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Abstract. Computing optimal transport distances such as the earth
mover’s distance is a fundamental problem in machine learning, statis-
tics, and computer vision. Despite the recent introduction of several
algorithms with good empirical performance, it is unknown whether
general optimal transport distances can be approximated in near-linear
time. This paper demonstrates that this ambitious goal is in fact achieved
by Cuturi’s Sinkhorn Distances. This result relies on a new analysis
of Sinkhorn iteration, which also directly suggests a new greedy co-
ordinate descent algorithm, GREENKHORN, with the same theoretical
guarantees. Numerical simulations illustrate that GREENKHORN signif-
icantly outperforms the classical SINKHORN algorithm in practice.

1. INTRODUCTION

Computing distances between probability measures on metric spaces, or more
generally between point clouds, plays an increasingly preponderant role in ma-
chine learning [SL11, MJ15, LG15, JSCG16, ACB17], statistics [FCCR16, PZ16,
SR04, BGKL17] and computer vision [RTG00, BvdPPH11, SAGP*15]. A promi-
nent example of such distances is the earth mover’s distance introduced in [WPR85]
(see also [RTGO00]), which is a special case of Wasserstein distance, or optimal
transport (OT) distance [Vil09].

While OT distances exhibit a unique ability to capture geometric features of
the objects at hand, they suffer from a heavy computational cost that had been
prohibitive in large scale applications until the recent introduction to the ma-
chine learning community of Sinkhorn Distances by Cuturi [Cut13]. Combined
with other numerical tricks, these recent advances have enabled the treatment
of large point clouds in computer graphics such as triangle meshes [SAGP*15]
and high-resolution neuroimaging data [GPC15]. Sinkhorn Distances rely on the
idea of entropic penalization, which has been implemented in similar problems
at least since Schrodinger [Sch31, Leol4]. This powerful idea has been success-
fully applied to a variety of contexts not only as a statistical tool for model
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selection [JRT08, RT11, RT12] and online learning [CBLO06], but also as an opti-
mization gadget in first-order optimization methods such as mirror descent and
proximal methods [Bub15].

Related work. Computing an OT distance amounts to solving the following

linear system:

(1) Prgé{r:ﬁ(P, ), U ={PeR> : Pl=r,P'1=c},

where 1 is the all-ones vector in IR", C' € IR}*" is a given cost matriz, and
r € IR, c € R™ are given vectors with positive entries that sum to one. Typically
C'is a matrix containing pairwise distances (and is thus dense), but in this paper
we allow C' to be an arbitrary non-negative dense matrix with bounded entries
since our results are more general. For brevity, this paper focuses on square
matrices C' and P, since extensions to the rectangular case are straightforward.

This paper is at the intersection of two lines of research: a theoretical one that
aims at finding (near) linear time approximation algorithms for simple problems
that are already known to run in polynomial time and a practical one that pursues
fast algorithms for solving optimal transport approximately for large datasets.

Noticing that (1) is a linear program with O(n) linear constraints and cer-
tain graphical structure, one can use the recent Lee-Sidford linear solver to
find a solution in time O(n?®) [LS14], improving over the previous standard of
O(n3?) [Ren88]. While no practical implementation of the Lee-Sidford algorithm
is known, it provides a theoretical benchmark for our methods. Their result is part
of a long line of work initiated by the seminal paper of Spielman and Teng [ST04]
on solving linear systems of equations, which has provided a building block for
near-linear time approximation algorithms in a variety of combinatorially struc-
tured linear problems. A separate line of work has focused on obtaining faster
algorithms for (1) by imposing additional assumptions. For instance, [AS14] ob-
tain approximations to (1) when the cost matrix C' arises from a metric, but their
running times are not truly near-linear. [SA12, ANOY14] develop even faster al-
gorithms for (1), but require C' to arise from a low-dimensional ¢, metric.

Practical algorithms for computing OT distances include Orlin’s algorithm for
the Uncapacitated Minimum Cost Flow problem via a standard reduction. Like in-
terior point methods, it has a provable complexity of O(n?logn). This dependence
on the dimension is also observed in practice, thereby preventing large-scale appli-
cations. To overcome the limitations of such general solvers, various ideas ranging
from graph sparsification [PW09] to metric embedding [IT03, GD04, SJO8] have
been proposed over the years to deal with particular cases of OT distance.

