MetaPAD: Meta Pattern Discovery from Massive Text Corpora

Meng Jiang', Jingbo Shang?, Taylor Cassidy?, Xiang Ren!
Lance M. Kaplan?, Timothy P. Hanratty?, Jiawei Han!
!Department of Computer Science, University of Illinois Urbana-Champaign, IL, USA
?Computational & Information Sciences Directorate, Army Research Laboratory, Adelphi, MD, USA
!{mjiang89, shang7, xren7, hanj}@illinois.edu *{taylor.cassidy.civ, lance.m.kaplan.civ, timothy.p.hanratty.civ}@mail. mil

ABSTRACT

Mining textual patterns in news, tweets, papers, and many other
kinds of text corpora has been an active theme in text mining and
NLP research. Previous studies adopt a dependency parsing-based
pattern discovery approach. However, the parsing results lose rich
context around entities in the patterns, and the process is costly
for a corpus of large scale. In this study, we propose a novel typed
textual pattern structure, called meta pattern, which is extended to
a frequent, informative, and precise subsequence pattern in cer-
tain context. We propose an efficient framework, called MetaPAD,
which discovers meta patterns from massive corpora with three
techniques: (1) it develops a context-aware segmentation method
to carefully determine the boundaries of patterns with a learnt
pattern quality assessment function, which avoids costly depen-
dency parsing and generates high-quality patterns; (2) it identifies
and groups synonymous meta patterns from multiple facets—their
types, contexts, and extractions; and (3) it examines type distribu-
tions of entities in the instances extracted by each group of patterns,
and looks for appropriate type levels to make discovered patterns
precise. Experiments demonstrate that our proposed framework dis-
covers high-quality typed textual patterns efficiently from different
genres of massive corpora and facilitates information extraction.

1 INTRODUCTION

Discovering textual patterns from text data is an active research
theme [4, 7, 10, 12, 28], with broad applications such as attribute
extraction [11, 30, 32, 33], aspect mining [8, 15, 19], and slot filling
[40, 41]. Moreover, a data-driven exploration of efficient textual pat-
tern mining may also have strong implications on the development
of efficient methods for NLP tasks on massive text corpora.
Traditional methods of textual pattern mining have made large
pattern collections publicly available, but very few can extract arbi-
trary patterns with semantic types. Hearst patterns like “N P such
as NP, NP, and NP” were proposed and widely used to acquire
hyponymy lexical relation [14]. TextRunner [4] and ReVerb [10]
are blind to the typing information in their lexical patterns; Re-
Verb constrains patterns to verbs or verb phrases that end with
prepositions. NELL [7] learns to extract noun-phrase pairs based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD'17, August 13-17, 2017, Halifax, NS, Canada.

© 2017 ACM. 978-1-4503-4887-4/17/08...$15.00

DOI: http://dx.doi.org/10.1145/3097983.3098105

on a fixed set of prespecified relations with entity types like coun-
try:president—$COUNTRYX$POLITICIAN.

One interesting exception is the SOL patterns proposed by Nakas-
hole et al. in PATTY [28]. PATTY relies on the Stanford dependency
parser [9] and harnesses the typing information from a knowledge
base [3, 5, 29] or a typing system [20, 27]. Figure 1(a) shows how
the SOL patterns are automatically generated with the shortest
paths between two typed entities on the parse trees of individual
sentences. Despite of the significant contributions of the work, SOL
patterns have three limitations on mining typed textual patterns
from a large-scale text corpus as illustrated below.

First, a good typed textual pattern should be of informative,
self-contained context. The dependency parsing in PATTY loses the
rich context around the entities such as the word “president” next to
“Barack Obama” in sentence #1, and “president” and “prime_minister”
in #2 (see Figure 1(a)). Moreover, the SOL patterns are restricted to
the dependency path between two entities but do not represent the
data types like $D1GIT for “55” (see Figure 1(b)) and $MoNTH $DAY
$YEAR. Furthermore, the parsing process is costly: Its complexity
is cubic in the length of sentence [23], which is too costly for news
and scientific corpora that often have long sentences. We expect
an efficient textual pattern mining method for massive corpora.

Second, synonymous textual patterns are expected to be identi-
fied and grouped for handling pattern sparseness and aggregating
their extractions for extending knowledge bases and question an-
swering. As quoted by red “[-]” pairs in Figure 1, country:president
and person:age are two synonymous pattern groups: (1) { “president
$POLITICIAN’s government of $COUNTRY”, “$COUNTRY president
$PoLITICIAN”, ...} and (2) {"$PERSON, age $DIGIT", “$PERSON’s
age is $DIGIT”, “$PERSON, a $DIGIT-year-old”, . . . }. However, the
process of finding such synonymous pattern groups is non-trivial.
Multi-faceted information should be considered: (1) synonymous
patterns should share the same entity types or data types; (2) even
for the same entity (e.g., Barack Obama), one should allow it be
grouped and generalized differently (e.g., in (United States, Barack
Obama) vs. {Barack Obama, 55)); and (3) shared words (e.g., “pres-
ident”) or semantically similar contextual words (e.g., “age” and
“-year-old”) may play an important role in synonymous pattern
grouping. PATTY does not explore the multi-faceted information
at grouping syonymous patterns, and thus cannot aggregate such
extractions into one collection.

Third, the entity types in the textual patterns should be precise.
In different patterns, even the same entity can be typed at different
type levels. For example, the entity “Barack Obama” should be typed
at a fine-grained level ($POLITICIAN) in the patterns generated from
sentence #1-2, and it should be typed at a coarse-grained level
($PERSON) in the patterns from sentence #3-4. However, PATTY
does not look for appropriate granularity of the entity types.

#1) President Barack Obama’s government of United States reported that ...
[president $POLITICIAN"s government of $CouNTry | reported that ..

#2) U.S. President Barack Obama and Prime Minister Justin Trudeau of Canada metin ...
[scounmry president $POLITICIAN Janal prime_minister $POLITICIAN of SCOUNTRY Jmetin ...

Our synonymous group of meta patterns (on “country.president”) by segmentation and g1 oupfng

P

—:mn 5t mr :::% \wn'fm""m"
____________ o bgma_. 's Igavcrnmcnt of |;.Jmtcd Stateg reported that
poss (“government”, “Barack Obama™)

nmod:of (“government”, “United States™)

$POLITICIAN government [of] $COUNTRY\

tompound
Wﬁ/_ ompound

compound(‘ Balack Obama . US p]
$COUNTRY $POLITICIAN
e

cornoou nd com oL nrmod:of-
ﬂj o wnl W 2 \m/;

! and Prime Mlmstern]ustln TrudeauI of 'Canada. met in

nmod:of("“Justin Trudeau™, “Canada™)
$PoLITICIAN [of] $COUNTRY

PATTY'S different SOL patterns generated with the shortest paths on the dependency parse trees

(a) MetaPAD considers rich contexts around entities and determines pattern boundaries by pattern quality assessment while dependency parsing does not.

#3) Barack Obama, age 55, ...
#4) Barack Obama’s age is 55.
#5) Walter Scott, a 50-year-old black man, ...

$PERSON (v) $POLITICIAN ()

[$PERSON, age $DIGIT, 1.
[sPERSON'S ageis $pierr | . ————— (on “person:age”) by segmentation,

[$PERSON, a $DIGIT -year-old J blackman, ...

