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A numerical method using implicit surface representations is proposed to solve the 
linearized Poisson–Boltzmann equation that arises in mathematical models for the 
electrostatics of molecules in solvent. The proposed method uses an implicit boundary 
integral formulation to derive a linear system defined on Cartesian nodes in a narrowband 
surrounding the closed surface that separates the molecule and the solvent. The needed 
implicit surface is constructed from the given atomic description of the molecules, by a 
sequence of standard level set algorithms. A fast multipole method is applied to accelerate 
the solution of the linear system. A few numerical studies involving some standard test 
cases are presented and compared to other existing results.

©2018 Elsevier Inc. All rights reserved.

1. Introduction

The mathematical modeling and numerical simulation of electrostatics of charged macromolecule-solvent systems have 
been extensively studied in recent years, due to their importance in many branches of electrochemistry; see, for instance, 
[8,23,26,27,39,53,57,60,65,71,76,89]and references therein for recent overviews of the developments in the subject.
There are roughly two classes of mathematical models for such macromolecule-solvent systems, depending on how the 

effect of the solvent is modeled: explicit solvent models in which solvent molecules are treated explicitly, and implicit sol-
vent models in which the solvent is represented as a continuous medium. While explicit solvent models are believed to be 
more accurate, they are computationally intractable when modeling large systems. Implicit models are therefore often an al-
ternative for large simulations, see[6,19,22,50,90]and references therein for recent advances. The Poisson–Boltzmann model 
is one of the popular implicit solvent models in which the solvent is treated as a continuous high-dielectric medium [16,21,
28,41,51,56,69,70,80]. This model, and many variants of it, has important applications, for instance in studying biomolecule 
dynamics of large proteins[4,5,10,12,33,90]. Many efficient and accurate computational schemes for the numerical solution 
of the model have been developed[3,7,9,18,24,30,31,36,51,54,81,88].
To introduce the Poisson–Boltzmann model, let us assume that the macromolecule has Ncatoms centered at {zj}

Nc
j=1, 

with radii {rj}
Nc
j=1and charge number {qj}

Nc
j=1respectively. Let be the closed surface that separates the region occupied by 

the macromolecule and the rest of the space. The typical choice of is the so-called solvent excluded surface, which is defined 
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Fig. 1.A view of the “solvent excluded surface” in 2D is shown by the middle solid curve, and the narrowband is shown here by the space bounded 
between the dashed curves.

as the boundary of the region outside the macromolecule which is accessible by a probe sphere with some small radius, 
say ρ0; see Fig. 1for an illustration. We use to denote the region surrounded by that includes the macromolecule.
We use a single function ψto denote the electric potential inside and outside of . In the Poisson–Boltzmann model, ψ

solves the Poisson’s equation for point charges inside , that is,

−∇ ·(εI∇ψ(x))=
Nc

k=1

qkδ(x−zk), in

where εIdenotes the dielectric constant in . Outside , that is in the solvent that excludes the interface , ψsolves the 
Poisson’s equation for a continuous distribution of charges that models the effect of the solvent, that is,

−∇ ·(E∇ψ)=ρB(T,x,ψ(x)), inR3\

where εEdenotes the dielectric constant of the solvent, which often has much higher value than that of the macromolecule, 
εE εI. The source term ρBis a nonlinear function coming from the Boltzmann distribution with Tdenoting the temper-
ature of the system. More precisely, for solvent containing mionic species,

ρB(T,x,ψ(x)):=ec

m

i=1

cīqie
−ec̄qiψ(x)/kBT, x∈R3\

where ci, ̄qiare the concentration and charge of the ith ionic species, ecis the electron charge, kBis the Boltzmann constant, 
and Tis the absolute temperature.
The nonlinear term ρB(T, x, ψ)in the Poisson–Boltzmann system poses significant challenges in the computational so-

lution of the system. In many practical applications, it is replaced by the linear function −κ̄2Tψ(x)where the parameter 

κ̄T=
2e2I
kBT

is called the Debye–Hückel screening parameter with kB, e, and Ibeing the Boltzmann constant, the unit 
charge, and the ionic strength respectively. This leads to the linearized Poisson–Boltzmann equation (PBE) for the electro-
static potential ψ. It takes the following form

−∇ ·(εI∇ψ(x))=
Nc

k=1

qkδ(x−zk), in ,

−∇ ·(εE∇ψ(x))=−κ̄
2
Tψ(x), in

c
,

ψ(x)|+=ψ(x)|−, on ,

εE
∂ψ

∂n|+
=εI
∂ψ

∂n|−
, on ,

|x|ψ(x)→ 0,|x|2|∇ψ(x)| →0,as|x| →∞.