Our work complements both lines of work, theoretical and practical, by pro-
viding the first near-linear time guarantee to approximate (1) for general non-
negative cost matrices. Moreover we show that this performance is achieved by
algorithms that are also very efficient in practice. Central to our contribution
are recent developments of scalable methods for general OT that leverage the
idea of entropic regularization [Cut13, BCC*15, GCPB16]. However, the appar-
ent practical efficacy of these approaches came without theoretical guarantees.
In particular, showing that this regularization yields an algorithm to compute or
approximate general OT distances in time nearly linear in the input size n? was
an open question before this work.
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Our contribution. The contribution of this paper is twofold. First we demon-
strate that, with an appropriate choice of parameters, the algorithm for Sinkhorn
Distances introduced in [Cutl3] is in fact a near-linear time approximation al-
gorithm for computing OT distances between discrete measures. This is the first
proof that such near-linear time results are achievable for optimal transport. We
also provide previously unavailable guidance for parameter tuning in this algo-
rithm. Core to our work is a new and arguably more natural analysis of the
Sinkhorn iteration algorithm, which we show converges in a number of iterations
independent of the dimension n of the matrix to balance. In particular, this anal-
ysis directly suggests a greedy variant of Sinkhorn iteration that also provably
runs in near-linear time and significantly outperforms the classical algorithm in
practice. Finally, while most approximation algorithms output an approximation
of the optimum wvalue of the linear program (1), we also describe a simple, par-
allelizable rounding algorithm that provably outputs a feasible solution to (1).
Specifically, for any € > 0 and bounded, non-negative cost matrix C, we describe
an algorithm that runs in time O(n?/e?) and outputs P € U, . such that

(P,C) < min (P,C) +¢
Pl
We emphasize that our analysis does not require the cost matrix C' to come from
an underlying metric; we only require C' to be non-negative. This implies that
our results also give, for example, near-linear time approximation algorithms for
Wasserstein p-distances between discrete measures.

Notation. We denote non-negative real numbers by R4, the set of integers
{1,...,n} by [n], and the n-dimensional simplex by A,, := {z e R} : > " x; =
1}. For two probability distributions p, ¢ € A,, such that p is absolutely continuous
w.r.t. ¢, we define the entropy H(p) of p and the Kullback-Leibler divergence
K(p|lg) between p and ¢ respectively by

H(p) = izn;pi log (;) . Klg) = Zzn;pi log <Z> .

Similarly, for a matrix P € IR*", we define the entropy H(P) entrywise as
Zij P;jlog % We use 1 and 0 to denote the all-ones and all-zeroes vectors in
ij

IR". For a matrix A = (4;;), we denote by exp(A) the matrix with entries (eis).
For A € IR™™", we denote its row and columns sums by r(A) := A1 € R” and
c(A) := AT1 € R™, respectively. The coordinates r;(A) and ¢;(A) denote the ith
row sum and jth column sum of A, respectively. We write ||Al|cc = max;; |4
and [|Allx = >_;;|Ai;]. For two matrices of the same dimension, we denote the
Frobenius inner product of A and B by (A, B) = >_,. A;; B;;. For a vector x € R",
we write D(z) € R™ ™ to denote the diagonal matrix with entries (D(z))i; = ;.
For any two nonnegative sequences (ty, )n, (Un )n, we write u, = O(vy) if there exist
positive constants C, ¢ such that u,, < Cv,(logn)¢. For any two real numbers, we
write a A b = min(a, b).

2. OPTIMAL TRANSPORT IN NEAR-LINEAR TIME

In this section, we describe the main algorithm studied in this paper. Pseu-
docode appears in Algorithm 1.



The core of our algorithm is the com-
putation of an approzimate Sinkhorn Algorithm 1 ApPROXOT(C, 7, c, )
projection of the matrix A = exp(—nC) - . -
(Step 1), details for which will be given K < 8llC1Ie .
) g ] ) \\ Step 1: Approximately project onto
in Section 3. Since our approximate U..
Sinkhorn projection is not guaranteed to  1: A + exp(—nC)
lie in the feasible set, we round our ap- 2 B ¢ PROJ(A, U, ")
proximation to ensure that 1t. lies in U, . \\ Step 2: Round to feasible point in Z/.
(Step 2). Pseudocode for a simple, par- 3. Output P « rRoUND(B, U,..)
allelizable rounding procedure is given
in Algorithm 2.

Algorithm 1 hinges on two subrou- Algorithm 2 ROUND(F,U; )

tines: PROJ and ROUND. We give two  1: X « D(z) with ; = F4 A1

4logn

algorithms for PROJ: SINKHORN and F « XF ‘
GREENKHORN. We devote Section 3 to Y D(y) with y; = 5 A 1
F" «+ F'Y

their analysis, which is of independent
interest. On the other hand, ROUND is
fairly simple. Its analysis is postponed
to Section 4.

Our main theorem about Algorithm 1 is the following accuracy and runtime
guarantee. The proof is postponed to Section 4, since it relies on the analysis of
PRrROJ and ROUND.

err, < v —r(F"), errc < ¢ — c¢(F")
Output G < F” + errperr, /|jerr,||:

THEOREM 1. Algorithm 1 returns a point P € U, . satisfying

(P,C) < min (P,C) +¢
PGMT7C
in time O(n?+S), where S is the running time of the subroutine PROJ(A, U, €').
In particular, if ||Clloo < L, then S can be O(n2L3(logn)e=3), so that Algorithm 1
runs in O(n?L3(logn)e=3) time.

