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Abstract

Dynamic functional connectivity, i.e., the study of how interactions among brain

regions change dynamically over the course of an fMRI experiment, has recently re-

ceived wide interest in the neuroimaging literature. Current approaches for studying

dynamic connectivity often rely on ad-hoc approaches for inference, with the fMRI time

courses segmented by a sequence of sliding windows. We propose a principled Bayesian

approach to dynamic functional connectivity, which is based on the estimation of time

varying networks. Our method utilizes a hidden Markov model for classification of la-

tent cognitive states, achieving estimation of the networks in an integrated framework

that borrows strength over the entire time course of the experiment. Furthermore, we

assume that the graph structures, which define the connectivity states at each time

point, are related within a super-graph, to encourage the selection of the same edges

among related graphs. We apply our method to simulated task-based fMRI data, where
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we show how our approach allows the decoupling of the task-related activations and the

functional connectivity states. We also analyze data from an fMRI sensorimotor task

experiment on an individual healthy subject and obtain results that support the role

of particular anatomical regions in modulating interaction between executive control

and attention networks.

1 Introduction

Functional magnetic resonance imaging (fMRI) provides an indirect measure of neuronal

activity by evaluating changes in blood oxygenation over different areas of the brain. In a

typical fMRI experiment, time series of blood oxygenation-level dependent (BOLD) responses

are collected at each location of the brain, for example in response to a stimulus (Poldrack

et al., 2011). Statistical methods play a crucial role in understanding and analyzing fMRI

data (Lazar, 2008; Lindquist, 2008). Bayesian approaches, in particular, have shown great

promise in applications. A remarkable feature of fully Bayesian approaches is that they allow

a flexible modeling of spatial and temporal correlations in the data, see Flandin and Penny

(2007); Bowman et al. (2008); Quirós et al. (2010); Woolrich (2012); Stingo et al. (2013) and

Zhang et al. (2014, 2016), among others. A comprehensive review of Bayesian methods for

fMRI data can be found in Zhang et al. (2015).

In neuroscience, it is now well established that brain regions cooperate within large func-

tional networks to handle specific cognitive processes (Bullmore and Sporns, 2009). FMRI

data, in particular, allow scientists to learn on two distinct types of brain connectivity, which

are referred to as effective and functional connectivity (Friston et al., 1994). Effective connec-

tivity refers to the direct, or causal, dependence of one region over another, while functional

connectivity investigates the undirected relationships between separate brain regions charac-

terized by similar temporal dynamics. In this paper we are concerned in particular with this

latter form of connectivity. Early model-based approaches for the estimation of functional

connectivity included Bayesian frameworks (Patel et al., 2006a,b) that first dichotomised the

time series data based on a threshold, to indicate presence or absence of elevated activity

at a given time point, and then estimated the relationships between pairs of distinct brain
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regions by comparing expected joint and marginal probabilities of elevated neural activity.

Also, Bowman et al. (2008) developed a two-step modeling approach that employs mea-

sures of task-related intra-regional (or short-range) connectivity as well as inter-regional (or

long-range) connectivity across regions. More recently, Zhang et al. (2014, 2016) proposed

Bayesian nonparametric frameworks that capture functional dependencies among remote

neurophysiological events by clustering voxels with similar temporal characteristics within-

and across multiple subjects.

Some of the most commonly used approaches to functional connectivity are not model-

based, but simply rely on measures of temporal correlation. For example, Pearson correlation

coefficients are calculated between regions of interest, or between a “seed” region and other

voxels throughout the brain (Cao and Worsley, 1999; Bowman, 2014; Zalesky et al., 2012).

These methods result in a network characterization of brain connectivity, with correlations

indicating the strength of the connections between nodes. However, there are well-known

limitations in using simple correlation analysis as this only captures the marginal association

between network nodes. Indeed, a large correlation between a pair of nodes can appear due to

confounding factors such as global effects or connections to a third node (Smith et al., 2011).

Partial correlation, on the other hand, measures the direct connectivity between two nodes

by estimating their correlation after regressing out effects from all the other nodes, hence

avoiding spurious effects in network modeling. A partial correlation value of zero implies

absence of a direct connection between two nodes given all the other nodes. Consequently,

methods for graphical models, that estimate sparse precision matrices, as inverses of the

covariance matrix, have been recently applied to fMRI data. These include the graphical

LASSO (GLASSO) (Cribben et al., 2012; Varoquaux et al., 2010) and Bayesian graphical

models based on G-Wishart priors (Hinne et al., 2014). Also, Pircalabelu et al. (2015)

developed a focused information criterion for Gaussian graphical models to determine brain

connectivity tailored to specific research questions. Their proposed method selects a graph

with a small estimated mean squared error for a user-specified focus.

All approaches described above assume static connectivity patterns throughout the course

of the fMRI experiment. Under such an assumption, functional brain connectivity is repre-

sented by spatially and temporally constant relationships among the regions of the brain.
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However, in practice, the interactions among brain regions may vary during an experiment.

For example, different tasks, or fatigue, may trigger varying brain interactions. Therefore,

more recent work has pointed out that it is more appropriate to regard functional connec-

tivity as dynamic over time (Chang and Glover, 2010; Hutchison et al., 2013; Calhoun et al.,

2014; Chiang et al., 2015). Thus, some approaches have considered estimating precision

matrices on small intervals of the fMRI time course determined by using a sliding window.

The estimated matrices are then clustered together, e.g., by using a k-means algorithm, and

the clustered connectivity patterns are finally used to inform a classification of the cognitive

processes generated along the experiment (Allen et al., 2012). Although straightforward,

these approaches have limitations. For example, the length of the window is arbitrarily se-

lected before the analysis, through a trial-and-error process. Indeed, Lindquist et al. (2014)

show that the choice of the window length can affect inference in unpredictable ways. To

partially obviate the issue, Cribben et al. (2012) and Xu and Lindquist (2015) have recently

investigated greedy algorithms, which automatically detect change points in the dynamics

of the functional networks. Their approach recursively estimates precision matrices using

GLASSO on finer partitions of the time course of the experiment, and selects the best re-

sulting model based on the Bayesian Information Criterion (BIC). The algorithm estimates

independent brain networks over noncontiguous time blocks, whereas instead it may be de-

sirable to borrow strength across similar connectivity states in order to increase the accuracy

of the estimation. Furthermore, greedy searches often fail to achieve global optima.

In this paper, we propose a principled, fully Bayesian approach for studying dynamic

functional network connectivity, that avoids arbitrary partitions of the data. More specif-

ically, we cast the problem of inferring time-varying functional networks as a problem of

dynamic model selection in the Bayesian setting. We do this by first adapting a recent pro-

posal for inference on multiple related graphs put forward by Peterson et al. (2015). This

model formulation further assumes that the connectivity states active at the individual time

points may be related within a super-graph and imposes a sparsity inducing Markov Random

field (MRF) prior on the presence of the edges in the super-graph. MRF priors have been

used extensively in recent literature to capture network structures, particularly in genomics

(Li and Zhang, 2010; Stingo et al., 2011, 2015) and in neuroimaging (Smith and Fahrmeir,
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2007; Zhang et al., 2014; Lee et al., 2014). We then embed a Hidden Markov Model on

the space of the inverse covariance matrices, automatically identifying change points in the

connectivity states. Our approach is in line with recent evidence in the neuroimaging liter-

ature which suggests a state-related dynamic behavior of brain connectivity with recurring

temporal blocks driven by distinct brain states (Baker et al., 2014; Balqis-Samdin et al.,

2017). In our approach, however, the change points of the individual connectivity states are

automatically identified on the basis of the observed data, thus avoiding the use of a sliding

window. Furthermore, in our approach the latent state-space process which governs the

detection of the change points naturally induces a clustering of the networks across states,

avoiding the use of post-hoc clustering algorithms for estimating shared covariance struc-

tures. In contrast to standard approaches, where the connectivity networks are estimated

separately within each window, within our framework the estimation of the active networks

between two change points is obtained by borrowing strength across related networks over

the entire time course of the experiment.

