, we introduce the concepts and notations used in

this paper.

Definition 2.1 (Heterogeneous Information Network). An infor-

mation network is a directed graphG = (V,E) with a node type
mapping f : V → A and an edge type mapping д : E → R.
Particularly, when the number of node types |A| > 1 or the num-
ber of edge types |R | > 1, the network is called a heterogeneous
information network (HIN).

Due to the typed essence of HINs, paths that associate node pairs

can be grouped under different meta-paths. We formally define

meta-paths as follows.

Definition 2.2 (Meta-Path). A meta-path is a concatenation of

multiple nodes or node types linked by edge types.

An example of a meta-path is [author]
writes−−−−−→ [paper]

writes−1−−−−−−−→
[author], where a phrase in the brackets represents a node type and



a phrase above the arrow refers to an edge type. When context is

clear, we simply write [author]–[paper]–[author]. In this paper, we

study the relevance problem when a set of meta-paths of interest is

predefined by users.

To ease presentation, we focus on unweighted HINs, and model

path count defined as follows. Note that the path-based model to

be proposed in this paper can be extended to the weighted case.

Definition 2.3 (Path Count). The path count of a meta-path t ∈
{1, . . . ,T } between a node pair s = (u,v ) ∈ V×V is the number of

concrete path instances under this meta-path that start from node

u to node v , which is denoted by Pst or P〈uv〉t .

Note that the relevance score given by the PathCount measure

[17] is exactly the path count of a meta-path between a node pair.

Lastly, we introduce the probability distributions to be used.

Definition 2.4. The probability density functions of three proba-

bility distributions used in this paper are given as follows.

(1) Exponential distribution Exp
(
λ̃
)
with rate parameter λ̃ > 0:

p (x ) = λ̃ eλ̃x (x > 0).

(2) Gamma distribution Γ
(
α̃ , β̃
)
with shape parameter α̃ > 0

and rate parameter β̃ > 0:

p (x ) =
β̃ α̃

Γ(α̃ )
x α̃−1 e−β̃x (x > 0),

where Γ(α̃ ) =
∫ ∞
0

t α̃−1 e−t dt is the gamma function.
(3) Symmetric Dirichlet distribution DirL (α̃ ) of order L and

concentration parameter α̃ :

p (x1, . . . ,xL ) =
Γ (α̃L)

Γ (α̃ )L

L∏
i=1

x α̃−1i (xi > 0 and
L∑
i=1

xi = 1),

where Γ(·) is the gamma function.
We denote Exp

(
x ; λ̃

)
� p (x ) the probability density function

of Exp
(
λ̃
)
, and denote x ∼ Exp

(
λ̃
)
if x is generated from Exp

(
λ̃
)
.

Similar notations are also used for Γ
(
α̃ , β̃
)
and DirL (α̃ ).

3 PROBABILISTIC INTERPRETATION OF
EXISTING RELEVANCE MEASURES

In this section, we illustrate the probabilistic interpretation of ex-

isting path-based HIN relevance measures. We achieve this by

studying the generating process of path counts between node pairs

in an HIN, which contains a connection between relevance and the

negative log likelihood. Suppose the path count under meta-path t
between node pair s is generated from an exponential distribution

Pst ∼ Exp (λ) ,
with fixed rate λ, then in terms of the rank it yields, the negative log
likelihood of all observed paths under meta-path t between node
pair s will be equivalent to the PathCount under meta-path t

−LL(t ) (s ) = − log(λ e−λPst ) = λPst − log λ
∝ Pst + const = PathCount (t ) (s ) + const.

Further, if we assume path instances under different meta-paths

are generated from exponential distributionwithmeta-path-specific

Symbol Definition

V The set of all nodes

S The set of all nontrivial node pairs

T ∈ N The number of meta-paths

K ∈ N The number of generating patterns

P ∈ R |S |×T The observed path counts between node pairs

over each meta-path

η ∈ RT The path selectivity

τ ∈ R |S | The node pair visibility

ρ ∈ R |V | The node visibility

Θ ∈ R |S |×K The generating patterns over meta-paths

Φ ∈ RK×T The choices of generating patterns between node pairs

α ∈ R+ The shape parameter of the gamma prior

β ∈ (0, 1) The concentration parameter of the Dirichlet prior

Table 1: Summary of symbols

rates w = (w1,w2, . . . ,wT ), i.e., Pst ∼ Exp (wt ), then the negative
log likelihood of all observed path counts will be equivalent to

PathCount with weights w for linear combination

−LL(s ) = − log(
∏
t

wt e
−wt Pst ) =

∑
t

wtPst −
∑
t

logwt

=
∑
t

wtPst + const = PathCountw (s ) + const.