(1)

Here the operator ∂/∂n ≡n(x) ·∇denotes the usual partial derivative at x ∈ in the outward normal direction n(x)
(pointing from outward). The usual continuity conditions, continuity of the potential and the flux across , are assumed, 
and the radiation condition, which requires ψdecay to zero far away from the macromolecule, is needed to ensure the 
uniqueness of solutions to the linearized Poisson–Boltzmann equation. See e.g. [3,7,10,16,30,31,50,53,70,80,81].
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Computational solution of the linearized Poisson–Boltzmann equation(1)in practically relevant configurations turns out 
to be quite challenging. Different types of numerical methods, including for instance finite difference methods [6,15,41,
32,58,64], finite element methods [3,38,83–86], boundary element methods [1,2,14,44,52,54,55,87], and many more hybrid 
or specialized methods [13,79]have been developed; see[53]for the recent survey on the subject. Each method has its 
own advantages and disadvantages. Finite difference methods are easy to implement. They are the methods used in many 
existing software packages[15,41,32,58,64]. Finite difference methods, except the ones that are based on adaptive oct-tree 
structures[36,62,63], use uniform Cartesian grids and require special care for implementing the interface conditions to 
high order while maintaining stability. Finite element methods provide more flexibility with the geometry. However, like 
the finite difference methods, they often suffer from issues such as large memory storage requirement and low solution 
speed when dealing with large problems. Moreover, both finite difference and finite element methods need to truncate 
the domain in some way, therefore the radiation condition is not satisfied exactly. Boundary element methods are based 
on integral formulations of the Poisson–Boltzmann equation. They require only the discretization of the solvent excluded 
surface, i.e. , not the macromolecule and solvent domains. The radiation condition is usually exactly, although implicitly, 
integrated into the integral form to be solved. However, the matrix systems resulting from boundary element formulations 
are often dense. Efficient acceleration, for instance preconditioning, techniques are needed to accelerate the solution of such 
dense systems.
In this work, we propose a fast numerical method for solving the interface/boundary value problem of the linearized 

Poisson–Boltzmann equation(1). The method is derived from the implicit boundary integral formulation[47]of(1)and 
relies on some of the classical level set algorithms[66,67]for computing the implicit interfaces and the needed geometrical 
information. All the involved computational procedures are defined on an underlying uniform Cartesian grid. Thus the 
proposed method inherits most of the flexibilities of a level set algorithm. On the other hand, since the method is derived 
from a boundary integral formulation of(1), it treats the interface conditions and far field conditions in a less involved 
fashion compared to the standard level set algorithms for similar problems. As such types of implicit boundary integral 
approaches are relatively new, we describe in detail how to set up a linear system and where a fast multipole method can 
be used for acceleration of the common matrix–vector multiplications in the resulting linear system. We demonstrate in 
our simulations involving non-trivial molecules defined by tens of thousands atoms that standard “kernel-independent” fast 
multipole methods [29]can be used easily and effectively as in a standard boundary integral method.
We conclude the introduction with the following remarks. The linearized Poisson–Boltzmann model provides a suffi-

ciently accurate approximation in many cases, in particular when the solution’s ionic strength is relatively low; see [28]and 
references therein. In cases where the linearized model is not accurate enough, solving the nonlinear Poisson–Boltzmann is 
necessary. With appropriate far field conditions, finite difference or finite element methods provide a way to compute solu-
tions in such case; see[63]and references therein. The computational method we develop in this work can potentially be 
combined with an iterative scheme for nonlinear equations, such as methods of Newton’s type[45], to solve the nonlinear 
Poisson–Boltzmann equation. At each iteration of the nonlinear solver, the proposed method can be adapted to solve the 
linearized problem as long as the coefficients involved, mainly the dielectric coefficients, are constants as currently assumed 
in our algorithm.
The rest of this paper is organized as follows. We first introduce in Section2the implicit boundary integral formulation 

of the linearized Poisson–Boltzmann system(1). We then present the details of the implementation of the method in 
Section3. In Section4, we present some numerical simulation results to demonstrate the performance of the algorithm. 
Concluding remarks are then offered in Section5.

2. The implicit boundary integral formulation

The numerical method we develop in this work is based on a boundary integral formulation of the linearized Poisson–
Boltzmann equation that is developed in[44].

2.1. Boundary integral formulation

Throughout the rest of the paper, all the coefficients involved in the equations are assumed to be constant, i.e. indepen-
dent of the spatial variable. We define κ=κ̄T/

√
E, and introduce the fundamental solutions

G0(x,y)=
1

4π|x−y|
andGκ(x,y)=

e−κ|x−y|

4π|x−y|

to the Laplace equation and the one with the linear lower order term −κ̄2Tψin (1).
Following the standard way of deriving boundary integral equations, we apply Green’s theorem to the system formed by 

(i) the first equation in (1)and the equation for G0, and (ii) the second equation in(1)and the equation for Gκ, taking into 
account the interface and the radiation conditions. A careful routine calculation leads to the following boundary integral 
equations for the potential ψand its normal derivative ψn≡∂ψ/∂non :



202 Y. Zhong et al. / Journal of Computational Physics 359 (2018) 199–215
1

2
ψ(x)+

∂G0(x,y)

∂n(y)
ψ(y)−G0(x,y)ψn(y)dy=

Nc

k=1

qk

I

G0(x,zk),

1

2
ψ(x)−

∂Gκ(x,y)

∂n(y)
ψ(y)−

I

E

Gκ(x,y)ψn(y)dy=0.

(2)

This system of boundary integral equations is the starting point of many existing numerical algorithms for the linearized 
Poisson–Boltzmann equation.
In our algorithm, we adopt the integral formulation proposed in[44]. This formulation reads:

1

2
1+

E

I

ψ(x)+
∂G0(x,y)

∂n(y)
−

E

I

∂Gκ(x,y)

∂n(y)
ψ(y)dy

− (G0(x,y)−Gκ(x,y))ψn(y)dy=

Nc

k=1

qk

I

G0(x,zk),

(3)

1

2
1+

I

E

ψn(x)+
∂2G0(x,y)

∂n(x)∂n(y)
−
∂2Gκ(x,y)

∂n(x)∂n(y)
ψ(y)dy

−
∂G0(x,y)

∂n(x)
−

I

E

∂Gκ(x,y)

∂n(x)
ψn(y)dy=

Nc

k=1

qk

I

∂G0(x,zk)

∂n(x)
.