We consider task-based experimental designs and show how our modeling framework al-

lows the decoupling of the task-related activations and the functional connectivity states, to

understand how a particular task affects (e.g., either modulates or inhibits) functional rela-

tionships among the networks. We first assess the performance of our model on simulated

data, where we compare estimation results to recently developed methods for network esti-

mation. We then apply our method to the analysis of task-based fMRI data from a healthy

subject, where we find that our approach is able to reconstruct known connectivity networks,

both under task and resting state. The results also support the role of particular anatomical

regions in modulating interactions between executive control and attention networks.

The remainder of the paper is organized as follows. In Section 2 we describe the proposed

modeling framework and discuss posterior inference. In Section 3 we assess performances of

our method on simulated data. Section 4 describes the application of our model to actual

fMRI data. Section 5 provides some final remarks and conclusions.
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2 Bayesian model for dynamic functional connectivity

Brain networks can be mathematically described as graphs. A graph G = (V , E) specifies

a set of nodes (or vertices) V = {1, 2, . . . , V } and a set of edges E ⊂ V × V . Here, the

nodes represent the neuronal units, whereas the edges represent their interconnections. Let

Yt = (Yt1, . . . , YtV )
>, with the symbol (·)> indicating the transpose operation, be the vector

of fMRI BOLD responses of a subject measured on the V nodes at time t, for t = 1, . . . , T .

Unlike other fields (e.g., social networks), in brain imaging the best definition of a node is

unclear, with some consensus settling toward the consideration of general pragmatic issues

and the use of data-driven approaches able to capture differences in the functional connec-

tivity profiles (Cohen et al., 2008; Zalesky et al., 2010). Thus, nodes could be intended as

either single voxels or macro-areas of the brain which comprise multiple voxels at once. For

example, in the application we discuss in Section 4 we define the nodes of the functional net-

works using independent component analysis (ICA), an increasingly utilized approach in the

fMRI literature, which decomposes a multivariate signal into components that are maximally

independent in space (McKeown et al., 1998). ICA components can be interpreted as group

of voxels that covary in time, providing a spatial mapping of anatomical regions, and have

been found to effectively identify functional networks in both task-based and resting-state

data (Garrity et al., 2007; Yu et al., 2013). In our modeling framework, the use of ICA com-

ponents allows us to also considerably reduce dimensionality, as the number of components

of interest is typically low, with most authors considering between 20 and 30 components

(Erhardt et al., 2011; Damaraju et al., 2014). We note, however, that our modeling approach

does not depend on the particular choice of ICA-based regions, as it is generally applicable

to any well-defined set of brain regions for which connectivity is of interest.

ICA components, being linear weighed sums of the original source signal at each time

point, preserve the hemodynamic structure of the underlying BOLD signal (Calhoun et al.,

2004). In particular, in the analysis of task-based fMRI data, assuming an experiment with

K distinct stimuli, we can write a linear regression model of the type

Yt = µ+
K
∑

k=1

Xk
t ◦ βk + εt, (1)
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with ◦ denoting the element-by-element (Hadamard) product, and where Xk
t is the V ×1 de-

sign vector for the k-th stimulus, µ the V -dimensional global mean and βk = (β1k, . . . , βV k)
>

the stimulus-specific V -dimensional vector of regression coefficients. The mean term in (1)

allows to decouple the estimation of the brain activations from that of the spatio-temporal

correlation of the fMRI time series, which is captured by the error term, while the base-

line mean µ is included to represent the base signal during periods where no stimulus is

present. We assume that standard pre-processing has been applied to the fMRI data, in-

cluding smoothing, spatial standardization, motion and slice-timing correction, as well as

high-pass filtering, and therefore do not include a drift term in the model. Furthermore,

we follow the predominant literature on task-based fMRI modeling and assume that the

BOLD signal is characterized by a hemodynamic delay, which accounts for the lapse of time

between the stimulus onset and the vascular response (Friston et al., 1994). We then model

the elements of Xk
t as the convolution of the stimulus pattern with a hemodynamic response

function (HRF), h(t),

Xk
vt =

∫ t

0

xk(τ)hλ(t− τ)dτ, t = 1, . . . , T, v = 1, . . . , V, (2)

with xk(τ) representing the time dependent stimulus (e.g., a block or event-related de-

sign). We assume a Poisson HRF with a region-dependent delay parameter, i.e., hλv
(t) =

exp(−λv)λ
t
v/t!, and impose a uniform prior on the delay parameters, λv ∼ Unif(u1, u2), with

u1 and u2 to be chosen based on prior knowledge on physical ranges of hemodynamic delay

(Zhang et al., 2014). We also impose normal priors on the components of the baseline mean

vector, µ, that is, µv
iid
∼ N(0, σµ), with σµ a hyper-parameter to be specified.

We follow recent literature in Bayesian modeling of task-based fMRI data and identify

brain activations by imposing spike-and-slab priors, also known as Bernoulli-Gaussian prior

(or degenerated mixture model) in the fMRI community, on the coefficients βvk (Kalus et al.,

2013; Lee et al., 2014; Zhang et al., 2014, 2016). First, we introduce binary latent indicator

variables, γvk, such that γvk = 1 if component v is active, and γvk = 0 otherwise. Then, we

assume

βvk ∼ (1− γvk) δ0 + γvk N(0, σβ), (3)

where δ0 denotes a Dirac-delta at 0 and σβ is some suitably large value encouraging the
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selection of relatively large effects. We place Bernoulli priors on the selection indicators,

γvk
iid
∼ Bern(pk), where pk can be fixed at a small value to induce sparsity.

2.1 Modeling functional networks and dynamic connectivity

An accurate modeling the error term in (1) is key in the analysis of fMRI data. This term, in

fact, captures not only acquisition or measurement noise but also spontaneous brain activity,

which means all effects that are not directly evoked by the paradigm (i.e. the task-related

component) (Yu et al., 2016). In our model formulation, we capture spontaneous brain ac-

tivity via Gaussian graphical models (GGMs), also known as covariance selection models

(Lauritzen, 1996), as a way of estimating functional network connectivity. We assume that

subjects fluctuate among different connectivity states during the course of the experiment.

We estimate states and corresponding connectivity networks from the data as follows. Ac-

cording to the dynamic paradigm of brain connectivity, fMRI time courses are characterized

by possibly distinct connectivity states, i.e., network structures, within different time blocks

(Cribben et al., 2012; Allen et al., 2012; Balqis-Samdin et al., 2017). Accordingly, we assume

that functional connectivity may fluctuate among one of S > 1 different states during the

course of the experiment. Let s = (s1, ..., sT )
>, with st = s, for s ∈ {1, . . . S}, denoting the

connectivity state at time t. Then, conditionally upon st, we assume

(εt|st = s) ∼ NV (0,Ωs), (4)

where Ωs ∈ R
V ×R

V is a symmetric positive definite precision matrix, i.e., Ωs = Σ−1
s , with

Σs the covariance matrix. The zero elements in Ωs encode the conditional independence

relationships that characterise state s, that is graph Gs = (V , Es). Specifically, ω
(s)
ij = 0 if and

only if edge (i, j) /∈ Es. We discuss the prior distribution on the set of graphs {G1, . . . , GS}

in Section 2.2 below.