Moreover, if we assume each node pair s has pair-specific gener-
ating rate proportional to a parameter κs , i.e., Pst ∼ Exp (wt /κs ),
then the negative log likelihood of observed path counts will be

−LL(s ) = ∑t wt · Pstκs
+T logκs + const. For node pair s = (u,v ), if

we drop the logarithm term and set κs to be the arithmetic mean of
the cycle count of the involved nodes u andv , the formula becomes

∑
t

wt ·
2 · P〈uv〉t

P〈uu〉t + P〈vv〉t
= PathSimw (s )

which is identical to PathSimwith weightsw for linear combination.

In lieu of arithmetic mean, if we set κs to be the geometric mean of

the same quantities, we get
∑
t wt · P〈uv 〉t√

P〈uu〉t ·P〈vv 〉t ,which is identical
to JoinSim with weights w for linear combination. Note that all the

relevance measures discussed in this section are special cases of

our relevance measure to be proposed in the next section.

4 PROPOSED MODEL AND RELEVANCE

With the relevance–likelihood connection established in Sec. 3, we

propose our Path-based Relevance from Probabilistic perspective

(PReP) likewise by modeling the generating process of path counts

between node pairs, and further aim to model the three important

characteristics. In a nutshell, the proposed generative-model-based

relevance measure consists of two major parts: (i) inferring model

parameters by finding the maximum a posteriori (MAP) estimate

to fit the input HIN, and (ii) deriving relevance score between any

node pair based on the learned model.

4.1 The PReP Model

Following the existing HIN relevance measures discussed in Sec. 3,

we assume the path count, Pst or P〈uv〉t , between node pair s =
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Figure 2: Toy example for one part of an HIN, consisting of four node types: person, university, location, and discipline.

(u,v ) under meta-path t is generated from an exponential distribu-

tion with rate λst , i.e., Pst ∼ Exp (λst ). To capture node visibility,
path selectivity, and cross-meta-path synergy, we must design λst
in a way that can model these three characteristics.

According to the property of exponential distribution, if a ran-

dom variable X is generated from Exp
(
λ̃
)
, then the expectation of

X will be 1/λ̃. Bearing this in mind, we introduce three components
to model the three characteristics as follows.

• Both the node visibility of u and that ofv affect the generation

of path instances. We consider the visibility of this pair of

node as node pair visibility, τs , which is positively correlated
with the expectation of Pst .

• We let path instances under the samemeta-path share the same

path selectivity. Denote ηt the path selectivity for meta-path t .
ηt is negatively correlated with the expectation of Pst .

• Each node pair with paths in between can be linked by path

instances under a different set of meta-paths. We assume

an underlying meta-path distributionψs = [ψs1, . . . ,ψsT ] for
node pair s , where

∑T
t=1ψst = 1 andψst ≥ 0. As a distribution

over meta-paths, ψs models the semantics of the relevance

between this node pair, because each meta-path carries its

own semantic meaning. With further design to be introduced,

ψs also serves as the basis to capture cross-meta-path synergy.

ψst is positively correlated with the expectation of Pst .

Putting the above three components together considering their cor-

relation with the expectation of Pst , we find path count generating
process as

Pst ∼ Exp
(

ηt
τsψst

)
, (1)

where the detailed illustration and design of the three components

are to be further discussed in this section. Note that while we

only discuss unweighted HINs in this paper, the use of exponential

distribution in Eq. (1) enables the model to handle weighted HINs,

where paths are associated with real-valued path strengths, and

Pst may not be integers to reflect the path strengths.
Since node pairs with no paths under any predefined meta-path

should trivially receive the lowest possible relevance score, we only

model the generation of path counts between node pairs with paths

in between – henceforth referred to as nontrivial node pairs – and

we denote S the set of all nontrivial node pairs.

Illustrative example. To better illustrate how each component

design affects the path generation process, we present a toy example

in Fig. 2, which shows a part of an HINwith four node types: person,

university, location, and discipline. We concern three meta-paths

in this network: M1 : [person]
attends−−−−−−→ [university]

attends−1−−−−−−−−→
[person], M2 : [person]

livesIn−−−−−→ [location]
livesIn−1−−−−−−−→ [person],

M3 : [person]
majorsIn−−−−−−−→ [discipline]

majorsIn−1−−−−−−−−−→ [person].

Decoupling node pair visibility. To model node visibility, we

decouple node pair visibility τs in Eq. (1) into two parts as in Path-
Sim and JoinSim discussed in Sec. 3. The two parts correspond to

the node visibility ρu and ρv , respectively, where s = (u,v ), and
ρz > 0 for all z ∈ V . In our design, we let

τ(u,v ) = ρuρv (2)

as in JoinSim because decoupling by multiplication eases model

inference, which will be made clear in the next paragraph.