REMARK 1. The time complexity in the above theorem reflects only elemen-
tary arithmetic operations. In the interest of clarity, we ignore questions of bit
complexity that may arise from taking exponentials. The effect of this simplifi-
cation is marginal since it can be easily shown [KLRS08] that the mazximum bit
complezity throughout the iterations of our algorithm is O(L(logn)/e). As a re-
sult, factoring in bit complexity leads to a runtime of O(n?L*(logn)?c=*), which
18 still truly near-linear.

3. LINEAR-TIME APPROXIMATE SINKHORN PROJECTION
The core of our OT algorithm is the entropic penalty proposed by Cuturi [Cut13]:

(2) P, := argmin {(P,C) —n~'H(P)}.

Peur,c

The solution to (2) can be characterized explicitly by analyzing its first-order
conditions for optimality.

LEMMA 1. [Cut13] For any cost matriz C' and r,c € A, the minimization
program (2) has a unique minimum at P, € U, . of the form P, = X AY, where



NEAR-LINEAR TIME OPTIMAL TRANSPORT 5

A = exp(—nC) and X, Y € RY™ are both diagonal matrices. The matrices
(X,Y) are unique up to a constant factor.

We call the matrix P, appearing in Lemma 1 the Sinkhorn projection of A,
denoted IIs(A, U, ), after Sinkhorn, who proved uniqueness in [Sin67]. Comput-
ing IIs(A,U.) exactly is impractical, so we implement instead an approximate
version PROJ(A,U, ¢, €’), which outputs a matrix B = X AY that may not lie in
Uy . but satisfies the condition ||7(B) —r||1 + ||c(B) —c|l1 < ¢’. We stress that this
condition is very natural from a statistical standpoint, since it requires that r(B)
and c¢(B) are close to the target marginals r and ¢ in total variation distance.

3.1 The classical Sinkhorn algorithm

Given a matrix A, Sinkhorn proposed a simple iterative algorithm to approxi-
mate the Sinkhorn projection Ils(A,U, ), which is now known as the Sinkhorn-
Knopp algorithm or RAS method. Despite the simplicity of this algorithm and its
good performance in practice, it has been difficult to analyze. As a result, recent
work showing that IIs(A, U, ) can be approximated in near-linear time [AZLOW17,
CMTV17] has bypassed the Sinkhorn-Knopp algorithm entirely.! In our work,
we obtain a new analysis of the simple and practical Sinkhorn-Knopp algorithm,
showing that it also approximates ILs(A,U, ) in near-linear time.

Pseudocode for the Sinkhorn-Knopp
algorithm appears in Algorithm 3. In

Algorithm 3 SINKHORN(A,U, ., &)

brief, it is an alternating projection pro-
cedure which renormalizes the rows and
columns of A in turn so that they match

1: Initialize k <+ 0
2: A A/||A|1, 2° < 0,3° <0
3: while dist(A®,U,..) > ¢’ do

the desired row and column marginals » 4 k< k+1
and c. At each step, it prescribes to ei- 2: if k (ﬁdl then - for i € [n]
. . . . Z; 0g ————~ Ior 2 n
ther modify all the rows by multiplying . fjf“‘““ Y) 1
. . 7 ¢ 4—x +z, Y~y
row i by r;/ri(A) for i € [n], or to do ¢ o
the analogous operation on the columns. g. y + log m for j € [n]

(We interpret the quantity 0/0 as 1 in
this algorithm if ever it occurs.) The ;.
algorithm terminates when the matrix
A®) is sufficiently close to the polytope
Urc.

3.2 Prior work

Before this work, the best analysis of Algorithm 3 showed that O((¢')~2) iter-
ations suffice to obtain a matrix close to U, . in £ distance:

yk: <_yk:—l +v, xk (—.Tk_l

A® = D(exp(z")) AD(exp(y*))
12: Output B «+ AW

PROPOSITION 1. [KLRSO08] Let A be a strictly positive matriz. Algorithm 3
with dist(A,Uy.c) = ||r(A) — 7|2 + ||c(A) — c||2 outputs a matriz B satisfying
[r(B) = rll2 + [[e(B) — cll2 < & in O(p(e')*log(s/l)) iterations, where s =
Zij Aij, € = ming; Ayj, and p > 0 is such that 13, ¢; < p for all i € [n].

'Replacing the PROJ step in Algorithm 1 with the matrix-scaling algorithm developed
in [CMTV17] results in a runtime that is a single factor of e faster than what we present
in Theorem 1. The benefit of our approach is that it is extremely easy to implement, whereas
the matrix-scaling algorithm of [CMTV17] relies heavily on near-linear time Laplacian solver
subroutines, which are not implementable in practice.



Unfortunately, this analysis is not strong enough to obtain a true near-linear
time guarantee. Indeed, the #» norm is not an appropriate measure of closeness
between probability vectors, since very different distributions on large alphabets
can nevertheless have small /5 distance: for example, (n=%,...,n71,0,...,0) and
0,...,0,n%,...,n71) in Ay, have /5 distance \/2/n even though they have
disjoint support. As noted above, for statistical problems, including computation
of the OT distance, it is more natural to measure distance in £; norm.