Many of the estimation techniques for GGMs rely on the assumption of sparsity in the

precision matrix, which is generally considered realistic for the small-world properties of

brain connectivity in fMRI data (Smith et al., 2011; Varoquaux et al., 2012). We consider

general, not necessarily decomposable, graph structures. More specifically, we use the G-

Wishart distribution as a conjugate prior on the space of the precision matrices Ω with zeros
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specified by the underlying graph G (Roverato, 2002; Jones et al., 2005; Dobra et al., 2011).

A G-Wishart prior, Ω ∼ WG(b,D), is characterized by the density

p(Ω|G, b,D) = IG(b,D)−1 | Ω |
b−2
2 exp{

1

2
tr(Ωt D)}, Ω ∈ P+

G , (5)

where b > 2 is the degrees of freedom parameter, D is a V × V positive definite symmetric

matrix, IG denotes the normalizing constant and P+
G is the set of all V × V positive definite

symmetric matrices with off-diagonal elements wij = 0 if and only if edge (i, j) /∈ E .

We treat the estimation of the unknown connectivity states at each of the time points as a

problem of change points detection. More precisely, we identify the functional networks act-

ing at any time point by modeling the temporal dependence of the discrete latent indicators

st. We assume that at each time point the probability of being within each state is given by

a time-dependent probability vector, π(t) = (π1(t), . . . , πS(t))
>, with πs(t) = p(st = s) ≥ 0,

for s = 1, . . . , S, and
∑S

s=1 πs(t) = 1. Since fMRI experiments are locally stationary in

time (Ricardo-Sato et al., 2006; Liu et al., 2010; Messe et al., 2014), we account for the

temporal persistence of the states by modeling the selection indicators st through a Hidden

Markov Model (HMM). Thus, we assume that two subsequent time points are character-

ized by connectivity states st−1 and st according to a law determined by a matrix P of

transition probabilities, with elements p(st = s|st−1 = r) = prs, for r, s = 1, . . . , S and

t = 2, . . . , T . The r-th row of P is assumed to have a Dirichlet distribution with parameter

vector ar = (ar1, . . . , arS). Marginalizing over the Wishart distribution, we can express the

marginal distribution of εt as a mixture of type

εt ∼
∑S

s=1 πs(t) p(εt|Gs), t = 1, . . . , T, (6)

with mixing weights πs(t) =
∑S

r=1 prsπr(t− 1) and p(εt|Gs) =
∫

p(εt| Ωs) p(Ωs|Gs)dΩs. It

is important to note that marginalizing over the Wishart distribution reduces expression (6)

to a mixture of scaled multivariate t distributions.

2.2 Joint modeling of the connectivity states

We assume that the graph structures, which define the connectivity states active at each

time point, may be related within a super-graph, so to encourage the selection of the same
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edges in related graphs. In order to achieve such an objective, we adapt a recent proposal

by Peterson et al. (2015) for the analysis of (known) cancer subtypes to the analysis of the

(unknown) states of fMRI time series. More precisely, we introduce binary vectors of edge

inclusion, gij = (gij1 , . . . , gijS)
> with elements gijs indicating the presence or absence of edge

(i, j) in graph Gs, s = 1, . . . , S, i.e., gij ∈ {0, 1}S, 1 ≤ i < j ≤ V . Then, we assume that the

super-graph defines the presence of an edge across graphs through a Markov random field

(MRF) prior,

p(gij|νij,Θ) = C(νij,Θ)−1 exp(νij1
>gij + g>

ijΘgij), (7)

where 1 is the unit vector of dimension S, νij is a sparsity parameter specific to each vector

gij, and Θ is an S×S symmetric matrix which captures relatedness among networks. More

specifically, the diagonal entries of Θ are set to zero, whereas the off-diagonal entries θrs, r 6=

s, are assumed to be non-negative and provide a measure of the strength of the association

of two networks. The normalizing constant in (7) corresponds to p(gij = 0|νij,Θ) = 1
C(νij ,Θ)

and can be easily computed, especially since the number of identifiable connectivity states S

is expected to be low in a typical fMRI experiment. The parameters Θ and ν = (vij)i,j=1,...,V

affect the prior probability of selection of the edges in each graph. We impose prior distri-

butions on ν and Θ to help control for multiplicity and allow learning about the networks’

similarity directly from the data. More specifically, we assume a spike-and-slab prior on the

off-diagonal entries of Θ, that is

θrs|ξrs ∼ (1− ξrs) δ0 + ξrs Gamma(α, β), (8)

where ξrs is a binary random variable that indicates if graph r and s are related, and the

parameters (α, β) are chosen to ensure probability to both small and large values of the θrs.

We set ξrs
iid
∼ Bern(pξ), where pξ is selected to promote an overall level of sparsity, and also

sharing of information across networks only when it is appropriate, based on the data. The

parameter ν in (7) can be used both to encourage sparsity within the graphs G1, . . . , GS

and to incorporate prior knowledge on particular connections. In particular, a prior which

favors smaller values for ν reflects a preference for model sparsity, and thus can be used for

modeling the small-world properties of brain networks (Smith et al., 2011; Varoquaux et al.,

2012). We can set a hyper-prior on ν by considering the case of null Θ. In such a case, the
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probability of inclusion of edge (i, j) in graph Gs is p(gs,ij|νij) =
e
νij

1+e
νij = qij, which induces

a prior on the elements νij, since νij = logit(qij). We assume qij ∼ Beta(a, b).

A schematic representation of the proposed Bayesian model for dynamic functional con-

nectivity is given in Figure 1. A regression model describes the observed BOLD response

to a number of different stimuli, via convolution with a HRF. The noise term, capturing

spontaneous brain activity, is modeled by a Gaussian graphical model indexed via a HMM,

to allow the connectivity structure to change over time. A “super-graph” links the graphs.

We note that the modeling construction (1) and (4) induces a marginal distribution on

the observed time course data, Yt, which is multivariate Normal, with the regression com-

ponent as the mean of the distribution and the Gaussian graphical model imposed on the

variance-covariance term. This results in a decoupling of the task-related activations and the

functional connectivity states. Furthermore, the characterization of connectivity via latent

states and, in particular, the use of the HMM add flexibility to the model formulation, as we

can learn on interesting patterns of state persistence in connectivity that may arise during

the course of the experiment, as distinct from those induced by the task.

2.3 Posterior Inference

We rely on Markov Chain Monte Carlo (MCMC) techniques to sample from the joint pos-

terior distribution of (Ω,β,µ, s, ν, γ, ξ,Θ,G,λ). We report here a brief description of the

sampling steps and give the full details of the algorithm in Appendix A.

A generic iteration of the MCMC algorithm comprises the following steps:

• Update λ: This is a Metropolis-Hastings (MH) step across all λv for v ∈ {1, .., V } with

a uniform proposal centered at the current value of the parameter.

• Update s: For each s ∈ {1, . . . , S}, the state transition probabilities are sampled from a

Dirichlet(αs) distribution, with αs an S dimensional vector. Then the stationary distribution

of this transition matrix is calculated and accepted or rejected based on an MH step. The

states are then sampled using the Forward Propagate Backward Sampling method of Scott

(2002).