(4)

The first equation in this formulation,(3), is simply the linear combination of the two equations in(2), while the second 
equation in this formulation,(4), is nothing but the linear combination of the derivatives of the two equations in(2). It is 
shown in[44]that the potentially hypersingular integral in(4), involving the second derivatives of G0and Gκis actually 
integrable on , thanks to the fact that

∂2G0(x,y)

∂n(x)∂n(y)
−
∂2Gκ(x,y)

∂n(x)∂n(y)
∼O(|x−y|−1),|x−y| →0.

Moreover, when κ=0,(3)is decoupled from(4), and the latter provides an explicit formula for evaluating ∂ψ/∂nusing ψ.
The main benefit of the formulation(3)–(4)is that it typically leads to, after discretization, linear systems with smaller 

condition numbers than the formulation in(2). The typical boundary element methods for this system (and others) require 
careful triangulation of the interface ; see e.g. [1,2,14,44,52,55,87]. In the next subsection, we describe our method to dis-
cretize the boundary integral system(3)and (4)on a subset of a uniform Cartesian grid nodes in a narrowband surrounding 
, without the need to parameterize .

2.2. Implicit boundary integral method

Let the interface be a closed, C1,αsurface (in two or three dimensions) with α>0so that the distance function to 
is differentiable in a neighborhood around it. Let d denote the signed distance function to that takes the negative 

sign for points inside the region enclosed by , and denote the set of points whose distance to is smaller than . An 
implicit boundary integral formulation of a surface integral defined on is derived by projecting points in onto their 
closest points on . With the distance function to , the projection operator can be evaluated by

Px:=x−d(x)∇d(x). (5)

When is smaller than the maximum principal curvatures of , the closest point projection is well-defined in .

An implicit boundary integral method (IBIM) [47]is built upon the following identity:

I[f]:= f(x)ds(x)=

ε

f(Px)δε(d(x))J(x)dx, (6)

which reveals the equivalence between the surface integral and its extension into a volume integral. We shall call the 
integral over εan implicit boundary integral. In this implicit boundary integral, one has

1. The extension of f(x)as a constant along the normal of at x.
2. The Jacobian J(x)which accounts for the change of variables between and the level set surface of d that passes 
through x.
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3. A weight function, δcompactly supported on [−ε, ε]satisfying

ε

−ε

δε(η)dη=1. (7)

In R3, the Jacobian Jtakes the explicit form

J(x)=1−d(x)d(x)+d(x)2∇d,∇2d∇d . (8)

It can be further related to the products of the singular values of the Jacobian matrix of P, which provides an alternative, 
and in some cases easier way, for the computation of J. See[48].
In the application of interest, the distance function to a solvent excluded surface will be twice differentiable almost 

everywhere in some narrowband around the surface, together with setting J≡1, the proposed method is well-defined in 
there. In fact, the requirement on the regularity of the surface (and its signed distance function) can be further relaxed if the 
weight function is an even function and possesses enough vanishing moments. It is shown in[49]that with J≡1, the cosine 
weight function (27)and C1integrands which are not necessarily constant along surface normals, I[f]is approximated to 
second order if . It is further shown in[49]that if the weight function has more than two vanishing moments, one may 
replace the Jacobian by J≡1 while keeping the equality in(6)valid, even for piecewise smooth surfaces containing corners 
and creases.
Numerically we approximate the implicit boundary integral by embedding the computational domain into the rectan-

gle U=[a, b]n, and subdivide Uinto the uniform grid Uh=hZn∩[a, b]nwith grid size h =(b −a)/Nalong each coordinate 
direction and xiat each grid point. We approximate the integral by

I[f]≈Sh[f]:=
xi∈ε

f(x∗i)δε(d(xi))J(xi)h
n (9)

where x∗
i
=xi−d(xi)∇d(xi)is the projection of xionto .

Thus, a typical second kind integral equation of the form

g(x)=λβ (x)+ K(x,y)β(y)ds(y), x∈ , (10)

can be approximated on Uhusing the IBIM formulation. One would derive a linear system for the unknown function ̄β
defined on the grid nodes in :

g(Pxi)=λ̄β(xi)+h
n

yj∈ ∩Uh

K(Pxi,Pyj)̄β(y)δ(d(yj))J(yj),xi∈ ∩Uh, (11)

with the property that as h → 0

β̄(xi)−→β(Pxi),∀xi∈ ∩Uh;

i.e. the solution to the linear system (11)converges to “the function which is the constant extension along the surface 
normal” of the solution of(10); see more discussions in[17,47].
In the context of this paper, equations(3)and(4)will be discretized into

1

2
λ1ψ̄(xi)+h

3

j

K11(xi,yj)ωj̄ψ(yj)−h
3

j

K12(xi,yj)ωj̄ψn(yj)=g1(xi),

1

2
λ2ψ̄n(xi)+h

3

j

K21(xi,yj)ωj̄ψ(yj)−h
3

j

K22(xi,yj)ωj̄ψn(yj)=g2(xi),
(12)

where

λ1=
1

2
1+

E

I

,λ2=
1

2
1+

I

E

,

ωj:=J(yj)δ(d(yj)), (13)

g1(xi):=

Nc

k=1

qk

I

G0(xi,zk),g2(xi):=

Nc

k=1

qk

I

∂G0(xi,zk)