The following Corollary gives the best ¢1 guarantee available from Proposi-
tion 1.

COROLLARY 1. Algorithm 3 with dist(A, U, c) = ||r(A)—r|l2+]|c(A) —c||2 out-
puts a matriz B satisfying ||r(B) —r||1 + |[c(B) —c|1 < &' in O(np(e')"%log(s/l))
1terations.

The extra factor of n in the runtime of Corollary 1 is the price to pay to convert
an ¢9 bound to an ¢; bound. Note that p > 1/n, so np is always larger than 1.
If r = ¢ = 1,,/n are uniform distributions, then np = 1 and no dependence on
the dimension appears. However, in the extreme where r or ¢ contains an entry
of constant size, we get np = Q(n).

3.3 New analysis of the Sinkhorn algorithm

Our new analysis allows us to obtain a dimension-independent bound on the
number of iterations beyond the uniform case.

THEOREM 2. Algorithm 3 with dist(A,U,.) = ||r(A) — 7|1 + [[c(A) — ¢|1
outputs a matriz B satisfying ||r(B)—r|1+]|/c(B) —c|1 < &' in O((g') "% log(s/?))
iterations, where s = Zij Aij and £ = ming; A;;.

Comparing our result with Corollary 1, we see what our bound is always
stronger, by up to a factor of n. Moreover, our analysis is extremely short. Our im-
proved results and simplified proof follow directly from the fact that we carry out
the analysis entirely with respect to the Kullback-Leibler divergence, a common
measure of statistical distance. This measure possesses a close connection to the
total-variation distance via Pinsker’s inequality (Lemma 4, below), from which we
obtain the desired ¢; bound. Similar ideas can be traced back at least to [GY98]
where an analysis of Sinkhorn iterations for bistochastic targets is sketched in
the context of a different problem: detecting the existence of a perfect matching
in a bipartite graph.

We first define some notation. Given a matrix A and desired row and column
sums 7 and ¢, we define the potential (Lyapunov) function f: R" x R™ — IR by

f(z,y) = ZAijexi+yj —(r,z) —{c,y).
ij

This auxiliary function has appeared in much of the literature on Sinkhorn pro-
jections [KLRS08, CMTV17, KK96, KK93]. We call the vectors x and y scaling
vectors. It is easy to check that a minimizer (z*,y*) of f yields the Sinkhorn pro-
jection of A: writing X = D(exp(z*)) and Y = D(exp(y*)), first order optimality
conditions imply that X AY lies in U, ., and therefore X AY = IIs(A,U, ).
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The following lemma exactly characterizes the improvement in the potential
function f from an iteration of Sinkhorn, in terms of our current divergence to
the target marginals.

K(cle(A™1)).

PROOF. Assume without loss of generality that k is odd, so that ¢(A*—1) = ¢
and r(A®)) = . (If k is even, interchange the roles of r and ¢.) By definition,

FEF L yE ) = fafyf) = 30 (AN = AW) 1 (rah - 4 eyt - Y

1)
- Zri(azf — xf—l) — ]C(THT(A(k—l)) + IC(ch(A(’“—l))’

where we have used that: |A®=D||; = [|[A®)||; =1 and Y = y*=D: for all 4,
ri(zf — 21 = r;log m; and K(c||c(A*~D)) = 0 since ¢ = ¢(A*=D). O

The next lemma has already appeared in the literature and we defer its proof
to the Appendix.

LEMMA 3. If A is a positive matriz with |A||1 < s and smallest entry £, then

faty') — min f(z.y) < f(0,0) ~ min f(z,y) <log ;.

)

LEMMA 4 (Pinsker’s Inequality). For any probability measures p and q, ||p —

qallh < V/2K(pllq)-

PROOF OF THEOREM 2. Let k* be the first iteration such that [r(A*")) —
)l 4 ||c(A*)) — ¢||; < €’. Pinsker’s inequality implies that for any k < k*, we
have

e < ([Ir(A™) = 7l + [[e(A™) = e]1)? < 4K (rllr(A™) + K(elle(AM)),

so Lemmas 2 and 3 imply that we terminate in k* < 4¢/~2log(s/f) steps, as
claimed. O

3.4 Greedy Sinkhorn

In addition to a new analysis of SINKHORN, we propose a new algorithm
GREENKHORN which enjoys the same convergence guarantee but performs better
in practice. Instead of performing alternating updates of all rows and columns
of A, the GREENKHORN algorithm updates only a single row or column at each
step. Thus GREENKHORN updates only O(n) entries of A per iteration, rather
than O(n?).