————____ Synonymous group of meta patterns

pattern grouping, and adjusting type level

(b) MetaPAD finds meta patterns consisting of both entity types and data types like $DicrT. It also adjusts the type level for appropriate granularity.

Figure 1: Comparing the synonymous group of meta patterns in MetaPAD with that of SOL patterns in PATTY.

In this paper, we propose a new typed textual pattern called meta
pattern, which is defined as follows.

Definition (Meta Pattern). A meta pattern refers to a frequent,
informative, and precise subsequence pattern of entity types (e.g.,
$PERSON, $PoLITICIAN, $COUNTRY) or data types (e.g., $DIGIT,
$MoONTH, $YEAR), words (e.g., “politician”, “age”) or phrases (e.g.,
“prime_minister”), and possibly punctuation marks (e.g., “", “("),
which serves as an integral semantic unit in certain context.

We study the problem of mining meta patterns and grouping syn-
onymous meta patterns. Why mining meta patterns and grouping
them into synonymous meta pattern groups?—because mining and
grouping meta patterns into synonymous groups may facilitate in-
formation extraction and turning unstructured data into structures.
For example, given us a sentence from a news corpus, “President
Blaise Compaoré’s government of Burkina Faso was founded ..”,
if we have discovered the meta pattern “president $POLITICIAN’s
government of $COUNTRY”, we can recognize and type new entities
(i.e., type “Blaise Compaore” as a $POLITICIAN and “Burkina Faso”
as a $COUNTRY), which previously requires human expertise on
language rules or heavy annotations for learning [26]. If we have
grouped the pattern with synonymous patterns like “$COUNTRY
president $POLITICIAN, we can merge the fact tuple (Burkina Faso,
president, Blaise Compaoreé) into the large collection of facts of the
attribute type country:president.

To systematically address the challenges of mining meta patterns
and grouping synonymous patterns, we develop a novel framework
called MetaPAD (Meta PAttern Discovery). Instead of working on
every individual sentence, our MetaPAD leverages massive sen-
tences in which redundant patterns are used to express attributes
or relations of massive instances. First, MetaPAD generates meta
pattern candidates using efficient sequential pattern mining, learns
a quality assessment function of the patterns candidates with a
rich set of domain-independent contextual features for intuitive
ideas (e.g., frequency, informativeness), and then mines the qual-
ity meta patterns by assessment-led context-aware segmentation
(see Sec. 4.1). Second, MetaPAD formulates the grouping process

of synonymous meta patterns as a learning task, and solves it by
integrating features from multiple facets including entity types,
data types, pattern context, and extracted instances (see Sec. 4.2).
Third, MetaPAD examines the type distributions of entities in the
extractions from every meta pattern group, and looks for the most
appropriate type level that the patterns fit. This includes both top-
down and bottom-up schemes that traverse the type ontology for
the patterns’ preciseness (see Sec. 4.3).

The major contributions of this paper are as follows: (1) we
propose a new definition of typed textual pattern, called meta pat-
tern, which is more informative, precise, and efficient in discovery
than the SOL pattern; (2) we develop an efficient meta-pattern
mining framework, MetaPAD of three components: generating
quality meta patterns by context-aware segmentation, grouping
synonymous meta patterns, and adjusting entity-type levels for ap-
propriate granularity in the pattern groups; and (3) our experiments
on news and tweet text datasets demonstrate that the MetaPAD not
only generates high quality patterns but also achieves significant
improvement over the state-of-the-art in information extraction.

2 RELATED WORK

In this section, we summarize existing systems and methods that
are related to the topic of this paper.

TextRunner [4] extracts strings of words between entities in text
corpus, and clusters and simplifies these word strings to produce
relation-strings. ReVerb [10] constrains patterns to verbs or verb
phrases that end with prepositions. However, the methods in the
TextRunner/ReVerb family generate patterns of frequent relational
strings/phrases without entity information. Another line of work,
open information extraction systems [2, 22, 36, 39], are supposed
to extract verbal expressions for identifying arguments. This is less
related to our task of discovering textual patterns.

Google’s Biperpedia [12, 13] generates E-A patterns (e.g., “A of
E” and “E s A”) from users’ fact-seeking queries (e.g., “president of
united states” and “barack oabma’s wife”) by replacing entity with
“E” and noun-phrase attribute with “A”. ReNoun [40] generates S-A-
O patterns (e.g., “S’s Ais O” and “0O, A of ;") from human-annotated

U.S. President Barack Obama and Prime Minister Justin Trudeau of Canada met in ...
o

u_s president barack_obama and prime_minister justin_trudeau of canadametin ...
e

$LOCATION president SPERSON and prime_minister $PERSON of $LOCATION met in ...
l®

$LOCATION.COUNTRY president SPERSON.POLITICIAN

and prime_minister $PERSON.POLITICIAN of SLOCATION.COUNTRY met in ...

@ phrase mining @ entity recognition and coarse-grained typing €) fine-grained typing

Figure 2: Preprocessing for fine-grained typed corpus: given
us a corpus and a typing system.

corpus (e.g., “Barack Obama’s wife is Michelle Obama” and “Larry
Page, CEO of Google”) on a pre-defined subset of the attribute
names, by replacing entity/subject with “S”, attribute name with
“A”, and value/object with “O”. However, the query logs and anno-
tations are often unavailable or expensive. Furthermore, query log
word distributions are highly constrained compared with ordinary
written language. So most of the $-A-O patterns like “S A O” and
“$’s A O” will generate noisy extractions when applied to a text
corpus. Textual pattern learning methods [38] including the above
are blind to the typing information of the entities in the patterns;
the patterns are not typed textual patterns.

NELL [7] learns to extract noun-phrase pairs from text corpus
based on a fixed set of prespecified relations with entity types.
OntExt [25] clusters pattern co-occurrences for the noun-phrase
pairs for a given entity type at a time and does not scale up to mining
a large corpus. PATTY [28] was the first to harness the typing
system for mining relational patterns with entity types. We have
extensively discussed the differences between our proposed meta
patterns and PATTY’s SOL patterns in the introduction: Meta pattern
candidates are efficiently generated by sequential pattern mining
[1, 31, 42] on a massive corpus instead of dependency parsing on
every individual sentence; meta pattern mining adopts a context-
aware segmentation method to determine where a pattern starts and
ends; and meta patterns are not restricted to words between entity
pairs but generated by pattern quality estimation based on four
criteria: frequency, completeness, informativeness, and preciseness,
grouped on synonymous patterns, and with type level adjusted for
appropriate granularity.

3 META PATTERN DISCOVERY

3.1 Preprocessing: Harnessing Typing Systems

To find meta patterns that are typed textual patterns, we apply
efficient text mining methods for preprocessing a corpus into fine-
grained typed corpus as input in three steps as follows (see Figure 2):
(1) we use a phrase mining method [21] to break down a sentence
into phrases, words, and punctuation marks, which finds more
real phrases (e.g., “barack_obama”, “prime_minister”) than the fre-
quent n-grams by frequent itemset mining in PATTY; (2) we use
a distant supervision-based method [34] to jointly recognize enti-
ties and their coarse-grained types (i.e., $PERSON, $LOCATION, and
$ORGANIZATION); (3) we adopt a fine-grained typing system [35] to
distinguish 113 entity types of 2-level ontology (e.g., $POLITICIAN,
$CoUNTRY, and $COMPANY); we further use a set of language rules

to have 6 data types (i.e., $D1GIT, $DIGITUNIT!, $DIGITRANK?,
$MoNTH, $DAY, and $YEAR). Now we have a fine-grained, typed
corpus consisting of the tokens as defined in the meta pattern:
entity types, data types, phrases, words, and punctuation marks.