∂n(xi)
,

and K11, K12, K21, K22are respectively the regularized versions of the following weakly singular kernels:
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∂G0(Px,Py)

∂n(Py)
−

E

I

∂Gκ(Px,Py)

∂n(Py)
,G0(Px,Py)−Gκ(Px,Py),

∂2G0(Px,Py)

∂n(Px)∂n(Py)
−
∂2Gκ(Px,Py)

∂n(Px)∂n(Py)
,and

∂G0(Px,Py)

∂n(Px)
−

I

E

∂Gκ(Px,Py)

∂n(Px)
.

A simple regularization that we used in our numerical implementation is described below in the next subsection.
This formulation provides a convenient computational approach for computing boundary integrals, where the boundary 

is naturally defined implicitly, as a level set of a continuous function, and is difficult to parameterize. The geometrical 
information about the boundary is restricted to the computation of the Jacobian Jand the closest point extension of the 
integrand f— both of which can be approximated easily by simple finite differencing applied to the distance function 
d(x)at grid point xiwithin ε. Furthermore, the smoothness of the weight function δ, along with the smoothness of 
the integrand will allow for higher order in happroximation of I[f]by simple Riemann sum Sh[f], see for example the 
discussion in[48].

2.2.1. Regularization of the kernels
While all the kernels (the Green’s functions and the particular linear combinations of them) that appear in (3)–(4)are 

formally integrable, an additional treatment for the singularities is needed in the numerical computation when xand yare 
close. Typically, the additional treatment corresponds to either local change of variables so that in the new variables the 
singularities do not exist or mesh refinement for control of numerical error amplification (particularly for Nyström methods). 
The proposed simple discretization of the Implicit Boundary Integral formulation on uniform Cartesian grid can be viewed 
as an extreme case of Nyström method, in which no mesh refinement is involved (and thus no control of numerical errors 
if the singularities of the kernels are left untreated). Therefore we need to regularize the kernels analytically and locally 
only when Pxand Pyare sufficiently close with respect to the grid spacing.
In the following, for brevity of the displayed formulas, let x∗:=Px, y∗:=Pyand

Kθ(x,y):=
∂G0(x

∗,y∗)

∂n(y∗)
−θ
∂Gκ(x

∗,y∗)

∂n(y∗)
,θ∈R.

The regularization that we will use involves a small parameter τ>0 and is defined by

K
reg
θ (x,y)=

Kθ(x), ifx∗−y∗ P<τ,

Kθ(x,y),otherwise,
(14)

where x∗−y∗ Pis the distance between projections of x∗and y∗onto the tangent plane at x∗. Kθ(x)is the average of 
Kθ(x, ·)defined as

Kθ(x)=
1

V(x∗;τ)
V(x;τ)

Kθ(x,z)ds(z), (15)

where V(x∗; τ)is the disc of radius τin the tangent plane of at x∗.
Thus,

K11(x,y):=K
reg
θ (x,y),with θ=

E

I

,Kθ(x)=0, (16)

K22(x,y):=K
reg
θ (x,y),with θ=

I

E

,Kθ(x)=0. (17)

Similarly, the averages of G0−Gκand 
∂2G0

∂n(x∗)∂n(y∗)−
∂2Gκ

∂n(x∗)∂n(y∗)are computed and we define:

K12(x,y)=
e−κτ−1+κτ
2πκτ2

, ifx∗−y∗ P<τ,

G0(x
∗,y∗)−Gκ(x

∗,y∗),otherwise,
(18)

K21(x,y)=
0, ifx∗−y∗ P<τ,
∂2G0(x

∗,y∗)
∂n(x∗)∂n(y∗)−

∂2Gκ(x
∗,y∗)

∂n(x∗)∂n(y∗),otherwise.
(19)

Finally, we refer the readers to [17]for a recent approach for dealing with hypersingular integrals via extrapolation.
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Fig. 2.The construction of the “solvent excluded surface” (SES) of a fictitious molecule defined by five atoms. The final SES is shown as the solid curve on 
the right plot. The van der Waals surface corresponding to the molecule is shown by the blue curve. The green curve is the “solvent accessible surface”, 
from which an inward eikonal flow will shrink it by a distance of ρ0to arrive at the pink curves (solid and dashed). The dashed pink curve on the right 
plot shows that boundary of the cavity enclosed by the molecules. It is removed from our computation. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

3. The proposed algorithm

The proposed algorithm consists of a few stages which are outlined below:

Stage (1)Preparation of the signed distance functionto the “solvent excluded surface” on a uniform Cartesian grid.
This includes definition of an initial level set function (Section3.1), followed by an “inward” eikonal flow of the 
level set function (Section3.1.1). After the eikonal flow, we apply a step that removes from the implicit surface the 
interior cavities which are not accessible to solvent (Section3.1.2). See Fig. 2for an illustration of this process and 
the various surfaces involved in it.
Finally we apply the reinitialization procedure (Section3.1.3) to the level set function obtained from cavity re-
moval. At the end of this stage, one shall obtain the signed distance function to the “solvent excluded surface” 
on which the linearized Poisson–Boltzmann boundary integral equation (BIE) is solved. The constructed signed 
distance function has the same sign as the function F, defined in (20)that is used to defined the van der Waals 
surface, at the prescribed molecule centers.