Since a trivial rescaling – multiplying all ρz by a constant and
multiplying all ηt by the square of the same constant – leads to
exactly the same model (Eq. (1)), we further regularize ρz by a

gamma prior with a constant rate parameter

ρz ∼ Γ (α , 1) . (3)

Note that we arbitrarily set the rate parameter to be 1 since the

shape of the distribution is solely determined by the shape pa-

rameter α . We choose gamma distribution as the prior for ρz be-
cause it is the conjugate prior for the exponential distribution,

and this fact will largely facilitate the inference algorithm as we

will show in Sec. 5.2. To determine the shape parameter α , we
fit the gamma distribution to the total path count each node has,

{∑Tt=1∑z̃∈V P〈zz̃〉t }z∈V , in the HIN as a rough prior information.

Path selectivity at meta-path level. We assume path instances

under meta-path t share the same path selectivity ηt . In the scope of
this paper, where supervision is not available, we assume uninfor-

mative prior on ηt . In future work where supervision is provided,
we can further learn ηt by minimizing the difference between super-
vision and model output to derive a task-specific relevance measure.

Cross-meta-path synergy and generating patterns. As dis-

cussed in Sec. 1, we have observed the existence of cross-meta-path



Measure Node Pair M1 M2 M3 Composite Truth

PathCount
Mordo &Wong 1 1 0 w1 +w2 −
Mordo & Stephen 1 0 1 w1 +w3 +

PathSim
Mordo &Wong 0.67 1 0 0.67w1 +w2 −
Mordo & Stephen 0.67 0 1 0.67w1 +w3 +

RWR (C = 0.9)
Mordo &Wong 0.29 0.47 0 0.29w1 + 0.47w2 −
Mordo & Stephen 0.25 0 0.31 0.25w1 + 0.31w3 +

PReP
Mordo &Wong 1 generating pattern −
Mordo & Stephen 2 generating patterns +

Table 2: Existing measures cannot yield desired relevance,

unless we assert M3 (discipline) is always more selective

than M2 (location), while PReP can achieve this by recog-

nizing the co-occurrence of multiple generating patterns.

synergy in real-world HIN, and this characteristic has not been

modeled by existing HIN relevance measures. In case meta-paths

do not correlate, we may simply add a Dirichlet prior, with con-

centration parameter smaller than 1, over meta-path distribution

ψs for all node pair s . This use of Dirichlet prior resembles latent

Dirichlet allocation (LDA) [1], where the Dirichlet prior prefers

sparse distributions, i.e., most entries of ψs tend to be 0. There-

fore, the co-occurrence of paths under different meta-paths gets

a lower likelihood from this prior, and attains a higher relevance

score under our relevance–likelihood connection.

However, in reality, it would not be surprising to see two people

attending UC Berkeley also both live in the City of Berkeley. This

implies cross-meta-path synergy does not necessarily exist between

all pairs of meta-paths, e.g., it may not exist between meta-path

M1 and meta-pathM2 in the toy example of Fig. 2. To address

this situation, we introduce a new component – generating patterns.

Each of a total of K generating patterns is a distribution over the T
meta-paths, where meta-paths that often co-occur between node

pairs will also be included in a common generating pattern, and

when a node pair s generates a path instance in between, it would
first choose generating pattern k with probability ϕsk , and then
choose meta-path t from this generating pattern with probability

θkt . Formally, we describe this process as

ψst =
K∑
k=1

ϕskθkt , (4)

where ϕs = [ϕs1, . . . ,ϕsK ] is node pair s’s choices of generating
patterns, such that

∑K
k=1

ϕsk = 1, ϕsk ≥ 0; andθk = [θk1, . . . ,θkT ]
is generating pattern k’s distribution over meta-paths, such that∑T
t=1 θkt = 1, θkt ≥ 0.
A symmetric Dirichlet prior is then enforced on ϕs , so that

synergy will be recognized between and only between meta-paths

from different generating patterns

ϕs ∼ DirK (β ) , (5)

where β ∈ (0, 1) is the concentration hyperparameter.
With this design, our model gives a lower likelihood and higher

relevance score toMordo and Stephen (same university, same major)

thanMordo andWong (attending UC Berkeley and living in the City

of Berkeley) in the toy example of Fig. 2 by learning a generating

pattern that includes bothM1 andM2. Whereas, other relevance

measures cannot achieve this desired relationship as presented in

Tab. 2, unless we set the weights w2 > w3, or equivalently assert

M2 (location) is always less selective thanM3 (discipline).

