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Abstract

There has been a recent surge of interest in studying permutation-based models for ranking
from pairwise comparison data. Despite being structurally richer and more robust than
parametric ranking models, permutation-based models are less well understood statistically
and generally lack efficient learning algorithms. In this work, we study a prototype of
permutation-based ranking models, namely, the noisy sorting model. We establish the
optimal rates of learning the model under two sampling procedures. Furthermore, we
provide a fast algorithm to achieve near-optimal rates if the observations are sampled
independently. Along the way, we discover properties of the symmetric group which are of
theoretical interest.

Keywords: Noisy Sorting, Pairwise Comparisons, Ranking, Permutations, Minimax Esti-
mation

1. Introduction

Pairwise comparison data is frequently observed in various domains, including recommender
systems, website ranking, voting and social choice (see, e.g. Baltrunas et al., 2010; Dwork
et al., 2001; Liu, 2009; Young, 1988; Caplin and Nalebuff, 1991). For these applications,
it is of significant interest to produce a suitable ranking of the items by aggregating the
outcomes of pairwise comparisons. The general problem of interest can be stated as follows.
Suppose there are n items to be compared and an underlying matrix P of probability
parameters, each entry Pi,j of which represents the probability that item i beats item j if
they are compared. Hence we have Pj,i = 1−Pi,j and the event that item i beats item j in a
comparison can be viewed as a Bernoulli random variable with probability Pi,j . Observing
the outcomes of N independent pairwise comparisons, we aim to estimate the absolute
ranking of the items.

For the sake of consistency, one needs of course to impose some structure on the matrix
P = {Pi,j}1≤i,j≤n. These structural assumptions are traditionally split between paramet-
ric and nonparametric ones. Classical parametric models include the Bradley-Terry-Luce
model (Bradley and Terry, 1952; Luce, 1959) and the Thurstone model (Thurstone, 1927).
These models can be recast as log-linear models, which enables the use of the statistical
and computational machinery of maximum likelihood estimation in generalized linear mod-

c© 2018 C. Mao, J. Weed & P. Rigollet.



Noisy Sorting

els (Hunter, 2004; Negahban et al., 2012; Rajkumar and Agarwal, 2014; Hajek et al., 2014;
Shah et al., 2015; Negahban et al., 2016, 2017).

To allow richer structures on P beyond the scope of parametric models, permutation-
based models such as the noisy sorting model (Braverman and Mossel, 2008, 2009) and the
strong stochastic transitivity (SST) model (Chatterjee, 2015; Shah et al., 2017a) have re-
cently become more prevalent. These models only require shape constraints on the matrix
P and are typically called nonparametric. In these models, the underlying ranking of items
is determined by an unknown permutation π∗, and, additionally, the comparison proba-
bilities are assumed to have a bi-isotonic structure when the items are aligned according
to π∗. While permutation-based models provide ordering structures that are not captured
by parametric models (Agarwal, 2016; Shah et al., 2017a), they introduce both statistical
and computational barriers for estimation of the underlying ranking. These barriers are
mainly due to the complexity of the discrete set of permutations. On the one hand, the
complexity of the set of permutations is not well understood (see the discussion following
Theorem 8 in Collier and Dalalyan, 2016), which leads to logarithmic gaps in the current
statistical bounds for permutation-based models. On the other hand, it is computationally
challenging to optimize over the set of permutations, so current algorithms either sacrifice
nontrivial statistical performance or have impractical time complexity. In this work, we aim
to address both questions for the noisy sorting model.

In practice, it is unlikely that all the items are compared to each other. To account for
this limitation, a widely used scheme consists in assuming that that each pairwise compar-
ison is observed with probability p ∈ (0, 1] (see, e.g. Chatterjee, 2015; Shah et al., 2017a).
In addition to this model of missing comparisons, we study the model where N pairwise
comparisons are sampled uniformly at random from the

(
n
2

)
pairs, with replacement and

independent of each other. It turns out that sampling with and without replacement yields
the same rate of estimation up to a constant when the expected numbers of observations
coincide.

Our contributions. We focus on the noisy sorting model with partial observations, under
which a stronger item wins a comparison against a weaker item with probability at least
1
2 + λ where λ ∈ (0, 12). For sampling both with and without replacement, we establish
the minimax rate of learning the underlying permutation. In particular, the rate does not
involve a logarithmic term, and we explain this phenomenon through a careful analysis of
the metric entropy of the set of permutations equipped with the Kendall tau distance, which
is of independent theoretical interest.

Moreover, we propose a multistage sorting algorithm that has time complexity Õ(n2).
For the sampling with replacement model, we prove a theoretical guarantee on the perfor-
mance of the multistage sorting algorithm, which differs from the minimax rate by only a
polylogarithmic factor. In addition, the algorithm is demonstrated to perform similarly for
both sampling models using simulated examples.

Related work. The noisy sorting model was proposed by Braverman and Mossel (2008).
In the original paper, the optimal rate of estimation achieved by the maximum likelihood
estimator (MLE) is established, and an algorithm with time complexity O(nC) is shown to

2



Noisy Sorting

find the MLE with high probability in the case of full observations1, where C = C(λ) is
a large unknown constant. Moreover, their algorithm does not have a polynomial running
time if only o(n2) random pairwise comparisons are observed. Our work generalizes the
optimal rate to the partial observation settings by studying a variant of the MLE for the
upper bound. In the model of sampling with replacement, our fast multistage sorting
algorithm provably achieves near-optimal rate of estimation. Since finding the MLE for the
noisy sorting model is an instance of the NP-hard feedback arc set problem (Alon, 2006;
Kenyon-Mathieu and Schudy, 2007; Ailon et al., 2008; Braverman and Mossel, 2008), our
results indicate that, despite the NP-hardness of the worst-case problem, it is still possible
to achieve (near-)optimal rates for the average-case statistical setting in polynomial time.

The SST model generalizes the noisy sorting model, and minimax rates in the SST
model have been studied by Shah et al. (2017a). However, the upper bound specialized to
noisy sorting contains an extra logarithmic factor, which this work shows to be unnecessary.
Moreover, the lower bound there is based on noisy sorting models with λ shrinking to zero as
n→∞, while we establish a matching lower bound at any fixed λ. In addition, algorithms
of Wauthier et al. (2013); Shah et al. (2017a); Chatterjee and Mukherjee (2016) are all
statistically suboptimal for the noisy sorting model. This is partially addressed by our
multistage sorting algorithm as discussed above.

In fact, both with- and without-replacement sampling models discussed in this paper
are restrictive for applications where the set of observed comparisons is subject to certain
structural constraints (Hajek et al., 2014; Shah et al., 2015; Negahban et al., 2017; Panan-
jady et al., 2017a). Obtaining sharper rates of estimation for these more complex sampling
models is of significant interest but is beyond the scope of the current work.

Finally, we mention a few other lines of related work. Besides permutation-based models,
low-rank structures have also been proposed by Rajkumar and Agarwal (2016) to generalize
classical parametric models. Moreover, there is an extensive literature on active ranking
from pairwise comparisons (see, e.g., Jamieson and Nowak, 2011; Heckel et al., 2016; Agar-
wal et al., 2017, and references therein), where the pairs to be compared are chosen actively
and in a sequential fashion by the learner. The sequential nature of the models greatly
reduces sample complexity, so we do not compare our results for passive observations to the
literature on active learning. However, it is interesting to note that our multistage sorting
algorithm is reminiscent of active algorithms, because it uses different batches of samples
for different stages. Thus active learning algorithms could potentially be useful even for
passive sampling models.

Organization. The noisy sorting model together with the two sampling models is formal-
ized in Section 2. In Section 3, we present our main results, the minimax rate of estimation
for the latent permutation and the near-optimal rate achieved by an efficient multistage
sorting algorithm. To complement our theoretical findings, we inspect the empirical perfor-
mance of the multistage sorting algorithm on numerical examples in Section 4. We discuss
directions for future research in Section 5. Section A is devoted to the study of the set

1. If the algorithm is allowed to actively choose the pairs to be compared, the sample complexity can
be reduced to O(n log n). However, in the passive setting which we adopt throughout this work, the
algorithm still needs Θ(n2) pairwise comparisons.
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of permutations equipped with the Kendall tau distance. Proofs of the main results are
provided in Section B.