Stage (2)Preparation of the linear system.
This involves computation of geometrical information, including the closest point mapping and the Jacobian (Sec-
tion3.2).

Stage (3)Solution of the linear systemviaGMRESwith a fast multipole acceleration for the matrix–vector multiplication 
(Section3.2).

At the end of this stage, one obtains the density ̄ψdefined on the grid nodes lying in . This density function 
will be used in the evaluation of the polarization energy.

Stage (4)Evaluation of surface area and polarization energy(Sections3.4and3.5).
The surface area is computed by using f≡1in(6)and the polarization energy is computed through the density 
ψ̄by the implicit boundary integral method.

All computations will be performed on functions defined on Uh. The inward eikonal flow and the reinitialization in 
Stage (1) are computed with commonly used routines: i.e. the third order total variation diminishing Runge–Kutta scheme 
(TVD RK3) [74]for time discretization, and Godunov Hamiltonian[72]for the eikonal terms ±|∇φ|with the fifth order 
WENO discretization [42]approximating ∇φ. We refer the readers to the book[66]and[77]for more detailed discussions 
and references. We have also arranged our codes to be openly available on GitHub.1

A quick remark is in order regarding the algorithms used to generate an implicit representation of a “solvent excluded 
surface”. Of course there are other approaches to generate the surfaces under the level set framework. While the general 
ideas appear to be similar, they are different in many details that could potentially influence performance of the algorithm 
that uses the prepared surfaces. We point out here that the procedure described in[63]is different from the one that 
proposed in Section3.1. In particular, our method applies reinitialization afterremoving the cavities, and does not need 
additional numerical solution of a Dirichlet problem for Laplace equation on irregular domain as in[63]. The reinitialization 
after cavity removal is essential to our proposed approach which requires distance function in the narrowband surrounding 
the surface. If there is no cavity, our procurement does not require the reinitialization step. We refer to[63,68]for a more 
extensive review of other related algorithms.

1 https :/ /github .com /GaZ3ll3 /ibim-levelset.

https://github.com/GaZ3ll3/ibim-levelset
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Fig. 3.Cavity in protein1A63. The gray surface is the “solvent excluded surface” used for computing the electric potential for protein1A63. In the right 
subfigure, the rendering of the gray surface is made semi-transparent in order to reveal the enclosed cavity surfaces (red). The regions enclosed by the red 
surfaces are the cavities to be removed. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

3.1. Creating a signed distance function to the solvent accessible surface

From molecules description the van der Waals surface, vdW, is defined as the zero level set of

F(x)=inf
k
(x−zk −rk), (20)

where zkand rkdenote respectively the coordinates of the molecule centers and their radii.
From the van der Waals surface, we shall define the so-called solvent excluded surface, , as the zero level set of a 

continuous function φSES. φSESis computed by a simple inward eikonal flow, starting from an initial condition involvingF, 
and is followed by a few iterations of the standard level set reinitialization steps. See Fig. 2for an illustration of this 
procedure in two dimensions. The details are described in the following subsections.

3.1.1. Inward eikonal flow
The van der Waals surface is extended outwards for a radius ρ0to define the so-called “solvent accessible surface”, 

which can be conveniently defined as the zero level set of φSAS:

φSAS(x)=F(x)−ρ0. (21)

The inward eikonal flow will produce a surface with smoothed out the corners when compared to the original van der 
Waals surface, while keeping most of its smooth parts unchanged. For 0 <t≤ρ0, we solve the following equation:

∂̃φSAS(x,t)

∂t
− ∇φ̃SAS =0,x∈U,

φ̃SAS(x,0)=φSAS(x),

(22)

with zero Neumann boundary conditions.

3.1.2. Cavities removal
The zero level set of ̃φSASmay contain some pieces of surfaces that isolate cavities that are believed to be void of 

solvent. Fig. 3provides an example of such cavities in a protein that we used for computation. The cavity removal step uses 
a simple sweep to remove (the boundaries of) these regions and create a level set function, φSES, that describes only the 
exterior, closed and connected surface — the solvent excluded surface:

φ̃SAS(x,ρ0)−→φSES(x).

The cavity removal consists of following steps:

1. Identify a region C that contains the cavities. C is a superset of the cavities, containing points outside of the cavities 
that are within distance to the cavity surface. This can be done by a “peeling” process: by moving the set of markers 
initially placed on the boundary of the computational domain inwards, using a breadth-first search (BFS) algorithm. The 
first layer of the surfaces defined by the zero level set of ̃φSASis defined to be the “solvent excluded surface”. We could 
therefore remove the remaining portion of ̃φSAS’s zero level sets, which are regarded as corresponding to the cavities. 
From this process, one can easily compute a characteristic function supported on C.
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2. Remove the cavity region by modifying the values of ̃φSASin C:

φSES(x):=
φ̃SAS(x),x/∈C,

− , x∈C.

