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Abstract

®

CrossMark

The vibrations of mechanical systems and structures are often a combination of periodic and
random motions. Emerging interest to exploit nonlinearities in vibration energy harvesting
systems for charging microelectronics may be challenged by such reality due to the potential to
transition between favorable and unfavorable dynamic regimes for DC power delivery.
Therefore, a need exists to devise an optimization method whereby charging power from

nonlinear energy harvesters remains maximized when excitation conditions are neither purely
harmonic nor purely random, which have been the attention of past research. This study meets
the need by building from an analytical approach that characterizes the dynamic response of

nonlinear energy harvesting platforms subjected to combined harmonic and stochastic base
accelerations. Here, analytical expressions are formulated and validated to optimize charging
power while the influences of the relative proportions of excitation types are concurrently
assessed. It is found that about a 2 times deviation in optimal resistive loads can reduce the
charging power by 20% when the system is more prominently driven by harmonic base
accelerations, whereas a greater proportion of stochastic excitation results in a 11% reduction in
power for the same resistance deviation. In addition, the results reveal that when the frequency of
a predominantly harmonic excitation deviates by 50% from optimal conditions the charging
power reduces by 70%, whereas the same frequency deviation for a more stochastically
dominated excitation reduce total DC power by only 20%. These results underscore the need for
maximizing direct current power delivery for nonlinear energy harvesting systems in practical

operating environments.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The acceleration of interest to deploy wireless sensors for
structural health monitoring applications has stimulated a
need to realize sustainable device platforms for self-sufficient
monitoring [1-3]. The few milliwatts required for sensor
operation [2, 4] suggest that electric power resources other
than traditional batteries may be adequate to meet the

0964-1726/18/015011+-16$33.00

relatively minor, albeit functionally critical, demand. This has
propelled interest to harvest ambient vibration energy found
in the monitored structure environment as a novel resource to
sustain the wireless devices and eliminate the requirements
for regular battery replacement [5—7]. Vibration energy har-
vesting using piezoelectric elements has demonstrated
advantages of high energy density favorable for the small
scale ambient energy available and opportunity to collocate
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the harvester with the compact wireless sensors [8, 9]. Elec-
trical power output from linear piezoelectric vibration energy
harvesters is dependent upon the electromechanical coupling
[10], resistive load [11, 12], and rectification circuit design
[13, 14]. As a result, attention has turned to optimizing the
performance of linear vibration energy harvesters [15-18].
Because the large power output from linear harvesters is
associated with narrow band resonance phenomena, optim-
ization studies often obtain insight on steady state harvester
operation.

In fact, realistic vibrations of structures and systems to be
monitored contain combinations of harmonic and stochastic
kinetic energies [19-21]. Due to the linearity of certain
classes of energy harvesters, predictions of device perfor-
mance under such complex excitation scenarios are easily
achieved using principles of linear superposition. On the other
hand, the narrow band frequency sensitivities of linearly
resonant energy harvesters has motivated studies of energy
harvesters using stiffness nonlinearities that provide broader
frequency bandwidth for large electric power generation
[22-24]. For nonlinear device platforms, superposition does
not immediately hold. This is partly explained by the fact that
non-unique dynamic responses may be achieved for the same
excitation conditions, according to the sensitivity to initial
conditions. Of the stiffness nonlinearities considered, energy
harvesters with bistable nonlinearities may undergo large
amplitude snap-through responses that are favorable for
ambient vibration energy harvesting [25-28]. Yet, the non-
uniqueness of electromechanical responses more greatly
challenges the theoretical prediction of nonlinear energy
harvester dynamic behaviors than for the linear counterparts
[29]. Consequently, rigorous theoretical efforts have been
undertaken to uncover best practices of deploying these
nonlinear harvester platforms. Specifically, alternating current
(AC) power outputs from nonlinear energy harvesters are
revealed to be substantially governed by the harmonic exci-
tation frequency and amplitude [30] as well as by the load
resistance under harmonic [31] or random excita-
tions [32, 33].

Yet, the practical implementation of nonlinear energy
harvesters requires consideration of direct current (DC) power
delivery to the wireless sensors, in which case the non-
linearities of the rectification circuitry cannot be neglected. To
shed light on this complex yet critical operating scenario, the
authors proposed and validated an analytical approach that
facilitates predictions of the electromechanical responses and
DC power generation from nonlinear energy harvesters driven
by combinations of harmonic and stochastic base accelera-
tions [34]. In the work [34], the passive diode bridge rectifier
is considered to be coupled with the nonlinear energy har-
vesting system. While simple in composition, the nonlinear
characteristics of the standard bridge rectifier are typical of
more advanced circuits [35-37] that use full-wave rectifica-
tion as a first stage to general power conditioning. Parametric
studies using the analysis were undertaken in [34], while first
insights into the sensitivities of nonlinear energy harvesters to
sustain DC power delivery were obtained from model
exercises.

Despite the emerging model formulation, a clear omis-
sion of understanding remains on the optimality of deploying
nonlinear energy harvesters in combined harmonic and sto-
chastic excitation environments [34]. On the other hand,
researchers have considered a sub-set of such problems by
attention to nonlinear energy harvesters subjected to pure
harmonic excitations optimized for AC power delivery [38].
Yet, because the prior work [34] revealed considerable
influences of the combined excitation form in governing the
overall electromechanical dynamics and because the inclusion
of rectification circuitry for DC power is well-known to
strongly influence piezoelectric energy harvester behaviors
[11, 15], a need remains to illuminate how to optimize non-
linear piezoelectric energy harvesters deployed in practical
operating environments where arbitrary combinations of
harmonic and stochastic base accelerations are realized.

To close this knowledge gap, this research builds beyond
the authors’ analytical framework [34] to devise optimization
schemes for maximum DC power delivery from nonlinear
piezoelectric energy harvesters subjected to harmonic and
stochastic excitation. Through such investigations, this work
creates new insight on how nonlinear vibration energy har-
vesters may be effectively utilized for practical DC power
generation despite concerns pertaining to non-unique
dynamic behaviors. The following section introduces the
experimental setup that provides motivating evidence of the
need to optimize such nonlinear harvesters when the excita-
tions deviates from conditions of pure harmonic excitation.
Then, the analytical framework is briefly surveyed, after
which the methods of DC power optimization are established.
Comparisons among analytical, numerical simulation, and
experimental results verify and validate the new theoretical
optimization approach. Then, studies are undertaken to
broadly assess the design and deployment sensitivities of
optimal nonlinear energy harvesters to combined excitations.
The major findings are summarized in the last section.

2. Experimental platform construction and
motivation results

Here, the experimental setup is introduced and preliminary
experimental results are provided to motivate the subsequent
analytical optimization formulation.