In this respect, GREENKHORN is similar to the stochastic algorithm for Sinkhorn
projection proposed by [GCPB16]. There is a natural interpretation of both al-
gorithms as coordinate descent algorithms in the dual space corresponding to
row/column violations. Nevertheless, our algorithm differs from theirs in several
key ways. Instead of choosing a row or column to update randomly, GREENKHORN
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chooses the best row or column to update greedily. Additionally, GREENKHORN
does an exact line search on the coordinate in question since there is a simple
closed form for the optimum, whereas the algorithm proposed by [GCPB16] up-
dates in the direction of the average gradient. Our experiments establish that
GREENKHORN performs better in practice; more details appear in the Appendix.

We emphasize that our algorithm is an extremely natural modification of
SINKHORN, and greedy algorithms for the scaling problem have been proposed
before, though these do not come with with explicit near-linear time guaran-
tees [PL82]. However, whereas previous analyses of SINKHORN cannot be mod-
ified to extract any meaningful rates of convergence for greedy algorithms, our
new analysis of SINKHORN from Section 3.3 applies to GREENKHORN with only
trivial modifications.

Pseudocode for GREENKHORN ap-
pears in Algorithm 4. We define
dist(A, Use) = [[r(A)=r|i+]c(A)—c|; L A” < A/lAll, 2 < 0,y 0.

’ . . 2: A+ A©
and define the distance function p : 3 while dist(A,Uy..) > = do
R4 x Ry — [0, +00] by I + argmax; p(rs,7:(A))
J + argmax; p(cj, c;j(A))
if p(rr,r1(A)) > p(cs,cs(A)) then
rr < 7 + log
else

ys = ys +log i
10: A« D(exp(z)) AP D(exp(y))
11: Output B < A

Algorithm 4 GREENKHORN(A, U, ., ¢’)

p(a,b)zb—a—kalog%.

rr
r1(A)

The choice of p is justified by its ap-
pearance in Lemma 5, below. While p
is not a metric, it is easy to see that p
is nonnegative and satisfies p(a,b) = 0
iff a =b.

We note that after r(A) and ¢(A) are computed once at the beginning of the
algorithm, GREENKHORN can easily be implemented such that each iteration runs
in only O(n) time.

THEOREM 3. The algorithm GREENKHORN outputs a matrix B satisfying
[7(B)=rlli+e(B)—clly < " in O(n(e')"*log(s/€)) iterations, where s = 3 ,; Ay
and ¢ = min;; A;;. Since each iteration takes O(n) time, such a matriz can be

found in O(n%(g")~2log(s/l)) time.

The analysis requires the following lemma, which is an easy modification of
Lemma 2.

LEMMA 5. Let A" and A" be successive iterates of GREENKHORN, with cor-
responding scaling vectors (z',y") and (z",y"). If A” was obtained from A’ by
updating row I, then

f@y) = f@"y") = plrr,ri(4)),
and if it was obtained by updating column J, then
f@ ) = f@",y") = ples,es(A)).

We also require the following extension of Pinsker’s inequality (proof in Ap-
pendix).
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LEMMA 6. For any o € Ap, 8 € RY, define p(a,B) = >, plew, Bi). If

p(a, B) <1, then
o= Bl < V7ple, B) .

Proor oF THEOREM 3. We follow the proof of Theorem 2. Since the row
or column update is chosen greedily, at each step we make progress of at least

5= (p(r,7(A)) + p(c, c(A))). If p(r,r(A)) and p(c,c(A)) are both at most 1, then

under the assumption that ||r(A) — 7|1 +||c(A) —c|[1 > €, our progress is at least
1 1 1
— A A)) > ——(||r(A) — 7|} A)—c|?) > €2
(ol () + ol ) = ——(Ir(A) — i + () — D) = 5z

Likewise, if either p(r,r(A)) or p(c,c(A)) is larger than 1, our progress is at least

1/2n > i-¢’%. Therefore, we terminate in at most 28ne’~2log(s/¢) iterations. [

4. PROOF OF THEOREM 1

First, we present a simple guarantee about the rounding Algorithm 2. The
following lemma shows that the ¢; distance between the input matrix F' and
rounded matrix G = ROUND(F,U, ) is controlled by the total-variation distance
between the input matrix’s marginals 7(F') and ¢(F') and the desired marginals
r and c.

LEMMA 7. Ifr,c € A, and F € RV, then Algorithm 2 takes O(n?) time
to output a matrizx G € Uy satisfying

IG = Flls < 2| Ir(F) = rll, + lle(F) = ell ]

The proof of Lemma 7 is simple and left to the Appendix. (We also describe in
the Appendix a randomized variant of Algorithm 2 that achieves a slightly better
bound than Lemma 7). We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. ERROR ANALYSIS. Let B be the output of
PROJ(A, Uy, "), and let P* € argminpgy, (P,C) be an optimal solution to the
original OT program. 1

We first show that (B, C) is not much larger than (P*,C). To that end, write
r’:=r(B) and ¢ := ¢(B). Since B = X AY for positive diagonal matrices X and
Y, Lemma 1 implies B is the optimal solution to

(3) Lin (P,C) —n'H(P).