The unified model. For notation convenience, we use the bold

italic form to represent the corresponding matrix or vector of each

symbol with subscripts. For instance, the (s, t ) element of P is Pst
and the t-th element of η is ηt . Under this notation, combining
Eq. (1), (3), and (5), with Eq. (2) and (4) substituted into Eq. (1),

yields the total likelihood of the full PReP model

L = p (P ,η, ρ,Φ,Θ | α , β )

=

⎧⎪⎪⎨⎪⎪⎩
∏
u ∈V

Γ (ρu ; (α , 1))
⎫⎪⎪⎬⎪⎪⎭ ·

⎧⎪⎪⎨⎪⎪⎩
∏
s ∈S

DirK (ϕs ; β )
⎫⎪⎪⎬⎪⎪⎭

·
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∏
s ∈S

(u,v )=s

T∏
t=1

Exp 	
Pst ; ηt

ρuρv
∑K
k=1

ϕskθkt

��
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(6)

4.2 The PReP Relevance Measure

Given the unified model (Eq. (6)), we have two options to derive

relevance measure using likelihood: (i) find the maximum a posteri-

ori estimate for all parameters and compute the total likelihood of

the observed data, and (ii) consider all model parameters as hidden

variables and define the relevance as the marginal likelihood of the

observed data. However, the marginal likelihood does not have a

closed-form representation in our case, nor can we approximate it

with regular Markov chain Monte Carlo algorithms due to the large

number of hidden variables. Therefore, we adopt the first option

and defer the other to future work.

Once the model parameters {η, ρ,Φ,Θ} are estimated, we define
the PReP relevance for a node pair s = (u,v ) as the negative log-
likelihood involving this node pair, − logp (Ps, :,ϕs | Θ, ρ,η,α , β ),
without the log term as in the derivation of PathSim in Sec. 3

r (s ) =
T∑
t=1

Pst

ρuρvηt
∑K
k=1

ϕskθkt
+ (1 − β )

K∑
k=1

logϕsk . (7)

Note that PathCount, PathSim, and JoinSim discussed in Sec. 3 are

special cases of this PReP relevance measure, when {η, ρ,Φ,Θ} are
heuristically specified accordingly.

5 MODEL INFERENCE

In this section, we introduce the inference algorithm for the PReP

model (Eq. (6)) proposed in Sec. 4.

5.1 The Optimization Problem

We find the maximum a posteriori (MAP) estimate for model pa-

rameters by minimizing the negative log-likelihood of the proposed

model (Eq. 6), which, with an offset of a constant, is given by



Algorithm 1: Inference algorithm for the PReP model

Input : the observed path counts P and the hyperparameters

Output : the model parameters η, ρ, Φ, and Θ
begin

Initialize ρ, Φ, and Θ

while not converged do

Update η by the closed-form Eq. (10)

while not converged do

for u ∈ V do
Update ρu by the closed-form solution to

Eq. (11)

Update Φ via parallelized PGD with gradient in

Eq. (13)

Update Θ via PGD with gradient in Eq. (12)

O =
∑
u ∈V

(ρu − (α − 1) log ρu ) − (β − 1)
∑
s ∈S

K∑
k=1

logϕsk

+T
∑

(u,v )∈S
(log ρu + log ρv ) − |S|

T∑
t=1

logηt

+
∑
s ∈S

(u,v )=s

T∑
t=1

⎡⎢⎢⎢⎢⎢⎣log
K∑
k=1

ϕskθkt +
ηtPst

ρuρv
∑K
k=1

ϕskθkt

⎤⎥⎥⎥⎥⎥⎦ , (8)

and the optimization problem is therefore

min
η,ρ,Φ,Θ

O (η, ρ,Φ,Θ). (9)

We solve the above minimization problem with an iterative al-

gorithm to be detailed in the following Sec. 5.2.

5.2 The Inference Algorithm

We iteratively update one of η, ρ, Φ, and Θ when the others are

fixed. The inference algorithm is summarized in Algorithm 1.

Update η given {ρ,Φ,Θ} . Once given ρ, Φ, and Θ, the optimal
η that minimizes O in Eq. (8) has a closed-form solution. One can

derive this closed-form update formula by looking back to the total

likelihood Eq. (6), since

L ∝
∏
s ∈S

T∏
t=1

Exp 	
Pst ; ηt

τs
∑K
k=1

ϕskθkt

��
=

T∏
t=1

⎡⎢⎢⎢⎢⎢⎣Exp
	�

1

|S|
∑
s ∈S

Pst

τs
∑K
k=1

ϕskθkt
; ηt

���
⎤⎥⎥⎥⎥⎥⎦
|S |
,

where τs = ρuρv for node pair s = (u,v ). Using the property of
exponential distributions, we find the η that maximizes L, and
hence minimizes O, can be computed by

ηt =
	�

1

|S|
∑
s ∈S

Pst

τs
∑K
k=1

ϕskθkt

���
−1
. (10)

Update ρ given {η,Φ,Θ} . Unlike η, closed-form formula for up-

dating ρ does not exist because (i) ρ has an informative prior, and (ii)
the generating process for paths between node pair (u,v ) involves
the coupling of ρu and ρv . Fortunately, the gamma distribution
is the conjugate prior to the exponential distribution. Therefore,

for each u, when the rest {ρv }v�u are fixed, the closed-form up-

date formula for ρu can be derived as follows. Denote {ξs }s ∈S the
following quantities that are fixed during the ρ update phase