Notation. For a positive integer n, let [n] = {1, . . . , n}. For a finite set S, we denote its
cardinality by |S|. Given a, b ∈ R, let a ∧ b = min(a, b) and a ∨ b = max(a, b). We use C
and c, possibly with subscripts, to denote universal positive constants that may change at
each appearance. For two sequences {un}∞n=1 and {vn}∞n=1, we write un . vn if there exists
a universal constant C > 0 such that un ≤ Cvn for all n. We define the relation un & vn
analogously, and write un � vn if both un . vn and un & vn hold. Let Sn denote the
symmetric group on [n], i.e., the set of permutations π : [n]→ [n].

2. Problem formulation

The noisy sorting model can be formulated as follows. Fix an unknown permutation π∗ ∈ Sn

which determines the underlying order of n items. More precisely, π∗ orders the items from
the weakest to the strongest, so that item i is the π∗(i)-th weakest among the n items. For
a fixed, possibly unknown λ ∈ (0, 1/2), we define a class of matrices

Mn(λ) =
{
M ∈ [0, 1]n×n : Mi,i =

1

2
, Mi,j ≥

1

2
+ λ if i > j , Mi,j ≤

1

2
− λ if i < j

}
,

where 1n is the n-dimensional all-ones vector. In addition, we define a special matrix
M∗n(λ) ∈Mn(λ) by

[M∗n(λ)]i,j =


1/2 + λ if i > j ,

1/2− λ if i < j ,

1/2 if i = j .

Note that M∗n(λ) satisfies strong stochastic transitivity but other matrices M ∈Mn(λ) may
not. Though this observation plays a crucial role in the design of efficient algorithms, our
statistical results hold for general matrices in Mn(λ).

To model pairwise comparisons, fix M ∈ Mn(λ) and let Mπ∗(i),π∗(j) denote the prob-
ability that items i beats item j when they are compared2, so that a stronger item beats
a weaker item with probability at least 1

2 + λ. As a result, λ captures the signal-to-noise
ratio of our problem and our minimax results explicitly capture the dependence in this key
parameter.

2.1. Sampling models

In the noisy sorting model, suppose that for each (unordered) pair (i, j) with i 6= j, we
observe the outcomes of Ni,j(= Nj,i) comparisons between them, and item i wins a com-
parison against item j with probability Mπ∗(i),π∗(j) independently. The set {Ni,j}i<j of

(
n
2

)
nonnegative integers is determined by certain sampling models described below. We allow
Ni,j to be zero, which means that i and j are not compared. We collect sufficient statistics
into a matrix A ∈ Rn×n consisting of outcomes of pairwise comparisons, by defining Ai,j
to be the number of times item i beats item j among the Ni,j comparisons between i and

2. The diagonal entries of M are inessential in the model as an item is not compared to itself, and they are
set to 1/2 only for concreteness.
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j. In particular, we have Ai,j + Aj,i = Ni,j = Nj,i for i 6= j and Ai,i = 0. Our goal is to
aggregate the results of pairwise comparisons to estimate π∗, the underlying order of items.

In the full observation setup of Braverman and Mossel (2008), we have Ni,j = 1 for each
pair (i, j) and the total number of observations is N : =

∑
i<j Ni,j =

(
n
2

)
. Instead, we are

interested here in the regime where the total number of observations N is much smaller
than

(
n
2

)
. We study the following two sampling models in this work:

(O1) Sampling without replacement. In this sampling model, instead of observing all the
pairwise comparisons, we observe each pair with probability p ∈ (0, 1] independently.
Hence each Ni,j ∼ Ber(p) is a Bernoulli random variable with parameter p, and in
expectation we have N ′ : = p

(
n
2

)
observations in total.

(O2) Sampling with replacement. We observe N pairwise comparisons between the items,
sampled uniformly and independently with replacement from the

(
n
2

)
pairs.

In the sequel, we study the noisy sorting model with either of the above two sampling
models. In particular, the minimax rates of estimating π∗ coincide for the two sampling
models if p

(
n
2

)
� N , i.e., if the expected number of observations are of the same order.

2.2. Measures of performance

Having discussed the sampling and comparison models, we turn to the distance used to
measure the difference between the underlying permutation π∗ and an estimated permuta-
tion π̂. Among various distances defined on the symmetric group, we consider primarily
the Kendall tau distance, i.e., the number of inversions (or discordant pairs) between per-
mutations, defined as

dKT(π, σ) =
∑

(i,j):σ(i)<σ(j)

1
(
π(i) > π(j)

)
for π, σ ∈ Sn. Note that 0 ≤ dKT(π, σ) ≤

(
n
2

)
. The Kendall tau distance between two

permutations is a natural metric on Sn, and it is equal to the minimum number of adjacent
transpositions required to change from one permutation to another (Knuth, 1998). A closely
related distance on Sn is the `1-distance, also known as Spearman’s footrule, defined as

‖π − σ‖1 =

n∑
i=1

|π(i)− σ(i)|

for π, σ ∈ Sn. It is well known (Diaconis and Graham, 1977) that

dKT(π, σ) ≤ ‖π − σ‖1 ≤ 2dKT(π, σ) . (2.1)

Hence the rates of estimation in the two distances coincide. Another distance on Sn we use
is the `∞-distance, defined as

‖π − σ‖∞ = max
i∈[n]

|π(i)− σ(i)| .

Note that unlike existing literature on ranking from pairwise comparisons where metrics
on the probability parameters are studied, we employ here distances that measure how far
an item is from its true ranking.
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3. Main results

In this section, we state our main results. Specifically, we establish the minimax rates of
estimating π∗ in the Kendall tau distance (and thus in `1 distance) for noisy sorting under
both sampling models (O1) and (O2). The minimax estimator that we propose is intractable
in general and we complement our results with an efficient estimator of π∗ which achieves
near-optimal rates in both the Kendall tau and the `∞-distance, under the sampling model
(O2).

3.1. Minimax rates of noisy sorting

Under the noisy sorting model with latent permutation π∗ ∈ Sn and matrix of probabilities
M ∈Mn(λ), we determine the minimax rate of estimating π∗ in the following theorem. We
assume that λ is given in this section for simplicity; an efficient procedure of estimating λ is
presented in Section 3.2. Let Eπ∗,M denote the expectation with respect to the probability
distribution of the observations in the noisy sorting model with underlying permutation
π∗ ∈ Sn and matrix of probabilities M ∈Mn(λ), in either sampling model.

Theorem 1 Fix λ ∈ (0, 12 − c] where c is a universal positive constant. It holds that

min
π̃

max
π∗∈Sn

M∈Mn(λ)

Eπ∗,M [dKT(π̃, π∗)] �


n3

N ′λ2
∧ n2 , in sampling model (O1) ,

n3

Nλ2
∧ n2 , in sampling model (O2) ,

where the minimum is taken minimized over all permutation estimators π̃ ∈ Sn that are
measurable with respect to the observations.

The theorem establishes the minimax rates for noisy sorting, including the case of partial
observations and weak signals. The upper bounds in fact hold with high probability as
shown in Theorem 7. If the expected numbers of observations in the two sampling models
(O1) and (O2) are of the same order, i.e., N ′ = p

(
n
2

)
� N , then the two rates coincide. In

this sense, the two sampling models are statistically equivalent. In sampling model (O1), if
p = 1 and λ is larger than a constant, then the rate of order n recovers the upper bound
proved by Braverman and Mossel (2008).

Note in particular the absence of logarithmic factor in the rates. Naively bounding
the metric entropy of Sn by log |Sn| ' n log n actually yields a superfluous logarithmic
term in the upper bound. To avoid it, we employ the maximum likelihood estimator over
an appropriately chosen ε-net of Sn, discussed in detail in Section B.1. In addition, we
study the doubling dimension of Sn; see the discussion after Proposition 3. Closing this
logarithmic gap for other problems involving latent permutations (Collier and Dalalyan,
2016; Flammarion et al., 2016; Shah et al., 2017a; Pananjady et al., 2017b) remains an
open question.