• Update G and Ω: For each s ∈ {1, . . . , S} and pair i 6= j ∈ {1, . . . , V }, an edge indicator
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g
(s)
ij is proposed with probability p(

GsnewH(e,Ω)

Gsold

), where H(e,Ω), with e = (i, j) the edge being

updated, is as outlined in Wang and Li (2012). If the proposed value of edge indicator is

different, then Ωsnew
|Gsnew

is sampled from its conditional distribution and the joint proposal

is accepted or rejected in an MH step. This step uses an adaptation of the sampling scheme

of Wang and Li (2012), which avoids computation of prior normalizing constants and does

not require tuning of proposals.

• Update Θ and ξ: We update these parameters jointly by performing between-model and

within-model MH steps. For the between-model step, for each r 6= s ∈ {1, . . . , S} we propose

to change the value of ξrs from 0 to 1, or vice versa. If the new ξrs = 0 we set θrs = 0, and if

the new ξrs = 1 we sample a new θrs from a Gamma proposal. For the within-model step,

for each pair r 6= s ∈ {1, . . . , S} such that ξrs 6= 0 we sample a proposed θrs from a Gamma

proposal.

• Update γ and β: We update these parameters jointly by performing between-model and

within-model MH steps. For the between-model step, for each k ∈ {1, . . . , K}, we either

add, delete, or swap values of the γk vector, then sample βk conditional on the proposed

values of γk. For the within-model step, for each k ∈ {1, . . . , K} and for each v ∈ {1, . . . , V }

such that γkv 6= 0 we sample a proposed βkv from a normal distribution centered at the old

value of βkv.

• Update µ: For each v ∈ {1, . . . , V } we sample µv from a univariate normal distribution

centered at the current value of µv, and accept or reject in an MH step.

• Update ν: For each i 6= j ∈ {1, . . . , V } we sample qij from a Beta proposal, then compute

the proposed νij = logit(qij), and accept or reject the proposed value in an MH step.

For posterior inference, we are primarily interested in the detection of the connectivity

states st, for t = 1, . . . , T , and the estimation of the connectivity networks Gs, for s =

1, . . . , S. Inference on the connectivity states can be achieved by looking at the proportion

of iterations in the MCMC samples that a time point is classified to each of the S states, and

then assigning the most probable state at each time point. Network connectivity structures

can then be estimated by computing marginal probabilities of edge inclusion as proportions

of MCMC iterations in which an edge was included. More precisely, for each s = 1, . . . , S,
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the posterior p(gijs = 1|data) is estimated as the proportion of iterations that gijs = 1.

Included edges are then selected by thresholding the posterior probabilities to control for

the Bayesian false discovery rate (FDR, Newton et al., 2004). For testing a sequence of R

null hypotheses H0r vs alternative hypotheses H1r, r ∈ R, let hr = p(H1r|data) denote the

posterior probability of each alternative hypothesis. Then, the Bayesian FDR is defined as

FDR(κ) =

∑R

r=1(1− hr)I(hr>κ)
∑R

r=1 I(hr>κ)
,

where IA is an indicator function such that IA = 1 if A is true, and 0 otherwise, and

κ is a given threshold on the posterior probabilities hr’s. A FDR control at a given level

monotonically correspond to a threshold on hr. In our setting, R = E , i.e. the set of all edges

being tested, whereas H0r and H1r denote the null and alternative hypotheses that an edge is

either absent or present in a connectivity state, respectively. Given the estimated networks,

estimates of the strength of the associations can then be obtained from the corresponding

precision matrices by averaging sampled MCMC values. In addition to the inference on the

estimated graphs, our model returns a spatial map of the activated components obtained by

thresholding the posterior probabilities of activation, p(γvk = 1| data), for v = 1, . . . , V and

k = 1, . . . , K, estimated as the proportion of times that γvk = 1 across all MCMC iterations,

after burn-in.

3 Simulation Study

In order to assess the performance of our proposed method in a controlled setting, we simu-

lated data intended to mimic an actual fMRI time course experiment. We employed the pub-

licly available SimTB toolbox (Erhardt et al., 2012, http://mialab.mrn.org/software/simtb/)

which provides flexible generation of fMRI data.

In the simulation setting we present here, we considered a design with rest and K = 2

stimuli over T = 180 time points (see Figure 2, top) and generated data corresponding to the

time courses of V = 10 separate ICA components. We followed the framework outlined in

Erhardt et al. (2012) and modeled the signal for each component time course as an increase or

a decrease in the mean value in response to the stimuli. We set the baseline mean µ in model
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Component 1 2 3 4 5 6 7 8 9 10

βν1 0 0 0.3 0.3 0.3 0 -0.3 -0.3 0 0

βν2 0 0 0 0 0 0.3 0.3 0.3 0 0

Figure 2: Simulation study design: Resting and stimulus conditions (top figure) and

stimulus-specific regression coefficients (bottom table).

(1) to zero and the stimulus-specific regression coefficients as given at the bottom of Figure

2. The SimTB toolbox implements a canonical hemodynamic response function (Lindquist

et al., 2009), which is defined as the linear combination of two Gamma functions that model

both the typical response delay observed after activation and the post-stimulus undershoot,

that is h(t) = ta1−1ba11 exp(−b1 t) − c ta2−1ba22 exp(−b2 t). For the simulation presented here

we set a1 = 6, b1 = 1, a2 = 15, b2 = 1, and c = 1/3. Within the SimTB toolbox we also added

some unique events, generated by uniformly sampling from the interval (−0.025, 0.025) with

probability .1, as well as a Gaussian noise component with mean zero and standard deviation

.1, which is added at each time point of the convolved hemodynamic time series.

The next step in the data generation is to induce dynamic spatio-temporal correlation in

the time series, which in our model is captured by the error term εt. Our interest is in testing

whether our method can recover the functional connectivity states that characterize task and

resting conditions. We therefore set S = 3 connectivity states corresponding to the rest and

task conditions. We then generated 3 functional networks {G1, G2, G3} as follows. First,

a set of cliques, i.e., fully connected subsets of the 10 simulated components, were selected

for inclusion in each of the three connectivity states. These cliques define the 3 graphs and

their adjacency matrices are provided in Figure 3 (top). Then, at each time point t, given
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Rest Stimulus 1 Stimulus 2

Figure 3: Simulation study design: Simulated connectivity networks (top) and corresponding

correlation matrices (bottom - only the lower triangular part is displayed).

state st = s ∈ {1, . . . , S}, and for each clique in Gs, correlation among the nodes of the

clique was induced by randomly adding or subtracting a fixed quantity (0.5) to all node

values at that time point with probability 0.95. There may be nodes in a clique which are

negatively correlated with the others, and to these nodes we would subtract instead of add,

or vice versa. As a result, within a clique there may be nodes either negatively or positively

correlated with other components in the same clique. The resulting correlation matrices for

each state are depicted in Figure 3 (bottom). We note that our approach simulates errors

according to a specified conditional independence structure, while avoiding simulation from

a Gaussian graphical model.

For model fitting, we specified independent Unif(0, 8) priors on the Poisson hemodynamic

delay parameters λv in (2), to ensure prior mass within a reasonable area of the expected

hemodynamic delay. We also specified a N(0, 1) prior on the individual components of the

baseline mean, µv, and as the slab portion of the spike-and-slab prior (3) on the regression

coefficients, βvk. The prior probability of a component being activated was specified as
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Figure 4: Simulation study: Posterior probability of each connectivity state across all time

points, P (st = s) for t ∈ {1, . . . , T} and s ∈ {1, 2, 3}.

pk = .2, for k = 1, 2. We note that this specification is different from the true proportion

of activated components, which is .5 and .3 for stimulus 1 and 2, respectively. As for the

parameters of the G-Wishart prior in (5), we specified b = 3 and D = IV , which corresponds

to a vague distribution on the space of precision matrices. For the prior specification on the

MRF prior (7) on {G1, . . . , GS}, we recall that νij = logit(qij), where qij defines a marginal

probability of edge inclusion. Here, we set qij ∼ Beta(1, 3), which corresponds to a prior

marginal probability of edge inclusion of .25. Further, for the prior specification on Θ in

(8), we set α = 4 and β = 16, and fixed pξ = 0.1, in order to further promote sparsity.