2.1. Experimental platform overview

As shown in figure 1, the nonlinear vibration energy harvester
is constructed by a piezoelectric cantilever beam (Midé
Technology, PPA-2014) with steel extensions at the free end.
The cantilever is clamped to an aluminum mount that is fixed
to an electrodynamic shaker. The steel extensions at the beam
end are acted on by a pair of neodymium magnets that apply
attractive forces to oppose the direction of linear elastic forces
[39]. This kind of magnetoelastic structure has been shown to
exemplify a broad range of nonlinear behaviors, especially
those associated with softening and bistable nonlinearities
[39-41]. By tuning the distance between the magnet centers
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Figure 1. (a) Photograph of nonlinear energy harvester platform and
(b) corresponding schematics with diode bridge rectifier circuit.

to be A = 7.775 mm and by adjusting the distance from the
beam tip to the plane of the magnet top surface to be
6 = 3.28 mm, the harvester beam is acted upon in a way to
induce bistability. More general nonlinearities induced by the
magnetic forces are studied in section 4.4. The length of the
piezoelectric cantilever with extension is L = 60.4 mm, while
the mass of the steel extension is m, = 9 g. As shown by the
schematic in figure 1(b), a standard diode bridge circuit,
constructed by four diodes (1N4148), is connected to the
piezoelectric beam electrodes. The bridge rectifies the AC
voltage v, from the piezoelectric beam to a DC voltage v,
across the resistive load R and smoothing capacitor C;.

The beam tip and electrodynamic shaker table absolute
displacements are measured by laser displacement sensors

(Micro-Epsilon  ILD-1420). An accelerometer (PCB
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Piezotronics 333B40) is used to measure the shaker table
acceleration. The external base excitations are applied by
electrodynamic shaker and table (APS Dynamics 400) which
is driven by an amplifier (Crown XLS 2500). The strength of
base acceleration excitation is quantified by the base accel-
eration amplitude (for the harmonic excitation component)
and standard deviation of the white noise (for the stochastic
excitation component). The excitation signals are constructed
by adding normally-distributed voltage, band-pass filtered
between 3 and 90 Hz, with a prescribed harmonic voltage.
Data from all channels are collected at sampling rate 4096 Hz
and low-pass filtered at 100 Hz.

2.2. Representative data revealing need to create DC power
optimization approach

Preliminary experiments are conducted to assess the sig-
nificance of uncovering optimal conditions for energy har-
vesting in combined excitation environments. Three different
load resistances are considered R = {10, 150, 1000} k€2,
which span over 2 order of magnitude around the optimum
resistance value, as later examined in section 4.2. The
smoothing capacitor is C, = 10 uF, which is sufficiently large
to minimize the DC voltage ripple to a negligible amount. To
investigate one of the more promising stiffness nonlinearities
explored for vibration energy harvesting albeit with the
challenge of non-unique response [28, 29], the magnets are
tuned such that the nonlinear harvester is in a symmetric
bistable configuration. The distance between the two statically
stable equilibria is 2.3 mm, while the linear natural fre-
quencies around either equilibrium configuration are both
25 Hz, ensuring the symmetry of the structure. While this
preliminary assessment considers bistable nonlinearity in the
energy harvesting system, additional nonlinearities are scru-
tinized in section 4.4.

The preliminary experimental results are shown in
figure 2. First, pure harmonic excitation is applied with har-
monic base acceleration amplitude @ = 4ms >, The fre-
quency is slowly varied at a rate of 0.1 Hzs ' from
wo /27 = (5, 35) Hz, from low to high values and then from
high to low. According to the experiment results shown in
figure 2(a) by the solid curves, under pure harmonic
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Figure 2. Experimental measurement of (a) beam tip displacement and (b) corresponding DC power generation, under harmonic excitation
(solid lines) with base acceleration amplitude ¢ =4 m s~2, or combined harmonic and stochastic excitation (shapes) with harmonic base
acceleration amplitude ¢ = 4 m s~ 2 and noise standard deviation ¢ = 3 m s~ 2. Three levels of resistance are chosen R = {10, 150, 1000} kQ.
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excitation the change in the load resistance does not greatly
influence the amplitude of the beam displacement, except for
the varied frequency band in which the larger amplitude snap-
through responses are achieved. Specifically, for the resis-
tances R = {10, 150, 1000} k€2, the lower cutoff frequencies
of snap-through branches are all about 10 Hz, while the upper
cutoff frequencies are 22.25Hz, 18.75Hz, and 22Hz,
respectively. On the other hand, the DC power generation is
plainly dependent on the selection of load resistance, as seen
in figure 2(b). Indeed, for pure harmonic excitation, this fact
is known for the broad class of smooth stiffness nonlinearities
leading to monostable or bistable energy harvesters [38]. In
figure 2(b), for the resistances R = {10, 150, 1000} k€2, the
maximum DC powers are 0.83 mW, 1.20 mW, and 0.60 mW,
respectively. Note that the resistance change from 10 to
150 k€2 increases peak DC power by about 50%, while the
resistance change from 150 to 1000 k(2 decreases the peak
DC power by 50%. It is also worth emphasizing that the best
load resistance selection for DC power corresponds to a
reduction in the frequency bandwidth of the large amplitude
of the nonlinear harvester response, as previously uncovered
for AC power generation from nonlinear energy harvest-
ers [30].

Then, a case of combined harmonic and stochastic base
acceleration is considered. The standard deviation of an
additive white noise acceleration is ¢ = 3 m s_2, which adds
to the harmonic base acceleration amplitude a = 4ms %
The data points in figure 2 are the corresponding experimental
measurements for the combined excitation case. The exper-
imental results reveal that the mechanical response is rela-
tively robust to change in resistance since the mean
displacement amplitudes are less sensitive to change in
resistance than for the case of pure harmonic base accelera-
tion. In contrast, the DC power demonstrates clear depend-
ence on the resistance value. According to figure 2(b), under
such combined excitation the maximum DC power increases
by about 2.8 times from 0.31 to 0.87 mW as resistance
changes from 10 to 150 k2, while the DC power reduces by
about half from 0.87 to 0.42 mW when resistance changes
from 150 to 1000 k2. Interestingly, the peak DC power under
the combined excitation is not strongly dependent upon the
frequency of the harmonic excitation component. In each case
of load resistance, the peak power is achieved around 18 Hz,
which compares to the linear natural frequency of 25 Hz that
may be ordinarily anticipated to be an optimal working
condition in vibration energy harvesting applications.

The results in figure 2 are exemplary of the nuances and
non-intuitive aspects of DC power delivery that are observed
throughout this investigation. There are consequently clear
needs to optimize the design and deployment of nonlinear
energy harvesters subjected to combined harmonic and sto-
chastic excitations. The following theoretical formulation
builds up such an approach for optimization.