3.2 The Proposed Problem

Problem (Meta Pattern Discovery). Given a fine-grained, typed
corpus of massive sentences C = [...,S5,...], and each sentence
is denoted as § = t1t3 . ..ty in which t € 7 U P U M is the k-th
token (7 is the set of entity types and data types, P is the set of
phrases and words, and M is the set of punctuation marks), the
task is to find synonymous groups of quality meta patterns.
A meta pattern mp is a subsequential pattern of the tokens from
the set 7 U P U M. A synonymous meta pattern group is denoted
by MPG = [...,mpj,...,mpj...] in which each pair of meta

patterns, mp; and mpj, are synonymous.

What is a quality meta pattern? Here we take the sentences
as sequences of tokens. Previous sequential pattern mining algo-
rithms mine frequent subsequences satisfying a single metric, the
minimum support threshold (min_sup), in a transactional sequence
database [1]. However, for text sequence data, the quality of our
proposed textual pattern, the meta pattern, should be evaluated
similar to phrase mining [21], in four criteria as illustrated below.

Example. The quality of a pattern is evaluated with the following
criteria: (the former pattern has higher quality than the latter)
Frequency: “$DIGITRANK president of $COUNTRY” vs. “young presi-
dent of $COUNTRY™;

Completeness: “$COUNTRY president $POLITICIAN vs. “$COUNTRY
president”, “$PERSON’s wife, $PERSON” vs. “$PERSON’s wife”;

Informativeness: “$PERSON’s wife, SPERSON” vs. “$PERSON and $PERSON™;

Preciseness: “$COUNTRY president $POLITICIAN” vs. “$LOCATION
president $PERSON”, “$PERSON’s wife, $PERSON” vs. “$POLITICIAN’s

wife, SPERSON”, “population of $LocATION" vs. “population of $COUNTRY.

What are synonymous meta patterns? The full set of frequent
sequential patterns from a transaction dataset is huge [1]; and the
number of meta patterns from a massive corpus is also big. Since
there are multiple ways to express the same or similar meanings
in a natural language, many meta patterns may share the same or
nearly the same meaning. Examples have been given in Figure 1.
Grouping synonymous meta patterns can help aggregate a large
number of extractions of different patterns from different sentences.
And the type distribution of the aggregated extractions can help us
adjust the meta patterns in the group for preciseness.

4 THE METAPAD FRAMEWORK

Figure 3 presents the MetaPAD framework for Meta PAttern Discovery.

It has three modules. First, it develops a context-aware segmen-
tation method to determine the boundaries of the subsequences
and generate the meta patterns of frequency, completeness, and
informativeness (see Sec. 4.1). Second, it groups synonymous meta
patterns into clusters (see Sec. 4.2). Third, for every synonymous
pattern group, it adjusts the levels of entity types for appropriate
granularity to have precise meta patterns (see Sec. 4.3).
1$DicrTUnrT: “percent”, “%”", “hundred”, “thousand”, “million”, “billion”, “trillion™...
2$DierTRaNk: “first”, “1st”, “second”, “2nd”, “44th™...

4.1 Generating meta patterns by context-aware
segmentation

Pattern candidate generation. We adopt the standard frequent
sequential pattern mining algorithm [31] to look for pattern can-
didates that satisfy a min_sup threshold. In practice, one can set a
maximum pattern length @ to restrict the number of tokens in the
patterns. Different from syntactic analysis of very long sentences,
our meta pattern mining explores pattern structures that are local
but still of wide context: in our experiments, we set @ = 20.

Meta pattern quality assessment. Given a huge number of pattern
candidates that can be messy (e.g., “of $COUNTRY” and “$POLITICIAN
and”), it is desired but challenging to assess the quality of the
patterns with a very few training labels. We introduce a rich set of
contextual features of the patterns according to the quality criteria
(see Sec. 3.2) as follows and train a classifier to estimate the quality
function Q(mp) € [0, 1] where mp is a meta pattern candidate:

1. Frequency: A good pattern mp should occur with sufficient
count c¢(mp) in a given typed text corpus. The other feature is the
normalized frequency of mp by the size of the given corpus.

2. Concordance: If the collocation of tokens in such frequency
that is significantly higher than what is expected due to chance,
the meta pattern mp has good concordance. To statistically reason
about the concordance, we consider a null hypothesis: the corpus
is generated from a series of independent Bernoulli trials. Suppose
the number of tokens in the corpus is L that can be assumed to
be fairly large. The expected frequency of a pair of sub-patterns
{mp;,mp_) under our null hypothesis of their independence is

Ho(c({mpy, mp,))) = L - p(mpy) - p(mp,), M
where p(mp) = @ is the empirical probability of the pattern.
We examine all the possible cases of dividing myp to left sub-pattern
myp; and right sub-pattern mp,. There is no overlap between the
sub-patterns. We use Z score to provide a quantitative measure
of a pair of sub-patterns (mp;,mp,) forming the best collocation
(maximum Z score) as mp in the corpus:

Z(mp) = e c(mp) — polc((mpy, mp,.))) @
(mpy,mp,)=mp O mp,,mp,) |

where 0(mp,,mp,) is the standard deviation of the frequency. A high
Z score indicates that the pattern is acting as an integral semantic
unit in the context: its composed sub-patterns are highly associated.
3. Informativeness: A good pattern mp should have informa-
tive context. We examine the counts of different kinds of tokens
(e.g., types, words, phrases, non-stop words, marks). For exam-
ple, the pattern “$PERsON’s wife $PERSON” is informative for the
non-stop word “wife”; “$PERSON was born_in $CITY” is good for
the phrase “born_in"; and “$PERsoN, $DIGIT, is also informative
for the two different types and two commas. Besides the counts,
we adopt Inverse-Document Frequency (IDF) to avoid the issue of
over-popularity of some tokens.

4. Completeness: We use the ratio between the frequencies of the
pattern candidate (e.g., “$COUNTRY president $POLITICIAN) and its
sub-patterns (e.g., “$COUNTRY president”). If the ratio is high, the
candidate is likely to be complete. We also use the ratio between the

$LocaTioN.COUNTRY president $PERSON POLITICIAN
and prime_minister $PERSON. POLITICIAN of $LOCATION. COUNTRY metin ...

) Generating meta patterns by aware (Section 4.1)
[$Locaion president $PErson) and [p]:ime_minister $PERSON of SLocATION) metin ..