ξs �
T∑
t=1

ηtPst∑K
k=1

ϕskθkt
,

and we have ∂O
∂ρu
=
∑
v ∈V\{u }
s=(u,v )

[∑T
t=1

1
ρu
− ξs

ρ2u ρv

]
− α−1

ρu
+ 1. Set-

ting this partial derivative to 0 leads to

ρ2u + [( |V | − 1) ·T − (α − 1)] ρu −
∑

v ∈V\{u }
s=(u,v )

ξs
ρv
= 0. (11)

Note that Eq. (11) is a single-variable quadratic equation with one

positive and one negative roots. Furthermore, O is convex w.r.t. ρu
on the positive half-axis, and the positive root is a minimum of O.
Therefore, the optimal ρu that minimizes O is given by the positive

root of the quadratic equation (Eq. (11)), which has closed-form

solution. Holistically, we update ρ by iterating through u ∈ V to

update ρu with the aforementioned closed-form solution to Eq. (11).

Update Θ given {η, ρ,Φ} . To update Θ, we use the projected
gradient descent (PGD) algorithm [12]. The gradient is given by

∂O
∂Θ
= Φ�

[
1

ΦΘ
− P

(τ (η◦−1)�) ◦ (ΦΘ)◦2
]
, (12)

where [·] ◦ [·], [·]
[·] , and [·]◦[·] are element-wise multiplication, divi-

sion, and power. Additional constraint fed into PGD is that each

row of Θ lies in the standard (T − 1)-simplex, i.e., ∑Tt=1 θkt = 1 for
all k ∈ {1, ...,K } and θkt ≥ 0 for all (k, t ) ∈ {1, ...,K } × {1, ...,T }.
Projection onto the standard simplex or the direct product of multi-

ple standard simplices can be achieved efficiently using the method

introduced in [3].

Update Φ given {η, ρ,Θ} . Similarly, we use PGD to update Φ,
where the gradient is given by

∂O
∂Φ
=

[
1

ΦΘ
− P

(τ (η◦−1)�) ◦ (ΦΘ)◦2
]
Θ� − β − 1

Φ
. (13)

However, directly updating the entire Φ using PGD can be prob-

lematic, because the row number of Φ is the same as the number

of nontrivial node pairs, |S|, which can be significantly larger than
that of Θ.
Fortunately, we can decompose the update scheme for Φ by

rows, because each row is independent from the others. Specifi-

cally, we update each row s using PGD in parallel, with gradient
∂O
∂Φs, :

=

[
1

Φs, :Θ
− Ps, :

(τs (η◦−1 )� )◦(Φs, :Θ)◦2
]
Θ� − β−1

Φs, :
, and constraints∑K

k=1
ϕsk = 1 for all s ∈ S and ϕst ≥ 0 for all (s,k ) ∈ S× {1, ...,K }.

5.3 Implementation Details

For program reproducibility, we provide details in parameter ini-

tialization and computational singularity handling.



Since the inference algorithm starts with updating η, no initial-
ization for η is needed. ρ is initialized by drawing random samples
from its prior distribution, Γ (α , 1), where α is estimated from data
as discussed in Sec. 4. Φ is initialized uniformly at random within
the row-wise simplex constraint. For Θ, the �rst T rows of this
K ×T matrix are initialized to be an identity matrix, because many
node pairs with paths in between involve only one meta-path, and
we initialize the rest K −T rows uniformly at random within the
row-wise simplex constraint. �is choice is out of the consideration
that the PReP model is not convex over all parameters.

Dirichlet distribution is de�ned over open sets with unbounded
probability density function. As a result, when using MAP, certain
components of Φ can be inferred to approach the singularities along
the boundary. �erefore, in practice, we let Φ to be bounded away
from the boundary with an in�nitesimal quantity δ , i.e., each of
its entries must not only be positive, but also be greater or equal
to δ . In this way, we keep the capability of Dirichlet distribution
in modeling cross-meta-path synergy, while ensuring the model
is computationally meaningful. In our experiment, we set δ =
10−50. With this constraint, the domain of de�nition for Φ is no
longer a standard simplex as discussed in [3]. For this reason, we
provide the algorithm for e�cient projection onto this shrunken
simplex, {x ∈ RK |xi ≥ δ ,

∑K
i=1 xi = 1} in the Appendix, which

is required by the inference algorithm. Note that if one wishes
to evade the point estimation of parameters in the PReP model,
Eq. (6), and thereby avoid computational singularity, they can treat
all model parameters as hidden variables and derive relevance from
the marginal likelihood of the observed data as discussed in Sec. 4.2.
�e exploration of this direction requires novel method, such as a
sampling algorithm design for our model, to e�ciently calculate
marginal likelihood, and we defer this to future work.