By Lemma 7, there exists a matrix P’ € U » such that
1P = Pl <2 — vl + ¢~ ell) -
Moreover, since B is an optimal solution of (3), we have
(B,C) —n~'H(B) < (P',C) —n 'H(P').

Thus, by Holder’s inequality

(B,C) —(P*,C) = (B,C) — (P',C)+ (P',C) — (P*,C)

<n H(H(B) = H(P)) +2(|r" =7l + [l = ell)Clloo

(4) <20 Hogn+2(|r" = rll + ¢ = el )IClls
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where we have used the fact that 0 < H(B), H(P') < 2logn.

Lemma 7 implies that the output P of ROUND(B, U, ) satisfies the inequality
|B — P|ly < 2(||r' — 7|1 +||¢ — ¢||l1). This fact together with (4) and Holder’s
inequality yields

(P,C) < Juin (P,C) + 20~ Nogn + 4(|lr' = rlls + [l = e )ICl o -

Applying the guarantee of PROJ(A, U, ., €’), we obtain

(P,C) < min (P,C) + 2logn

PEZ/{T,C

+4€'||C| o -

Plugging in the values of n and &’ prescribed in Algorithm 1 finishes the error
analysis.

RUNTIME ANALYSIS. Lemma 7 shows that Step 2 of Algorithm 1 takes O(n?)
time. The runtime of Step 1 is dominated by the PROJ(A,U, ,&’) subroutine.
Theorems 2 and 3 imply that both the SINKHORN and GREENKHORN algorithms
accomplish this in S = O(n?(¢’) "2 log %) time, where s is the sum of the entries of
A and / is the smallest entry of A. Since the matrix C' is nonnegative, the entries
of A are bounded above by 1, thus s < n?. The smallest entry of A is e~ MCle
s0 log1/¢ = 1||C|sc- We obtain S = O(n?(¢')"2(logn + 1||C||s)). The proof is
finished by plugging in the values of 7 and ¢’ prescribed in Algorithm 1. O

5. EMPIRICAL RESULTS

Cuturi [Cutl3] already gave experimental evidence
that using SINKHORN to solve (2) outperforms state-
of-the-art techniques for optimal transport. In this sec-
tion, we provide strong empirical evidence that our
proposed GREENKHORN algorithm significantly out-
performs SINKHORN.

We consider transportation between pairs of m x m
grayscale images, normalized to have unit total mass.
The target marginals r and ¢ represent two images in
a pair, and C' € R™**™” is the matrix of ¢; distances
between pixel locations. Therefore, we aim to compute the earth mover’s distance.

We run experiments on two datasets: real images, from MNIST, and synthetic
1mages, as in Figure 1.

5.1 MNIST

Lt s

3
1
!
i

Figure 1: Synthetic im-

We first compare the behavior of GREENKHORN and SINKHORN on real images.
To that end, we choose 10 random pairs of images from the MNIST dataset, and
for each one analyze the performance of APPROXOT when using both GREENKHORN
and SINKHORN for the approximate projection step. We add negligible noise
0.01 to each background pixel with intensity 0. Figure 2 paints a clear picture:
GREENKHORN significantly outperforms SINKHORN both in the short and long
term.
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5.2 Random images

To better understand the distance to polytope spread of competitive ratio

6
.. . | GREENKHORN | & |—Max
empirical behavior of both al- ~, 1-SINKHORN F |—Median
. . . S =4 —Min
gorithms in a number of differ- < 1 g
. . 5 2
ent regimes, we devised a syn- = o 8
C
. =1 )
thetic and tunable framework 0 2000 4000 6000 8000 O 2000 4000 6000 8000
Whereby we generate images row/col updates row/col updates
. 4 distance to polytope 10 spread of competitive ratio
by choosing a randomly po- a "] GREENKHORN | & '° —Max
sitioned “foreground” square < I SINKHORN g Tedian
. Q
in an otherwise black back- I7° g °
ground. The size of this square =~ o < .
2000 4000 6000 O 2000 4000 6000

is a tunable parameter varied 0
between 20%, 50%, and 80% of
the total image’s area. Intensi-
ties of background pixels are

row/col updates

row/col updates

Figure 2: Comparison of GREENKHORN and
SINKHORN on pairs of MNIST images of di-

drawn uniformly from [0, 1];
foreground pixels are drawn
uniformly from [0, 50]. Such an
image is depicted in Figure 1,
and results appear in Figure 2.

We perform two other ex-
periments with random im-

mension 28 X 28 (top) and random images
of dimension 20 x 20 with 20% foreground
(bottom). Left: distance dist(A,U,.) to the
transport polytope (average over 10 random
pairs of images). Right: maximum, median,
and minimum values of the competitive ratio

In (dist(Ag, Uy c)/dist(Ag, Ur)) over 10 runs.

ages in Figure 3. In the first,

we vary the number of background pixels and show that GREENKHORN performs
better when the number of background pixels is larger. We conjecture that this
is related to the fact that GREENKHORN only updates salient rows and columns
at each step, whereas SINKHORN wastes time updating rows and columns corre-
sponding to background pixels, which have negligible impact. This demonstrates
that GREENKHORN is a better choice especially when data is sparse, which is
often the case in practice.