@ Grouping synonymous meta patterns: (Section 4.2)

| prime_minister $PERSON of $LocATION |
$LOCATION prime_minister SPERSON
$LOCATION s prime_minister $PERSON

| $LocATION president $PERSON |
president $PERSON of SLOCATION
$LoCATION 's president SPERSON

4
©) Adjusting entity-type levels for appropriate granularity: (Section 4.3)

| $COUNTRY president $POLITICIAN | | prime_minister $POLITICIAN of $COUNTRY |
president $POLITICIAN of $COUNTRY $COUNTRY prime_minister SPOLITICIAN
$COUNTRY ’s president SPOLITICIAN $COUNTRY ’s prime_minister $POLITICIAN

Figure 3: Three modules in our MetaPAD framework.
[scouwTry president $PoLrTICIaN] and [prime_minjsterﬂ’om‘[cm of $CouNTRY

y !

|$Con‘m'f " president " $PoLrmcIaN | |prime_ ini
us. president barack _obama and prime_minister justin_trudeau of canada

" $PoLmican ” of " $Conm'|

Figure 4: Generating meta patterns by context-aware seg-
mentation with the pattern quality function Q(.).

frequencies of the pattern candidate and its super-patterns. If the ra-
tio is high, the candidate is likely to be incomplete. Moreover, we ex-
pect the meta pattern to be NOT bounded by stop words. For exam-
ple, neither “and $COUNTRY president” nor “president $POLITICIAN
and” is properly bounded. Note that completeness is different from
concordance: For example, in the concordance test, “$COUNTRY
president $POLITICIAN” cannot be divided into two sub-patterns
because “$POLITICIAN” is not a valid sub-pattern, but the complete-
ness features can tell that “$COUNTRY president $POLITICIAN” is
more complete than any of the sub-patterns “$COUNTRY president”
or “president $POLITICIAN".
5. Coverage: A good typed pattern can extract multiple instances.
For example, the type $POLITICIAN in the pattern “$POLITICIAN’s
healthcare law” refers to only one entity “Barack Obama”, and thus
has too low coverage in the corpus. The count of entities referred
to a type in the pattern is normalized by the size of the corpus.
We train a classifier based on random forests [6] for learning the
meta-pattern quality function Q(myp) with the above rich set of con-
textual features. Our experiments (not reported here for the sake of
space) show that using only 100 positive pattern labels can achieve
similar precision and recall as using 300 positive labels. Since the
number of pattern candidate is often much more than the number
of lables, we randomly pick a set of pattern candidates as negative
labels. The numbers of positive labels and negative labels are the
same. This part can be further improved by using ensemble learn-
ing for robust label selection [37]. Note that the learning results
can be transferred to other domains: For example, if we transfer
the learning model on news or tweets to the bio-medical corpus,
the features of low-quality patterns “$PoLITICIAN and $COUNTRY”
and “$BACTERIA and $ANTIBIOTICS” are similar; the features of

Table 1: Issues of quality over-/under-estimation can be fixed when the segmentation rectifies pattern frequency.

Before segmentation

Frequency rectified after segmentation

Pattern candidate Count Quality | Count Quality Issue fixed by feedback
$COUNTRY president $POLITICIAN 2,912 0.93 | 27785 0.97 N/A
prime_minister $POLITICIAN of $COUNTRY 1,285 0.84 | 1,223 0.92 slight underestimation
$POLITICIAN and prime _minister $POLITICIAN 532 0.70 94 0.23 overestimation

high-quality patterns “$POLITICIAN is president of $COUNTRY” and
“$BACTERIA is resistant to $ANTIBIOTICS” are similar.

In our practice, we find the random forests model is effective and
efficient. There could be space for improvement by adopting more
complicated learning models such as Conditional Random Field
(CRF) and Deep Neural Network (DNN) models. We would suggest
practitioners who use the above models to keep considering (1)
to use entity types in quality pattern classification and (2) to use
the rich set of features we have introduced as above to assess the
quality of meta patterns.

Context-aware segmentation using Q(.) with feedback. With the
pattern quality function Q(.) learnt from the rich set of contex-
tual features, we develop a bottom-up segmentation algorithm to
construct the best partition of segments of high quality scores. As
shown in Figure 4, we use Q(.) to determine the boundaries of the
segments: we take “$COUNTRY president $PoLITICIAN” for its high
quality score; we do not take the candidate “and prime_minister
$PoLITICIAN of $COUNTRY” because of its low quality score.

Since Q(mp) was learnt with features including the raw fre-
quency c(mp), the quality score may be overestimated or under-
estimated: the principle is that every token’s occurrence should
be assigned to only one pattern but the raw frequency may count
the tokens multiple times. Fortunately, after the segmentation, we
can rectify the frequency as c, (mp), for example in Figure 4, the
segmentation avoids counting “$POLITICIAN and prime_minister
$POLITICIAN” of overestimated frequency/quality (see Table 1).

Once the frequency feature is rectified, we re-learn the quality
function Q(.) using c(mp) as feedback and re-segment the corpus
with it. This can be an iterative process but we found in only one
iteration, the result converges. Algorithm 1 shows the details.

4.2 Grouping synonymous meta patterns

Grouping truly synonymous meta patterns enables a large collec-
tion of extractions of the same relation aggregated from different
but synonymous patterns. For example, there could be hundreds
of ways of expressing the relation country:president; if we group
all such meta patterns, we can aggregate all the extractions of this
relation from massive corpus. PATTY [28] has a narrow definition
of their synonymous dependency path-based SOL patterns: two pat-
terns are synonymous if they generate the same set of extractions
from the corpus. Here we develop a learning method to incorporate
information of three aspects, (1) entity/data types in the pattern,
(2) context words/phrases in the pattern, and (3) extractions from
the pattern, to assign the meta patterns into groups. Our method is
based on three assumptions as follows (see Figure 5):

A1: Synonymous meta patterns must have the same entity/data
types: the meta patterns “$PERSON’s age is $DIGIT” and “$PERSON’s
wife is $PERSON” cannot be synonymous;

Algorithm 1 Context-aware segmentation using Q with feedback

Require: corpus of sentences C=[..., S, ...], § = tyta...ty (f} is the
k-th token), a set of meta pattern candidates MP, 4, meta-
pattern quality function Q(.) learnt by contextual features

1: Set all the rectified frequency c,(mp) to zero
2 forSe Cdo
3 Segment the sentence § into Seg=[..., mp, ...] by maximiz-

ing ¥ mpeseg Q(mp) with a bottom-up scheme (see Figure 4),

where mp € MP, ;4,4 is a segment of high quality score
for mp € Seg do

cr(mp) « cr(mp) +1
end for
: end for
: Re-learn Q(.) by replacing the raw frequency feature c(mp)
with the rectified frequency ¢, (mp) as feedback
9: Re-segment the corpus C with the new Q(.)
10: return Segmented corpus, a set of quality meta patterns in the
segmented corpus, and their quality scores in Q(.)

LA U

president

SCouNTRY president SPOLITICIAN " (United States, Barack Obama)

president SPoLrmician of SCouNTRY </
(United States, Bill Clinton)

(Barack Obama, 55}

$PersoN, SDiIGIT, {Justin Trudeau, 43)

$PersoN’s age is $DicIT ase
word2vec similarity

$PERSON, a $D1GIT -year-old year-old

Figure 5: Grouping synonymous meta patterns with infor-
mation of context words and extractions.

A2: If two meta patterns share (nearly) the same context words/phrases,

they are more likely to be synonymous: the patterns “$COUNTRY
president $POLITICIAN” and “president $PoLITICIAN of $COUNTRY”
share the word “president™;

A3: If two patterns generate more common extractions, they are
more likely to be synonymous: both “$PERSON’s age is $D1GIT” and
“$PERSON, $DIGIT,” generate (Barack Obama, 55).

Since the number of groups cannot be pre-specified, we propose
to first construct a pattern-pattern graph in which the two pattern
nodes of every edge satisfy Al and are predicted to be synonymous,
and then use a dense §-clique detection technique to find all dense
cliques as synonymous meta patten groups. We set up the density
6 = 0.8 as the common density clique detection technique does
[17]. The density threshold could be derived and automatically set
based on the principle of Minimum Description Length (MDL) [18].
Here each pair of the patterns (mp;, mp;) in the group MPG =
[....mpi,...,mpj...] are synonymous.