6 EXPERIMENTS
In this section, we quantitatively evaluate the proposed model
on two publicly available real-world HINs: Facebook and DBLP.
We �rst describe the datasets and the unsupervised tasks used for
evaluation. Baselines and model variations for comparison are then
introduced. A�erward, we present experiment results together with
discussions, which demonstrate the advantage of using probability
as the backbone of relevance.

6.1 Data Description and Evaluation Tasks
In this section, we introduce the two publicly available real-world
datasets and the evaluation tasks.

�e Facebook dataset. �is dataset [11] contains nodes of 11
types, including user, major, degree, school, hometown, surname,
location, employer, work-location, work-project, and other. It con-
sists of 5, 621 nodes and 98, 023 edges, among which 4, 167 nodes
are of the user type. We aim to determine the relevance between
users, using 10 meta-paths, each of the form [user]–[X]–[user],
where X is any of the above 11 node types except for other.

To derive ground truth label between user pairs for evaluation,
we use being friends on Facebook as a proxy for being relevant.
�is dataset is collected by recruiting participants to label their own
Facebook friends It consists of 10 distinct ego networks, where an
ego network consists of one ego user and all her friends together

with edges a�ached to these users. We hence perform one sub-task
for each ego network, where the compared measures are used to
calculate the relevance between all pairs of non-ego users in this
ego network.

We use two evaluation metrics widely adopted for tasks with
multiple relevant instances: the area under the receiver operating
characteristic curve (ROC-AUC) and the area under precision-recall
curve (AUPRC). �e receiver operating characteristic curve (ROC)
is created by plo�ing true positive rate against false positive rate
as the threshold varies, while the precision-recall curve (PRC) is
drawn by plo�ing precision against recall as the threshold varies.
Higher values are more preferred for both ROC-AUC and AUPRC.
We further average each of the above metrics across ego networks
with the following methods – uni.: averaging over all ego networks
uniformly; rel.: weighting by the number of relevant pairs in each
ego network; tot.: weighting by the total number of pairs in each
ego network.

�e DBLP dataset. �is dataset is derived from the DBLP dataset
processed by Tang et al. [18] containing computer science research
papers together with author names and publication venue associ-
ated to each paper. It consists of 13, 697 nodes and 19, 665 edges,
among which 1, 546 nodes are of the author type. Notably, in this
dataset, the same author name associated with two papers may
not necessarily be the same person. Based on this fact, we design
an entity resolution task as follows. First, we use the labels made
available by Tang et al. [18] to group all author name mentions
corresponding to one person to de�ne an author node. In this way,
an author node is linked to multiple papers wri�en by her. �en,
for each author name, we split the author node with the most au-
thor name mentions into two nodes, and we de�ne two nodes to
be relevant if and only if they actually refer to the same person.
Finally, we perform one sub-task for each author name, where the
compared measures are used to calculate the relevance between all
pairs of nodes with the same author name.

We use 14 meta-paths in this task, each of the form [author]–
[paper]–[venue domain]–[paper]–[author], where a node of the
venue domain type corresponds to one of the 14 computer science
research areas. �e de�nition of the 14 areas is derived from the
Wikipedia page: List of computer science conferences1. Since only
one relevant pair exists in each sub-task, the mean reciprocal rank
(MRR) is used as the evaluation metric, where, for each sub-task,
the reciprocal rank is the reciprocal of the rank of the relevant pair.
Higher values indicate be�er results for MRR. We also average the
above metrics across di�erent sub-tasks using three methods: uni.,
rel., and tot. Note that uni. and rel. are equivalent in this entity
resolution task because each sub-task has exactly one relevant pair.

6.2 Baselines and Variations
In this section, we describe the meta-path-based baseline methods
and variations of the PReP model, which are used to compare with
our proposed full PReP model. Existing meta-path-based unsuper-
vised HIN measures de�ne relevance computation method on each
meta-path and then use linear combination to �nd the composite
score. �erefore, each baseline consists of two parts: (i) the base

1h�ps://en.wikipedia.org/wiki/List of computer science conferences



Dataset Metric
PathCount PathSim JoinSim SimRank PReP

Mean SD Mean SD Mean SD Mean SD No-NV No-PS No-CS (full)

Facebook

ROC-AUC

uni. 0.8056 0.8598 0.8367 0.8586 0.8326 0.8547 0.7977 0.8303 0.8310 0.6702 0.8689 0.8850

rel. 0.8612 0.8879 0.8578 0.8888 0.8556 0.8872 0.8076 0.8596 0.8556 0.6713 0.8880 0.9133

tot. 0.8558 0.8849 0.8577 0.8866 0.8557 0.8851 0.8096 0.8594 0.8547 0.6773 0.8893 0.9139

