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Level set method the solution of the linear system. A few numerical studies involving some standard test
Fast multipole method cases are presented and compared to other existing results.
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Implicit solvent model

1. Introduction

The mathematical modeling and numerical simulation of electrostatics of charged macromolecule-solvent systems have
been extensively studied in recent years, due to their importance in many branches of electrochemistry; see, for instance,
[8,23,26,27,39,53,57,60,65,71,76,89] and references therein for recent overviews of the developments in the subject.

There are roughly two classes of mathematical models for such macromolecule-solvent systems, depending on how the
effect of the solvent is modeled: explicit solvent models in which solvent molecules are treated explicitly, and implicit sol-
vent models in which the solvent is represented as a continuous medium. While explicit solvent models are believed to be
more accurate, they are computationally intractable when modeling large systems. Implicit models are therefore often an al-
ternative for large simulations, see [6,19,22,50,90] and references therein for recent advances. The Poisson-Boltzmann model
is one of the popular implicit solvent models in which the solvent is treated as a continuous high-dielectric medium [16,21,
28,41,51,56,69,70,80]. This model, and many variants of it, has important applications, for instance in studying biomolecule
dynamics of large proteins [4,5,10,12,33,90]. Many efficient and accurate computational schemes for the numerical solution
of the model have been developed [3,7,9,18,24,30,31,36,51,54,81,88].

To introduce the Poisson-Boltzmann model, let us assume that the macromolecule has N. atoms centered at {Z;}
with radii {r; }?H and charge number {q; }?r;l respectively. Let I" be the closed surface that separates the region occupied by
the macromolecule and the rest of the space. The typical choice of T is the so-called solvent excluded surface, which is defined
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Fig. 1. A view of the “solvent excluded surface” in 2D is shown by the middle solid curve, and the narrowband I, is shown here by the space bounded
between the dashed curves.

as the boundary of the region outside the macromolecule which is accessible by a probe sphere with some small radius,
say po; see Fig. 1 for an illustration. We use €2 to denote the region surrounded by I" that includes the macromolecule.

We use a single function y to denote the electric potential inside and outside of €2. In the Poisson-Boltzmann model, ¢
solves the Poisson’s equation for point charges inside €2, that is,

Nc
—V-(eVY®) =) qd(x—2z), inQ
k:]

where &; denotes the dielectric constant in . Outside Q, that is in the solvent that excludes the interface T, v solves the
Poisson’s equation for a continuous distribution of charges that models the effect of the solvent, that is,

—V - (eeVY) = pa(T, X, ¥(x)), in R*\Q

where £¢ denotes the dielectric constant of the solvent, which often has much higher value than that of the macromolecule,
&g > 1. The source term pg is a nonlinear function coming from the Boltzmann distribution with T denoting the temper-
ature of the system. More precisely, for solvent containing m ionic species,

m
pe(T. X, Yx) :=ec y_cigie <MVl xR\ Q
i=1
where c;, g; are the concentration and charge of the ith ionic species, e, is the electron charge, kg is the Boltzmann constant,
and T is the absolute temperature.
The nonlinear term pg(T,x, ¢¥) in the Poisson-Boltzmann system poses significant challenges in the computational so-
lution of the system. In many practical applications, it is replaced by the linear function —E%y’;{x} where the parameter

KT = 1{%%27]1 is called the Debye-Hiickel screening parameter with kg, e, and [ being the Boltzmann constant, the unit

charge, and the ionic strength respectively. This leads to the linearized Poisson-Boltzmann equation (PBE) for the electro-
static potential . It takes the following form

N
—V-(E@VYE) =) qdx—z), inQ,
k:]
—V - (g VY (X)) = —cF Y (X), in &,
YOOI, =, on T, M
£ % = % on I,

Fonir, ” on
X[y (x) — 0, [XI*|[Vy¥x)|— 0, as x| > oo.

Here the operator d/dn = n(x) - V denotes the usual partial derivative at x € I' in the outward normal direction n(x)
(pointing from I' outward). The usual continuity conditions, continuity of the potential and the flux across I', are assumed,
and the radiation condition, which requires ¢ decay to zero far away from the macromolecule, is needed to ensure the
uniqueness of solutions to the linearized Poisson-Boltzmann equation. See e.g. [3,7,10,16,30,31,50,53,70,80,81].
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Computational solution of the linearized Poisson-Boltzmann equation (1) in practically relevant configurations turns out
to be quite challenging. Different types of numerical methods, including for instance finite difference methods [6,15,41,
32,58,64], finite element methods [3,38,83-86], boundary element methods [1,2,14,44,52,54,55,87], and many more hybrid
or specialized methods [13,79] have been developed; see [53] for the recent survey on the subject. Each method has its
own advantages and disadvantages. Finite difference methods are easy to implement. They are the methods used in many
existing software packages [15,41,32,58,64)]. Finite difference methods, except the ones that are based on adaptive oct-tree
structures [36,62,63], use uniform Cartesian grids and require special care for implementing the interface conditions to
high order while maintaining stability. Finite element methods provide more flexibility with the geometry. However, like
the finite difference methods, they often suffer from issues such as large memory storage requirement and low solution
speed when dealing with large problems. Moreover, both finite difference and finite element methods need to truncate
the domain in some way, therefore the radiation condition is not satisfied exactly. Boundary element methods are based
on integral formulations of the Poisson-Boltzmann equation. They require only the discretization of the solvent excluded
surface, i.e. I', not the macromolecule and solvent domains. The radiation condition is usually exactly, although implicitly,
integrated into the integral form to be solved. However, the matrix systems resulting from boundary element formulations
are often dense. Efficient acceleration, for instance preconditioning, techniques are needed to accelerate the solution of such
dense systems.