Peterson et al. (2015) note that monotonically higher values of pξ correspond to monotonic

increases in P (θrs 6= 0|data) ∀r 6= s ∈ {1, . . . , S}, and this motivates a low value for pξ to

correspond with our expectation of a reasonable, but small, amount of graph similarity. In

our experience, results appeared to be robust to the different choices of pξ we considered,

as long as the prior overall encouraged a reasonable level of sparsity. For example, for the

settings we considered here, there were not appreciable differences for values of pξ < 0.2.

The priors on the rows of the HMM transition matrix were set as uniform, i.e., Dir(1,1,1),

to characterize lack of prior knowledge on state transitions.

We ran the MCMC algorithm for 20,000 iterations and used a burn in of 10,000. The
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code took approximately 1 hour and 40 minutes to run on an iMac 3.2 GHz Intel Core i5.

Convergence was checked by examining the number of edges included in each iteration, for

the graph component, and number of variables included in each iteration, for the regression

component (plots not shown). Furthermore, the Geweke diagnostic test (Geweke, 1992), as

implemented in the R package coda, was performed on the number of edges, the number

of included variables in the regression, and the regression coefficients. The convergence test

was significant at the alpha = .01, for all variables.

We comment first on the inference on the connectivity states. Figure 4 displays the poste-

rior probabilities of st = s for s ∈ {1, 2, 3}, across all T time points. A visual comparison with

Figure 2 highlights that State 1 characterizes the absence of any stimulus, that is the resting

state, while States 2 and 3 capture the presence of the two stimuli with high probability. As

expected, transition points between connectivity states have the highest uncertainty. This

result also highlights the fact that our method is able to correctly identifying non-contiguous

temporal regions as belonging to the same connectivity state, effectively borrowing strength

in estimation across time windows characterized by similar connectivity states. Figure 5

(top) illustrates our inference on the 3 estimated connectivity networks, {G1, G2, G3}, ob-

tained by thresholding the posterior probabilities p(gijs = 1|data) at a level corresponding

to a Bayesian FDR of .1. Figure 5 (bottom) shows the corresponding estimated precision

matrices. Overall, our method appears to capture the main features of the true dependence

structures, namely positive and negative correlations, quite well. As a formal comparison,

we calculated the RV-coefficient, a measure of similarity between positive semi-definite ma-

trices (Josse et al., 2008), between the true correlation matrices and our estimates. Denoted

by RV ∈ [0, 1], the RV-coefficient can be viewed as a generalization of the Pearson’s coeffi-

cient, with values closer to one indicating more similarity. For the three correlation matrices

we obtained values of .9625, .9802, and .9892, respectively. Formal permutation tests for

H0 : RV = 0 vs. H1 : RV 6= 0 rejected the null hypotheses, at the .01 significance level

after adjusting for multiplicity with a Bonferroni correction.

In addition to the inference on the latent connectivity states, our model also allows

the detection of brain activations. Figure 6 shows the marginal posterior probabilities of

activation of the 10 components during Stimulus 1 and Stimulus 2. Our method is able to
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State 1 State 2 State 3

Figure 5: Simulation study: Estimated connectivity networks (top) and correlation matrices

(bottom - only the lower triangular part is displayed).

Figure 6: Simulation study: Marginal posterior probabilities of activation (p(γvk = 1|data)

for v ∈ {1, . . . , V } and k = 1, 2 of the V = 10 components during Stimulus 1 and 2. The

components simulated as activated by the stimulus are indicated with black dots.
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Figure 7: Simulation study: Box plots of Frobenius distances between the true and the

estimated correlation matrices, for our method and the method of Allen et al. (2012), across

30 replicated datasets.

accurately detect the functional units which change their activation status in response to the

stimuli.

3.1 Comparison Study

For a performance comparison, we looked into the sliding window method of Allen et al.

(2012), and the methods of Cribben et al. (2012) and Xu and Lindquist (2015), which are

based on greedy algorithms. We did not obtain satisfactory results with the greedy algorithm

methods, as those estimate independent brain networks over noncontiguous time blocks. As

an example, in the simulated scenario presented above, the Dynamic Connectivity Discovery

method of Xu and Lindquist (2015) detected three change points (roughly at the 1st, 3rd, and

4th transitions between states in Figure 2) and therefore estimated 4 unique connectivity

states with corresponding networks (result not shown) when only 3 states exist. On the

other hand, the sliding window clustering approach by Allen et al. (2012) provided a more

reasonable comparison with our procedure, although their method also required fixing the

number of clusters, which we set to the ground truth, i.e., 3.
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In order to measure performances in the estimation of the state-dependent connectivities,

we first computed the Frobenius distance between the true correlation matrices, as depicted

in Figure 3, and the estimated ones, separately for our approach and the method by Allen

et al. (2012). The Frobenius distance of two matrices Â and A, is defined as ‖Â − A‖F =
√

tr((Â− A)(Â− A)>), and is often employed to measure the total squared error in matrix

estimation. Boxplots of Frobenius distances are reported in Figure 7, for each of the three

connectivity states, over 30 replicated datasets, and indicate that our method displays the

best performance overall. Furthermore, we calculated precision, accuracy and Matthews

correlation coefficient achieved by the two methods, for each network state. Let TP indicate

the number of true positive edges detected by a method, TN the number of true negatives,

FP the number of false positives and FN the number of false negatives. The precision of the

method is defined as the fraction of true positive detections over all detections, i.e. TP
TP+FP

,

whereas the accuracy is defined as the fraction of true conclusions (i.e., both truly present and

truly absent edges) over the total number of edges tested, i.e. TP+TN
TP+FP+FN+TN

. The Matthews

correlation coefficient (MCC) is a measure that combines all the above performance measures

in a single summary value as

MCC =
TP × TN − FP × FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

The MCC ranges from −1 to 1, with values closer to 1 indicating better performance in the

network detection, and it is generally regarded as a balanced representation of the quality

of a binary classification. Results are reported in Table 1, averaged over the 30 replicates,

and confirm the improved performance of our method.

Finally, we also compare the performance of our method with respect to the detection of

the change points in the connectivity states. Figure 8 illustrates the accuracy of the state

classification at each time point along the fMRI time series, by plotting the proportion of

correctly identified states at each time point, averaged over the 30 replicated datasets, for

both our method and the method by Allen et al. (2012). Both methods are able to capture

the 5 change points quite well. However, the method by Allen et al. (2012) appears to

be characterized by an increased frequency and uncertainty of state transitions within each

interval, most likely due to the nature of the sliding-window estimation. On the other hand,
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BDFC Allen et al.

Precision (sd) ACC (sd) MCC (sd) Precision (sd) ACC (sd) MCC (sd)

State 1 .804 (.116) .746 (.050) .443 (.125) .414 (.045) .459 (.087) .179 (.183)

State 2 .719 (.213) .703 (.078) .337 (.208) .437 (.073) .498 (.112) .232 (.223)

State 3 .691 (.205) .764 (.079) .406 (.219) .347 (.038) .407 (.090) .177 (.144)

Table 1: Simulation study: Performance comparison of our method (BDFC) and the method

of Allen et al. (2012) on edge detection for individual network states. Results are given as

precision, accuracy (ACC) and the Matthews Correlation Coefficient (MCC) averaged across

30 simulations. Standard deviations are given in parentheses.