AUPRC

uni. 0.2456 0.2832 0.2370 0.2845 0.2340 0.2803 0.2055 0.2435 0.2183 0.1650 0.3273 0.3269

rel. 0.2496 0.3048 0.2142 0.2873 0.2117 0.2837 0.1764 0.2408 0.2067 0.1283 0.3354 0.3486

tot. 0.2107 0.2542 0.1841 0.2460 0.1821 0.2432 0.1523 0.2071 0.1760 0.1089 0.3010 0.3080

DBLP MRR
uni./rel. 0.8091 0.8130 0.6922 0.7003 0.7454 0.7538 0.6636 0.6738 0.8223 0.8494 0.8365 0.8517

tot. 0.7839 0.7871 0.6612 0.6731 0.7128 0.7244 0.6302 0.6357 0.8234 0.8407 0.8264 0.8391

Table 3: Quantitative evaluation results on two real-world datasets using the proposed measure, PReP, and other measures.

measure that calculates the relevance score on one meta-path, and

(ii) the weights assigned to different meta-paths used in the linear

combination. The 4 base measures we used are:

• PathCount [17]. PathCountw (s ) �
∑
t wtPst .

• PathSim [17]. PathSimw (s ) �
∑
t wt · 2·P〈uv 〉t

P〈uu〉t+P〈vv 〉t .

• JoinSim [20]. JoinSimw (s ) �
∑
t wt · P〈uv 〉t√

P〈uu〉t ·P〈vv 〉t .
• SimRank. We adopt SimRank [8] with meta-path constraints.

Let A be a matrix, where Auv is the number of paths under

this meta-path between node pair (u,v ) after column normal-
ization. The SimRank score is then given by Suv , where S is
the solution to S = max{C · (A�SA), I }, and C is the decay

factor to be specified. Note that we use SimRank instead of

random walk with restart because SimRank is a symmetric

relevance measure.

Without any supervision available, we use 2 heuristics to determine

the weights w for linear combination.

• Mean. Let wt be the reciprocal of the mean of all scores

computed using the corresponding base measure on meta-

path t .
• SD. Let wt be the reciprocal of the standard deviation of all

scores computed using the corresponding base measure on

meta-path t . Note that this heuristic normalized the original
score in the way similar to z-score.

Combining the aforementioned 4 base measures and 2 heuristic for

setting weights, we have 8 baselines in total.

Additionally, we also experiment with three variations of PReP,

which are partial models with one of the three components knocked

out from the full PReP model.

• No node visibility (No-NV): Set ρ = 1 |V | , and do not update
ρ during model inference.

• No path selectivity (No-PS): Set η = 1T , and do not update η
during model inference.

• No cross-meta-path synergy (No-CS): Set Φ = 1 |V |×K /K , Θ =
1 |V |×T /T , and do not update Φ and Θ during model inference.

Note that 1M stands for all one column vector of sizeM and 1M×N
denotes all one matrix of sizeM × N .

6.3 Effectiveness and Discussion

In this section, we present the quantitative evaluation results on

both the Facebook and the DBLP datasets. We tune the decay factor

C in the baseline measure, SimRank, to have the best performance

withC = 0.5 for both SimRank-Mean and SimRank-SD on Facebook,

and C = 0.8 for SimRank-Mean, C = 0.7 for SimRank-SD on DBLP.

We set hyperparameters of PReP as K = 15 and β = 10−4 for
Facebook and K = 14 and β = 10−2 for DBLP. The choice of

hyperparameters will be further discussed in this section.

As presented in Tab. 3, PReP outperformed all 8 baselines un-

der various metrics. Moreover, PReP outperformed its 3 variations

under most metrics, suggesting each component of the model gener-

ally has a positive effect on the performance of the full PReP model.

Note that under MRR (tot.), PReP performed slightly worse than

PReP-No-PS, the partial model without ηt for path selectivity. This

happened because, as discussed in Sec. 4, we cannot enforce task-

specific design on path selectivity ηt due to the lack of supervision,
and we expect path selectivity ηt to play a more important role in
future work where relevance labels are provided as supervision.

Additionally, we have made the following observations.

Heuristic methods cannot yield robust relevance measures.

Compared with PathCount, both PathSim and JoinSim further

model node visibility, which penalizes the relevance with nodes

that are highly visible. However, as Tab. 3 presents, PathSim and

JoinSim cannot always outperform PathCount. Moreover, JoinSim

performs better than PathSim on DBLP, while PathSim is slightly

better than JoinSim on Facebook. We interpret these results as, Path-

Sim and JoinSim model node visibility in a deterministic heuristic

way. Unlike our generative-model-based measure that derives rele-

vance measure based on parameters inferred from each HIN, the

heuristic approaches adopted by PathSim and JoinSim have varying

performance on different HINs. This suggests being data-driven is

a favorable property of PReP.