3. Nonlinear vibration energy harvester model and
optimization

The optimization technique devised in this research builds
beyond the nonlinear vibration energy harvester model pre-
viously proposed by the authors [34]. The following
section 3.1 reviews the essential components of the analytical
model framework needed to yield expressions for the
optimization undertaking. The optimization method is then
presented in section 3.2.

3.1. Review of nonlinear energy harvesting system analysis for
arbitrary harmonic and random excitations

The assumptions of the analysis are that the beam deflects in
the same period of oscillation as the sinusoidal component of
base acceleration, that the beam deflection is only in the
lowest order vibration mode, that the influences of the
magnetic forces and large beam stretching are reduced to the
linear and cubic nonlinear terms resulting from a Taylor series
expansion, and that the diode bridge rectifier is perfect [34].
Consequently, the non-dimensional governing equations are

o 4+ (= p)x 4 B+ wyp = =2, (1a)
v+ 1= Ox’, (1b)

Wil pvrs i vy = vy
I(r) =3 = = pvs if vy = —vr. (1)

0; if [yp| < vy

Here, x denotes the generalized non-dimensional beam tip
displacement relative to the non-dimensional motion z of the
base, the positive direction of which is indicated in
figure 1(b); v, and v, are the non-dimensional AC and DC
voltages, respectively, before and after the diode bridge rec-
tification; and p is the loading parameter which characterizes
the negative linear stiffnesses induced by the attractive
magnet pair so that p < 1 indicates that the harvester is
monostable, while p > 1 indicates that the harvester is bis-
table [27, 39, 42]. In addition, n is the loss factor associated
with viscous damping influences; 3 is the coefficient of cubic
nonlinearity; y is the ratio of smoothing capacitance to the
piezoelectric capacitance; p is the ratio of mechanical to
electrical time constants; while x and 6 are respectively the
electromechanical coupling coefficients. The notation ()’
indicates differentiation with respect to non-dimensional
time 7.

The non-dimensional base acceleration is a combination
of harmonic and stochastic components

—z7" = a cos wr + ow(7), )
where w(7) is a Gaussian white noise process with
(w(r)) = 0 and (Ww(D)w(T + 1)) = §(7)- 3)

The normalized standard deviation of the noise base accel-
eration component is ¢. The normalized harmonic base
acceleration amplitude is a, while w is the angular frequency
of excitation that is normalized with respect to linear natural
frequency wp, such that the absolute angular excitation



Smart Mater. Struct. 27 (2018) 015011

Q Dai and R L Harne

frequency of the base acceleration is wy = wow. The
corresponding absolute harmonic base acceleration amplitude
and standard deviation are denoted by a and g, respectively.

To solve the nonlinear governing equation (1), a linear-
ization approach is used by introducing an equivalent
equation

o+ welx 4 e + Ky, = =2 4)

Two parameters are introduced: the equivalent linear natural
frequency w. and displacement offset ¢. The error
E=(1 —p)x+ fx® — w?x — ¢ between equations (la)
and (4) is minimized in a mean-square sense.

The equivalent linear system governed by equation (4) is
therefore assumed to approximately respond to the harmonic
and stochastic base acceleration components in a way ana-
logous to linear superposition by the sum of harmonic and
stochastic terms. Using subscripts & and r to respectively
denote responses due to harmonic and random excitation
components, the total beam displacement, AC voltage across
the piezoelectric electrodes, and DC voltage on the load
resistance are then

x(1) = xp (1) + x:(7), (Sa)
Vp(T) = Vpu(T) + vpr(7), (5b)
Ve(T) = Vr,h(T) + Vr,r(T)- (5¢)

The harmonic components of beam tip displacement and AC
voltage are expressed using low order Fourier series expan-
sions.

xh(7) = k(1) 4+ n(r)cos [wr — ¢(7)], (6)
Vp.a(7) = p(7)sin wr + q(7)cos wr. (7)

A constant term k is required in the beam tip displacement
equation (6) to represent displacement bias when the beam
oscillates around a local stable equilibrium configuration. The
DC voltage v, () is assumed to be constant. The compo-
nents of responses due to white noise have zero-mean,
(xr) = (W) = (w,r) = 0. By using the assumed total
mechanical responses as shown in equation (5a), minimizing
the mean square error due to linearization results in expres-
sions for w? and ¢

we=(-p)
3 0t 4 8n2(x2) + 8(x2)* + 4k2(n® + 2(x?2))
= , (8
+ 45 7420 (8)
1 3n* — 8k2(n® + 2(x2))
: 46 n? 4+ 2(x}) ®

Then, the equations (1b), (1¢), and (4) are solved in a way that
couples together the harmonic and stochastic components of
the response via (8). A complete description of the under-
taking of such analytical approach is described in [34].

For the harmonic component, the derivation results in
expressions for the AC voltage across the piezoelectric

electrodes v, j, the DC voltage, and DC power given by

Onfcos w® — 1] + vp; 0 < w® < ©
—Viny O <wd K7
Onfcosw® + 1] —wp; 1< wd <71+ 06O
Viny T+ O <wd <271

Vph(WP) =

(10)
Vrh = ﬂz—en (11)
;P +2
2 2
po= Y _ 40 o (12)

S )

using an auxiliary phase w® = wr — ¢. Together, the
responses of equations (10)—-(12) are substituted into
equation (4) for the case of harmonic base acceleration
—7” = a cos wr. Consequently, a cubic polynomial in terms
of n? is obtained

[ + X2 = a2, (13)
where
A= (we? — W) + 9—'%(26) — sin 20);
27
X =nw+ b sin” © (14a)
s
and
k*=0o0rk*=¢c2/uft = —%nz -3(x3) — (1 —p)/B.
(14b)

By equation (8), w, is also a function of the mean-square
displacement (x,) that is induced by the stochastic excitation
component. By virtue of the nonlinearity of the energy har-
vester and in the rectification circuitry, an empirical approach
is devised to determine the relationships among mean-square
displacement (x,) and the piezoelectric AC voltage v, and
rectified DC voltage v; ;. The final results of mean-squared AC
and DC voltage outputs yields the expressions (15) and (16),
respectively.

200(x2) w2
<Vp,r2> ~ - <xr >Cdc:w].5 ) (15)
3p + 6p + m
(e = V2 (vp2). (16)

Then, equation (4) is again considered for the stochastic base
acceleration —z” = ow(7) and stochastic response terms
from equation (5). A secondary linearization is thus under-

taken according to an equivalent system
x! + mx] + Wen2xp = ow (7). (17)

Minimizing the mean-square error between equations (4) and
(17) leads to the expression for the new, squared equivalent
natural frequency wgn

wenz = wez + /ﬁwe\/

200
(s)

3p7 + 6p + 2000
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Then, the mean-square displacement (x,) due to white noise
base excitation is

0.2

() = —. (19)

21w
Collectively the overall nonlinear vibration energy harvester
electromechanical responses under combined harmonic and
stochastic base acceleration are determined by simultaneously
solving the coupled nonlinear algebraic equations,
equations (8), (13), and (19) that nonlinearly couple together
influences of the harmonic and random response components
via the equivalent natural frequency. The resulting total
responses of the energy harvesting system may then be
determined by equation (5).