Figure 8: Simulation study: Accuracy of change point detections and state identifications,

for the proposed method (solid line) and the method of Allen et al. (2012) (dashed line),

averaged across the 30 replicates.
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our method is characterized by increased accuracy and stability of state identification at

each time point. The transitions between states have the highest uncertainty; however, they

are still very consistent with the true timing of the change points.

4 Analysis of Sensory Motor Task fMRI Data

We applied our method to data obtained from an actual fMRI experiment conducted by the

Mind Clinical Imaging Consortium (MCIC, Gollub et al., 2013). The particular experiment

considered here is a block design fMRI study, designed to activate the auditory and so-

matosensory cortices. The design of the experiment alternated 16 second blocks of auditory

stimulus and 16 second blocks of fixation. During the stimulus blocks, the subject, keeping

eyes closed for the duration of the scan, was presented with a series of bi-aural audio tones

of varying frequencies at irregular intervals and asked to press a button in response to each

of the stimuli as quickly as possible. More precisely, the auditory stimulus consisted of 16

different tones of monotonically increasing frequency from 236 Hz to 1318 Hz, with each tone

lasting 200 ms. The tones rose to the maximum value, and then descended. This pattern

was repeated for 16 seconds, and the subject was asked to press a button with their right

thumb after hearing each individual tone. The experiment lasted for 240 seconds, during

which the subject was scanned in intervals of 2 seconds. This resulted in a total of 120 time

points across the scanning session. The first block of each scanning session is a fixation block,

giving a total of 8 fixation blocks and 7 sensory motor blocks. The data were collected on

a 3 T Siemens Trio, with a bandwidth of 3125Hz/pixel. The spatial resolution was 3.4mm

cubic voxels in a 53× 63× 46 cubic grid. Motion correction was performed using SPM12.

Applying ICA, using the GIFT Matlab toolbox (Calhoun et al., 2001), reduced the voxel

space to 40 ICA components, representing a spatial map of anatomical regions with associ-

ated time courses. Many of these components corresponded to biological structures not of

interest here, such as cerebrospinal fluid, the sinuses, or the brainstem, and other components

corresponded to motion artifacts. These components do not have any functional relationship

with relevant anatomical regions and were removed from the analysis, as a standard data

preprocessing step (Allen et al., 2012). After these components were removed, we were left
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(A) Sensory Motor Network

(B) Posterior Insula

(C) Basal Ganglia

(D) Cingulo-Opercular Network

(E) Ventral Attention Network

(F) Anterior Default Mode Network

(G) Precuneus

Figure 9: Case study: Z-score maps of components of interest, overlaid in Montreal Neuro-

logical Institute (MNI) space. For each component, three representative slices are displayed,

in the coronal, sagittal, and axial orientations, respectively. Components are sorted based on

their anatomical and functional properties, with the executive control sorted together and

all of the Default Mode Network (DMN) components sorted together.
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(H) Posterior Default Mode Network (ventral)

(I) Lateral Default Mode Network

(J) Posterior Default Mode Network (dorsal)

(K) Cerebellum

(L) Visual System

(M) Dorsal Attention System

(N) Bilateral Motor System

Figure 10: Case study: Z-score maps of components of interest, overlaid in Montreal Neu-

rological Institute (MNI) space. Three representative slices are displayed, in the coronal,

sagittal, and axial orientations, respectively, for each component. Components are sorted

based on their anatomical and functional properties, with the executive control sorted to-

gether and all of the Default Mode Network (DMN) components sorted together.
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with 14 ICA components corresponding to anatomical regions of interest, as depicted in

Figures 9 and 10. As it is known that there is low frequency drift in fMRI time courses,

which is not associated with neurological behavior in the subject (Smith et al., 1999), we

removed linear and quadratic trends from the time courses of the obtained components.

We used a similar prior specification to the one adopted in the simulation study. In

particular, we imposed independent Unif(0, 5) priors on the hemodynamic delay parameter

λv in (2) and placed N(0, 1) priors on the slab components in (3) and the baseline mean

components. Also, we set the prior probability of a component being activated to .2. For the

parameters of the G-Wishart prior in (5) we specified b = 3 and D = IV , which corresponds

to a vague distribution on the space of precision matrices. We specified the parameters of

the MRF prior (7) on {G1, . . . , GS} to obtain a prior marginal probability of edge inclusion

of .25. For the prior specification on Θ in (8), we set α = 4 and β = 16, and fix pξ = 0.1.

Finally, we set the priors on the rows of the HMM transition matrix as uniform Dir(1,1). We

ran the MCMC algorithm for 20,000 iterations and used a burn in of 10,000. The code took

approximately 2 hours to run on an iMac 3.2 GHz Intel Core i5. As in the simulation study,

the model convergence was analyzed by looking at number of edges included in the graphs,

number of components included in the regression, and the regression coefficients. These

quantities were tested using the Geweke criteria, and were rejected at a .01 significance

level.

4.1 Inferred connectivity networks and activations

The experimental design alternates between two conditions, fixation and auditory stimulus.

Accordingly, we set S = 2, to understand how the particular task affects (e.g., either by

modulating or inhibiting) functional relationships among the networks. This choice was also

supported by model selection criteria, such as the BIC and AIC. For example, for S = 2, 3 the

corresponding AIC values were (2939, 5544), respectively, whereas for the BIC we obtained

(4804, 7409). Figure 11 displays the posterior probabilities of st = s for s ∈ {1, 2}, across

all T time points. Non-contiguous temporal blocks where the method estimates with high

posterior probability that the individual is in either State 1 or State 2 are clearly recognizable,

and they correspond well to the temporal intervals between the offset of the auditory stimulus
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Figure 11: Case study: Posterior probability of each connectivity state across all time points,

p(st = s) for t ∈ {1, . . . , T} and s ∈ {1, 2}. The shaded regions mark the presence of the

auditory stimulus.

and rest in the experiment, respectively.

Figure 12 shows the inferred connectivity networks under the two states, obtained by

thresholding the posterior probabilities of edge inclusion at a .1 expected Bayesian FDR,

together with the estimated precision matrices. Negative correlations are depicted in blue

and positive correlations in red. In the graphs, dashed and solid lines correspond to shared

and differential edges, respectively. Our findings on the connectivity networks under task

(auditory stimulus - State 1) and rest (fixation - State 2) reveal several interesting features.

First, the connectivity network under fixation is characterized by more negatively correlated

edges. Those negative correlations are prevalent between regions associated with executive

control or task functioning, including the Basal Ganglia (C), Cingulo Opercular Network (D),

Dorsal Attention System (M), and Bilateral Motor System (N), and regions in the default

mode system (the Precuneus (G), Dorsal Posterior Default Mode (J), Anterior Default Mode

(F), and the Lateral Default Mode (I)). Indeed, the default mode network (DMN) has been

found to exhibit higher metabolic activity at rest than during performance of externally-

oriented cognitive tasks (Uddin et al., 2009), and those negative correlations could suggest

an inhibitory effect from these regions over the executive control regions. Furthermore, some

researchers have suggested that the DMN is associated with monitoring of the external envi-
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ronment and the dynamic allocation of attentional resources, with some form of depression

showing altered DMN patterns during implicit emotional processing (Koshino et al., 2011;

Shi et al., 2015). Our estimated networks also identify regions which are typically related

to executive control, i.e., the Posterior Insula (B), Basal Ganglia (C), Cingulo-Opercular

Network (D), and the Ventral Attention Network (E), as engaged both during the auditory

stimulus and fixation. Indeed, this finding is consistent with the expectation that at any

time the subject is either controlling a response to a stimuli or waiting for a stimuli to be

presented. Also regions belonging to the DMN appear engaged in both the resting and the

task networks, a remark consistent with the understanding that DMN processes unconscious

task-related information, despite being characterized by general decreased activity levels

during task performance (De Pisapia et al., 2011). We also observe a more pronounced cor-

relation between the Sensory Motor Network (A) and the Basal Ganglia (C) during fixation.