3.1.3. Reinitialization
The kinks on the solvent accessible surface (SAS) will lower the accuracy in the computation for φSES(x, ρ0). In addition, 

the cavity removal step may introduce small jump discontinuities near the removed cavity. We perform several iterations 
of the standard level set reinitialization to improve the equivalence of the computed φSES(x, ρ0)and the signed distance 
function to (which φSESis supposed to be). The reinitialization equation, first appeared in [75], is defined as

∂̃φSES(x,t)

∂t
+sgnh(φSES(·,ρ0))(|∇̃φSES|−1)=0,

φ̃SES(x,0)=φSES(x,ρ0),

(23)

where the smoothed-out signum function is defined as

sgnh(φ)=
φ

φ2+h2
. (24)

Suppose that the reinitialization equation is solved until t=tn, i.e. ̃φSES(x, tn)is our approximation to the signed distance 
function d(x), we shall compute by

:= {x∈Rd:−<φ̃SES(x,tn)<}. (25)

We use the standard fifth order WENO for space and third order TVD-RK scheme for time to compute the reinitialization. In 
general, lower order schemes will result in larger perturbation of the zero level surface, which is not supposed to be moved.
The smoothness of the signum function sgnhmay influence the efficiency and effectiveness of the reinitialization pro-

cedure. In our simulations, with the regularized signum function defined in (24), it suffices to solve (23)for O()amount 
of time, in a neighborhood close to the zero level set. With t=k0h, and =k1h, k0, k1>0, we run constant number of 
time steps for reinitialization, independent of h. Since the fifth order WENO approximation of ∇φuses central differencing 
with seven grid nodes along each grid lines, the minimal number of time steps needed to create the signed distance in 
is (k1+4)/k0. We refer the readers to [20]for some more detailed discussion on reinitialization of level set functions and 
(closest point) extension of functions from to , and an alternative higher order algorithm.

3.2. Projections and weights

We locate all grid points xi∈Uhsatisfying that |φSES(xi)| <εand compute projections x∗i∈ by

x∗i=xi−φ̃SES(xi,tn)∇φ̃SES(xi,tn). (26)

∇φ̃SES(xi, tn)can be approximated either by standard central differencing or by the fifth orderWENOroutines. More pre-
cisely, on each grid node for each Cartesian coordinate direction,WENOreturns two approximations of ∇ψ̃, say p−and p+, 
which are generalizations of the standard forward and backward finite differences of ψ. In our numerical simulations, we 
use

∇φ̃SES≈
p−+p+

2
.

For weight function δε, we adopt the following cosine function with vanishing first moment,

δε(η)=
1
2
1+cosηπε ,|η|< ,

0,|η|≥0.
(27)

For general smooth nonlinear integrands and ∼o(1)for h → 0, the above weight function provides at most second order 
in hconvergence. Since the chosen δ is an even function of the distance to the surface, it has one vanishing moment. 
Therefore, the zeroth order (in distance to the surface) approximation of the Jacobian will lead to a zero order in error. 
See [49]for more in depth analysis on the properties of different choices of δ. In the simulations reported in this paper, 
we set J(x) ≡1.
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3.3. Fast linear solvers

Equations (12)–(13)in Section2.2, together with the regularization of the kernels described in Section2.2.1, one arrives 
at the final linear system:

p+KWp=g, (28)

with pdenoting the vector containing both ̄ψ(xj)and ̄ψn(xj),

:=
1

2

⎛

⎝
1+ E

I
I 0

0 1+ I

E
I

⎞

⎠,

and W is a diagonal matrix defined by the weights ωj:=J(yj)δ(d(yj))as defined in Section2.2.
We solve this system by a standardGMRESalgorithm. In theGMRESalgorithm, we use the black-box fast multipole 

method (BBFMM)[29]to accelerate the multiplication of the operator Kto any vector. In particular, the solution of the 
diagonal part of(28)is used as a preconditioner. This means that theGMRESalgorithm starts with the particular initial 
condition:

p(0):=( +D)−1g,

where

D:=
0 0

0 0

comes from the regularization of the kernels.

3.4. Computing surface area

In our IBIM approach, the evaluation of the surface area of is computed by Sh[f]defined in(9)with f≡1. See [48].

3.5. Computing the polarization energy

The polarization energy Gpolof the system is given by

Gpol=
1

2

Nc

k=1

qkψrxn(zk) (29)

where ψrxn(zk)is computed by evaluating the following boundary integral at the center of atom k, zk:

ψrxn(z)=
E

I

∂Gκ(z,y)

∂n(y)
−
∂G0(z,y)

∂n(y)
ψ(y)+(G0(z,y)−Gκ(z,y))

∂ψ

∂n
(y)ds(y).

In our IBIM approach, evaluation of this integral is computed by Sh[f(z, ·)]defined in(9)with

f(z,y):=
E

I

∂Gκ(z,Py)

∂n(y)
−
∂G0(z,Py)

∂n(y)
ψ̄(y)+(G0(z,Py)−Gκ(z,Py))

∂̄ψ

∂n
(y). (30)

4. Numerical experiments

We now perform some numerical experiments using the computational algorithm we developed. In all the numerical 
simulations, we set the dielectric parameters I=1.0, E=80.0 and Debye–Hückel constant κ=0.1257 Å

−1
. We use the 

following parameters for the implicit boundary integral method:

h denotes the grid spacing in the uniform Cartesian grids,

≡2h denotes the width for the narrowband ,

τ=horh/2 denotes the regularization parameter used inK11,K12,K21,K22.