The total DC power output across the load resistance is
therefore
Vr,h2 + <Vr,r2>
R R

This effective superposition principle is uniquely enabled by
the combination of harmonic and stochastic linearization
methods deployed in the recent analytical formulation of the
nonlinear energy harvesting structure and circuit [34]. Yet,
the prior study did not establish optimization methods that
may elucidate approaches for maximum DC power extraction
from a given combination of harmonic base acceleration and
white noise excitation. The approach presented in this
research closes this critical gap in technical understanding and
model development.

P:

(20)

3.2. Total DC power optimization approach

The expression for total DC power generation equation (20) is
the sum of harmonic and stochastic portions. In this section,
the derivation given in section 3.1 as reviewed from [34] is
greatly built beyond to formulate the approach to optimize the
total DC power.

Because the analytical technique is established on line-
arization and an equivalent method of superposition, the
optimization begins by optimizing the DC power components
individually with respect to either the harmonic or stochastic
base acceleration components. The traditional method to
identify extrema of a function is used for the optimal load
resistance of the DC power components:

2
A freh —0, 2la)
dr\ R
Rop.h
2 2
& [ven <0, (21b)
drR’\ R
Rop,h
2
i(_<vnr ) ) —o, (22a)
dr\" R
Rop,r
2 2
&) <o0. (22b)
'R\ R )|,

The electromechanical coupling is presumed to be sufficiently

small such that the structural dynamics are weakly dependent
on change in electrical resistance, which is an assumption
adopted by other researchers in the field [11]. This leads to
expressions of optimal load resistance

T
Ropp = ——, 23
op-h 2Cpwwy @3)
77.46
Ropr = ————. 24)
op,r Cp’y3/4wo

Similar results for the optimal resistance due to harmonic
excitation, equation (23), have also been obtained previously
for linear vibration energy harvesters with DC [11, 43] and
AC [15] power outputs, using the same assumption regarding
negligible electromechanical coupling effects. Yet, the
determination of optimal resistance for either pure stochastic
or combined harmonic and stochastic base accelerations have
not been obtained for nonlinear energy harvesters. Note that
based on the limiting case expressions equations (23) and
(24), the resistance R, optimized for pure harmonic exci-
tation is frequency dependent, while the optimal resistance for
stochastic excitation component R, is independent of
excitation characteristics. The constant coefficient in
equation (24) is obtained by the operations equation (22)
acting on the empirically derived expression of random DC
power due to stochastic excitation component of base accel-
eration [34]. Consequently, an expression of optimal resist-
ance that bridges these two qualitatively distinct limiting
cases is required when excitations contain both harmonic and
stochastic contributions.

Yet, a direct derivation of overall optimal resistance is
not feasible for the general case of harmonic and stochastic
base accelerations because a recursive relationship is obtained
due to the nonlinearly coupled nonlinear algebraic
equations (8), (13), and (19). Thus, to obtain an expression of
optimal resistance for the general case of combined excita-
tions, the analysis is exercised in 3 k() increments of load
resistance, 1 Hz increments of harmonic excitation frequency,
and 0.3 increments of noise standard deviation to harmonic
base acceleration amplitude ratio. Then, the total DC power is
determined, while the corresponding load resistance is varied
over the range R = (100, 250) k). The harmonic excitation
frequency range considers the bandwidth sufficiently around
the nonlinearly resonant state w,/27 = (11, 18) Hz that
induces non-unique dynamic behaviors for pure harmonic
excitation as shown in figure 2. The ratio of noise standard
deviation to harmonic base acceleration amplitude is varied
across g/a = (0, 3). The remaining system parameter values
used to generate the analytical data points in figure 3 are
shown in table 1.

Then, it is presumed that a weighted combination of the
two values of optimal load resistance, equations (23) and (24),
collectively make up the load resistance value that optimizes
the total DC power in the general case or arbitrary, persistent
base accelerations. A logistic function is found to fit the
analytical results using the least number of fitting variables.
Although several classes of functions may be employed to
characterize a function variation from one extreme parameter
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Figure 3. Predicted optimal resistance from individual analysis
(shapes) and empirically determined expression equation (25)
(curves) as functions of base excitation noise standard deviation to
harmonic base acceleration amplitude ratio for different harmonic
excitation frequencies, wq /2.

Table 1. Non-dimensional parameters used in the simulations and
analysis.

Parameter n I5] K p 0 o4 P

Value 0.08 045 0.006 1.6 1456 104.17 0.46

value to another, the logistic function is employed in this
research due to preliminary observations that it faithfully
characterizes the variation of the function values in the range
of parameters that are between extreme values. Therefore, the
optimal load resistance for combined harmonic and stochastic
base accelerations driving the nonlinear energy harvester is
obtained to be

Rop = € 0@ Ropy + (1 — e 5@ Ry, — 10, (25)

Shown in figure 3 are the fitting results, where equation (25)
is presented by the curves for different harmonic excitation
frequencies. The analytically predicted optimal resistances are
the data points. As observed in figure 3, the optimal resistance
clearly depends on the ratio of the noise standard deviation to
the harmonic base acceleration amplitude ¢/, and the more
noise-dominated excitation scenario g/a > 3 is frequency
independent. The coefficients of determination for the cases
as shown in figure 3 for different harmonic excitation fre-
quency wo/27 in integer values from 11 to 18 Hz are
respectively {0.97, 0.98, 0.97, 0.96, 0.90, 0.76, 0.87, 0.81}.
This emphasizes the accuracy of equation (25) under a wide
variety of relevant general cases and frequencies of the
combined excitation. It is possible that the specific coeffi-
cients identified in the logistic function fit equation (25) may
change when considering more strongly coupled nonlinear
energy harvesters. Yet, due to the widespread examination of
weakly coupled energy harvesting structures and merits of
such less costly materials [14], the results obtained in the
following investigations using equation (25) for weakly
coupled energy harvesting systems may find broad
application.