In this work, we propose a fast numerical method for solving the interface/boundary value problem of the linearized
Poisson-Boltzmann equation (1). The method is derived from the implicit boundary integral formulation [47] of (1) and
relies on some of the classical level set algorithms [66,67] for computing the implicit interfaces and the needed geometrical
information. All the involved computational procedures are defined on an underlying uniform Cartesian grid. Thus the
proposed method inherits most of the flexibilities of a level set algorithm. On the other hand, since the method is derived
from a boundary integral formulation of (1), it treats the interface conditions and far field conditions in a less involved
fashion compared to the standard level set algorithms for similar problems. As such types of implicit boundary integral
approaches are relatively new, we describe in detail how to set up a linear system and where a fast multipole method can
be used for acceleration of the common matrix-vector multiplications in the resulting linear system. We demonstrate in
our simulations involving non-trivial molecules defined by tens of thousands atoms that standard “kernel-independent” fast
multipole methods [29] can be used easily and effectively as in a standard boundary integral method.

We conclude the introduction with the following remarks. The linearized Poisson-Boltzmann model provides a suffi-
ciently accurate approximation in many cases, in particular when the solution’s ionic strength is relatively low; see [28] and
references therein. In cases where the linearized model is not accurate enough, solving the nonlinear Poisson-Boltzmann is
necessary. With appropriate far field conditions, finite difference or finite element methods provide a way to compute solu-
tions in such case; see [63] and references therein. The computational method we develop in this work can potentially be
combined with an iterative scheme for nonlinear equations, such as methods of Newton's type [45], to solve the nonlinear
Poisson-Boltzmann equation. At each iteration of the nonlinear solver, the proposed method can be adapted to solve the
linearized problem as long as the coefficients involved, mainly the dielectric coefficients, are constants as currently assumed
in our algorithm.

The rest of this paper is organized as follows. We first introduce in Section 2 the implicit boundary integral formulation
of the linearized Poisson-Boltzmann system (1). We then present the details of the implementation of the method in
Section 3. In Section 4, we present some numerical simulation results to demonstrate the performance of the algorithm.
Concluding remarks are then offered in Section 5.

2. The implicit boundary integral formulation

The numerical method we develop in this work is based on a boundary integral formulation of the linearized Poisson-
Boltzmann equation that is developed in [44].

2.1. Boundary integral formulation

Throughout the rest of the paper, all the coefficients involved in the equations are assumed to be constant, i.e. indepen-
dent of the spatial variable. We define x = kT /./€E, and introduce the fundamental solutions

G ! d G B

X,y) = ———— an X,y) = ———
oY) = (Y =
to the Laplace equation and the one with the linear lower order term —E’%qﬁ in (1),

Following the standard way of deriving boundary integral equations, we apply Green's theorem to the system formed by

(i) the first equation in (1) and the equation for Gp, and (ii) the second equation in (1) and the equation for G, taking into
account the interface and the radiation conditions. A careful routine calculation leads to the following boundary integral
equations for the potential ¥ and its normal derivative v, =0dv{//dn on I':
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—sb( )+f( a[:]((y)y)sb(y) Go(x, y)wn(y))dy Z—Gu(x i),

(2)

1 3G (x,Y)
Ewo{)—f( e w(w——cx(x y)wn(y))dy 0.
r

This system of boundary integral equations is the starting point of many existing numerical algorithms for the linearized
Poisson-Boltzmann equation.
In our algorithm, we adopt the integral formulation proposed in [44]. This formulation reads:

1/ e 3Gox,y) €k 3Ge(x,Y)
E(HZ)WHf( ny « oy )M)dy

(3)
f (Go(%,y) — G (X, ¥)) ¥n(y)dy = ZTGG(X z),
k=1
1 € PGoxy)  Ge(xy)
p (1 " E) e + [ (an(x)an(w - an(x)an(w) vy
r
(4)

Ne
G 3G, (x, 3Go(x,
_[( oX,y) € 3G (x y))%(y)dyzzq_k 0%, %)

an(x) €g  oIn(x) P e an(x)

The first equation in this formulation, (3), is simply the linear combination of the two equations in (2), while the second
equation in this formulation, (4), is nothing but the linear combination of the derivatives of the two equations in (2). It is
shown in [44] that the potentially hypersingular integral in (4), involving the second derivatives of Gg and G, is actually
integrable on I', thanks to the fact that

%Go(x,y)  9°Ge(X,y)
an)an(y) anx)an(y)

Moreover, when k =0, (3) is decoupled from (4), and the latter provides an explicit formula for evaluating dv/dn using .

The main benefit of the formulation (3)-(4) is that it typically leads to, after discretization, linear systems with smaller
condition numbers than the formulation in (2). The typical boundary element methods for this system (and others) require
careful triangulation of the interface I'; see e.g. [1,2,14,44,52,55,87]. In the next subsection, we describe our method to dis-
cretize the boundary integral system (3) and (4) on a subset of a uniform Cartesian grid nodes in a narrowband surrounding
I", without the need to parameterize I'.

~0(x—yl™), Ix—y|—0.