Non-one-hot generating patterns help onlywhenmeta-paths

correlate. In our experiment, we set K = 14 = T for DBLP. Recall

that we initialized the first T rows of Θ, the matrix representing
the K generating patterns, to be T one-hot vectors corresponding

to T meta-paths. We observed in the DBLP experiment that after

model fitting,Θwas still the same as its initialization, meaning each

inferred generating pattern only generated path instances under

exactly one meta-path. Moreover, by increasing the value of K , we
did not see improvement in performance. This observation is inline

with the situation that it is not frequently seen that two authors

both publish papers in two distinct research areas, where the 14

areas on the Wikipedia page have been defined to be distinct areas

including theory, software, parallel computing, etc. In this case, it

is preferred to model synergy across every pair of meta-paths, and

not to employ any non-one-hot generating patterns.



(a) Facebook (b) DBLP

Figure 3: Performance with varying β .

On the other hand, we usedK = 15 > T for Facebook, and we did

observe non-one-hot generating patterns after model fitting. The

most popular non-one-hot generating pattern consisted of three

meta-paths: [user]–[hometown]–[user], [user]–[school]–[user],

and [user]–[user]–[user], where we define popularity of a generat-

ing pattern as the fraction of node pairs adopting this pattern, i.e.,

pop(k ) =
∑
s ∈S ϕsk . This generating pattern corresponds to two

users sharing the same hometown, the same school, and having

common friends. This scenario is common for two people sharing

similar friend group back in the hometown school.

Sensitivity of β in modeling cross-meta-path synergy. In

the PReP model (Eq. (6)) and relevance measure (Eq. (7)), the con-

centration parameter β of the Dirichlet prior controls the extent
to which we boost cross-meta-path synergy. Experiment results

in Fig 3 shows performance of PReP do not significantly change

around the values we have set for β , i.e., 10−4 for Facebook and
10−2 for DBLP.

7 RELATEDWORK

In this section, we review the study on HIN relevance. The problem

of deriving relevance between node pairs has been extensively stud-

ied for homogeneous information networks. Relevance measures

of this type include the random walk based Personalized PageR-

ank and SimRank [8], the neighbor-based common neighbors and

Jaccard’s coefficient, the path-based Katz [5], etc. To generalize rele-

vance from the homogeneous networks to the typed heterogeneous

case, researchers have been exploring from multiple perspectives.

One perspective, as in PathCount and PathSim from [17] and Path-

Constrained Random Walk from [10], is to first compute relevance

score along each meta-path, and then glue scores from all types

together via linear combination to establish the composite mea-

sure. A great many applications [9, 14, 16, 22, 24] based on this

meta-path paradigm with linear combination have been proposed.

Our proposed method follows this meta-path paradigm, but goes

beyond linear combination to model cross-meta-path synergy that

we have observed from real-world HINs. Another perspective is to

go beyond meta-path and derive relevance based on the more com-

plex graph structures [4, 7]. While these approaches can yield good

performance, they differ from our proposed methods for further en-

tailing label information or expertise in designing graph structure.

Also, they do not carry probabilistic interpretations. Besides, people

have explored the idea of incorporating richer information [6, 21] to

define more effective relevance scoring functions, or adding super-

vision to derive task-specific relevance measures [2, 19, 23]. While

being valuable, these works are out of the scope of the problem we

study in this paper, where we address the basic, unsupervised case

with no additional information as our starting point of studying

HIN relevance from the probabilistic perspective.

8 CONCLUSION AND FUTUREWORK

Inspired by the probabilistic interpretation of existing path-based

relevance measures, we studied HIN relevance from a probabilistic

perspective. We identified cross-meta-path synergy as one of the

three characteristics that we deem important for HIN relevance.

A generative model was proposed to derive a novel path-based

relevance measure, PReP, which could capture the three important

characteristics. An inference algorithm was also developed to find

the maximum a posteriori (MAP) estimate of the model parameters,

which entailed non-trivial tricks. Experiments on real-world HINs

demonstrated the effectiveness of our relevance measure, which is

data-driven and tailored for each HIN.

Future work includes the exploration of defining relevance from

the proposed PReP model with marginal likelihood as discussed in

Sec. 4.2. Further add-on designs to adapt the proposed model to a

supervised setting are also worth exploring to unleash the potential

of our model.
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APPENDIX

We provide the algorithm for efficient projection onto the standard

simplex shrunk by δ , {x ∈ RK |xi ≥ δ ,
∑K
i=1 xi = 1}, in Algorithm 2.

Algorithm 2: Efficient projection onto shrunk simplex

Input : the original vector z ∈ RK and the shrinking factor δ
Output : the projection x ∈ RK
begin

Sort z into u: u1 ≥ u2 ≥ . . . ≥ uK

ρ ← max{1 ≤ j ≤ K |uj + 1
j (1 − δK −

∑j
i=1 ui ) > 0}

λ ← 1
ρ (1 − δK −

∑ρ
i=1 ui )

xi ← max{zi + λ, 0} + δ

The validity of this algorithm can be established in a way similar

to the proof of the algorithm for standard simplex [3].
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