President| $PERSON Jof | $LocaTion | [SPERsON | °s age is SDicT
4[[$LoCATION |’s president | SPERSON | «[[spERSON] ,$DiGrT |
$LocaTioN | president | SPERsON | [SPErson | , a SDiciT -year-old

<< L O
® 009

= SLOCATION E$COUNTRY WSPOLITICIAN @mSPERSON & $ATTACKEER » $ARTIST
B SETHNICITY $CITY SARTIST $ATHLETE w $POLITICIAN m $VICTDM
A L

Figure 6: Adjusting entity-type levels for appropriate gran-
ularity with entity-type distributions.

For the graph construction, we train Support Vector Regression
(SVR) to learn the following features of a pair of patterns based on
A2 and A3: (1) the numbers of words, non-stop words, phrases that
each pattern has and they share; (2) the maximum similarity score
between pairs of non-stop words or phrases in the two patterns;
(3) the number of extractions that each pattern has and they share.
The similarity between words/phrases is represented by the cosine
similarity of their word2vec embeddings [24, 38]. The regression
results provide us a scores of mixed similarities for each pair of
patter nodes.

4.3 Adjusting type levels for preciseness

Given a group of synonymous meta patterns, we expect the patterns
to be precise: it is desired to determine the levels of the entity
types in the patterns for appropriate granularity. Thanks to the
grouping process of synonymous meta patterns, we have rich type
distributions of the entities from the large collection of extractions.
As shown in Figure 6, given the ontology of entity types (e.g.,
$LocATION: $COUNTRY, $STATE, $CITY, ...; $PERSON: $ARTIST,
$ATHLETE, $POLITICIAN, ...), for the group of synonymous meta
patterns “president $PERSON of $LoCATION, “$LOCATION’s presi-
dent $PERSON”, and “$LOCATION president $PERSON”, are the entity
types, $LocaTioN and $PERSON, of appropriate granularity to make
the patterns precise? If we look at the type distributions of entities
in the extractions of these patterns, it is clear that most of the entities
for $LOCATION are typed at a fine-grained level as $COUNTRY (e.g.,
“United States”) or $ETHNICITY (e.g., "Russian”), and most of the
entities for $PERSON also have the fine-grained type $PoLITICIAN.
Therefore, compared with “$LocATION president $PERSON”, the two
fine-grained meta patterns “$COUNTRY president $POLITICIAN" and
“$ETHNICITY president $POLITICIAN” are more precise; we have the
same claim for other meta patterns in the synonymous group. On
the other hand, for the group of synonymous meta patterns on
person:age, we can see most of the entities are typed at a coarse-
grained level as $PERSON instead of $ATHLETE or $POLITICIAN. So
the entity type in the patterns is good to be $PERsON. From this
observation, given an entity type T in the meta pattern group, we
propose a metric, called graininess, that is defined as the fraction of
the entities typed by T that can be fine-grained to T’s sub-types:

ZT’Esubtgpe_of(T)"um—e"ﬁty{T’)

g(T) = — .
2 Tresubtype_of (T)u{T}num_entity(T")

&)

Table 2: Two datasets we use in the experiments.

Dataset File Size #Document #Entity #Entity Mention
APR (news) 199MB 62,146 284,061 6,732,399
TWT (tweet) 1.05GB 13,200,821 618,459 21,412,381

If g(T) is higher than a threshold 8, we go down the type ontology
for the fine-grained types.

Suppose we have determined the appropriate type level in the
meta pattern group using the graininess metric. However, not
every type at the level should be used to construct precise meta
patterns. For example, we can see from Figure 6 for the patterns
on president, very few entities of $LOCATION are typed as $CITY,
and very few entities of $PERSON are typed as $ARTIST. Comparing
with $CounTRY, $ETHNICITY, and $POLITICIAN, these fine-grained
types are at the same level but have too small support of extractions.
We exclude them from the meta pattern group. Based on this idea,
for an entity type T, we propose another metric, called support, that
is defined as the ratio of the number of entities typed by T to the
maximum number of entities typed by T’s sibling types:

num_entity(T)
Maxy esibling—type_of (T)u(T)num_entity(T”)’
If 5(T) is higher than a threshold y, we consider the type T in the

meta pattern group; otherwise, we drop it.
With these two metrics, we develop a top-down scheme that first

s(T) = O

conducts segmentation and synonymous pattern grouping on the
coarse-grained typed meta patterns, and then checks if the fine-
grained types are significant and if the patterns can be split to the
fine-grained level; we also develop a bottom-down scheme that first
works on the fine-grained typed meta patterns, and then checks if
the patterns can be merged into a coarse-grained level.

4.4 Complexity analysis

We develop three new components in our MetaPAD. The time com-
plexity of generating meta patterns with context-aware segmenta-
tion is O(w|C|) where w is the maximum pattern length and |C]| is
the corpus size (i.e., the total number of tokens in the corpus). The
complexity of grouping synonymous meta patterns is O(|MP|),
and the complexity of adjusting type levels is O(h|MP|) where
|MP| is the number of quality meta patterns and h is the height
of type ontology. The total complexity is O(w|C| + (h + 1)|MP)),
which is linear in the corpus size.

PATTY [28] is also scalable in the number of sentences but for
each sentence, the complexity of dependency parsing it adopted is
as high as O(n®) where n is the length of the sentence. If the corpus
has many long sentences, PATTY is time-consuming; whereas our
MetaPAD’s complexity is linear to the sentence length for every
individual sentence. The empirical study on the scalability can be
found in the next section.

5 EXPERIMENTS

This section reports our essential experiments that demonstrate the
effectiveness of the MetaPAD at (1) typed textual pattern mining:
discovering synonymous groups of meta patterns, and (2) one appli-
cation: extracting tuple information from two datasets of different
genres. Additional results regarding efficiency are reported as well.

Table 3: Entity-Attribute-Value tuples as ground truth.

Attribute Type of Entity Type of Value #Tuple
country:president $CoOUNTRY $POLITICIAN 1,170
country:minister $CoOUNTRY $POLITICIAN 1,047
state:representative $STATE $POLITICIAN 655
state:senator $STATE $POLITICIAN 610
county:sheriff $CounNTY $POLITICIAN 106
company:ceo $CompaNy $BUSINESSPERSON 1,052
university:professor $UNIVERSITY $RESEARCHER 707
award:winner $AWARD $PERSON 274

5.1 Datasets
Table 2 presents the statistics of two datasets from different genres:

e APR: news from The Associated Press and Reuters in 2015;
o TWT: tweets collected via Twitter API in 2015/06—2015/09.

The news corpus often has long sentences, which is rather chal-
lenging for textual pattern mining. For example, the component
of dependency parsing in PATTY [28] has cubic computational
complexity of the length for individual sentences.

The preprocessing techniques in our MetaPAD adopt distant
supervision with external databases for entity recognition and fine-
grained typing (see Sec. 3.1). We use DBpedia [3] and Freebase [5]
as knowledge bases for distant supervision.

5.2 Experimental Settings

We conduct two tasks in the experiments. The first task is to discover
typed textual patterns from massive corpora and organize the patterns
into synonymous groups. We compare with the state-of-the-art SOL
pattern synset mining method PATTY [28] on both the quality of
patterns and the quality of synonymous pattern groups. Since there
is no standard ground truth of the typed textual patterns, we report
extensive qualitative analysis on the three datasets.