The technical assumption λ ≤ 1/2 − c in Theorem 1 is very mild, because we are
interested in the “noisy” sorting model (meaning that the pairwise comparisons are noisy,
or equivalently that λ is not close to 1

2). In fact the requirement that λ be bounded away
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from 1
2 can be lifted, in which case we establish upper and lower bounds that match up to

a logarithmic factor of order log(1/∆), where ∆ = 1/2− λ (see Section B).
Finally, we note that the proof of Theorem 1 holds even in the so-called semi-random

setting (Blum and Spencer, 1995; Makarychev et al., 2013), in which observations are gener-
ated by one of the random procedures described above, but a “helpful” adversary is allowed
to reverse the outcome of any comparison in which a weaker item beat a stronger item.
Though these reversals appear benign at first glance, the presence of such an adversary can
in fact worsen statistical rates of estimation in more brittle models such as stochastic block
models and the related broadcast tree model (Moitra et al., 2016). Our results indicate that
no such degradation occurs for the rates of estimation in the noisy sorting problem.

3.2. Efficient multistage sorting

The minimax upper bound in Theorem 1 is established using a computationally prohibitive
estimator, so we now introduce an efficient estimator of the underlying permutation that
can be computed in time Õ(n2). In this section, we prove theoretical guarantees for this esti-
mator under the noisy sorting model with probability matrix M = M∗n(λ) and observations
sampled with replacement according to (O2) when λ is bounded away from zero by a univer-
sal constant. No polynomial-time algorithm was previously known to achieve near-optimal
rates even in this simplified setting when o(n2) pairwise comparisons are observed.

Since we aim to prove guarantees up to constants, we may assume that we have 2N
pairwise comparisons, and split them into two independent samples, each containing N
pairwise comparisons. The first sample is used to estimate the parameter λ and the second
one is used to estimate the permutation π∗.

First, we introduce a fairly simple estimator λ̂ of λ that can be described informally
as follows: first sort in increasing order the items according to the number of wins. Then
for any pair (i, j) for which item i is ranked n/2 positions higher than item j, it is very
likely that item i is stronger than item j so that it beats item j with probability 1

2 + λ.

We then average the Ber(12 + λ) variables over all such pairs to obtain an estimator λ̂ of λ.
More formally, we further split the first sample into two subsamples, each containing N/2
pairwise comparisons. Denote by A′i,j and A′′i,j the number of wins item i has against item

j in the first and second subsample, respectively. The estimator λ̂ is given by the following
procedure:

1. For each i ∈ [n], associate with item i a score Si =
∑n

j=1A
′
i,j .

2. Construct a permutation π̃ by sorting the scores Si in increasing order, i.e., π̃ is chosen
so that π̃(i) < π̃(j) if Si ≤ Sj , with ties broken arbitrarily.

3. Define λ̂ =
2

N

(
n

2

)(
n/2

2

)−1 ∑
π̃(i)−π̃(j)>n

2

A′′i,j −
1

2
.

Given the estimator λ̂, we now describe a multistage procedure to estimate the permu-
tation π∗. To recover the underlying order of items, it is equivalent to estimate the row
sums

∑n
j=1Mπ∗(i),π∗(j) which we call scores of the items, because the scores are increasing

linearly if the items are placed in order. Initially, for each i ∈ [n], we estimate the score
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of item i by the number of wins item i has. If item i has a much higher score than item
j in the first stage, then we are confident that item i is stronger than item j. Hence in
the second stage, we can estimate Mπ∗(i),π∗(j) by 1

2 + λ̂, which is very close to the truth.
For those pairs that we are not certain about, Mπ∗(i),π∗(j) is still estimated by its empirical
version. The variance of each score is thus greatly reduced in the second stage, thereby
yielding a more accurate order of the items. Then we iterate this process to obtain finer
and finer estimates of the scores and the underlying order.

To present the Multistage Sorting (MS) algorithm formally, let us fix a positive integer
T which is the number of stages of the algorithm. We further split the second sample into
T subsamples each containing N/T pairwise comparisons3. Similar to the data matrix A

for the full sample, for t ∈ [T ] we define a matrix A(t) ∈ Rn×n by setting A
(t)
i,j to be the

number of wins item i has against item j in the t-th sample. The MS algorithm proceeds
as follows:

1. For each i ∈ [n], define I(0)(i) = [n], I
(0)
− (i) = ∅ and I

(0)
+ (i) = ∅. For 0 ≤ t ≤ T ,

we use I(t)(i) to denote the set of items j whose ranking relative to i has not been
determined by the algorithm at stage t.

2. At the t-th stage where t ∈ [T ], compute the score S
(t)
i of item i:

S
(t)
i =

Tn(n− 1)

2N

∑
j∈I(t−1)(i)

A
(t)
i,j +

∑
j∈I(t−1)

− (i)

(1

2
+ λ̂

)
+

∑
j∈I(t−1)

+ (i)

(1

2
− λ̂

)
.

3. Let C0 and C1 be sufficiently large universal constants4. If it holds that

|I(t−1)(i)| ≥ C1n
2 T

N
log(nT ) , (3.1)

then we set the threshold

τ
(t)
i = (10 + 2C0)n

√
|I(t−1)(i)|TN−1 log(nT ) ,

and define the sets

I
(t)
− (i) = {j ∈ [n] : S

(t)
j − S

(t)
i < −τ (t)i },

I
(t)
+ (i) = {j ∈ [n] : S

(t)
j − S

(t)
i > τ

(t)
i }, and

I(t)(i) = [n] \
(
I
(t)
− (i) ∪ I(t)+ (i)

)
.

If (3.1) does not hold, then we define I(t)(i) = I(t−1)(i), I
(t)
− (i) = I

(t−1)
− (i) and I

(t)
+ (i) =

I
(t−1)
+ (i).

4. After repeating Step 2 and 3 for t = 1, . . . , T , output a permutation π̂MS by sorting the

scores S
(T )
i in increasing order, i.e., π̂MS is chosen so that π̂MS(i) < π̂MS(j) if S

(T )
i ≤ S(T )

j

with ties broken arbitrarily.

3. We assume without loss of generality that T divides N to ease the notation.
4. Determined according to Lemma 10 and Lemma 11 respectively.
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It is clear that the time complexity of each stage of the algorithm is O(n2). Take T =
blog log nc so that the overall time complexity of the MS algorithm is only O(n2 log log n).
Our main result in this section is the following guarantee on the performance of the estimator
π̂MS given by the MS algorithm.

Theorem 2 Suppose that N ≥ Cn log n for a sufficiently large constant C > 0 and that
M = M∗n(λ) where λ ∈ [c, 12) for a constant c > 0. Then, under the noisy sorting model
with sampling model (O2), the following holds. With probability at least 1 − n−7, the MS
algorithm with T = blog log nc stages outputs an estimator π̂MS that satisfies

‖π̂MS − π∗‖∞ .
n2

N
(log n) log log n

and

dKT(π̂MS, π∗) .
n3

N
(log n) log log n .

Note that the second statement follows from the first one together with (2.1). Indeed,
we have

dKT(π̂MS, π∗) ≤ ‖π̂MS − π∗‖1 ≤ n‖π̂MS − π∗‖∞ .
n3

N
(log n) log log n ,

which is optimal up to a polylogarithmic factor in the regime where λ is bounded away from 0
according to Theorem 1 (and Theorem 8). Therefore, the MS algorithm achieves significant
computational efficiency while sacrificing little in terms of statistical performance. On the
downside, it is limited to the noisy sorting model where M = M∗n(λ)—this assumption is
necessary to exploit strong stochastic transitivity—and our analysis does not account for
the dependence in λ.

Furthermore, although we only consider model (O2) of sampling with replacement in this
section, the MS algorithm can be easily modified to handle model (O1) of sampling without
replacement. It is much more challenging to prove analogous theoretical guarantees in this
case, because we cannot split the observations into independent samples. In Section 4,
however, we provide empirical evidence showing that the MS estimator has very similar
performance for the two sampling models.

Our algorithm bears comparison with the algorithm proposed by Braverman and Mossel
(2008). Their algorithm—which works in the full observation case N =

(
n
2

)
—achieves the

statistically optimal rate in time O(nC), where C is a large positive constant depending
on λ. Though our algorithm’s statistical performance falls short of the optimal rate by a
polylogarithmic factor, it runs in time O(n2 log log n) and works in the partial observation
setting as long as N & n log n. Note by way of comparison that Theorem 8 indicates that
no procedure achieves nontrivial recovery unless N � n.