2.2. Implicit boundary integral method

Let the interface " be a closed, C1'® surface (in two or three dimensions) with & > 0 so that the distance function to
I' is differentiable in a neighborhood around it. Let dr denote the signed distance function to I' that takes the negative
sign for points inside the region enclosed by I', and I'c denote the set of points whose distance to I' is smaller than €. An
implicit boundary integral formulation of a surface integral defined on I' is derived by projecting points in I'c onto their
closest points on I". With the distance function to I', the projection operator can be evaluated by

Prx ==X —dr(X)Vdr(x). (5)
When € is smaller than the maximum principal curvatures of I, the closest point projection is well-defined in T',.

An implicit boundary integral method (IBIM) [47] is built upon the following identity:

Ir[fl:= f Fx)ds(x) = f F(Prx)é: (dr(x)) ] (x)dx, (6)
r

which reveals the equivalence between the surface integral and its extension into a volume integral. We shall call the
integral over I': an implicit boundary integral. In this implicit boundary integral, one has

1. The extension of f(x) as a constant along the normal of I" at x.
2. The Jacobian J(x) which accounts for the change of variables between I' and the level set surface of dr that passes
through x.
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3. A weight function, 8. compactly supported on [—¢, &] satisfying
£

fag(n)dq =1. (7)

—&
In R3, the Jacobian ] takes the explicit form

J(x)=1—dr(x)Adr(x) 4 dr(x)*(Vd, V?dr Vdr). (8)

It can be further related to the products of the singular values of the Jacobian matrix of Pr, which provides an alternative,
and in some cases easier way, for the computation of J. See [48].

In the application of interest, the distance function to a solvent excluded surface will be twice differentiable almost
everywhere in some narrowband around the surface, together with setting | =1, the proposed method is well-defined in
there. In fact, the requirement on the regularity of the surface (and its signed distance function) can be further relaxed if the
weight function is an even function and possesses enough vanishing moments. It is shown in [49] that with | =1, the cosine
weight function (27) and C! integrands which are not necessarily constant along surface normals, Ir[f] is approximated to
second order if €. It is further shown in [49] that if the weight function has more than two vanishing moments, one may
replace the Jacobian by | =1 while keeping the equality in (6) valid, even for piecewise smooth surfaces containing corners
and creases.

Numerically we approximate the implicit boundary integral by embedding the computational domain 2 into the rectan-
gle U =[a, b]", and subdivide U into the uniform grid Uy = hZ" N [a, b]" with grid size h = (b —a)/N along each coordinate
direction and x; at each grid point. We approximate the integral by

Ir[f1~ S [f1:= ) f&)de(drxi))J xh" 9)
xiels
where x =x; —dr(x;)Vdr(x;) is the projection of x; onto I'.

Thus, a typical second kind integral equation of the form

200 = AB(X) + f K& y)BWdsy), xeT, (10)
r

can be approximated on Uy using the IBIM formulation, One would derive a linear system for the unknown function j
defined on the grid nodes in I';:

g(Prxi) =AB(x)) +h" > K(Prxi, Pryj)B®)3c(dry;j)J(¥j). Xi €TeNUp, (11)
yjelenUp
with the property that as h— 0
B(xi) — B(Prx;), Vx; €TeNUp;

i.e. the solution to the linear system (11) converges to “the function which is the constant extension along the surface
normal” of the solution of (10); see more discussions in [17,47].

In the context of this paper, equations (3) and (4) will be discretized into

1. - _ )
S MY () +h? zj:Kn(Xi,w)wﬂﬁ’(}’j} —h? ;Ku(’(i,w)wﬂh(}’j) = g1(xi),

(12)
T . _
Elzﬁffn(Xf)+h3ZK21(Xi,Yj)wj¢’(Yj}—h3szz(x"’yf)wm"(w):gz(xi)’
i J
where
VAR AT
A]—§(1+g),lz—2(1+65),
wj:= J(¥j)e(dr(y;)), (13)
o, i o Gk 3Go(Xi. Z¢)
N e Hk . . x-SR
g1(xi).—§ﬂ Go(xhz;f),gz(x,).—g P

and K11, K12, K21, K22 are respectively the regularized versions of the following weakly singular kernels:



204 Y. Zhong et al. / Journal of Computational Physics 359 (2018) 199-215

dGo(Prx, Pry)  €g 9Gy(PrX, Pry)

, Go(Prx, Pry) — Gk (Prx, Pry),

an(Pry) e an(Pry)
3%Go(Prx, Pry) _ 9Ge(Prx Pry) . 3Go(PrX, Pry) _ €1 3Gc(Prx, Pry)
an(Prx)an(Pry) an(Prx)an(Pry)’ an(Prx) €E an(Prx)

A simple regularization that we used in our numerical implementation is described below in the next subsection.

This formulation provides a convenient computational approach for computing boundary integrals, where the boundary
is naturally defined implicitly, as a level set of a continuous function, and is difficult to parameterize. The geometrical
information about the boundary is restricted to the computation of the Jacobian | and the closest point extension of the
integrand f — both of which can be approximated easily by simple finite differencing applied to the distance function
dr(x) at grid point x; within I';. Furthermore, the smoothness of the weight function §., along with the smoothness of
the integrand will allow for higher order in h approximation of I[ f] by simple Riemann sum S{ls [f1, see for example the
discussion in [48].