The second task is to extract {entity, attribute, value) (EAV) tuple
information. For every synonymous pattern set generated by the
competitive methods from news and tweets, we assign it to one
atiribute type from the set in Table 3 if appropriate. We collect
5,621 EAV-tuples from the extractions, label them as true or false,
and finally, we have 3,345 true EAV-tuples. We have 2,400 true
EAV-tuples from APR and 2,090 from TWT. Most of them are out
of the existing knowledge bases: we are exploring new extractions
from new text corpora.

We evaluate the performance in terms of precision and recall.
Precision is defined as the fraction of the predicted EAV-tuples
that are true. Recall is defined as the fraction of the labelled true
EAV-tuples that are predicted as true EAV-tuples. We use (1) the
F1 score that is the harmonic mean of precision and recall, and (2)
the Area Under the precision-recall Curve (AUC). All the values
are between 0 and 1, and a higher value means better performance.

In the second task, besides PATTY, the competitive methods for
tuple extraction are: Ollie [36] is an open IE system that extracts
relational tuples with syntactic and lexical patterns; ReNoun [40]
learns “S-A-O” patterns such as “S A, O,” and “A of § is O” with an-
notated corpus. Both methods ignore the entity-typing information.
We develop four alternatives of MetaPAD as follows:

1. MetaPAD-T only develops segmentation to generate patterns
in which the entity types are at the top (coarse-grained) level;

2. MetaPAD-TS develops all the three components of MetaPAD
including synonymous pattern grouping based on MetaPAD-T;
3. MetaPAD-B only develops segmentation to generate patterns
in which the entity types are at the bottom (fine-grained) level;
4, MetaPAD-BS develops all the three components of MetaPAD
including synonymous pattern grouping based on MetaPAD-B.
For the parameters in MetaPAD, we set the maximum pattern
length as @ = 20, the threshold of graininess score as # = 0.8, and
the threshold of support score as y = 0.1. We tuned the parameters
to achieve the best performance. We would like to point out that it
would be more effective to automatically find the best parameters
by statitical analysis on the corpus distribution.

5.3 Results on Typed Textual Pattern Discovery

Our proposed MetaPAD discovers high-quality meta patterns by
context-aware segmentation from massive text corpus with a pat-
tern quality assessment function. It further organizes them into
synonymous groups. With each group of the truly synonymous
meta patterns, we can easily assign an appropriate attribute type to
it, and harvest a large collection of instances extracted by different
patterns of the same group.

Table 4 presents the groups of synonymous meta patterns that
express attribute types country:president and company:ceo. First,
we can see that the meta patterns are generated from a typed cor-
pus instead of the shortest path of a dependency parse tree. Thus,
the patterns can keep rich, wide context information. Second, the
meta patterns are of high quality on informativeness, completeness,
and so on, and practitioners can easily tell why the patterns are
extracted as an integral semantic unit. Third, though the patterns
like “$POLITICIAN was elected as the president of $COUNTRY” are rel-
atively long and rare, they can be grouped with their synonymous
patterns so that all the extractions about one entity-attribute type
can be aggregated into one set. That is why MetaPAD successfully
discovers who is/was the president of a small country like Burkina
Faso or the ceo of a young company like Afghan Citadel. Fourth,
MetaPAD discovered a rich collection of person:date_of_birth infor-
mation from the new corpus that does not often exist in the knowledge
bases, thanks to our meta patterns use not only entity types but
also data types like $MoNTH $DAY $YEAR.

Figure 7 shows the SOL pattern synsets that PATTY generates
from the four sentences. First, the dependency path loses the rich
context around the entities like “president” in the first example and
“ceo” in the last example. Second, the SOL pattern synset cannot
group truly synonymous typed textual patterns. We can see the
advantages of generating meta patterns and grouping them into
synonymous clusters. In the introduction section we also show our
MetaPAD can find meta patterns of rich data types for the attribute
types like person:age and person:date_of_birth.

5.4 Results on EAV-Tuple Extraction

Besides directly comparisons on the quality of mining synonymous
typed textual patterns, we apply patterns from different systems,
Ollie [36], ReNoun [40], and PATTY [28], to extract tuple informa-
tion from the two general corpora APR (news) and TWT (tweets).
We attempt to provide quantitative analysis on the use of the typed
textual patterns by evaluating how well they can facilitate the tuple

Table 4: Synonymous meta patterns and their extractions that MetaPAD generates from the news corpus APR on coun-

try:president, company:ceo, and person:date_of_birth.

A group of synonymous meta patterns $CoUNTRY $POLITICIAN
$CounTRyY president $PoLITICIAN United States Barack Obama
$CounTRY’s president $PoLITICIAN United States Bill Clinton
president $PorrTiciaN of $COUNTRY Russia Vladimir Putin
$PovriTic1AN, the president of $CounTRy, France Francois Hollande
president $PorrTICIAN’S government of $CouNTRY Comoros Ikililou Dhoinine
$PoriTicIAN Was elected as the president of $CounTRY Burkina Faso Blaise Compaoré
A group of synonymous meta patterns $CompANY $BUSINESSPERSON
$ComPANY ceo $BUSINESSPERSON Apple Tim Cook
$ComPANY chief executive $BUSINESSPERSON Facebook Mark Zuckerburg
$BusINESSPERSON, the $CoMPANY ceo, Hewlett-Packard Carly Fiorina
$CompANY former ceo $BUSINESSPERSON Yahoo! Marissa Mayer
$BUSINESSPERSON was appointed as ceo of $Company Infor Charles Phillips
$BusINESSPERSON, former interim ceo, leaves $Company || Afghan Citadel Roya Mahboob
A group of synonymous meta patterns $PERSON $Day $MoNTH $YEAR
$PERsoN was born $MonNTH $DAY, $YEAR Willie Howard Mays 6 May 1931
$PErsoN was born on $Day $MoNTH $YEAR Robert David Simon 29 May 1941
$PERsON (born on $MoNTH $DAY, $YEAR) Phillip Joel Hughes 30 Nov 1988
$PERsON (born on $Day $MoNTH $YEAR)
$PERsON, was born on $MonNTH $DAY, $YEAR Carl Sessions Stepp 8 Sept 1956
Richard von Weizsaecker 15 April 1920

Stanford dependency parsing

shortestpath pATTY’s SOL pattern synsets

Mf/_[mbcompou nd:

%t po3) \ﬂjﬁmd%\m Synset #1:

Burkma Faso | $POLITICIAN government $SCOUNTRY |

presndent Blaise Compaore 's govemment of
—nsubjpass
Mcnmpmndw m.-:uxpun [N wac\ IN Mcnmpmnd
Barack Obama was elected as the presldent of United

mep"""dw/—nsuwﬁ::’%/— ?:F*ﬂ‘m
Charles Phillips was appolnted as CEO of

Synset #2:
States | $POLITICIAN elected president $COUNTRY |

nmad
*m;\"ﬁm Synset #3:

Infor | $BUSINESSPERSON appointed ceo SCOMPANY |

J a
.:umpucuun:ln.mf_tA2 amo‘M /GDDJ*@ Synset #4:

Ross Levinsohn , former interim

Ieaves Yahoo! |$BL'SIN‘E.SSPE.RSO\Ilea\'eS SCompANY |

Figure 7: Compared with our meta patterns, the SOL pattern mining does not take the rich context into full consideration of
pattern quality assessment; the definition of SOL pattern synset is too limited to group truly synonymous patterns.