4. Simulations

To support our theoretical findings in Section 3.2, we implement the MS algorithm on
synthetic instances generated from the noisy sorting model. For simplicity, we take λ = 0.25
and set λ̂ = λ in the algorithm. Theorem 2 predicts a scaling n3N−1(log n) log log n of the
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estimation error in the Kendall tau distance for model (O2) of sampling with replacement,
where n is the number of items and N is the number of pairwise comparisons. This rate is
optimal up to a polylogarithmic factor according to Theorem 8.
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Figure 1: Estimation errors dKT(π̂MS, π∗) for the observations sampled with and without
replacement. Left: N = p

(
n
2

)
= 0.1

(
n
2

)
and n ranging from 1, 000 to 10, 000;

Right: n = 10, 000 and N = p
(
n
2

)
ranging from 0.1

(
n
2

)
to 0.01

(
n
2

)
.

In Figure 1, we plot estimation errors dKT(π̂MS, π∗) averaged over 10 instances generated
from the model. In the left plot, we let n range from 1, 000 to 10, 000 and set N = 0.1

(
n
2

)
.

For this choice of N , Theorem 2 predicts that dKT(π̂MS, π∗) = ÕP(n) and we indeed observe a
near-linear scaling in that plot. In the right plot, we fix n = 10, 000 and let the proportion of
observed entries, α = N/

(
n
2

)
range from .01 to .1. For this choice of parameters, Theorem 2

predicts that dKT(π̂MS, π∗) ≤ Cnα
−1 (recall that here n is fixed), and we clearly observe a

sublinear relation between dKT(π̂MS, π∗) and α−1. Note that this does not contradict the
lower bound since the latter is stated up to constants.

Moreover, the MS algorithm can be easily modified to work for the without replacement
model (O1). Namely, given the partially observed pairwise comparisons, we assign each
comparison to one of the samples 1, . . . , T uniformly at random, independent of all the
other assignments. After splitting the whole sample into T subsamples, we execute the MS
algorithm as in the previous case. In Figure 1, we take p = N/

(
n
2

)
and plot the estimation

errors for sampling without replacement, which closely follow the errors for observations
sampled with replacement. Therefore, although it seems difficult to prove analogous guar-
antees on the performance of the MS algorithm applied to the without replacement model,
empirically the algorithm performs very similarly for the two sampling models.

To gain further intuition about the MS algorithm, we consider the set I(t)(i) defined in
the algorithm. At stage t of the algorithm, the set I(t)(i) consists of all indices j for which
we are not certain about the relative order of item i and item j. The proof of Theorem 2
essentially shows that the uncertainty set I(t)(i) is shrinking as the algorithm proceeds. To
verify this intuition, in Figure 2 we plot the uncertainty regions

R(t) : =
{

(i, j) ∈ [n]2 : i ∈ [n], j ∈ I(t)(i)
}

10
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Figure 2: The uncertainty regions R(t) at stages t = 1, 2, 3 of the MS algorithm. The two
axes represent the indices of the items. A black pixel at (i, j) indicates that
(i, j) ∈ R(t), i.e., the algorithm is not certain about the relative order of item i
and item j at stage t. A white pixel indicates the opposite.

at stages t = 1, 2, 3 of the MS algorithm, for n = 10, 000 and N =
(
n
2

)
. The items are

ordered according to π∗ = id for visibility of the region. As exhibited in the plots, the
uncertainty region is indeed shrinking as the algorithm proceeds.

5. Discussion and open problems

In this work, we focused on minimax estimation of the latent permutation π∗. Viewing
M = 1

21n1
>
n as the null hypothesis and M ∈Mn(λ) as the alternative hypothesis, a natural

question is to establish the minimax detection level of the signal strength λ in the hypothesis
testing framework.

Moreover, we proved that the minimax rates for the noisy sorting problem do not involve
any extra logarithmic factors even in the case of partial observations. For more complex
models involving permutations (see, e.g. Collier and Dalalyan, 2016; Flammarion et al.,
2016; Shah et al., 2017a; Pananjady et al., 2017b; Shah et al., 2017b), however, there are
logarithmic gaps between current upper and lower bounds. According to the discussion after
Proposition 3, the logarithmic gaps do not necessarily stem from the unknown permutation,
so it would be interesting to close these gaps or study whether they exist because of other
aspects of the richer models.

For the MS algorithm, it remains an open question whether analogous upper bounds
can be established for sampling without replacement. We conjecture that this is the case
because of the empirical evidence in Section 4. More importantly, there are still statistical-
computational gaps unresolved for the general noisy sorting model where M ∈Mn(λ), for
the SST model of Shah et al. (2017a) and for the seriation model of Flammarion et al.
(2016). It would be interesting to know if the ideas behind the MS algorithm could help
tighten the gaps.

11
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Appendix A. The symmetric group and inversions

Before proving the main results for the noisy sorting model, we study the metric entropy of
the symmetric group Sn with respect to the Kendall tau distance. Counting permutations
subject to constraints in terms of the Kendall tau distance is of theoretical importance and
has interesting applications, e.g., in coding theory (see, e.g, Barg and Mazumdar, 2010;
Mazumdar et al., 2013). We present the results in terms of metric entropy, which easily
applies to the noisy sorting problem and may find further applications in statistical problems
involving permutations.

For ε > 0 and S ⊆ Sn, let N(S, ε) and D(S, ε) denote respectively the ε-covering number
and the ε-packing number of S with respect to the Kendall tau distance. The following
main result of this section provides bounds on the metric entropy of balls in Sn.

Proposition 3 Consider the ball B(π, r) = {σ ∈ Sn : dKT(π, σ) ≤ r} centered at π ∈ Sn

with radius r ∈ (0,
(
n
2

)
]. We have that for ε ∈ (0, r),

n log
( r

n+ ε

)
− 2n ≤ logN(B(π, r), ε) ≤ logD(B(π, r), ε) ≤ n log

(2n+ 2r

ε

)
+ 2n .

We now discuss some high-level implications of Proposition 3. Note that if n . ε <
r ≤

(
n
2

)
, the lemma states that the ε-metric entropy of a ball of radius r in the Kendall

tau distance scales as n log r
ε . In other words, the symmetric group Sn equipped with the

Kendall tau metric is a doubling space with doubling dimension Θ(n). One of the main
messages of the current work is that although log |Sn| = log(n!) � n log n, the intrinsic
dimension of Sn is Θ(n), which explains the absence of logarithmic factor in the minimax
rate.
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To start the proof, we first recall a useful tool for counting permutations, the inversion
table. Formally, the inversion table b1, . . . , bn of a permutation π ∈ Sn is defined by

bi =
∑
j:i<j

1
(
π(i) > π(j)

)
for i ∈ [n]. Clearly, we have that bi ∈ {0, 1, . . . , n− i} and dKT(π, id) =

∑n
i=1 bi. It is easy to

reconstruct a unique permutation using an inversion table with bi ∈ {0, 1, . . . , n− i}, i ∈ [n],
so the set of inversion tables is bijective to Sn via this relation; see, e.g., Mahmoud (2000).
We use this bijection to bound the number of permutations that differ from the identity
by at most k inversions. The following lemma appears in a different form in Barg and
Mazumdar (2010). We provide a simple proof here for completeness.

Lemma 4 For 0 ≤ k ≤
(
n
2

)
, we have that

n log(k/n)− n ≤ log
∣∣{π ∈ Sn : dKT(π, id) ≤ k}

∣∣ ≤ n log(1 + k/n) + n .

Proof According to the discussion above, the cardinality
∣∣{π ∈ Sn : dKT(π, id) ≤ k}

∣∣,
which we denote by L, is equal to the number of inversion tables b1, . . . , bn where bi ∈
{0, 1, . . . , n− i} such that

∑n
i=1 bi ≤ k. On the one hand, if bi ≤ bk/nc for all i ∈ [n], then∑n

i=1 bi ≤ k, so a lower bound on L is given by

L ≥
n∏
i=1

(bk/nc+ 1) ∧ (n− i+ 1)

≥
n−bk/nc∏
i=1

(bk/nc+ 1)
n∏

i=n−bk/nc+1

(n− i+ 1)

≥ (k/n)n−k/nbk/nc! .

Using Stirling’s approximation, we see that

logL ≥ n log(k/n)− (k/n) log(k/n) + bk/nc logbk/nc − bk/nc
≥ n log(k/n)− n .

On the other hand, if bi is only required to be a nonnegative integer for each i ∈ [n],
then we can use a standard “stars and bars” counting argument (Feller, 1968) to get an
upper bound of the form

L ≤
(
n+ k

n

)
≤ en(1 + k/n)n .