2.2.1. Regularization of the kernels

While all the kernels (the Green's functions and the particular linear combinations of them) that appear in (3)-(4) are
formally integrable, an additional treatment for the singularities is needed in the numerical computation when x and y are
close. Typically, the additional treatment corresponds to either local change of variables so that in the new variables the
singularities do not exist or mesh refinement for control of numerical error amplification (particularly for Nystrom methods).
The proposed simple discretization of the Implicit Boundary Integral formulation on uniform Cartesian grid can be viewed
as an extreme case of Nystrom method, in which no mesh refinement is involved (and thus no control of numerical errors
if the singularities of the kernels are left untreated). Therefore we need to regularize the kernels analytically and locally
only when Prx and Pry are sufficiently close with respect to the grid spacing.

In the following, for brevity of the displayed formulas, let x* := Prx, y* := Pry and

3Go(x*,y") 093G« x*,y9)
an(y*) an(y*)

The regularization that we will use involves a small parameter T > 0 and is defined by

, B,

Ko(x,y) :=

Kox), ifIx* —y*[lp <7,

14
Ko(X,y), otherwise, (14)

K2 (x,y) = {

where [[x* —y*||p is the distance between projections of x* and y* onto the tangent plane at x*. Kp(x) is the average of
Kg(x, -) defined as

N 1
K@(")Zm f Ko(x,2)ds(z), (15)
Vix:t)

where V (x*; T) is the disc of radius 7t in the tangent plane of I" at x*.

Thus,
Kney) =K Fey), with 0=, K500 =0, (16)
1
Kn(xy) = KiExy), with 6==, KGx)=0. (17)
E

2 2
Similarly, the averages of Go — G« and an()?*)gg(y‘) — (f*)ggw*) are computed and we define:

—KT _ .
el if |x* —y*llp <,

Kiz(x,y) = 2nit? 7
12(x,y) IGQ(}(*,y*) _ GK(X*,y*), otherwise,

(18)
0, if [x* —y*llp <7,
Ko1(x y) = I 82Go(x* .v* 2 * ok {19)
i o(x”.y™) 3Gy (X7,y7) ;
mehany") — Inachanyn>  Oherwise.

Finally, we refer the readers to [17] for a recent approach for dealing with hypersingular integrals via extrapolation.
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Fig. 2. The construction of the “solvent excluded surface” (SES) of a fictitious molecule defined by five atoms. The final SES is shown as the solid curve on
the right plot. The van der Waals surface corresponding to the molecule is shown by the blue curve. The green curve is the “solvent accessible surface”,
from which an inward eikonal flow will shrink it by a distance of pg to arrive at the pink curves (solid and dashed). The dashed pink curve on the right
plot shows that boundary of the cavity enclosed by the molecules. It is removed from our computation. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

3. The proposed algorithm

The proposed algorithm consists of a few stages which are outlined below:

Stage (1) Preparation of the signed distance function to the “solvent excluded surface” on a uniform Cartesian grid.
This includes definition of an initial level set function (Section 3.1), followed by an “inward” eikonal flow of the
level set function (Section 3.1.1). After the eikonal flow, we apply a step that removes from the implicit surface the
interior cavities which are not accessible to solvent (Section 3.1.2). See Fig. 2 for an illustration of this process and
the various surfaces involved in it.
Finally we apply the reinitialization procedure (Section 3.1.3) to the level set function obtained from cavity re-
moval. At the end of this stage, one shall obtain the signed distance function to the “solvent excluded surface”
on which the linearized Poisson-Boltzmann boundary integral equation (BIE) is solved. The constructed signed
distance function has the same sign as the function F, defined in (20) that is used to defined the van der Waals
surface, at the prescribed molecule centers.

Stage (2) Preparation of the linear system.
This involves computation of geometrical information, including the closest point mapping and the Jacobian (Sec-
tion 3.2).

Stage (3) Solution of the linear system via GMRES with a fast multipole acceleration for the matrix-vector multiplication
(Section 3.2). _
At the end of this stage, one obtains the density ¢ defined on the grid nodes lying in I'c. This density function
will be used in the evaluation of the polarization energy.

Stage (4) Evaluation of surface area and polarization energy (Sections 3.4 and 3.5).
The surface area is computed by using f =1 in (6) and the polarization energy is computed through the density
¥ by the implicit boundary integral method.

All computations will be performed on functions defined on Uy. The inward eikonal flow and the reinitialization in
Stage (1) are computed with commonly used routines: i.e. the third order total variation diminishing Runge-Kutta scheme
(TVD RK3) [74] for time discretization, and Godunov Hamiltonian [72] for the eikonal terms +|V¢| with the fifth order
WENO discretization [42] approximating V¢. We refer the readers to the book [66] and [77] for more detailed discussions
and references. We have also arranged our codes to be openly available on GitHub.'

A quick remark is in order regarding the algorithms used to generate an implicit representation of a “solvent excluded
surface”. Of course there are other approaches to generate the surfaces under the level set framework. While the general
ideas appear to be similar, they are different in many details that could potentially influence performance of the algorithm
that uses the prepared surfaces. We point out here that the procedure described in [63] is different from the one that
proposed in Section 3.1, In particular, our method applies reinitialization after removing the cavities, and does not need
additional numerical solution of a Dirichlet problem for Laplace equation on irregular domain as in [63]. The reinitialization
after cavity removal is essential to our proposed approach which requires distance function in the narrowband surrounding
the surface. If there is no cavity, our procurement does not require the reinitialization step. We refer to [63,68] for a more
extensive review of other related algorithms.