From a firm grasp of vibration energy harvesting prin-
ciples, the excitation ratio g/a cannot be optimized because
an ever-increasing value of ¢g/a would intuitively improve
the total DC power generation, albeit at the practical fatiguing
and possible failure of the energy harvesting beam. In addi-
tion, the influence on maximum power generation due to
electromechanical coupling coefficient is documented for
linear and nonlinear vibration energy harvesters by Wick-
enheiser and Garcia [18], Wickenheiser [44], and Panyam
et al [30, 38]. These authors have revealed that for weakly
coupled system only one condition for maximum AC or DC
power generation may be realized, while more strongly cou-
pled harvesters exhibit two such local maxima of power.
Because such background is known, in this study the elec-
tromechanical coupling coefficients x and 6 are not con-
sidered for optimization. Instead, focus is placed on
optimizing the DC load resistance and relative harmonic
excitation parameters that result in maximum DC power
output from the nonlinear energy harvester under combined
harmonic and stochastic excitations.

4. Results and discussion

4.1. Case study validation for optimization approach

As revealed from the case study experimental results of
section 2.2, there is apparent need to optimize the total DC
power output from nonlinear vibration energy harvesters
subjected to combined harmonic and stochastic excitations.
Here, using the model presented in section 3, analytical
results are validated against the case study experimental
measurements. Direct numerical simulations of non-dimen-
sional governing equation (1) are likewise undertaken for
verification purposes. The non-dimensional parameter values
used for simulation and analysis are provided in table 1, and
are identified from the experimental setup according to the
system identification procedures reported in [34]. The simu-
lations are conducted by using fourth-order Runge—Kutta
numerical integration. The initial values for the state variables
are normally distributed random numbers within one order of
magnitude of the statically stable equilibria. In order to obtain
statistically sufficient data for harmonic and stochastic exci-
tations, the simulations elapse over 600 periods of the har-
monic excitation frequency.

The analytical and simulation results are determined first
for a case of pure harmonic excitation with base acceleration
amplitude is ¢ = 4ms 2 As directly comparable to the
experimental measurements in figure 2, the analytical and
simulation results in figure 4 are in qualitative and quantita-
tive agreement with the data. The amplitudes of harvester
beam displacement are shown in figures 4(a) and (c) while the
DC power is given in figures 4(b) and (d). Simulation results
are in figures 4(a) and (b) with the open data points, while the
analytical predictions are in figures 4(c) and (d) using the
solid curves. The change of load resistance is seen to govern
the DC power of the simulation and analytical findings in the
same ways as those observed in the experiments. These
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Figure 4. Simulation results of (a) beam tip displacement amplitude (b) total DC power, under harmonic excitation (hollow data points) with
base acceleration amplitude ¢ = 4 ms™2; or combined harmonic and stochastic excitation (filled data points) with harmonic base
acceleration amplitude ¢ = 4 m s~ 2 and noise standard deviation g=3m s 2 (c) and (d) Corresponding analytical results, for pure
harmonic (solid lines) and combined harmonic and stochastic (dashed lines) excitations.

factors include the frequency dependence of the peak DC
power, the changing frequency bandwidth of the large
amplitude snap-through responses for peak power, and the
influence of load resistance on the peak DC power.

Yet, to consider the more important case of combined
harmonic and stochastic base acceleration, the results of
simulations and analysis that correspond to the case of noise
standard deviation ¢ = 3 ms ™2 and harmonic base accelera-
tion amplitude ¢ = 4ms~ 2 are shown in figure 4, respec-
tively, by the closed data points and dashed curves. Each
numerical simulation data point in figures 4(a) and (b) for the
combined excitation case is the mean value of 16 simulations.
The trend that an optimal resistance may be determined for
maximum DC power is also revealed by the simulation and
analytical results, in figures 4(b) and (d) respectively, as those
observed in the measurements figure 2(b). On the other hand,
the analysis predicts coexistent results in the frequency band
between about 17 and 25 Hz due to the theoretical formula-
tion that considers a quasi-decoupling of harmonic and sto-
chastic electromechanical responses. The simulations and
measurements do not reveal such coexistence because the
presented results are means of a large number of time
sequences at each harmonic excitation frequency considered.
Thus, the analysis suggests a range of DC power from low to
high values that the total resulting DC power may be found;
indeed, the absolute results from simulations and experiments
are found to occur in this range. Despite this discrepancy that
is merely associated with the limitations of an analytical

formulation formulated upon such a nonlinear superposition
approach, the overall influences of change in excitation
characteristics and load resistance on the total DC power as
predicted by the analysis are likewise observed in the simu-
lations and measurements. This verification and validation
propels the subsequent contrast among the comprehensive
results to test the efficacy of the optimization approach.

4.2. Exploring optimal resistance for maximum total DC power

According to the results shown in figures 2 and 4, the optimal
resistance for peak total DC power appears to fall in the range
R = (10, 1000) k€2, while the large amplitude snap-through
responses that induce such power occur in the frequency
range wy /27 = (11, 18) Hz in the combined excitation case.
Consequently, the attention of the investigations of this
section turn to these parameter regimes to examine the utility
of the optimization approach to correctly identify working
conditions for peak total DC power.

When the amplitude of harmonic base acceleration is a
=4ms 2 and there is no stochastic contribution to the
excitation, the analytical predictions for DC power are given
in figure 5(a). The optimal resistance for a given harmonic
excitation frequency is shown by the dotted—dashed curve.
The frequency dependence of the optimal resistance is clear
due to the reduction of the optimal selection for increasing
harmonic excitation frequency in the range for which the
large amplitude snap-through dynamics occur. This trend is
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Figure 5. Analytical prediction of DC power generation when the nonlinear harvester is subjected to (a) pure harmonic excitation with
harmonic base acceleration amplitude ¢ = 4 m 572, (b) purely random excitation (g/a > 100) at 16 Hz, and (c) comparable harmonic and
stochastic excitation components with harmonic base acceleration amplitude ¢ = 4 ms™2 at 18 Hz. The optimal resistance selections are
shown by the curves in each contour, and all results correspond to load parameter p = 1.6.

likewise found for the contour of DC power predicted by the
analysis in figure 5(a). Quantitatively, the optimal resistance
changes from 226.7 to 134.7 k{2, which is about 40% dif-
ference, as the harmonic frequency changes from 11 to 18 Hz.
Putting it in perspective, the use of the optimum resistance for
11 Hz excitation should the excitation frequency be 18 Hz
leads to a reduction DC power of about 4.6% when compared
to the peak that could be achieved.

When the nonlinear harvester is subjected to nearly pure
stochastic excitations (¢/a > 100), the analytical predictions
are given in figure 5(b). The derived optimal resistance R, is
shown as the dashed line. Clearly the optimal resistance
selections are frequency independent for this base accelera-
tion scenario, as revealed through both the analytical contour
and the optimal resistance curve. It is seen in figure 5(b) that
the optimal resistance values are found around 152.2 k2. For
sake of benchmarking, a deviation from this resistance value
by about one-half when the noise standard deviation is around
5ms~2 may result in a DC power reduction of nearly 6.4%.