Taking the logarithm finishes the proof.

We are ready to prove Proposition 3.
Proof [of Proposition 3] The relation between the covering and the packing number is
standard.

We employ a standard volume argument to control these numbers. Let P be a 2ε-
packing of B(π, r) so that the balls B(σ, ε) are disjoint for σ ∈ P . Moreover, by the triangle

16



Noisy Sorting

inequality, B(σ, ε) ⊆ B(π, r + ε) for each σ ∈ P . By the invariance of the Kendall tau
distance under composition, Lemma 4 yields

logD(B(π, r), 2ε) ≤ n log(1 + r/n) + n− n log(ε/n) + n

= n log
(n+ r

ε

)
+ 2n .

On the other hand, if N is an ε-net of B(π, r), then the set of balls {B(σ, ε)}σ∈N covers
B(π, r). By Lemma 4, we obtain

logN(B(π, r), ε) ≥ log |B(π, r)| − log |B(σ, ε)|
≥ n log(r/n)− n− n log(1 + ε/n)− n

= n log
( r

n+ ε

)
− 2n ,

as claimed.

The lower bound on the packing number in Proposition 3 becomes vacuous when r and
ε are smaller than n, so we complement it with the following result, which is useful for
proving minimax lower bounds.

Lemma 5 Consider the ball B(π, r) where r < n/2. We have that

logN(B(π, r), r/4) ≥ r

5
log

n

r
.

Proof Without loss of generality, we may assume that π = id and n is even. The sparse
Varshamov-Gilbert bound (Massart, 2007, Lemma 4.10) states that there exists a set S of
r-sparse vectors in {0, 1}n/2, such that log |S| ≥ r

5 log n
r and any two distinct vectors in S

are separated by at least r/2 in the Hamming distance. We now map every v ∈ S to a
permutation π ∈ B(id, r) by defining

1. π(2i− 1) = 2i− 1 and π(2i) = 2i if v(i) = 0, and

2. π(2i− 1) = 2i and π(2i) = 2i− 1 if v(i) = 1,

for i ∈ [n]. Note that π ∈ B(id, r) because π swaps at most r adjacent pairs. Denote by P
the image of S under this mapping. Since the Hamming distance between any two distinct
vectors in S is lower bounded by r/2, we see that dKT(π, σ) ≥ r/2 for any distinct π, σ ∈ P .
Thus P is an r/2-packing of B(id, r). By construction, |P| = |S| ≥ r

5 log n
r , so we can use

the standard relation D(B(id, r), r/2) ≤ N(B(id, r), r/4) to complete the proof.

Appendix B. Proofs of the main results

This section is devoted to the proofs of our main results. We start with a lemma giving
useful tail bounds for the binomial distribution.

Lemma 6 Suppose that X has the Binomial distribution Bin(N, p) where N ∈ Z+ and
p ∈ (0, 1). Then for r ∈ (0, p) and s ∈ (p, 1), we have
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1. P(X ≤ rN) ≤ exp
(
−N (p−r)2

2p(1−r)
)
, and

2. P(X ≥ sN) ≤ exp
(
−N (p−s)2

2s(1−p)
)
.

Proof First, for 0 < q < p < 1, by the definition of the Kullback-Leibler divergence, we
have

KL
(
Ber(p)‖Ber(q)

)
= p log

p

q
+ (1− p) log

1− p
1− q

=

∫ p

q

(p
x
− 1− p

1− x
)
dx

=

∫ p

q

p− x
x(1− x)

dx ≥
∫ p

q

p− x
p(1− q)

dx =
(p− q)2

2p(1− q)
. (B.1)

Thus we also have

KL
(
Ber(q)‖Ber(p)

)
= KL

(
Ber(1− q)‖Ber(1− p)

)
≥ (p− q)2

2p(1− q)
. (B.2)

Moreover, by Theorem 1 of Arratia and Gordon (1989) and symmetry, it holds that

1. P(X ≤ rN) ≤ exp(−NKL(Ber(r)‖Ber(p))), and

2. P(X ≥ sN) ≤ exp(−NKL(Ber(s)‖Ber(p))).

The claimed tail bounds hence follow from (B.1) and (B.2).

B.1. Proof of Theorem 1

First, to achieve optimal upper bounds, we consider a variant of maximum likelihood es-
timation. Fix λ ∈ (0, 1/2), p ∈ (0, 1] and define ϕ = np−1λ−2 in the case of sampling
model (O1), and ϕ = n3N−1λ−2 in the case of sampling model (O2). If λ or p is unknown,
one may learn these scalar parameters easily from the observations and define ϕ using the
estimated values. For readability, we assume that they are given to avoid these technical
complications.

Let P be a maximal ϕ-packing (and thus a ϕ-net) of the symmetric group Sn with
respect to dKT. Consider the following estimator:

π̂ ∈ argmax
π∈P

∑
π(i)>π(j)

Ai,j . (B.3)

It is easy to see that π̂ is the MLE of π∗ over P. Such an estimator is often called sieve
estimator (see, e.g. Le Cam, 1986) in the statistics literature. The estimator π̂ satisfies the
following upper bounds.

Theorem 7 Consider the noisy sorting model with underlying permutation π∗ and prob-
ability matrix M ∈ Mn(λ) where λ ∈ (0, 12). Then, with probability at least 1 − e−n/8, the
estimator π̂ defined in (B.3) satisfies

dKT(π̂, π∗) .


n

pλ2
∧ n2 in model (O1)

n3

Nλ2
∧ n2 in model (O2) .
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By integrating the tail probabilities of the above bounds, we easily obtain bounds on
the expectation E[dKT(π̂, π∗)] of the same order, which then prove the upper bounds in
Theorem 1. One may wonder whether the rate in Theorem 7 can be achieved by the MLE
π̌ over Sn defined by

π̌ ∈ argmax
π∈Sn

∑
π(i)>π(j)

Ai,j .

Our current techniques only allow us to prove bounds on dKT(π̌, π∗) that incur an extra
factor log(1/pλ) (resp. log(n2/Nλ)) in model (O1) (resp. (O2)). It is unclear whether these
logarithmic factors can be removed for the MLE.

Proof [of Theorem 7] We assume that n is lower bounded by a constant without loss of
generality, and note that the bounds of order n2 are trivial. The proof is split into four
parts to improve readability.

Basic setup. Since P is a maximal ϕ-packing of Sn, it is also a ϕ-net and thus there exists
π̃ ∈ P such that D : = dKT(π̃, π∗) ≤ ϕ. By definition of π̂,

∑
π̂(i)<π̂(j)Ai,j ≤

∑
π̃(i)<π̃(j)Ai,j .

Canceling concordant pairs (i, j) under π̂ and π̃, we see that∑
π̂(i)<π̂(j), π̃(i)>π̃(j)

Ai,j ≤
∑

π̂(i)>π̂(j), π̃(i)<π̃(j)

Ai,j .

Splitting the summands according to π∗ yields that∑
π̂(i)<π̂(j),
π̃(i)>π̃(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)<π̂(j),
π̃(i)>π̃(j),

π∗(i)>π∗(j)

Ai,j ≤
∑

π̂(i)>π̂(j),
π̃(i)<π̃(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̂(i)>π̂(j),
π̃(i)<π̃(j),

π∗(i)>π∗(j)

Ai,j .

Since Ai,j ≥ 0, we may drop the leftmost term and drop the condition π̂(i) > π̂(j) in the
rightmost term to obtain that∑

π̂(i)<π̂(j),
π̃(i)>π̃(j),

π∗(i)>π∗(j)

Ai,j ≤
∑

π̂(i)>π̂(j),
π̃(i)<π̃(j),

π∗(i)<π∗(j)

Ai,j +
∑

π̃(i)<π̃(j),
π∗(i)>π∗(j)

Ai,j . (B.4)

This inequality is crucial to proving that π̂ is close to π∗ with high probability.
To set up the rest of the proof, we define, for π ∈ P ,

Lπ = |{(i, j) ∈ [n]2 : π(i) < π(j), π̃(i) > π̃(j), π∗(i) > π∗(j)}|
= |{(i, j) ∈ [n]2 : π(i) > π(j), π̃(i) < π̃(j), π∗(i) < π∗(j)}| .