1 hreps://github.com/GaZ3113/ibim-levelset.
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Fig. 3. Cavity in protein 1A63. The gray surface is the “solvent excluded surface™ used for computing the electric potential for protein 1463. In the right
subfigure, the rendering of the gray surface is made semi-transparent in order to reveal the enclosed cavity surfaces (red). The regions enclosed by the red
surfaces are the cavities to be removed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

3.1. Creating a signed distance function to the solvent accessible surface

From molecules description the van der Waals surface, 'YW is defined as the zero level set of
FO0) =inf (X — 2zl —r), (20)

where Z; and r; denote respectively the coordinates of the molecule centers and their radii.

From the van der Waals surface, we shall define the so-called solvent excluded surface, I', as the zero level set of a
continuous function ¢sgs. ¢ses is computed by a simple inward eikonal flow, starting from an initial condition involving F,
and is followed by a few iterations of the standard level set reinitialization steps. See Fig. 2 for an illustration of this
procedure in two dimensions. The details are described in the following subsections.

3.11. Inward eikonal flow
The van der Waals surface is extended outwards for a radius pp to define the so-called “solvent accessible surface”,
which can be conveniently defined as the zero level set of ¢sas:

¢sas(X) = F(x) — po. (21)

The inward eikonal flow will produce a surface with smoothed out the corners when compared to the original van der
Waals surface, while keeping most of its smooth parts unchanged. For 0 <t < pp, we solve the following equation:

dpsas(x,t) ~
_ |V =0, xeU,
T Vesasll 22)

Psas(X, 0) = psas(X),

with zero Neumann boundary conditions.

3.1.2. Cavities removal

The zero level set of ¢sas may contain some pieces of surfaces that isolate cavities that are believed to be void of
solvent. Fig. 3 provides an example of such cavities in a protein that we used for computation. The cavity removal step uses
a simple sweep to remove (the boundaries of) these regions and create a level set function, ¢sgs, that describes only the
exterior, closed and connected surface — the solvent excluded surface:

$sas(X, po) — pses(X).
The cavity removal consists of following steps:

1. Identify a region Ce that contains the cavities. Ce is a superset of the cavities, containing points outside of the cavities
that are within € distance to the cavity surface. This can be done by a “peeling” process: by moving the set of markers
initially placed on the boundary of the computational domain inwards, using a breadth-first search (BFS) algorithm. The
first layer of the surfaces defined by the zero level set of ¢sas is defined to be the “solvent excluded surface”, We could
therefore remove the remaining portion of ¢sas’s zero level sets, which are regarded as corresponding to the cavities.
From this process, one can easily compute a characteristic function supported on C..
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2. Remove the cavity region by modifying the values of ¢sas in Ce:

b C
PsEs(X) = ¢sas(x), xé&C,

—e, X e Ce.

3.1.3. Reinitialization

The kinks on the solvent accessible surface (SAS) will lower the accuracy in the computation for ¢sgs (X, pp). In addition,
the cavity removal step may introduce small jump discontinuities near the removed cavity. We perform several iterations
of the standard level set reinitialization to improve the equivalence of the computed ¢sgs(X, po) and the signed distance
function to I' (which ¢sgs is supposed to be). The reinitialization equation, first appeared in [75], is defined as

¢ t b
99ses(X, 1) + 5gny (¢ses (-, po)) (IVses| — 1) =0,

at (23)
¢ses(X,0) = ¢ses (X, po),
where the smoothed-out signum function is defined as
__ ¢
sgnp (¢) = (24)

/62 +h2

Suppose that the reinitialization equation is solved until t =t;, i.e. $sgs(X,ty) is our approximation to the signed distance
function dr(x), we shall compute I'c by

Te:={xcRY: —€ < gsps(X, tn) < €). (25)

We use the standard fifth order WENO for space and third order TVD-RK scheme for time to compute the reinitialization. In
general, lower order schemes will result in larger perturbation of the zero level surface, which is not supposed to be moved.

The smoothness of the signum function sgn, may influence the efficiency and effectiveness of the reinitialization pro-
cedure. In our simulations, with the regularized signum function defined in (24), it suffices to solve (23) for O(e) amount
of time, in a neighborhood close to the zero level set. With At = kgh, and € =k1h, kg, k1 > 0, we run constant number of
time steps for reinitialization, independent of h. Since the fifth order WENO approximation of V¢ uses central differencing
with seven grid nodes along each grid lines, the minimal number of time steps needed to create the signed distance in I,
is (k1 + 4)/ko. We refer the readers to [20] for some more detailed discussion on reinitialization of level set functions and
(closest point) extension of functions from I' to I'¢, and an alternative higher order algorithm.

3.2. Projections and weights
We locate all grid points x; € Uy, satisfying that |¢sgs(x;)| < &£ and compute projections x; € I" by

X} =Xi — ¢ses(Xi, tn) VdsEs (Xi, bn).- (26)

Véses(Xi, tn) can be approximated either by standard central differencing or by the fifth order WENO routines. More pre-
cisely, on each grid node for each Cartesian coordinate direction, WENO returns two approximations of Vi, say p_ and p.,
which are generalizations of the standard forward and backward finite differences of yr. In our numerical simulations, we
use

p—+Dp4
—

For weight function §., we adopt the following cosine function with vanishing first moment,

Véses ~

= (1+cos L), |n| <€,

27
0,|n=0. @7)

de(m) =

For general smooth nonlinear integrands and € ~ o(1) for h — 0, the above weight function provides at most second order
in h convergence. Since the chosen 8. is an even function of the distance to the surface, it has one vanishing moment.
Therefore, the zeroth order (in distance to the surface) approximation of the Jacobian will lead to a zero order in € error.
See [49] for more in depth analysis on the properties of different choices of §.. In the simulations reported in this paper,
we set J(x)=1.
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3.3. Fast linear solvers