In the second, we consider the role of the regularization parameter 1. Our
analysis requires taking 7 of order logn/e, but Cuturi [Cutl3] observed that
in practice n can be much smaller. Cuturi showed that SINKHORN outperforms
state-of-the art techniques for computing OT distance even when 7 is a small
constant, and Figure 3 shows that GREENKHORN runs faster than SINKHORN in
this regime with no loss in accuracy.

GREENKHORN vs SINKHORN for OT
—True optimum

competitive ratio with varying foreground
—Median: 20% FG

6

5 |—Median: 50% FG 0.48 \\\g —GREENKHORN, eta=1
5 |—Median: 80% FG i >~ -- GREENKHORN, eta=5
24 5 0.46 -~ GREENKHORN, eta=9
bot - —SINKHORN, eta=1
83 044t s B ] SINKHORN, eta=5
3 3 SINKHORN, eta=9
82 Sou =L a0

o

1000 1500
row/col updates

2(500 3060

row/col updates

0 1000 4000 0 500 2000 2500
Figure 3: Left: Comparison of median competitive ratio for random images con-
taining 20%, 50%, and 80% foreground. Right: Performance of GREENKHORN

and SINKHORN for small values of 7.
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APPENDIX A: OMITTED PROOFS
A.1 Proof of Lemma 3

The proof of the first inequality is similar to the proof of Lemma 2:

AW
£0,0) — f@W,yW) = (r, W) + (c,yV) = ZAS-) log E{]) = K(AD)AD) >0,

where (AW || A©®)) denotes the divergence between A1) and A©) viewed as ele-
ments of A .

We now prove the second claim. Note that A©) satisfies A ||; = 1 and has
smallest entry £/s. Since A©) is positive, [Sin67] shows that I1s(A(®) exists and
is unique. Let (z*,y*) be corresponding scaling factors. Then

£Q0,0) = f(@7,y%) = (r,2") + (¢,4") -

Now since 0 "
0) x4yt 0) zf+y: _
Aije JSZAije i =1,
ij

we have s
zi +yj <log 7,

for all 4,j € [n]. Thus because r and ¢ are both probability vectors,

(r.a®) + {e,y") < log ;.

A.2 Proof of Lemma 5

We prove only the case where a row was updated, since the column case is
exactly the same.
By definition,

f@'y) = f" ") =D (A — A + (2’ =) + ey — ).
tj
Observe that A" and A” differ only in the Ith row, and z” and 2’ differ only in
the Ith entry, and y” = 1/. Hence

f@y) = f@"y") = ri(A) —ri(A") +ri(a] — 27)
= p(rr,r1(A"),
where we have used the fact that r;(A”) = r; and o — 2} = log(r;/rr(47)). O
A.3 Proof of Lemma 6
Let s =), Bi, and write 8 = 3/s. The definition of p implies

pla, B) = (Bi — o) + ailog ﬁ

i
S —i-zi:a Ogsﬁi
=s5—1-— (logs)Zai+lC(aHB)

=s5—1-logs+ K(a|B).
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Note that both s — 1 —log s and K(a|3) are nonnegative. If p(, ) < 1, then in
particular s — 1 —log s < 1, and it can be seen that s — 1 —logs > (s — 1)?/5 in
this range. Applying Lemma 4 (Pinsker’s inequality) yields

p(0,8) 2 £(s = 1 + 3l — B,

By the triangle inequality and convexity,

_ _ _ 7 _
la=B17 < (18=Blli+la—Bl1)* = (|s—1|+[la—pBlh)* < (8—1)2+§Ila—ﬂ|\%-

(SN |

The claim follows from the above two displays. O
A.4 Proof of Lemma 7

Let G be the output of ROUND(F, U, ). The entries of F” are nonnegative, and
at the end of the algorithm err, and err. are both nonnegative, with |lerr,||; =
llerre|l1 = 1 — [|F"||1. Therefore the entries of G are nonnegative and

r(G) =r(F") + T(errrerrz—/||err7«||1) =r(F")+err, =1,

and likewise ¢(G) = c. This establishes that G € U, ..