Moreover, define the random variables

Xπ =
∑

π(i)<π(j),
π̃(i)>π̃(j),

π∗(i)>π∗(j)

Ai,j , Yπ =
∑

π(i)>π(j),
π̃(i)<π̃(j),

π∗(i)<π∗(j)

Ai,j , and Z =
∑

π̃(i)<π̃(j),

π∗(i)>π∗(j)

Ai,j .

We will prove that the random process Xπ − Yπ − Z is positive with high probability if π
is too far from π̃. However, (B.4) says precisely that Xπ̂ − Yπ̂ − Z ≤ 0, so that π must be
close to π̃ which is in turn close to π∗.
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The case M = M∗n(λ) under sampling model (O1). Consider model (O1) of sampling
without replacement, and suppose that M = M∗n(λ) first. For a pair (i, j) with π∗(i) >
π∗(j), the entry Ai,j has distribution Ber

(
p(12 + λ)

)
, since item i and item j are compared

with probability p and conditioned on them being compared, item i wins with probability
1
2 + λ. Moreover, Ai,j is independent from any other Ak,` with π∗(k) > π∗(`). Hence Xπ

has distribution Bin
(
Lπ, p(

1
2 + λ)

)
. Similarly, Yπ has distribution Bin

(
Lπ, p(

1
2 − λ)

)
, and Z

has distribution Bin
(
D, p(12 + λ)

)
. Therefore, Lemma 6 implies that

1. P
(
Xπ ≤ Lπp(12 + 1

2λ)
)
≤ exp

(
− Lπpλ2/8

)
, and

2. P
(
Yπ ≥ Lπp(12 −

1
2λ)
)
≤ exp

(
− Lπpλ2/8

)
.

Then we have that
P(Xπ − Yπ ≤ Lπpλ) ≤ 2 exp

(
− Lπpλ2/8

)
. (B.5)

For an integer r ∈ [Cϕ,
(
n
2

)
] where C is a sufficiently large constant to be chosen, consider

the slice Sr = {π ∈ P : Lπ = r}. Note that if π ∈ Sr, then

dKT(π, π∗) = |{(i, j) : π̂(i) < π̂(j), π∗(i) > π∗(j)}|
≤ |{(i, j) : π̂(i) < π̂(j), π̃(i) > π̃(j), π∗(i) > π∗(j)}|

+ |{(i, j) : π̃(i) < π̃(j), π∗(i) > π∗(j)}|
= Lπ + dKT(π̃, π∗) ≤ r + ϕ . (B.6)

Since P is a ϕ-packing of Sn and Sr ⊆ P , we see that |Sr| is bounded by the ϕ-packing
number of the ball B(π∗, r + ϕ) in the Kendall tau distance. Therefore, Proposition 3 gves

log |Sr| ≤ n log
2n+ 2r + 2ϕ

ϕ
+ 2n ≤ n log

45r

ϕ
.

By (B.5) and a union bound over Sr, we see that minπ∈Sr(Xπ−Yπ) > cLπp with probability
at least

1− exp
(
n log

45r

ϕ
+ log 2− rpλ2

8

)
= 1− exp

(
n log

45r

ϕ
+ log 2− rn

8ϕ

)
≥ 1− exp(−2n) ,

where the inequality holds because r/ϕ ≥ C for a sufficiently large constant C. Then a
union bound over integers r ∈ [Cϕ,

(
n
2

)
] yields that Xπ − Yπ > cLπp for all π ∈ P such that

Lπ ≥ Cϕ with probability at least 1 − e−n.
Furthermore, since Z ∼ Bin

(
D, p(12 + λ)

)
and D ≤ ϕ, Lemma 6 gives that

P(Z ≥ 2ϕp) ≤ exp(−ϕp/4) ≤ exp(−n/4) .

Combining the bounds on Xπ − Yπ and Z, we conclude that with probability at least
1− e−n/8,

Xπ − Yπ − Z > cCϕp− 2ϕp > 0

for all π ∈ P with Lπ ≥ Cϕ, as long as C > 2/c.
We have seen in (B.4) that Xπ̂−Yπ̂−Z ≤ 0, so Lπ̂ ≤ Cϕ on the above event. By (B.6),

dKT(π̂, π∗) ≤ Lπ̂ + ϕ on the same event, which completes the proof for the model (O1).
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The general case under sampling model (O1). Let us continue to use Xπ, Yπ and
Z to denote the above random variables under the noisy sorting model P with probability
matrix M∗n(λ), and use X̃π, Ỹπ and Z̃ to denote the corresponding random variables under
a general noisy sorting model P̃ with M ∈Mn(λ). We couple the two models such that:

1. The sets of pairs of items being compared are the same (and if a pair is compared
multiple times, the multiplicity is also the same);

2. For each pair (i, j) with π∗(i) > π∗(j), if item i beats item j in a comparison in the
model P, then it also beats item j in the corresponding comparison in the model P̃.

The second statement can be satisfied because the results of comparisons are Bernoulli
random variables and Mπ∗(i),π∗(j) ≥ [M∗n(λ)]π∗(i),π∗(j) for all π∗(i) > π∗(j), by definition.

Under this coupling, we always have that X̃π ≥ Xπ and Ỹπ ≤ Yπ, so the above high
probability lower bound on Xπ − Yπ also holds on X̃π − Ỹπ.

Moreover recall the definition Z̃ =
∑

π̃(i)<π̃(j),

π∗(i)>π∗(j)
Ai,j where Ai,j ∼ Ber

(
p[M∗n(λ)]π∗(i),π∗(j)

)
.

Since [M∗n(λ)]π∗(i),π∗(j) ∈ (0, 1), we can couple a sequence of i.i.d. Bi,j ∼ Ber(p) with the
Ai,j ’s in such a way that Bi,j = 1 whenever Ai,j = 1. Define W =

∑
π̃(i)<π̃(j),

π∗(i)>π∗(j)
Bi,j . Then

we see that W ∼ Bin(D, p) and W ≥ Z̃. Since D ≤ ϕ, Lemma 6 gives

P(W ≥ 2ϕp) ≤ exp(−ϕp/4) ≤ exp(−n/4) .

Thus Z̃ is subject to the same high probability upper bound as Z. Therefore, the proof for
the model P also works to show the desired bound for the model P̃.

Sampling model (O2). The proof for model (O2) of sampling with replacement is es-
sentially the same, except the part of probability bounds where we assume M = M∗n(λ).
We now demonstrate the differences in detail. For a single pairwise comparison sampled
uniformly from the possible

(
n
2

)
pairs, the probability that

1. the chosen pair (i, j) satisfies π(i) < π(j), π̃(i) > π̃(j) and π∗(i) > π∗(j), and

2. item i wins the comparison,

is equal to Lπ
(
n
2

)−1
(12 + λ). By definition, Xπ is the number of times the above event

happens ifN independent pairwise comparisons take place, so Xπ ∼ Bin
(
N,Lπ

(
n
2

)−1
(12+λ)

)
.

Similarly, we have Yπ ∼ Bin
(
N,Lπ

(
n
2

)−1
(12 − λ)

)
and Z ∼ Bin

(
N,D

(
n
2

)−1
(12 + λ)

)
. Hence

Lemma 6 gives that

1. P
(
Xπ ≤ LπN

(
n
2

)−1
(12 + 1

2λ)
)
≤ exp

(
− LπN

(
n
2

)−1
λ2/8

)
,

2. P
(
Yπ ≥ LπN

(
n
2

)−1
(12 −

1
2λ)
)
≤ exp

(
− LπN

(
n
2

)−1
λ2/8

)
, and

3. P
(
Z ≥ 2ϕN

(
n
2

)−1) ≤ exp
(
− ϕN

(
n
2

)−1
/4
)
.

Note that if we set p = N
(
n
2

)−1
, then the tail bounds above are exactly the same as those

for the model (O1). Therefore, replacing p by N
(
n
2

)−1
everywhere in the above proof, we

then obtain the desired bound for the model (O2).
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Next, we turn to the lower bounds. Let Pπ∗ = Pπ∗,M∗
n(λ)

denote the probability distri-
bution of the observations in the noisy sorting model with underlying permutation π∗ ∈ Sn

and probability matrix M∗n(λ), where λ ∈ (0, 12). We prove the following stronger statement
which clearly implies the lower bounds in Theorem 1.