Equations (12)-(13) in Section 2.2, together with the regularization of the kernels described in Section 2.2.1, one arrives
at the final linear system:

Ap+KWp=g, (28)

with p denoting the vector containing both (x;) and ¥ (x;),

1 (1+£€f-)1 0

2 0 (1+§§)1

and W is a diagonal matrix defined by the weights w; := ] (y;)8¢(dr(y;)) as defined in Section 2.2,

We solve this system by a standard GMRES algorithm. In the GMRES algorithm, we use the black-box fast multipole
method (BBFMM) [29] to accelerate the multiplication of the operator K to any vector. In particular, the solution of the
diagonal part of (28) is used as a preconditioner. This means that the GMRES algorithm starts with the particular initial
condition:

pPO=A+D'g,

where
= (32)
comes from the regularization of the kernels.
34. Computing surface area
In our IBIM approach, the evaluation of the surface area of I' is computed by S’lle [f] defined in (9) with f =1. See [48].
3.5. Computing the polarization energy

The polarization energy Gy, of the system is given by

Nc
1
Gpol = 3 E‘H’ﬁfrxn (zx) (29)

where Vi, (2Zx) is computed by evaluating the following boundary integral at the center of atom k, Z:

0G,(Z, dGo(z, ]
Yrn (@) = f ((E—E @.y) 3G ”) V) + Go@,y) — Gx(z,y))%(y)) ds(y).
r

€ an(y) an(y)

In our IBIM approach, evaluation of this integral is computed by S‘}‘-e_ [f(z,-)] defined in (9) with

€ 3G (z, Pry)  3Go(@, Pry)
& on@) an(y)

_ v
fzy:= ( ) ¥ (y) + (Go(z, Pry) — G (z, PrY))%(Y)- (30)

4. Numerical experiments

We now perform some numerical experiments using the computational algorithm we developed. In all the numerical

simulations, we set the dielectric parameters €; = 1.0, eg = 80.0 and Debye-Hiickel constant x = 0.1257 A™". We use the
following parameters for the implicit boundary integral method:

h denotes the grid spacing in the uniform Cartesian grids,
e=2h denotes the width for the narrowband I,
T=horh/2 denotes the regularization parameter used in K11, K12, K21, K22.

We set the tolerance in the GMRES algorithm to be 10—, and use 4th order Chebyshev polynomials in the BBFMM pre-
conditioner to achieve tolerance 10~ there. In general, smaller T results in more accurate approximations, if the resulting
linear systems can be solved successfully. However, it cannot be too small with respect to the grid spacing, otherwise the
resulting linear system becomes badly conditioned, as the current regularization approach becomes ineffective.



Y. Zhong et al. / Journal of Computational Physics 359 (2018) 199-215 209

Most of the numerical experiments are performed on a desktop with quad-core CPU at 3.40 GHz, 16 GB RAM. The
computations involving more than one million unknowns are performed on an older Linux computer with similar cache
memory but sufficient RAM; for convenience in comparison, the timings presented in the tables below for simulations
performed on this computer are scaled according to the clock speed and processor differences between the two computers.
We think that such ad hoc scaling of timing is reasonable for the size of computations and the machines involved. We put
an * sign next to the scaled CPU timings in the tables.

In Section 4.1, we first compare the surface areas computed by our method to the ones computed by a published
algorithm. In all later subsections, we present simulations of our algorithms with molecules of different sizes. In certain
examples, we compare our computational results to the available published data. Particularly, we perform simulations on
more realistic benchmark macromolecules taken from the RCSB Protein Data Bank (PDB) [11], and add missing heavy atoms
through software PDB2PQR [25]. The atom charges and radius parameters that we will be using in our simulations are all
generated through force field CHARMM [15]. The number of atoms reported in each subsection below corresponds to the
number in the respective pqr file of each molecule.

Here are some general remarks on the numerical simulations using our algorithm. In the tables presented in this section,
the columns titled “D.0.E" show the total number of unknowns in the discrete systems and provides a basis to observe
the rate of convergence for the computed solutions, surface areas and polarization energies. In the figures presented in this
section, the electrostatics computed on two different grid resolutions are painted on top of the respective computed solvent
excluded surfaces. In practice, the most important information that one would like to extract from such computations is the
locations of the extrema; see e.g. [43,82]. As the figures show, the extrema of the potentials computed at the coarser grid
resolutions are already at the “correct” locations on the surfaces.

As we shall see from the numerical accuracy study in Section 4.2, the foremost bottleneck of the proposed algorithm is
the low order regularization for the singular integrals. However, regularization is essential, and smaller amount of it (smaller
values of 1) leads to systems which require more GMRES iterations unless the grid spacing h is sufficiently small. See, for
instance, the simulations presented in Tables 4, 5 and 6. Despite the regularization issue, the boundary integrals can be
computed very accurately if wider € (with respect to the grid spacing h) and the full expression of the Jacobian | are used.
However, wider € implies a larger dense linear system needs to be solved. Most of the reported computation times are
spent on the evaluation of the matrix-vector multiplications. Thus, in the simulations presented below, we choose a regime
in which € is narrow but sufficient in practice for the adopted simple quadrature to resolve the surface geometry. Finally,
regarding to how small h should be for a given molecule and probe size pyp:

h~ min ,ri,2e}/7 < A
j=l,-~,N{pG i W7 <

where A is the minimal distance between “different parts of the surface” (think of the thin part of a dumb bell) and we
define it as

A= in][{—dr(x —sn(x))|£(x) =5 = 0, wherex — £(x)n(x) € T'}. (31)

We shall see in the following examples, that our algorithm seems to perform well even when the discretized system is
slightly outside of the above regime.