For the case of combined base acceleration with com-
parable harmonic and stochastic components at the harmonic
base acceleration amplitude ¢ = 4ms > and frequency
wo/2m = 18 Hz, figure 5(c) shows the analytical predictions
for total DC power by the contour shading. The optimal
resistance curve is here given by the solid curve. It is seen that
with small proportions of noise with respect to the harmonic
excitation, the DC power is maximized for a load resistance
selection close to the value optimized for the 18 Hz excitation
frequency case in figure 5(a). Likewise, for greater relative
amount of noise excitation, such as g/a > 3, the optimum
resistance selection trends to the same value shown for the
pure stochastic base acceleration results in figure 5(b). These
trends from the contour of analytical predictions in figure 5(c)
are closely mapped by the optimal resistance -curve,
equation (27). Yet, when the relative proportions of harmonic
and stochastic base acceleration are similar, the total DC
power is strongly tailored by both change in the ratio g/a.
For example, when the ratio of noise standard deviation to
harmonic base acceleration amplitude is about g/a = 1.75,
the maximum DC power output decreases by over 50%
compared to the case of pure harmonic excitation: a change
from about 1.1 to 0.45 mW. When the ratio g/a increases

power [mW]
103

1
107,

Figure 6. Analytical prediction of DC power generation when the
nonlinear harvester is subjected comparable harmonic and stochastic
excitation components with harmonic base acceleration amplitude a
= 4ms % at 16 Hz. The optimal resistance selections are shown by
the curves in the contour, and results here are correspond to load
parameter p = 1.6, and ratio of smoothing capacitance to the
piezoelectric capacitance v = 208.33.

above the range 1.75, the total DC power climbs back up and
continues to increase for g/a > 3 since greater and greater
energy drives the nonlinear harvester under such more
extreme cases.

Based on the expression for R,,, the optimal resistance
changes from 134.7 to 152.2k(2 across the range of excita-
tions shown in figure 5(c), which is about a 13% deviation.
To further investigate the evolution of optimal resistance with
respect to varying ratio of noise standard deviation to har-
monic base acceleration amplitude, the analytical results
shown in figure 6 corresponding to the same excitation con-
ditions as those for figure 5(c), except for the harmonic
excitation frequency wg/2m = 12 Hz. The smoothing capa-
citance is chosen to be twice the value as used for results in
figure 5(c), which results in a doubling of the value for +.
Based on the expression for R,, from equation (25), the
optimal resistance changes from 207 to 86.35 k(2 across the
range of excitations shown in figure 6, which is nearly 240%
deviation. To quantify the influence of such evolution of
optimal resistance, for g/a =0 a 240% deviation in
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Figure 7. The experimental measurements of DC power generation when nonlinear harvester is subjected to (a) pure harmonic excitation with
harmonic base acceleration amplitude @ = 4 m s 2 (b) purely random excitation (¢/a > 100) at 16 Hz, and (c) comparable harmonic and
stochastic excitation components with harmonic base acceleration amplitude ¢ = 4 ms™2 at 18 Hz.

resistance from optimal value may reduce the peak total DC
power by 20%. A similar resistance deviation away from
optimal when g/a = 3 causes a 11% power reduction. These
results emphasize the importance of carefully characterizing
the contribution of stochastic excitation in the overall base
excitation to appropriately choose the load resistance for
optimal DC power delivery from nonlinear energy harvesters.

To validate these analytical predictions and optimal
resistance trends, experiments are conducted using the same
range of excitation and circuit parameters as those for
figure 5. Figure 7(a) shows the experimental measurements
for pure harmonic excitation, which is to be compared with
the results of figure 5(a). The influences of the load resistance
and harmonic excitation frequency on the peak DC power
observed in the data indeed agree with the same trends found
from analysis. Similar agreement between trends in
figure 7(b) and the analytical predictions of figure 5(b). In
these cases of pure stochastic base acceleration, the inde-
pendence of load resistance needed to maximize DC power is
plainly observed. Yet, the analysis underpredicts the power
generated when the standard deviation of the white noise is
large, such as forg > 2m s~2. This may be the result of the
finite duration (30 s) of experiments with each noise standard
deviation level that may not encompass sufficiently long time
to determine a genuine mean result comparable with analysis.
It may also be due to inherent challenges of linearization
approaches to predict responses of nonlinear oscillators under
cases of very large noise excitations [45]. These deficiencies
should be considered alongside the overall agreement
between analysis and experiments, respectively in figures 5(b)
and 7(b), that a frequency-independent optimal resistance
occurs when the base acceleration is dominated by white
noise.

Then figure 7(c) shows experimental results for the more
general excitation scenario that includes harmonic base
acceleration with amplitude ¢ = 4ms > at 18Hz and a
varied standard deviation of the stochastic base acceleration
component. According to the experimental results shown in
figure 7(c), the peak total DC power occurs for a smaller load
resistance selection when the ratio g/a = 0 than when the
ratio g/ a is more dominated by the white noise contribution.
This agrees with the analytical result of figure 5(c). Due to the
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distinctions between influences of noise predicted analytically
and seen experimentally, in figures 5(b) and 7(b), the range of
the noise standard deviation to harmonic base acceleration
ratio g/ a in figure 7(c) does not agree quantitatively with the
range in figure 5(c). On the other hand, the qualitative
agreement in trends is evident between the analytical pre-
dictions and experimental measurements. This includes the
trend that the peak power is reduced by nearly 50% when
small standard deviations of white noise are introduced, such
that g/a < 1 yet g/a = 0. These results emphasize the
significance of optimality for deploying nonlinear vibration
energy harvesters in practical excitation environments.

The analytical results in figure 5 and experimental mea-
surements in figure 7 thoroughly consider the broad range of
excitation conditions having combinations of harmonic and
stochastic base excitation components. The results reveal that
the optimal load resistance is clearly influenced by the spe-
cific combination of harmonic and stochastic base excitation
characteristics. As a result, an optimal resistance for DC
power delivery selected for one combination of excitation
components may be different if the balance of excitation
components is varied. Based on the results obtained by the
analysis in figure 5 and more detailed experimental under-
taking via figure 7, the optimal load resistance for the pre-
liminary case of experiments shown in figure 2 is around
R = 150k2, which is the value used for the exemplary,
motivating case study of section 2.2.

The experimentally measured time series of DC voltage
and instantaneous DC power for three selections of the load
resistance R = {10, 120, 500} k2 further underscore the
significance of optimal resistance selections and sensitivity of
the nonlinear energy harvester power generation on the rela-
tive proportion of harmonic and stochastic base accelerations.
For the results shown in figure 8, 30 s long time windows are
shown during which the ratio of noise standard deviation to
harmonic base acceleration amplitude is incremented through
the levels ¢/a = {0, 0.3, 0.65, 0.925, 1.2}, all the while the
base acceleration amplitude and frequency are respectively a
= 4ms 2 and wo /27 = 18 Hz.