Table 5: Reporting F1, AUC, and number of true positives
(TP) on tuple extraction from news and tweets data.

APR (news, 199MB) TWT (tweets, 1.05GB)

F1 AUC TP F1 AUC TP
Ollie [36] 0.0353 0.0133 288 | 0.0094 0.0012 115
ReNoun [40] 0.1309 0.0900 562 | 0.0821 0.0347 698
PATTY [28] 0.3085 0.2497 860 | 0.2029 0.1256 860
MetaPAD-T 0.3614 0.2843 799 | 03621 0.2641 880
MetaPAD-TS | 04156 03269 1,355 | 0.4153 0.3554 1,111
MetaPAD-B 0.3684 03186 787 | 03228 0.2704 650
MetaPAD-BS | 0.4236 0.3525 1,040 | 03827 0.3408 975

extraction which is similar with one of the most challenging NLP
tasks called slot filling for new attributes [16].

Table 5 summarizes comparison results on tuple information
that each texutal pattern-driven system extracts from news and

=« Ollie ==ReNoun - PATTY MetaPAD-TS —MetaPAD-BS
1 1
038 08
§ 06 | | ﬁ 06
|\ o
02 02 | K
o N, o S— o \.._,__, """"""
0 02 04 06 0 02 04 06
Recall Recall

(a) APR (news, 199MB) (b) TWT (tweets, 1.05GB)
Figure 8: Precision-recall on tuple information extraction.

tweet datasets. Figure 8 presents precision-recall curves that fur-
ther demonstrate the effectiveness of our MetaPAD methods. We
provide our observation and analysis as follows.

1) Overall, our MetaPAD-TS and MetaPAD-BS outperform the base-
line methods, achieving significant improvement on both datasets

country:president country:nmmster state'representative

statezsenator

county:shenff

Sn

Ty

=1

am

_B E

Fl:

]

i

ARRRN

|

ESt

=r
S

B[]]|]]]

:

i

E i

B Ollie BPATTY

MetaPAD-TS B MetaPAD-BS

Figure 9: Performance comparisons on concrete attribute types in terms of F1 score and number of true positives.

(e.g., relatively 37.3% and 41.2% on F1 and AUC in the APR data).
MetaPAD achieves 0.38-0.42 F1 score on discovering the EAV-tuples
of new attributes like country:president and company:ceo. In the
TAC KBP competition, the best F1 score of extracting values of
traditional attributes like person:parent is only 0.3430 [16]. Meta-
PAD can achieve reasonable performance when working on the
new attributes. MetaPAD also discovers the largest number of true
tuples: on both datasets we discover more than a half of the labelled
EAV-tuples (1,355/2,400 from APR and 1,111/2,090 from TWT).

2) The best of MetaPAD-T and MetaPAD-B that only segment but
do not group meta patterns can outperform PATTY relatively by
19.4% (APR) and 78.5% (TWT) on F1 and by 27.6% (APR) and 115.3%
(TWT) on AUC. Ollie parses individual sentences for relational
tuples in which the relational phrases are often verbal expressions.
So Ollie can hardly find exact attribute names from words or phrases
of the relational phrases. ReNoun’s 5-A-O patterns like “S’s A O”
require human annotations, use too general symbols, and bring too
much noise in the extractions. PATTY’s SOL patterns use entity
types but ignore rich context around the entities and only keep the
short dependency path. Our meta patten mining has context-aware
segmentation with pattern quality assessment, which generates
high-quality typed textual patterns from the rich context.

3) In MetaPAD-TS and MetaPAD-BS, we develop the modules of
grouping synonymous patterns and adjusting the entity types for
appropriate granularity. They improve the F1 score by 14.8% and
16.8% over MetaPAD-T and MetaPAD-B, respectively. We can see
the number of true positives is significantly improved by aggregat-
ing extractions from different but synonymous meta patterns.

4) On the tweet data, most of the person, location, and organiza-
tion entities are NOT able to be typed at a fine-grained level. So
MetaPAD-T(S) works better than MetaPAD-B(S). The news data
include a large number of entities of fine-grained types like the
presidents and CEOs. So MetaPAD-B(S) works better.

Figure 9 shows the performance on different attribute types on
APR. MetaPAD outperforms all the other methods on each type.
When there are many ways (patterns) of expressing the attributes,
such as country:president, company:ceo, and award:winner, Meta-
PAD gains more aggregated extractions from grouping the syn-
onymous meta patterns. Our MetaPAD can generate more in-
formative and complete patterns than PATTY’s SOL patterns: for
staterepresentative, state:senator, and county:sheriff that may not
have many patterns, MetaPAD does not improve the performance
much but it still works better than the baselines.

In our study, we find false EAV-tuple cases from quality meta
patterns because the patterns are of high quality but not consistently
reliable on specific attributes. For example, “president $PRESIDENT

Table 6: Efficiency: time complexity is linear in corpus size.

APR (news) TWT (tweets)

File Size 199 MB 1.05 GB
#Meta Pattern 19,034 156,338
Time Cost 29 min 117 min

spoke to $COUNTRY people” is a quality pattern but it is only highly
reliable to extract who-spoke-to-whom relations but less reliable to
claim the person is the country’s president. We can often see correct
cases like (American, president, Barack Obama) from “President
Barack Obama spoke to American people” but we can also find false
cases like (Iraqi, president, Jimmy Carter) from “President Jimmy
Carter spoke to Iraqi people”. We would suggest to use either truth
finding models or more syntatic and lexical features to find the
trustworthy tuples in the future.

5.5 Results on Efficiency

The execution time experiments were all conducted on a machine
with 20 cores of Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz. Our
framework is implemented in C++ for meta-pattern segmentation
and in Python for grouping synonymous meta patterns and adjust-
ing type levels. We set up 10 threads for MetaPAD as well as all
baseline methods. Table 6 presents the efficiency performance of
MetaPAD on the datasets: both the number of meta patterns and
time complexity are linear to the corpus size. Specifically, for the
31G tweet data, MetaPAD takes less than 2 hours, while PATTY
that requires Stanford parser takes 7.3 hours, and Ollie takes 28.4
hours. Note that for the smaller news data that have many long
sentences, PATTY takes even more time, 10.1 hours.

6 CONCLUSIONS

In this work, we proposed a novel typed textual pattern structure,
called meta pattern, which is extened to a frequent, complete, infor-
mative, and precise subsequence pattern in certain context, com-
pared with the SOL pattern. We developed an efficient framework,
MetaPAD, to discover the meta patterns from massive corpora
with three techniques, including (1) a context-aware segmentation
method to carefully determine the boundaries of the patterns with
a learnt pattern quality assessment function, which avoids costly
dependency parsing and generates high-quality patterns, (2) a clus-
tering method to group synonymous meta patterns with integrated
information of types, context, and instances, and (3) top-down
and bottom-up schemes to adjust the levels of entity types in the
meta patterns by examining the type distributions of entities in the

instances. Experiments demonstrated that MetaPAD efficiently dis-
covered a large collection of high-quality typed textual patterns to
facilitate challenging NLP tasks like tuple information extraction.

7 ACKNOWLEDGEMENTS

Research was sponsored in part by the U.S. Army Research Lab. un-
der Cooperative Agreement No. W911NF-09-2-0053 (NSCTA), Na-
tional Science Foundation IIS-1320617 and IIS 16-18481, and grant
1U54GM 114838 awarded by NIGMS through funds provided by the

trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov).