4.1. Molecular SES surface area

We compare the performance of our algorithm for calculating surface areas of different proteins with that of the MSMS
(Michel Sanner’s Molecular Surface) algorithm developed in [73]. For MSMS algorithm, the probe radius is set to be pp =
1.4 A and the density parameter is 1.0 for mesh generation. We use the online implementation by the High-Performance
Computing at the NIH group [37] to produce the data for MSMS. In Table 1, we compare results from our method to these
from MSMS for seven different proteins on a grid of size 1283, We observe that the surface areas computed by our algorithm
are quite close to the MSMS's approximate values in general. Since the MSMS results are only approximations to the true
values, we did not attempt to tune algorithmic parameters (e.g. grid size, weight function) of our method to obtain results
that are even closer to the MSMS results.

4.2. The single ion model

We start with the single ion model developed in [46] to benchmark the solution accuracy of our numerical algorithm.
We use three different relative errors, between exact and numerically represented quantities, to measure the quality of
numerical solutions. They are defined as:
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Table 1
Comparison of surface areas computed by the proposed IBIM method and by MSMS
for seven different proteins from the RCSB Protein Data Bank.

Protein id Surface area (IBIM) Surface area (MSMS)
4INS 4732 4761

1HJE 825 801

1A2B 7540 7936

1PPE 7979 8340

2AID 8061 8304

1F15 22000 22725

1263 6583 6659

Table 2

Benchmarking errors in solution of the single ion model.
Grid size h(A) t/h DOF GMRES Solution error Area error Energy error
64° 391E-1 1 22,756 4 111E-02 1.24E—03 1.21E-02
1282 1.95E—1 1 91,564 3 6.90E—03 2.88E—04 5.68E—-03
2563 9.77E-2 1 366,868 3 3.57E-03 5.01E-05 2.90E-03
647 391E-1 0.5 22,756 2 5.93E-03 1.24E—03 5.98E-03
1282 1.95E—1 0.5 91,564 4 3.45E-03 2.88E—04 249E-03
2563 9.77E-2 0.5 366,868 3 2.15E-03 5.01E-05 1.31E-03

Je o0 — g2 + |2 — e
Jr 1w o + |22 2

solution error =

[A— A%
surface area error = ————— (32)
A*
[Gpol — g;ml
energy error = —————.
pol

For a single atom with radius r and charge g, the solution to the Poisson-Boltzmann equation is given as [46]

%+4i(+—l), if [x] <r

Vi) = I;;Ec'm—r)nr ce(+kn) e (33)
_— otherwise
4me(14kr)|x|

We can therefore compute the associated polarization energy

2
. _ 9 1 1
pol 831'?'(65(14—!{!’) e;)’ (34)

using the fact that the surface is a sphere with area A* = 4mr?. We set the atom's radius to be r=1 A and assigned charge
to be g = 1le..

We performed simulations under different mesh and IBIM parameters. The results are summarized in Table 2. Our
method converges in very small numbers (usually 3 ~ 4) of iterations. This benchmark calculation shows that our numerical
algorithms can indeed achieve similar solution accuracies to those achieved by other algorithms developed recently [2,14].

4.3. Protein 1463

In this numerical example, we compute the polarization energy for protein 1263, the E. Coli Rho factor, of the Protein
Data Bank. The protein has 2065 atoms with different radii. The information on the locations and radii of the atoms are all
available in [11]. _

In Fig. 4 we plot the potential ¥ on the constructed “solvent excluded surface”, computed on two different grids, 1283
(left) and 256° (right). Further computational results are tabulated in Table 3. The computed values of the polarization

energy Gpo can be compared to the existing estimations, Q;‘SF' = —2374.64 kcal/mol from the treecode-based boundary

integral solver TABT [31] and Q:EIBS = —2350.58 kcal/mol from the finite difference solver APBS [78]. The computational
results are tabulated in Table 3.
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Fig. 4. The electrostatic potential on the surface of the PDB-1A63 protein. Left: on grid 1283. Right: on grid 256°.

Table 3

Numerical results on protein 1263 under different algorithmic parameters.
Grid size h (A) t/h D.OF. GMRES Gpot (kcal/mol) CPU (s) Area (A?)
1283 6.11E—1 1 71,597 12 —2392.22 606.8 6583
256° 3.05E—1 1 293,627 13 —2366.40 3041 6801
1283 6.11E—1 0.5 71,597 13 —2345.41 772.3 6583
2563 3.05E—1 0.5 293,627 14 —2347.74 3808 6801

4 4
3 3
2 2
1 g Ly
F F
0 X 0 &
-1 -1
2 2
-3 -3
Fig. 5. The electrostatic potential on the surface of protein 2AID for two grids of size 1283 (left) and 2563 (right).
Table 4
Numerical results on protein 2AID under different algorithmic parameters.
Grid size h (A) t/h D.OF. GMRES Gpor (kcal/mol) CPU (s) Area (A?)
1283 5.80E—1 1 97,108 13 —2318.69 940.7 8061
2563 2.90E—-1 1 397,930 14 —2321.72 4521 8335
1283 5.80E—1 0.5 97,108 24 —2282.14 1745 8601
2563 2.90E—-1 0.5 397,930 15 —2306.70 4906 8335

4.4. Protein 2AID

Here we compute the polarization energy for protein 2AID, a non-peptide inhibitor complexed with HIV-1 protease.
This protein has 3130 atoms. In Fig. 5 we plot the potential { on the constructed “solvent excluded surface” of this protein,
computed on two different grids. Further computational results are tabulated in Table 4.