According to time series results shown in figure 8(a), the
DC voltage increases as resistance value increase, a well-
known characteristic of linear and nonlinear piezoelectric
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Figure 8. Experimental measured time series of (a) DC voltage and (b) DC power across three resistance R = {10, 120, 500} k€2, under
combined harmonic and stochastic excitation with harmonic base acceleration amplitude ¢ = 4 ms™2 at 18 Hz.

energy harvesters [12, 46]. The corresponding DC power,
shown in figure 8(b), demonstrates a clear dependence upon
the load resistance as well as an optimal selection in between
low and high values. Specifically, the resistance R = 120 k{2
delivers around 50% or greater total DC power, depending on
the excitation condition ratio g/ a. Importantly, when ratio of
noise standard deviation to harmonic base acceleration
amplitude is g/a = 0.3, the DC voltage and power undergo
sudden drops that are exaggerated for the optimal resistance
case R = 120k(). Specifically, the average DC power
decreases by over 50% in the transition from g/a = 0 to
o/a = 0.3. In addition, the influence of change of the load
resistance on the DC power is less dramatic for g/a = 0.3,
which agrees with the analytical predictions in figure 5(c)
where the corresponding phenomenon occurs near
o/a = 1.75. In total, the time series results in figure 8 reveal
that the qualities of combined harmonic and stochastic base
accelerations are strongly influential to the optimization of the
nonlinear energy harvester and must be rigorously assessed to
successfully predict the achievable DC power prior to
deploying such devices in practice.

4.3. Harmonic excitation frequency influences on maximum
DC power

As found from the analytical, simulation, and experimental
results given in figures 2, 4, 5, and 7, the DC power is fre-
quency dependent when the harvester is subjected to the
general combination of excitation forms. Recall that exper-
imental results with combined excitations in figure 2 reveal
that peak DC power is achieved with a harmonic excitation
frequency 18 Hz instead of the linear natural frequency 25 Hz,
which also correspond to the frequency of peak displacement
amplitude. To investigate such nuanced sensitivities of the
harmonic excitation frequency used within the combined
excitation, the insights of previous studies are leveraged here.
Specifically, in related work on the structural dynamics of
post-buckled beams, the authors found that the change in
mean-square displacement due to change of stochastic
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excitation contributions to a combined harmonic and sto-
chastic base acceleration form may be correlated with the
frequency of peak response amplitude [47]. Inspired by these
suggestions on purely structural dynamics, here the DC power
from analysis and measurements are shown along with the
nonlinear harvester mean-square displacement in figure 9.
The nonlinear vibration energy harvester is subjected to
excitations with harmonic base acceleration amplitude a
=4ms 2 and one of a set of ratios of noise standard
deviation to harmonic base acceleration amplitude g /a = {0,
0.4, 0.75, 1}. The analytical results are shown in figures 9(a)
and (c) while experimental measurements are shown in
figures 9(b) and (d). In all results, the load resistance is
R = 150k). The total DC powers in figures 9(a) and (b)
show a clear dependence of peak power generation on the
harmonic excitation frequency and noise standard deviation.
Despite the analytically predicted coexistence of responses in
figure 9(a), the ranges of high to low DC powers that are
predicted for any given harmonic excitation frequency indeed
include the experimentally measured value of the peak total
DC power in figure 9(b).

The mean-square beam displacements in figures 9(c) and
(d) are shown by the solid curves in the case of pure harmonic
base acceleration. The coexistence of dynamics under such
conditions is evident by multiple curves for a given harmonic
excitation frequency in both analytical predictions and
experimental measurements, which are moreover in good
quantitative agreement. As recognized in [47], figures 9(c)
and (d) also shows that the mean-square beam displacement is
approximately equal to the squared stable equilibria distance
k* ~ (p — 1)/, as measured from the unstable equilibrium,
when the ratio is g/a = 0 and when the harmonic excitation
frequency is sufficiently away from the nonlinear resonant
features. For cases of the combined excitation, the mean-
square beam displacement and DC power outputs are closely
correlated as shown in figure 9. Specifically, when the har-
monic excitation frequency is closer to the extremes of the
plotted range, such as around 5 or 35 Hz, the DC powers are
relatively small, while the mean-squared displacements are
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Figure 10. Simulation results of DC power output across resistance
R = 150 k€2, under excitation with harmonic base acceleration
amplitude g = 4 m s~ Analytically predicted optimal frequencies
from harmonic excitation component are indicated by white solid
curves.

smaller in value than the squared stable equilibria distance k7,
regardless of the noise standard deviation. Yet, both the
analytical and experimental results in figure 9 show that when
the harmonic excitation frequencies approach values to
maximize the DC power, the mean-square displacement
amplitudes are also maximized. Specifically, considering all
of the results in figure 9, one finds that the harmonic base
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acceleration frequency at which the DC power is optimized in
the case of combined excitation is near to the frequency at
which mean-square beam displacement amplitude exceed the
squared stable equilibria distance k*. Relating the observed
trends to the corresponding analytical expressions, building
from the authors’ previous finding [47], the harmonic exci-
tation frequency conditions for optimizing DC power are
extracted from

2 _

lpy @ . 1-r_, (26)
2 2nwi, Ié)

Using equations (8), (19), and (26), one obtains

)

e = \/ i @7)

n2(1 = p) + Bn”)
Considering about the relationship equation (18),

Wen = f(we), setting equation (27) is equal to we(n), as
functions of displacement amplitude n. The zero intersection
of that curve gives the values for n and w, which correspond
to the greatest DC power output. Finally, using the deter-
mined value for n and w. to solve equation (17) one can
obtain the optimal frequency range across which DC power
will be maximized when the harvester is subjected to arbitrary
combinations of harmonic and stochastic excitation.

Using this method of extracting upper and lower bounds
of harmonic excitation frequency for which the DC power
may be maximized, simulations are conducted to obtain the
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Figure 11. Analytical prediction of DC power generation when the nonlinear harvester is subjected to (a), (d) pure harmonic excitation with
harmonic base acceleration amplitude ¢ = 4 m s72, (b), (e) purely random excitation (g/a > 100) at 16 Hz, and (c), (f) comparable
harmonic and stochastic excitation components with harmonic base acceleration amplitude ¢ = 4 m s~ at 18 Hz. The optimal resistance
selections are shown by the curves in each contour. Results in (a)—(c) correspond to load parameter p = 0.8, results in (d)—(f) correspond to

load parameter p = 2.4.