Theorem 8 For the sampling model (O1), suppose we have λ ∈ (0, 12) and p ∈ (0, 1] such
that p log 1

1−2λ ≤ C for some constant C > 0. Then it holds that

min
π̃

max
π∗∈Sn

Pπ∗

(
dKT(π̃, π∗) &

n

pλ2
∧ n

p log 1
1−2λ

∧ n2
)
≥ c ,

where the minimum is taken minimized over all permutation estimators π̃ ∈ Sn that are
measurable with respect to the observations and c is a universal positive constant. Similarly,
for the sampling model (O2), if we have Nn−2 log 1

1−2λ ≤ C, then it holds that

min
π̃

max
π∗∈Sn

Pπ∗

(
dKT(π̃, π∗) &

n3

Nλ2
∧ n3

N log 1
1−2λ

∧ n2
)
≥ c .

Compared to the lower bounds in Theorem 1, the above lower bounds hold in probability,
weaken the condition that λ is bounded away from 1/2 and only require maximizing π∗

instead of both π∗ and M , and are therefore stronger.
One key ingredient in proving lower bounds is to relate the Kullback-Leibler divergence

between model distributions to the distance measuring the error (see, e.g., Tsybakov, 2009,
Chapter 2). This is achieved in the following lemma for both sampling models.

Lemma 9 Fix π, σ ∈ Sn and λ ∈ (0, 12). We denote by Pπ the probability distribution of
the noisy sorting model with underlying permutation π. Then for the sampling model (O1)
we have

KL(Pπ‖Pσ) = 2 dKT(π, σ) pλ log
1 + 2λ

1− 2λ
,

and for the sampling model (O2) we have

KL(Pπ‖Pσ) = 2 dKT(π, σ)N

(
n

2

)−1
λ log

1 + 2λ

1− 2λ
.

Proof First, we consider model (O1) of sampling without replacement. For i 6= j, let P
(i,j)
π

denote the distribution of outcomes between i and j, or more formally, the distribution of
Ni,j and Ai,j . For a pair (i, j) such that π(i) > π(j) and σ(i) > σ(j), the distributions

P
(i,j)
π and P

(i,j)
σ are indistinguishable. For (i, j) such that π(i) > π(j) and σ(i) < σ(j), the

probability that i and j are not compared stays the same, but the probability that they

are compared and i wins the comparison is p(12 + λ) under P
(i,j)
π while it is p(12 − λ) under

P
(i,j)
σ . A symmetric statement holds for the probability that they are compared and j wins

the comparison. Therefore, we obtain that

KL(P(i,j)
π ‖P(i,j)

σ ) = p(1/2 + λ) log
1/2 + λ

1/2− λ
+ p(1/2− λ) log

1/2− λ
1/2 + λ

= 2pλ log
1 + 2λ

1− 2λ
.
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It follows from the chain rule that

KL(Pπ‖Pσ) =
∑

π(i)>π(j), σ(i)<σ(j)

KL(Pi,jπ ‖Pi,jσ ) = 2 dKT(π, σ) pλ log
1 + 2λ

1− 2λ
,

which proves the claimed bound.
Next, we move on to model (O2) of sampling with replacement. In this case, for the

noisy sorting model with underlying permutation π, we let Qπ denote the distribution of
the outcome of a single pairwise comparison chosen uniformly from the

(
n
2

)
possible pairs.

Conditioned on a pair (i, j) with π(i) > π(j) and σ(i) > σ(j) being chosen, the outcome is
indistinguishable under Qπ and Qσ. On the other hand, conditioned on having chosen (i, j)
with π(i) > π(j) and σ(i) < σ(j), the probability that i wins the comparison is p(12 + λ)
under Qπ and is p(12 − λ) under Qσ. By the definition of the KL divergence, we have

KL(Qπ‖Qσ) =
∑

π(i)>π(j), σ(i)<σ(j)

[(n
2

)−1
(1/2 + λ) log

1/2 + λ

1/2− λ

+

(
n

2

)−1
(1/2− λ) log

1/2− λ
1/2 + λ

]
= 2 dKT(π, σ)

(
n

2

)−1
λ log

1 + 2λ

1− 2λ
,

where the bound holds similarly as above. Since N independent pairwise comparisons are
observed and the KL divergence tensorizes, the conclusion follows.

We are ready to prove the minimax lower bound.

Proof [of Theorem 8] Consider the sampling model (O1). We assume that n is lower
bounded by a constant, and use the shorthand notation κ = 4pλ log 1+2λ

1−2λ . Note that κ ≤ C
for some constant C > 0 by the assumption. Let r = c0nκ

−1 ∧
(
n
2

)
and ε = c1r, where c0

and c1 are constants to be chosen. Let P be a maximal ε-packing of B(id, r), which is thus
an ε-net by maximality. For any π, σ ∈ P , we have dKT(π, σ) ≤ 2r, so Lemma 9 yields

KL(Pπ‖Pσ) =
1

2
κ dKT(π, σ) ≤ κr ≤ c0n .

On one hand, if κ ≤ c2 for a sufficiently small constant c2 > 0, then r ≥ c0c
−1
2 n ∧

(
n
2

)
and thus Proposition 3 implies that

log |P| ≥ n log
r

n+ ε
− 2n ≥ 10 c0n ≥ 10KL(Pπ‖Pσ) ,

where we take c0 = 1 and c1, c2 small enough for the inequalities to hold.
On the other hand, if c2 < κ ≤ C, then we take c1 = 1/8 and c0 sufficiently small so

that r ≤ c0c−12 n < n/2. Then we can apply Lemma 5 to obtain

log |P| ≥ r

5
log

n

r
≥ c0n

5C
log

c2
c0
≥ 10 c0n ≥ 10KL(Pπ‖Pσ) ,
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where the second inequality holds since c0C
−1n ≤ r ≤ c0c−12 n and the third inequality holds

for c0 small enough.
In either case, we have KL(Pπ‖Pσ) ≤ 0.1 log |P|. Therefore, using Tsybakov (2009,

Theorem 2.5) yields the lower bound of order r � nκ−1 ∧ n2. Considering the limiting
behavior of κ as λ → 0 and λ → 1

2 repectively, we see that κ . pλ2 ∨ p log 1
1−2λ , so the

claimed lower bound follows.
For the sampling model (O2), the same argument follows if we replace p with N

(
n
2

)−1
.

B.2. Proof of Theorem 2

Without loss of generality, assume that π∗ = id and n is even to simplify the notation. We
define a score

s∗i =
∑

j∈[n]\{i}

Mi,j = λ(2i− n− 1) + (n− 1)/2

for each i ∈ [n], which is simply the i-th row sum of M minus 1/2. Analogously, we define

ŝi =

i−1∑
j=1

(
1

2
+ λ̂) +

n∑
j=i+1

(
1

2
− λ̂) = λ̂(2i− n− 1) + (n− 1)/2

for each i ∈ [n], which is a slightly perturbed version of s∗i due to the difference between λ
and λ̂. The MS algorithm is designed to refine estimates for the scores s∗i in multiple stages.

First, the estimator λ̂ satisfies the following bound, which in particular implies that ŝi
is close to s∗i .

Lemma 10 If N ≥ Cn log n, then we have |λ̂ − λ| ≤ C0

√
N−1 log n with probability at

least 1− n−8, where C and C0 are sufficiently large universal constants.

Proof Consider a single pairwise comparison chosen uniformly from the
(
n
2

)
pairs. The

probability that item i is chosen and wins the comparison is equal to
(∑

j∈[n]\{i}Mi,j

)
/
(
n
2

)
=

s∗i /
(
n
2

)
. Thus the random variable Si =

∑n
j=1A

′
i,j has distribution Bin

(
N/2, s∗i /

(
n
2

))
. Hence

Lemma 6 implies that

P
(∣∣Si −E[Si]

∣∣ ≥ c1E[Si]
)
≤ 2 exp

(
− c2E[Si]

)
≤ n−10,

where the last inequality holds since N ≥ Cn log n, and we use c1, c2, . . . to denote suffi-
ciently small constants. A union bound shows that with probability at least 1 − n−9, we
have |Si −E[Si]| ≤ c1E[Si] for all i ∈ [n]. Denote this high probability event by E , and we
condition on E henceforth.