4.5. Protein 1F15

In this example, we compute the polarization energy for protein 1F15, the cucumber mosaic virus. The protein has 8494
atoms. In Fig. 6 we plot the potential ¥ on the constructed “solvent excluded surface”, computed on two different grids.
Further computational results are tabulated in Table 5.
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Fig. 6. The electrostatic potential on the surface of protein 1F15 for two different grids of sizes 128> (left) and 256> (right).

Table 5

Numerical results on protein 1F15 under different algorithmic parameters.
Grid size h (A) T/h D.OF. GMRES Gpot (kcal/mol) CPU (s) Area (A?)
1283 7.72E—1 1 147,463 17 —7770.00 2586 22000
256° 3.86E—1 1 613,726 21 —7818.83 12357 22847
5123 193E-1 1 2,497,309 25 —7891.05 45681* 23238
1283 7.72E—1 0.5 147,463 31 —7682.67 4667 22000
2563 3.86E—1 0.5 613,726 26 —7774.76 14129 22847
5123 193E-1 0.5 2,497,309 29 —7875.86 52687* 23238

Fig. 7. The electrostatic potential on the surface of protein 1A2K for two different grids of sizes 1283 (left) and 2563 (right).

4.6. Protein 1A2K

In this numerical example, we compute the polarization energy for protein 1A2K, the GTPase RAN-NTF2 complex. The
protein has 13627 atoms. B

In Fig. 7 we plot the potential s on the constructed “solvent excluded surface”, computed on two different grids. Further
computational results are tabulated in Table 6.
4.7. Protein: 1PMA

In this example, we compute the polarization energy for proteasome from thermoplasma acidophilum (PDB id: 1PMA)
with 93017 atoms. In Fig. 8 we plot the potential v/ on the constructed “solvent excluded surface”, computed on two
different grids. Further computational results are tabulated in Table 7.

5. Concluding remarks

We present in this paper a new numerical method for solving the boundary value problem of the linearized Poisson-
Boltzmann equation, which is widely used to model the electric potential for macromolecules in solvent. Our new method
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Table 6
Numerical results on protein 122K under different algorithmic parameters.

Grid size h (A) t/h D.O.F. GMRES Gpot (keal/mol) CPU (s) Area (A?)

1283 1.08E+0 1 99,783 12 —7190.38 1032 29497

2563 5.42E—1 1 429,451 17 —8902.62 6120 31501

3843 3.61E-1 1 983,418 17 —8920.93 11948 32047

5123 2.71E-1 1 1,765,673 18 —8963.12 25496* 32364

1283 1.08E+0 0.5 99,783 21 —9004.68 2309 29497

2563 5.42E-1 0.5 429,451 43 —8789.45 15528 31501

3843 3.61E-1 0.5 983,418 40 —8859.47 26030 32047

5123 2.71E-1 0.5 1,765,673 23 —8921.64 33558* 32364
7 7
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Fig. 8. The electrostatic potential on molecular surface for the proteasome from thermoplasma acidophilum (PDB id: 1PMA). Left: the potential computed
on a 1283 grid. Right: the potential computed on a 5123 grid.

Table 7

Protein 1PMA. IBIM's result of relative error in polarization energy and total run time w.r.t. different grid sizes.
Grid size h (A) T/h D.OF. GMRES Gpor (kcal/mol) CPU (s) Area (A2)
1283 1.67E+0 1 222,478 15 —15544.35 3360 1.6014E+5
2563 8.35E—-1 1 1,026,938 18 —46865.78 14141* 1.8034E+5
3843 5.56E—1 1 2,429,367 20 —50071.90 42927* 1.8851E+5
5123 417E—-1 1 4,418,314 22 —50144.63 70880* 1.9262E+5

relies on the standard level set method [66,67| for preparing the distance function to the “molecular surface”. Contrary
to the typical level set method, in which some partial differential equations are discretized with some suitable boundary
conditions, ours involves the solution of an integral equation which is derived from an implicit boundary integral formu-
lation [47]. Similar to the typical level set methods, and contrary to the typical boundary integral methods, the proposed
method involves computation only with functions defined on uniform Cartesian grids. Our numerical simulations show that
in addition to the flexibility that comes from the level set methods, the proposed method can be as computationally effi-
cient as other boundary integral based algorithms. We show by our numerical simulations that the solutions of the resulting
linear systems can be accelerated easily by some existing fast multipole methods. Furthermore, the eikonal flow and reini-
tialization in Stage (1) of the proposed algorithm rely on widely available explicit solvers and can be trivially parallelized.

There are several possible improvements that could be investigated in the future. First of all, the quadrature for the
implicit boundary integral formulation can be improved to increase the order of accuracy. This includes improvement of the
regularization of the kernel singularities and the use of full expression of the Jacobian J. One may also consider different
grid geometries, as the underlying mathematical formulation does not require uniform Cartesian grids. For example, the
adaptive oct-tree structure used in [36] or radial basis functions may be considered.

As all the presented simulations were computed on two moderate desktop computers, the reported results show the
potential of the proposed method for molecular dynamics simulations involving very large molecules.

Finally, let us mention that the numerical method we proposed here can be generalized to solve many similar model
problems for electrostatics in related areas of electrochemistry [40,59,61,34,35].
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