DC power as functions of the frequency and ratio g/a as
compared to the analytical predictions of optimal harmonic
frequency. Figure 10 presents the result of the simulations by
the shades of the contour while the white solid curves are the
analytical predictions obtained using the method described
above. The results in figure 10 provide thorough evidence that
the optimal harmonic excitation frequency shift from about 15
to 25 Hz as the ratio of noise standard deviation to harmonic
base acceleration amplitude increases from 0.4 to 2.15. The
boundaries on the optimal harmonic frequency of the com-
bined excitation predicted analytically are in good agreement
with the simulation trends. The influences of frequency in the
harmonic excitation component and standard deviation of
noise on the DC power are indeed significant. To quantify
these influences, when the ratio of noise standard deviation to
amplitude of harmonic base acceleration is ¢/a = 0.6 the DC
power output may reduce by about 70% due to a deviation of
optimal excitation frequency by about 50%. Yet, when the
ratio is g/a = 1.85, thus exciting the nonlinear harvester by
more stochastic contribution than harmonic, a 50% deviation
from the optimal working frequency only reduces the DC
power generation by about 20%. In other words, according to
the simulation and analytical results in figure 10, as the noise
excitation standard deviation increases beyond the amplitude
of the harmonic base acceleration so that o/a > 1, the
overall DC power increases and becomes less sensitive to
change in the harmonic excitation frequency.

13

4.4. Influences of nonlinearity type on total DC power
generation

The results in the preceding sections explicitly give attention
to the case of nonlinearity induced by the load parameter
p = 1.6 which is associated with bistability in the vibration
energy harvester. Yet, the results of the optimized load
resistances in equations (23)—(25) do not suggest a connection
to the nonlinearity type towards maximizing the total DC
power delivered, whether caused by pure harmonic, pure
stochastic, or a combined base acceleration form. This inde-
pendence of nonlinearity may be non-intuitive, so as to
motivate a close investigation of the role of the load para-
meter p on the peak DC power delivered from load-optimized
nonlinear energy harvesters. By broadening the assessment
and optimization undertaking to study a wider range of
nonlinearities from monostable to bistable, the outcomes of
this section 4.4 may illuminate principles for many other
researchers that consider such energy harvesting systems in
various contexts and applications [27, 28, 32, 48].

Figure 11 presents the analytically predicted results of
DC power shown in the top row for the case of p = 0.8 which
is a monostable nonlinear harvester configuration, while the
bottom row results are for p = 2.4 which is a more severely
post-buckled configuration than that considered previously so
that the statically stable equilibria are more distant: when
p = 1.6 and p = 2.4 distance between two stable equilibrium
are 2.3mm and 3.5 mm, respectively. In the top row, as
anticipated according to the independence of the optimal load
resistance on the load parameter p, the peak DC power is
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achieved for the same selection of R at each excitation con-
dition as that required when p = 1.6, like the results shown in
figure 5. On the other hand, the absolute power quantities in
figure 11(a) for the pure harmonic case are less than those
achieved in figure 5(a) when the harvester is bistable. Yet, the
DC power generated by the monostable harvester in
figure 11(b) as induced from pure stochastic excitation is the
same as that achieved for the bistable platform in figure 5(b).
This agrees with prior reports that pure stochastic excitation
on nonlinear energy harvesters results in AC power levels that
are independent of the nonlinearity type [33, 49]. In
figure 11(c), the dependence of the optimal load resistance on
the ratio g/a is the same as that for the bistable harvester
platform in figure 5(c), although the overall generated DC
power under such combined excitation is less for the mono-
stable harvester than for the bistable configuration with
p = 1.6 in figure 11(c).

These trends are extended to the analytical results shown
in the bottom row of figure 11 when p = 2.4, so that a bis-
table harvester with more greatly spaced stable equilibria is
considered. The sudden transition of shading hue in the bot-
tom row of figures 11(d) and (f) indicate transitions from the
large amplitude snap-through response to the other coexisting
dynamic since the larger amplitude snap-through dynamic is
not predicted to occur. The same characteristics of optimal
load resistance changes as functions of the excitation condi-
tions reported above for p = 0.8 and 1.6 are similarly
observed for p = 2.4. In addition, the same absolute total DC
power in figure 11(e) is predicted as those seen for the other
nonlinearities in figures 5(b) and 11(b). Yet, a fully new
trends is uncovered for the optimal power conditions in
figure 11(f) using the more greatly post-buckled bistable
harvester. Specifically, the optimal load resistance at low
excitation ratios ¢g/a is not the predicted value, because the
harvester is not predicted to undergo snap-through when the
ratio g/a is approximately less than 1. Indeed, sufficient
additive noise is required to stimulate the harvester to snap-
through and generate large power if the optimal resistance
selection from equation (25) is utilized. In fact, the results of
figure 11(f) indicate that load resistances off from the ana-
Iytically predicted values should be selected for the more
greatly buckled bistable harvester so that the electro-
mechanical coupling (via electrical damping phenomena [38])
does not inhibit the achievement of the large amplitude
dynamic responses. The nuanced characteristics of the DC
power generated by nonlinear energy harvesters subjected to
combinations of harmonic and stochastic base acceleration
underscore the significance of leveraging both the optim-
ization approach and validated analytical model to guide
attention to design and deployment practices assured to
deliver the required charging power in applications.

5. Conclusion
This research builds from an analytical framework to create

an optimization approach for total DC power delivery from
nonlinear vibration energy harvesters subjected to combined
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harmonic and stochastic base accelerations. An expression is
established to relate the system characteristics to the optimal
load resistance. The excitation dependence and independence
of the expression is tested under the limiting cases of pure
harmonic or stochastic excitation, as well as with respect to
the form of nonlinearity. Through simulation and exper-
imental efforts, the optimization approach is verified and
validated over the wide operational range of combined base
acceleration forms. The optimal load resistance is shown to
depend on the harmonic excitation frequency in a combined
excitation form, while the total DC power is dependent on
myriad factors: all excitation conditions, load resistance, and
nonlinearity type. The best selection of load resistance is
found to be strongly correlated to the noise standard deviation
to harmonic base acceleration amplitude ratio, which may
cause reduction of optimum power by 20% under harmonic
dominated excitations if the resistance is chosen to be the
optimal value achieved for noise dominated case. On the
other hand, using the optimal resistance achieved for har-
monic dominated case can cause 11% power reduction under
noise dominated excitations. In addition, the noise standard
deviation for the combined harmonic and stochastic excitation
is found to be influential for the optimal harmonic excitation
frequency, namely increase noise level leads to larger optimal
harmonic excitation frequency where maximum DC power
output occur. The results also reveal that when the frequency
of a predominantly harmonic excitation deviates by 50% from
optimal conditions the charging power reduces by 70%,
whereas the same frequency deviation for a more stochasti-
cally dominated excitation reduce total DC power by only
20%. Results from this research effectively access the optimal
design and excitation criteria for maximum DC power output
from nonlinear harvesters when subjected to ambient excita-
tions, which provides useful guidance for practical imple-
mentation of nonlinear vibration energy harvesters.
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