The Basal Ganglia (C) has been observed to moderate attention networks (Jackson et al.,

1994), and specifically to moderate executive attention (Berger and Posner, 2000).

Figure 13 shows the marginal posterior probabilities of activation of the 14 components

during task. The Sensory Motor (A), Cingulo-Opercular Network (D), Ventral Attention

Network (E), Anterior Default Mode (F), Precuneus (G), Ventral Posterior Default Mode

(H), Lateral Default Mode (I), and Dorsal Posterior Default Mode (J) components all have

high posterior probability of being activated by the task. The posterior means and 95%

credible intervals of the regression coefficients in (1) corresponding to these components

are also reported in Figure 13. Interestingly, our method selects all default mode related

regions (F-J), while also selecting the sensory motor region (A), and regions associated with

attention or executive control (D-E). As expected, the sensory motor region (A) exhibits

significantly higher activity during the task, similarly to the two selected executive control

regions (D-E). On the contrary, most DMN regions (F, G, H, J) exhibit deactivation during

the task, with the interesting exception of the Lateral DMN component (I). As mentioned,

it has been established that regions which are part of the DMN are usually characterized

by greater activity during task preparation than during task performance (Koshino et al.,

2014). The Lateral DMN component (I) includes areas corresponding to the right angular

gyrus, which has been shown in meta-analysis reviews to be consistently activated in go/no-
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Selected Components E(β|data) 95% CI

Sensory Motor (A) 2.01 (1.86, 2.17)

Cingulo Opercular Network (D) .62 (.43, .81)

Ventral Attention Network (E) .44 (.31, .55)

Anterior DMN (F) -.50 (-.68, -..32)

Precuneus (G) -.32 (-.52, 0)

Posterior DMN (ventral) (H) -.53 (-.78, -.28)

Lateral DMN (I) .52 (.39, .67)

Posterior DMN (dorsal) (J) -.60 (-.78, -.40)

Figure 13: Case study: Marginal posterior probabilities of activation of the V = 14 compo-

nents during the sensory motor task (left), and posterior means and 95% credible intervals

of the regression coefficients in (1) corresponding to the selected components (right)

go tasks, as it may be involved in the restraining of an inappropriate response from being

executed (Wager et al., 2005; Nee et al., 2007).

5 Conclusion

The investigation of dynamic changes in functional network connectivity has recently received

increased attention in the neuroimaging literature, as it is believed to provide greater insights

into brain organization and cognition (Hutchison et al., 2013). In this manuscript, we have

introduced a fully Bayesian approach to the problem, which allows simultaneous estimation of

time-varying networks, with corresponding change points, and detection of brain activations

in response to a set of external stimuli. With respect to current methods for studying

dynamic connectivity, our approach does not require an ad-hoc choice of sliding-windows

for estimating the network dynamics, and inference is conducted in a unified framework.

By using a Hidden Markov Model formulation to detect change points in the connectivity

dynamics, our framework allows posterior assessment of the probability of each connectivity

state at each time point, and further allows borrowing of information across the entire fMRI

scan to improve accuracy in the estimation of the networks.
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We have considered task-based fMRI data, where we have shown how our method achieves

decoupling of the task-related activations and the functional connectivity states, to under-

stand how a particular task affects (e.g., either by modulating or inhibiting) functional rela-

tionships among the networks. We have shown good performances of our model on simulated

data and illustrated the method on the analysis of an actual fMRI dataset obtained from a

healthy subject involved in a sensory motor task with an auditory stimulus. The results were

consistent with current findings in the neuroimaging literature, showing an increased role

of the regions involved in the default mode network at rest. Interestingly enough, regions

related to executive control appeared involved both at rest and during task, consistent with

the pattern implied by the “wait-to-hear” design of the auditory stimulus. During the task,

a stronger connection between the Ventral Attention Network and the Basal Ganglia was

observed, relating the attention to the stimulus to the voluntary muscle movements triggered

by the task.

In our approach we have fitted a model to fMRI BOLD responses over macro-regions

identified via ICA, rather than to the voxel-level data itself. As we have noted, our modeling

approach does not depend on the particular choice of ICA-based regions, as it is generally

applicable to any well-defined set of brain regions for which connectivity is of interest. In

ICA, components are effectively spatial regions that share a common time course, and the

shared time course is different enough from those of other regions to be distinct components.

This leads to model order. One advantage of ICA, therefore, is that if we want to consider a

graph with a small set of nodes, a low-model order ICA decomposition will help decide which

structural areas can be grouped based on similar time course activation. Another advantage

to ICA is that it chooses spatial components that have time courses that are the most distinct

from each other; therefore, unlike in an atlas specification of regions where two regions can

be highly functionally connected, ICA gives us the starting point of components that are as

temporally unalike as possible. Then, the Bayesian graphical model will find the relationships

between these distinct components. For future extensions of the method, an interesting

question to explore is the interaction between the results of our model and the pre-processing

step. Indeed, it might be possible to have the identification of the macro regions be not a pre-

processing step but be included within the Bayesian hierarchical model fitting. This requires
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addressing the resulting non-trivial computational challenges. In addition, scalability of the

methods can be facilitated by the implementation of computationally efficient algorithms

for posterior inference, such as Variational Bayes and Hamiltonian Monte Carlo methods

constrained on the space of positive definite matrices (Neal, 2011; Holbrook et al., 2016),

in place of the more computationally expensive MCMC methods. Such strategy can allow

the estimation of graphs with a larger number of nodes than what we have considered in

our examples, also making it possible to validate findings on whole-brain parcellations and

functional brain atlases, such as the Willard and MSDL atlas, instead of ICA components,

in order to ensure the robustness of the results and assess the impact of the pre-processing.

In model (1) we have considered the case of a Poisson hemodynamic response function.

Clearly, other parametric HRFs, such as the canonical or the gamma HRFs (Lindquist, 2008),

can be used with our model. Also, our approach can be extended to incorporate methods for

joint detection-estimation (JDE) of brain activity that allow both to recover the shape of the

hemodynamic response function as well as to detect the evoked brain activity (Makni et al.,

2008; Badillo et al., 2013). In such approaches, whole brain parcellations are typically used,

to make the HRF estimation reliable by enforcing voxels within the same parcel to share

the same HRF profile. Extensions that allows simultaneous inference of the parcellation

have also been proposed (Chaari et al., 2013; Albughdadi et al., 2017), at the expense of the

computational cost.