Now we prove the ¢; bound between the original matrix F and G. Let A =
|F'||1 — ||F"]|1 be the total amount of mass removed from F' by rescaling the rows
and columns. In the first step, we remove mass from a row of F when r;(F) > r;,
and in the second step we remove mass from a column when c¢;(F’) > ¢;. We
therefore have

(5) A= "(r(F)=ri)r + > (e;(F) =)y .
i=1 j=1

Let us analyze both of the sums in (5). First, a simple calculation shows

n

Y ri(F) =)y =

=1

() =l + 17 - 1]

N

Next, upper bound the second sum in (5) using the fact that the vector ¢(F) is
entrywise larger than c(F”)

n

(G (F) =¢)r <D (e(F)=cj)y <|le(F) =l
j=1

j=1
Therefore we conclude

IG = Flly < A+ Jlerrperr |1/ lerr,

=A+1—|F"
=2A+1—||Flh
(6) < |lr(F) =7l + 2lle(F) — clx

< 2Yr(F) =l + [le(F) = clx

Finally, we prove the O(n?) runtime bound follows by observing that each
rescaling and computing the matrix err,err] /|lerr, |1 both require at most O(n?)
time. U
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A.5 Randomized variant of rounding algorithm (Algorithm 2)

In the section, we describe a simple randomized variant of Algorithm 2 that
achieves a slightly better guarantee. Let us first recall the guarantee we get for
Algorithm 2. By equation (6) in the proof of Lemma 7, the ¢; difference between
the original matrix F' and rounded matrix G is upper bounded by

G = Flly < [lr(F) = rlls + 2] e(F) = cllr-

This asymmetry between ||7(F) —r||; and |[c(F') —c]||1 arises because Algorithm 2
creates F” by first removing mass from rows of F', and then from columns. Con-
sider modifying Algorithm 2 to create F” by first removing mass from columns
of F', and then from rows. Then a symmetrical argument gives the bound

G = Flly < 2[|r(F) = rlls + [[e(F) = cllr-

Together the above two displays suggest the following simple randomized variant
of Algorithm 2: with probability 1/2, perform Algorithm 2; otherwise, perform the
above-described column-then-row version of Algorithm 2. Combining the above
two displays then gives the following improved bound for this randomized algo-
rithm

EIG ~ Flb < 3 [Ir(F) — rll + le(F) ]

A.6 Comparison with [GCPB16]

In this Section, we present an empirical comparison of the performance of
GREENKHORN with the stochastic algorithm proposed by [GCPBI16]. Their
algorithm—which we call Stochastic Sinkhorn for convenience—uses a Stochastic
Averaged Gradient (SAG) algorithm to optimize a dual version of the entropic
penalty program (2).

We have noted in the main text that GREENKHORN and Stochastic Sinkhorn
both attempt to solve the scaling problem via coordinate descent in the dual prob-
lem. Stochastic Sinkhorn does so via the method proposed in [SLRB17], whereas
GREENKHORN greedily chooses a good coordinate to update, and then leverages
an explicit closed form to perform an exact line search on this coordinate. One
difference between our algorithms is their starting point: GREENKHORN is ini-
tialized with A/||Al|1, whereas the starting primal solution corresponding to the
initialization of Stochastic Sinkhorn is the matrix obtained by first multiplying
each column of A by the corresponding entry of ¢ and then scaling the rows of the
resulting matrix so they agree with r. This is equivalent to performing a full up-
date step of SINKHORN on the matrix AD(c) at the beginning of this algorithm. In
simulations, this starting point is of better quality than the matrix A/||Al|; which
GREENKHORN uses as its first iterate; however, this advantage quickly disappears.
Since our goal is to compare GREENKHORN and Stochastic Sinkhorn in terms of
the number of required row or column updates, we also initialize GREENKHORN
at this point instead of at A/||A|; to facilitate an apples-to-apples comparison.

To compare the performance of GREENKHORN with Stochastic Sinkhorn, we
use an experiment on random images with 20% foreground pixels, as in Sec-
tion 5.2. We initialize both algorithms with the same primal solution and used
Algorithm 2 to round iterates of each algorithm to the feasible polytope U, .
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Implementing Stochastic Sinkhorn requires choosing a step size, denoted by C
in [GCPB16]. That paper suggests choosing C = 1/(Ln), 3/(Ln), or 5/(Ln),
where L is an upper bound on the Lipschitz constant of the semi-dual problem
they consider.? We compare all three choices of step size with our implementa-
tion of the GREENKHORN algorithm in Figure 4 with two different values of the
parameter 7.

0308 GREENKHORN vs GCPB for OT, eta=5 . GREENKHORN vs GCPB for OT, eta=9
7% —GREENKHORN ' —GREENKHORN
0.304. ----GCPB, stepsize=1/(Ln) 0385 , ----GCPB, stepsize=1/(Ln)
0.302 % - - GCPB, stepsize=3/(Ln) 08 T - - GCPB, stepsize=3/(Ln)
GCPB, stepsize=5/(Ln) ’ GCPB, stepsize=5/(Ln)

0.375

Value of OT

Value of OT
o
B o
&
o
@
]

0.296
0.365
0.294
0.36
0.292

0.355 ! L -
0.29 0 500 1000 1500 2000 2500
0 500 1000 1500 2000 2500 row/col updates

Figure 4: Comparison of GREENKHORN and Stochastic Sinkhorn
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