We set the tolerance in theGMRESalgorithm to be 10−5, and use 4th order Chebyshev polynomials in theBBFMMpre-
conditioner to achieve tolerance 10−4there. In general, smaller τresults in more accurate approximations, if the resulting 
linear systems can be solved successfully. However, it cannot be too small with respect to the grid spacing, otherwise the 
resulting linear system becomes badly conditioned, as the current regularization approach becomes ineffective.
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Most of the numerical experiments are performed on a desktop with quad-core CPU at 3.40 GHz, 16 GB RAM. The 
computations involving more than one million unknowns are performed on an older Linux computer with similar cache 
memory but sufficient RAM; for convenience in comparison, the timings presented in the tables below for simulations 
performed on this computer are scaled according to the clock speed and processor differences between the two computers. 
We think that such ad hoc scaling of timing is reasonable for the size of computations and the machines involved. We put 
an * sign next to the scaled CPU timings in the tables.
In Section4.1, we first compare the surface areas computed by our method to the ones computed by a published 

algorithm. In all later subsections, we present simulations of our algorithms with molecules of different sizes. In certain 
examples, we compare our computational results to the available published data. Particularly, we perform simulations on 
more realistic benchmark macromolecules taken from the RCSB Protein Data Bank (PDB)[11], and add missing heavy atoms 
through softwarePDB2PQR[25]. The atom charges and radius parameters that we will be using in our simulations are all 
generated through force fieldCHARMM[15]. The number of atoms reported in each subsection below corresponds to the 
number in the respective pqr file of each molecule.
Here are some general remarks on the numerical simulations using our algorithm. In the tables presented in this section, 

the columns titled “D.O.F.” show the total number of unknowns in the discrete systems and provides a basis to observe 
the rate of convergence for the computed solutions, surface areas and polarization energies. In the figures presented in this
section, the electrostatics computed on two different grid resolutions are painted on top of the respective computed solvent 
excluded surfaces. In practice, the most important information that one would like to extract from such computations is the 
locations of the extrema; see e.g.[43,82]. As the figures show, the extrema of the potentials computed at the coarser grid 
resolutions are already at the “correct” locations on the surfaces.
As we shall see from the numerical accuracy study in Section4.2, the foremost bottleneck of the proposed algorithm is 

the low order regularization for the singular integrals. However, regularization is essential, and smaller amount of it (smaller 
values of τ) leads to systems which require more GMRESiterations unless the grid spacing his sufficiently small. See, for 
instance, the simulations presented in Tables 4, 5 and 6. Despite the regularization issue, the boundary integrals can be 
computed very accurately if wider (with respect to the grid spacing h) and the full expression of the Jacobian Jare used. 
However, wider implies a larger dense linear system needs to be solved. Most of the reported computation times are 
spent on the evaluation of the matrix–vector multiplications. Thus, in the simulations presented below, we choose a regime 
in which is narrow but sufficient in practice for the adopted simple quadrature to resolve the surface geometry. Finally, 
regarding to how small hshould be for a given molecule and probe size ρ0:

h≈ min
j=1,···,N

{ρ0,rj,2}/7<

where is the minimal distance between “different parts of the surface” (think of the thin part of a dumb bell) and we 
define it as

=inf
x∈
{−d(x−sn(x))|(x)>s>0,wherex− (x)n(x)∈ }. (31)

We shall see in the following examples, that our algorithm seems to perform well even when the discretized system is 
slightly outside of the above regime.

4.1. Molecular SES surface area

We compare the performance of our algorithm for calculating surface areas of different proteins with that of theMSMS
(Michel Sanner’s Molecular Surface) algorithm developed in[73]. ForMSMSalgorithm, the probe radius is set to be ρ0=
1.4Å and the density parameter is 1.0for mesh generation. We use the online implementation by the High-Performance 
Computing at the NIH group[37]to produce the data forMSMS. In Table 1, we compare results from our method to these 
fromMSMSfor seven different proteins on a grid of size 1283. We observe that the surface areas computed by our algorithm 
are quite close to theMSMS’s approximate values in general. Since theMSMSresults are only approximations to the true 
values, we did not attempt to tune algorithmic parameters (e.g. grid size, weight function) of our method to obtain results 
that are even closer to theMSMSresults.

4.2. The single ion model

We start with the single ion model developed in[46]to benchmark the solution accuracy of our numerical algorithm. 
We use three different relative errors, between exact and numerically represented quantities, to measure the quality of 
numerical solutions. They are defined as:
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Table 1

Comparison of surface areas computed by the proposed IBIM method and byMSMS
for seven different proteins from the RCSB Protein Data Bank.

Protein id Surface area (IBIM) Surface area (MSMS)

4INS 4732 4761

1HJE 825 801

1A2B 7540 7936

1PPE 7979 8340

2AID 8061 8304

1F15 22000 22725

1A63 6583 6659

Table 2

Benchmarking errors in solution of the single ion model.

Grid size h(Å) τ/h D.O.F. GMRES Solution error Area error Energy error

643 3.91E−1 1 22,756 4 1.11E−02 1.24E−03 1.21E−02
1283 1.95E−1 1 91,564 3 6.90E−03 2.88E−04 5.68E−03
2563 9.77E−2 1 366,868 3 3.57E−03 5.01E−05 2.90E−03

643 3.91E−1 0.5 22,756 2 5.93E−03 1.24E−03 5.98E−03
1283 1.95E−1 0.5 91,564 4 3.45E−03 2.88E−04 2.49E−03
2563 9.77E−2 0.5 366,868 3 2.15E−03 5.01E−05 1.31E−03

solution error=
|ψ(x)−ψ∗(x)|2+|∂ψ(x)∂n −

∂ψ∗(x)
∂n |

2

|ψ∗(x)|2+|∂ψ
∗(x)
∂n |

2
,

surface area error=
|A−A∗|

A∗
,

energy error=
|Gpol−G

∗
pol
|

G∗
pol

.