The use of a Hidden Markov Model for change point detection requires the predetermi-

nation of the upper bound, S, on the number of possible states. In task-based fMRI data, a

reasonable value for S can often be surmised on the basis of the experiment, e.g., the num-

ber of different tasks. However, in our model formulation connectivity is not defined by the

presence of a stimulus but rather characterized by a latent state. This adds flexibility to the

model, as we can learn on interesting patterns of state persistence that may arise during the

course of the experiment. For example, model selection criteria, such as the AIC and BIC,

can be employed to determine the optimal value of S. Alternatively, one could use flexible

Bayesian nonparametric generalizations of the Hidden Markov Models that do not require

fixing S in advance and instead estimate E(S|Y ) directly from the data (Beal et al., 2002;

Airoldi et al., 2014). This will be an objective of future investigations. Other possible ex-
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tensions of our modeling framework include incorporating external prior information on the

networks, whenever available. For example, estimates of structural connectivity obtained

using diffusion imaging data can be incorporated into the sparsity prior on the precision

matrices (Hinne et al., 2014). Finally, even though we have discussed here the analysis of

fMRI data from a single subject, multiple subjects analyses would also be of interest, as

they would allow comparisons of functional connectivity dynamics between groups of sub-

jects, for example healthy controls and patients affected by neuropsychiatric disorders, such

as Alzheimer’s and schizophrenia. For such extensions, however, several aspects of the mod-

eling and computations need careful thought, as one might expect the connectivity states

and the change points to vary subject-by-subject.

A Appendix: Markov chain Monte Carlo algorithm

We describe here the MCMC algorithm for posterior inference.

• Update λv: This is a Metropolis Hastings (MH) step. Propose λvnew
∼ Unif(λvold −

h, λvold + h) and adjust the Xk
vt element of Xnew to be Xk

vt =
∫ t

0
xk(τ)hλvnew

(t− τ)dτ ,

then accept λvnew
with probability:

min{1,
p(λvnew

|Y,Xnew, s,β,Ω)q(λvnew
, λvold)

p(λvold |Y,Xold, s,β,Ω)q(λvold , λvnew
)
},

where p(λ|Y,X, s,β,Ω) ∝
∏

s∈{1,...,S}

∏

t:st=s N(µ+
∑K

k=1 X
k
t ◦ βk,Ωs).

• Update s: This is an MH step followed by a Gibbs sampler.

1. Sample state transition probabilities for state i from a Dirichlet(αi) distribution

where [αi]j = #i → j + 1 is the number of state transitions from i to j plus 1.

2. Calculate the stationary distribution πnew given the transition probabilities.

3. Accept resulting transition matrix and stationary distribution with probability:

min{1,
πnew(Current States)

πold(Current States)
}

4. Perform Gibbs sampling using Forward Propagate Backward Sampling (Scott,

2002). Obtain the forward transition probabilities for each state at each time
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point as: Pt = [ptrs] where ptrs is the transition probability from r at time t − 1

to s at time t. The formula for ptrs is obtained by computing:

ptrs ∝ πt−1(r|θ)q(r, s)N(Xtβ + µ,Ωs)

and normalizing. The term πt(r|θ) =
∑

r ptrs is computed after each transition.

5. Once Pt has been obtained for all t, sample sT from πT , and then recursively

sample st proportional to the st+1-th column of Pt+1; until s1 is sampled.

• Update G and Ω: This is an MH step.

1. For each s ∈ {1, .., S}, and each off diagonal pair (i, j) ∈ {1, ..., V } propose an

edge with probability p(Gnew)H(e,Ω)
p(Gold)

, with e = (i, j) the edge being updated, and

with H(e,Ω) as defined in Wang and Li (2012) section 5.2 Algorithm 2. If the

new edge / lack of an edge is different from the previous edge state continue with

MH step. Otherwise, proceed forward to the next edge.

2. Sample Ωsnew
|Gsnew

∼ WGsnew
(b+ nk, D + cov({Yt : st = s})).

3. Accept or reject the move with the following probability:

min{1,
f(Ωnew\(ωijnew

, ωjjnew
)|Gold)

f(Ωnew\(ωijnew
, ωjjnew

)|Gnew)
},

with f(Ω\(wij, wjj)|G) as defined in Wang and Li (2012).

• Update Θ and ξ: This is done using within-model and between-model MH steps.

1. Between-Model

(a) For each r, s ∈ {1, .., S}

i. If ξrs = 1 set ξrsnew
= 0 and θrsnew

= 0

ii. If ξrs = 0 set ξrsnew
= 1 and sample θrsnew

from the proposal Gamma(α∗, β∗)

distribution.

(b) Accept proposal with probability:

i. min{1, Γ(α)
Γ(α∗)

(β∗)α
∗

βα (θkm)
α∗−αe(β−β∗)θrs

∏

i<j

C(νij ,Θ)exp(−2θrsgr,ijgs,ij)

C(νij ,Θnew)
1−w
w

}
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ii. min{1, Γ(α
∗)

Γ(α)
βα

(β∗)α∗ (θrsnew
)α−α∗

e(β
∗−β)Θrsnew

∏

i<j

C(νij ,Θ)exp(−2θrsnewgr,ijgs,ij)

C(νij ,Θnew)
w

1−w
}.

Here C(ν,Θ) is the MRF normalizing constant.

2. Within-Model

(a) For each r, s ∈ {1, .., S} such that ξrs = 1 and θrs 6= 0 sample θrsnew
from the

same proposal Gamma(α∗, β∗) distribution.

(b) Accept proposal with probability:

min{1, (
θrsnew

θrs
)α−α∗

e(β
∗−β)(θrsnew−θrs)

∏

i<j

C(νij,Θ)exp(2(θrsnew
− θrs)gk,ijgm,ij)

C(νij,Θnew)
}

• Update γ and β: Updated using between-model and within-model MH steps:

1. Between-Model

(a) For each k ∈ {1, ..., K} either swap two values of γk or select an index and

change it’s value.

– When swapping two values to obtain γkinew
and γkjnew

then, without loss

of generality, if γkinew
= 0 set βkjnew

= 0 and sample βkjnew
from N(0, σβ).

– When changing the value of an individual index j, then if γkjnew
= 0 set

βkjnew
= 0, otherwise sample βkjnew

from N(0, σβ).

(b) Accept proposal with probability:

min{1,

∏T

t=1 p(Yt|X,βnew, s,Ω)p(βnew)p(γnew)q({γnew,βnew}, {γold,βold})
∏T

t=1 P (Yt|X,βold, s,Ω)p(βold)P (γold)q({γold,βold}, {γnew,βnew})
},

where p(Yt|X,β,µ, s,Ω) = N(Xtβ + µ,Ωst), and q(◦, ◦) is the transition

probability.

2. Within-Model

(a) For each k ∈ {1, ..., K} and v ∈ {1, ..., V } such that γkv = 1 propose βkvnew
=

βkvold +N(0, σprop
β )

(b) Accept the proposal with probability:

min{1,

∏T

t=1 p(Yt|X,βnew, s,Ω)p(βnew)
∏T

t=1 p(Yt|X,βold, s,Ω)P (βold)
},

where p(Yt|X,β, s,Ω) = N(Xtβ + µ,Ωst).
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• Update µ: Updated using an MH step:

1. ∀v ∈ {1, ..., V } perform a random walk on µv to obtain

µnew = {µ1old , ...,µvnew
, ...,µpold}.

2. Accept or reject µvnew
with the following probability:

min{1,

∏T

t=1 P (Yt|X,β,µnew, s,Ω)p(µnew)
∏T

t=1 p(Yt|X,β,µold, s,Ω)p(µold)
},

where p(Yt|X,β,µ, s,Ω) = N(Xtβ + µ,Ωst).

• Update ν: Updated using an MH step:

1. ∀i, j ∈ {1, .., V } such that i < j, sample qij ∼ Beta(a∗, b∗).

2. Obtain νijnew
as a function of qij by setting νijnew

= logit(qij).

3. Accept νijnew
with the following probability:

min{1,
exp((νijnew

− νij)(a− a∗ + 1Tgij))C(νij,Θ)(1 + eνij)a+b−a∗−b∗

C(νijnew
,Θ)(1 + eνijnew )a+b−a∗−b∗

}.
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