Research was sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number W911NF-
09-2-0053 (the ARL Network Science CTA). The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation here on.

This research was supported by grant 1U54GM 114838 awarded
by NIGMS through funds provided by the trans-NIH Big Data to
Knowledge (BD2K) initiative (www.bd2k.nih.gov).

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns.
In ICDE. 3-14.

[2] Gabor Angeli, Melvin Johnson Premkumar, and Christopher D Manning. 2015.
Leveraging linguistic structure for open domain information extraction. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguis-
tics (ACL 2015).

[3] Siren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganial,
and Zachary Ives. 2007. Dbpedia: a nucleus for a web of open data. In The
semantic web. 722-735.

[4] Michele Banko, Michael] Cafarella, Stephen Soderland, Matthew Broadhead,
and Oren Etzioni. 2007. Open information extraction from the web.. In IFCAI
Vol. 7. 2670-2676.

[5] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.
2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In SIGMOD. 1247-1250.

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5-32.

[7] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-
uschka Jr, and Tom M Mitchell. 2010. Toward an architecture for never-ending
language learning. In AAA[Vol. 5. 3.

[8] Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014. Aspect extraction with
automated prior knowledge learning. In ACL.

[9] Marie-Catherine De Marneffe, Bill MacCartney, Christopher D Manning, and
others. 2006. Generating typed dependency parses from phrase structure parses.
In Proceedings of LREC, Vol. 6. Genoa, 449-454.

[10] Anthony Fader, Stephen Soderland, and Oren Etzioni. 2011. Identifying relations
for open information extraction. In EMNLP. 1535-1545.

[11] Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema, and Andrew Fano. 2006.
Text mining for product attribute extraction. SIGKDD Explorations 8, 1 (2006),
41-48.

[12] Rahul Gupta, Alon Halevy, Xuezhi Wang, Steven Euijong Whang, and Fei Wu.
2014. Biperpedia: an ontology for search applications. PVLDB 7, 7 (2014),
505-516.

[13] Alon Halevy, Natalya Noy, Sunita Sarawagi, Steven Euijong Whang, and Xiao Yu.
2016. Discovering structure in the universe of attribute names. In Proceedings of
the 25th International Conference on World Wide Web. International World Wide
Web Conferences Steering Committee, 939-949.

[14] Marti A Hearst. 1992. Automatic acquisition of hyponyms from large text
corpora. In Proceedings of the 14th conference on Computational linguistics-Volume
2. Association for Computational Linguistics, 539-545.

[15] Minging Hu and Bing Liu. 2004. Mining and summarizing customer reviews.
In Proceedings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 168-177.

[16] Heng Ji, Ralph Grishman, Hoa Trang Dang, Kira Griffitt, and Joe Ellis. 2010.
Overview of the TAC 2010 knowledge base population track. In Third Text Anal-
ysis Conference (TAC), Vol. 3. 3-3.

[17]

[18]

[19]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shigiang Yang. 2016.
Inferring lockstep behavior from connectivity pattern in large graphs. Knowledge
and Information Systems 48, 2 (2016), 399-428.

Meng Jiang, Christos Faloutsos, and Jiawei Han. 2016. CatchTartan: Representing
and Summarizing Dynamic Multicontextual Behaviors. In Proceedings of the 22rd
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM.

Anitha Kannan, Inmar E Givoni, Rakesh Agrawal, and Ariel Fuxman. 2011.
Matching unstructured product offers to structured product specifications. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 404-412.

Xiao Ling and Daniel S Weld. 2012. Fine-grained entity recognition. In AAAL
Jialu Liu, Jingbo Shang, Chi Wang, Xiang Ren, and Jiawei Han. 2015. Mining qual-
ity phrases from massive text corpora. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. ACM, 1729-1744.
Christopher D Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. 2014. The stanford corenlp natural language
processing toolkit.. In ACL (System Demonstrations). 55-60.

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online large-
margin training of dependency parsers. In Proceedings of the 43rd annual meeting
on association for computational linguistics. Association for Computational Lin-
guistics, 91-98.

Tomas Mikolov, llya Sutskever, Kai Chen, Greg 5 Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111-3119.

Thahir P Mohamed, Estevam R Hruschka Jr, and Tom M Mitchell. 2011. Dis-
covering relations between noun categories. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 1447-1455.

David Nadeau and Satoshi Sekine. 2007. A survey of named entity recognition
and classification. Lingvisticae Investigationes 30, 1 (2007), 3-26.

Ndapandula Nakashole, Tomasz Tylenda, and Gerhard Weikum. 2013. Fine-
grained semantic typing of emerging entities. In ACL. 1488-1497.

Ndapandula Nakashole, Gerhard Weikum, and Fabian Suchanek. 2012. PATTY:
a taxonomy of relational patterns with semantic types. In EMNLP. 1135-1145.
Vivi Nastase, Michael Strube, Benjamin Bérschinger, Cécilia Zirn, and Anas
Elghafari. 2010. WikiNet: a very large scale multi-lingual concept network. In
LREC.

Marius Pasca and Benjamin Van Durme. 2008. Weakly-supervised acquisition of
open-domain classes and class attributes from web documents and query logs..
In ACL. 19-27.

Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Jianyong Wang, Helen Pinto, Qiming
Chen, Umeshwar Dayal, and Mei-Chun Hsu. 2004. Mining sequential patterns
by pattern-growth: The prefixspan approach. TKDE 16, 11 (2004), 1424-1440.
Katharina Probst, Rayid Ghani, Marko Krema, Andrew Fano, and Yan Liu. 2007.
Semififftsupervised learning of attributefifftvalue pairs from product descriptions.
In AAAL

Sujith Ravi and Marius Pagca. 2008. Using structured text for large-scale at-
tribute extraction. In Proceedings of the 17th ACM conference on Information and
knowledge management. ACM, 1183-1192.

Xiang Ren, Ahmed El-Kishky, Chi Wang, Fangbo Tao, Clare R Voss, and Jiawei
Han. 2015. Clustype: Effective entity recognition and typing by relation phrase-
based clustering. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM, 995-1004.

Xiang Ren, Wenqi He, Meng Qu, Clare R Voss, Heng Ji, and Jiawei Han. 2016.
Label noise reduction in entity typing by heterogeneous partial-label embedding.
In KDD.

Michael Schmitz, Robert Bart, Stephen Soderland, Oren Etzioni, and others.
2012. Open language learning for information extraction. In Proceedings of
the 2012 joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. Association for Computational
Linguistics, 523-534.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren, Clare R Voss, and Jiawei Han.
2017. Automated Phrase Mining from Massive Text Corpora. arXiv preprint
arXiv:1702.04457 (2017).

Kristina Toutanova, Dangi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choud-
hury, and Michael Gamon. 2015. Representing Text for Joint Embedding of Text
and Knowledge Bases.. In EMNLF, Vol. 15. 1499-1509.

Fei Wu and Daniel S Weld. 2010. Open information extraction using Wikipedia.
In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 118-127.

Mohamed Yahya, Steven Whang, Rahul Gupta, and Alon Y Halevy. 2014. ReNoun:
fact extraction for nominal attributes. In EMNLP. 325-335.

Dian Yu and Heng Ji. 2016. Unsupervised person slot filling based on graph
mining. In ACL.

Ning Zhong, Yuefeng Li, and Sheng-Tang Wu. 2012. Effective pattern discovery
for text mining. IEEE transactions on knowledge and data engineering 24, 1 (2012),
30-44.