Recall that s∗i = 2λi − λ(n + 1) + (n − 1)/2. Using that λ is bounded away from zero,
we can choose c1 small enough so that if i − j ≥ n/4, then s∗i − s∗j > 2c1s

∗
i . Note that

E[Si] = 1
2Ns

∗
i /
(
n
2

)
, so E[Si] − E[Sj ] > 2c1E[Si] if i − j ≥ n/4. Therefore, on the event E

we have Si > Sj for all (i, j) with i − j ≥ n/4. It follows that π̃(i) > π̃(j) for these pairs
(i, j), as π̃ is defined by sorting the scores Si.
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Next consider (i, j) such that π̃(i) − π̃(j) > n/2. Suppose we have i < j. Then there
exists k ∈ [n] with π̃(j) < π̃(k) < π̃(i) such that either k − i ≥ n/4 or j − k ≥ n/4, which
gives a contradiction on the event E . Therefore, it holds that i > j for all pairs (i, j) with
π̃(i)− π̃(j) > n/2.

Recall that λ̂ = 2
N

(
n
2

)(
n/2
2

)−1∑
(i,j)∈I A

′′
i,j− 1

2 , where I = {(i, j) ∈ [n]2 : π̃(i)−π̃(j) > n
2 }.

Note that A′′ is independent of E , on which we have i > j for all (i, j) ∈ I. Similar to the
argument at the beginning of the proof, the probability that a uniformly chosen pair falls in
I and i wins the comparison is ( 12+λ)|I|/

(
n
2

)
. Hence the random variable X : =

∑
(i,j)∈I A

′′
i,j

has distribution Bin
(
N/2, (12 + λ)|I|/

(
n
2

))
. It follows that E[λ̂ | E ] = λ once we note that

|I| =
(
n/2
2

)
.

Moreover, Lemma 6 gives the bound

P

(∣∣X −E[X]
∣∣ ≥ C2

√
N log n

∣∣∣ E) ≤ 2 exp(−c3 log n) ≤ n−9,

and consequently |λ̂ − λ| ≤ C0

√
N−1 log n with probability at least 1 − n−9 conditioned

on the event E , where C2 and C0 are sufficiently large constants. A union bound then
completes the proof.

We condition on the high probability event of Lemma 10 throughout the rest of the
proof, so that |λ̂ − λ| ≤ C0

√
N−1 log n for a fixed constant C0 > 0. In particular, λ̂ is

bounded away from zero by a universal constant since λ is and N ≥ Cn log n, and ŝj < ŝi
iff j < i. We proceed with the following key lemma.

Lemma 11 Fix t ∈ [T ], i ∈ [n] and I ⊆ [n] with i ∈ I. Suppose that |I| ≥ C1
n2T
N log(nT )

for a sufficiently large constant C. If we define

S =
Tn(n− 1)

2N

∑
j∈I

A
(t)
i,j +

∑
j∈[n]\I, j<i

(1

2
+ λ̂

)
+

∑
j∈[n]\I, j>i

(1

2
− λ̂

)
,

then it holds with probability at least 1− 2(nT )−9 that

|S − ŝi| ≤ (5 + C0)n
√
|I|TN−1 log(nT ) .

Proof Consider a single pairwise comparison chosen uniformly from the
(
n
2

)
pairs. The

probability that the chosen pair consists of item i and an item in I \ {i}, and that item
i wins the comparison, is equal to q : =

(∑
j∈I\{i}Mi,j

)
/
(
n
2

)
. Thus the random variable

X : =
∑

j∈I A
(t)
i,j has distribution Bin(N/T, q). In particular, we have E[X] = Nq/T =

2N
Tn(n−1)

∑
j∈I\{i}Mi,j and by Lemma 6,

P

(∣∣X −E[X]
∣∣ ≥ rN

T

)
≤ 2 exp

(
− Nr2

2T (q + r)

)
.

Taking r = 6
√

Tq
N log(nT ), we see that r ≤ q using the assumption |I| ≥ C1

n2T
N log(nT ), so

P

(∣∣X −E[X]
∣∣ ≥ 6

√
qNT−1 log(nT )

)
≤ 2(nT )−9 . (B.7)
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By the definitions of S and ŝi, it is straightforward to verify that

S − ŝi =
Tn(n− 1)

2N
(X −E[X]) +

∑
j∈I, j<i

(λ− λ̂) +
∑

j∈I, j>i
(λ̂− λ) .

Therefore, we obtain from (B.7), the definition of q and the fact |I| ≤ n that

|S − ŝi| ≤ 3n(n− 1)
√
qTN−1 log(nT ) + |I| |λ̂− λ|

≤ 5n
√
|I|TN−1 log(nT ) + C0|I|

√
N−1 log n

≤ (5 + C0)n
√
|I|TN−1 log(nT )

with probability at least 1 − 2(nT )−9.

To analyze the MS algorithm, we apply Lemma 11 inductively to each stage of the
algorithm. Define E(0) to be the full event. As the inductive hypothesis, we assume that on

the event E(t−1), it holds that j < i for all j ∈ I(t−1)− (i) and j > i for all j ∈ I(t−1)+ (i). In
particular, this holds trivially for t = 1.

On the event E(t−1), the score S
(t)
i is exactly the quantity S in Lemma 11 with I =

I(t−1)(i). Thus the lemma shows that if |I(t−1)(i)| ≥ C1
n2T
N log(nT ) for a large enough

constant C1, then

|S(t)
i − ŝi| ≤ (5 + C0)n

√
|I(t−1)(i)|TN−1 log(nT ) = τ

(t)
i /2 (B.8)

with probability at least 1−2(nT )−9 conditional on E(t−1). We denote by E(t) the sub-event
of E(t−1) that the above bound holds for all i ∈ [n]. Then P(E (t) | E (t−1)) ≥ 1− (nT )−8 and
we condition on E(t) henceforth.

For any j ∈ I(t)− (i), by definition S
(t)
j − S

(t)
i < −τ (t)i , so we have ŝj < ŝi and thus j < i.

Similarly, j > i for any j ∈ I
(t)
+ (i) on the event E(t). Hence the inductive hypothesis is

verified. Moreover, note that I(t)(i) = {j ∈ [n] : |S(t)
j −S

(t)
i | ≤ 2τ

(t)
i } ⊆ {j ∈ [n] : |ŝj − ŝi| ≤

3τ
(t)
i }. Since ŝj − ŝi = 2λ̂(j − i) and λ̂ is bounded away from zero by a universal constant,

we have

|I(t)(i)| ≤ C2τ
(t)
i = C3n

√
|I(t−1)(i)|TN−1 log(nT ) , (B.9)

where we use C2, C3, . . . to denote sufficiently large constants.
Note that if we have α(0) = n and the iterative relation α(t) ≤ β

√
α(t−1) where α(t) > 0

and β > 0, then it is easily seen that α(t) ≤ β2n2
−t

. We would like to obtain such a
bound from the relation (B.9). Note that E(T ) ⊆ E (T−1) ⊆ · · · ⊆ E (0) by definition and
P(E (T )) =

∏T
t=1P(E (t) | E (t−1)) ≥ 1− n−8. Conditional on E(T ), the iterative relation (B.9)

thus holds for all t ∈ [T ], and we have |I(0)(i)| = n by definition. Since I(t)(i) is not updated

in the algorithm once |I(t)(i)| ≤ C1
n2T
N log(nT ), we obtain that

|I(T−1)(i)| ≤
(
C2
3

n2T

N
log(nT )n2

−T+1
)
∨
(
C1
n2T

N
log(nT )

)
≤ C4

n2

N
(log n)(log log n) ,
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where the last bound holds because we take T = blog log nc. Hence it follows from (B.8)
that

|S(T )
i − ŝi| ≤ C5n

2N−1(log n)(log log n) ,

and a similar argument as above shows that S
(T )
i > S

(T )
j for all pairs (i, j) with i − j >

C6n
2N−1(log n)(log log n) = : δ. As the permutation π̂MS is defined by sorting the scores

S
(T )
i in increasing order, we see that π̂MS(i) > π̂MS(j) for pairs (i, j) with i− j > δ.

Finally, suppose that π̂MS(i)− i < −δ for some i ∈ [n]. Then there exists j < i− δ such
that π̂MS(j) > π̂MS(i), contradicting the guarantee we have just proved. A similar argument
leads to a contradiction if π̂MS(i)− i > δ. Therefore, we obtain that

|π̂MS(i)− i| ≤ δ = C6n
2N−1(log n)(log log n)

for all i ∈ [n], which completes the proof.
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