(32)

For a single atom with radius rand charge q, the solution to the Poisson–Boltzmann equation is given as[46]

ψ∗(x)=

⎧
⎪⎪⎨

⎪⎪⎩

q

4πI|x|
+
q

4πr

1

E(1+κr)
−
1

I

,if|x|<r

qe−κ(|x|−r)

4π(1+κr)|x|
, otherwise

(33)

We can therefore compute the associated polarization energy

G∗pol=
q2

8πr

1

E(1+κr)
−
1

I

, (34)

using the fact that the surface is a sphere with area A∗=4πr2. We set the atom’s radius to be r=1Å and assigned charge 
to be q =1ec.
We performed simulations under different mesh and IBIM parameters. The results are summarized in Table 2. Our 

method converges in very small numbers (usually 3 ∼4) of iterations. This benchmark calculation shows that our numerical 
algorithms can indeed achieve similar solution accuracies to those achieved by other algorithms developed recently[2,14].

4.3. Protein 1A63

In this numerical example, we compute the polarization energy for protein1A63, the E. Coli Rho factor, of the Protein 
Data Bank. The protein has 2065 atoms with different radii. The information on the locations and radii of the atoms are all 
available in[11].
In Fig. 4we plot the potential ̄ψon the constructed “solvent excluded surface”, computed on two different grids, 1283

(left) and 2563(right). Further computational results are tabulated in Table 3. The computed values of the polarization 
energy Gpolcan be compared to the existing estimations, GTABIpol

=−2374.64 kcal/mol from the treecode-based boundary 

integral solverTABI[31]and GAPBS
pol
=−2350.58 kcal/mol from the finite difference solverAPBS[78]. The computational 

results are tabulated in Table 3.
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Fig. 4. The electrostatic potential on the surface of the PDB-1A63 protein. Left: on grid 1283. Right: on grid 2563.

Table 3
Numerical results on protein 1A63 under different algorithmic parameters.

Grid size h (Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) Area (Å2)

1283 6.11E−1 1 71,597 12 −2392.22 606.8 6583
2563 3.05E−1 1 293,627 13 −2366.40 3041 6801

1283 6.11E−1 0.5 71,597 13 −2345.41 772.3 6583
2563 3.05E−1 0.5 293,627 14 −2347.74 3808 6801

Fig. 5. The electrostatic potential on the surface of protein 2AID for two grids of size 1283 (left) and 2563 (right).

Table 4
Numerical results on protein 2AID under different algorithmic parameters.

Grid size h (Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) Area (Å2)

1283 5.80E−1 1 97,108 13 −2318.69 940.7 8061
2563 2.90E−1 1 397,930 14 −2321.72 4521 8335

1283 5.80E−1 0.5 97,108 24 −2282.14 1745 8601
2563 2.90E−1 0.5 397,930 15 −2306.70 4906 8335

4.4. Protein 2AID

Here we compute the polarization energy for protein 2AID, a non-peptide inhibitor complexed with HIV-1 protease. 
This protein has 3130 atoms. In Fig. 5 we plot the potential ψ̄ on the constructed “solvent excluded surface” of this protein, 
computed on two different grids. Further computational results are tabulated in Table 4.

4.5. Protein 1F15

In this example, we compute the polarization energy for protein 1F15, the cucumber mosaic virus. The protein has 8494
atoms. In Fig. 6 we plot the potential ψ̄ on the constructed “solvent excluded surface”, computed on two different grids. 
Further computational results are tabulated in Table 5.
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Fig. 6. The electrostatic potential on the surface of protein 1F15 for two different grids of sizes 1283 (left) and 2563 (right).

Table 5
Numerical results on protein 1F15 under different algorithmic parameters.

Grid size h (Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) Area (Å2)

1283 7.72E−1 1 147,463 17 −7770.00 2586 22000
2563 3.86E−1 1 613,726 21 −7818.83 12357 22847
5123 1.93E−1 1 2,497,309 25 −7891.05 45681* 23238
1283 7.72E−1 0.5 147,463 31 −7682.67 4667 22000
2563 3.86E−1 0.5 613,726 26 −7774.76 14129 22847
5123 1.93E−1 0.5 2,497,309 29 −7875.86 52687* 23238

Fig. 7. The electrostatic potential on the surface of protein 1A2K for two different grids of sizes 1283 (left) and 2563 (right).

4.6. Protein 1A2K

In this numerical example, we compute the polarization energy for protein 1A2K, the GTPase RAN-NTF2 complex. The 
protein has 13627 atoms.

In Fig. 7 we plot the potential ψ̄ on the constructed “solvent excluded surface”, computed on two different grids. Further 
computational results are tabulated in Table 6.

4.7. Protein: 1PMA

In this example, we compute the polarization energy for proteasome from thermoplasma acidophilum (PDB id: 1PMA) 
with 93017 atoms. In Fig. 8 we plot the potential ψ̄ on the constructed “solvent excluded surface”, computed on two 
different grids. Further computational results are tabulated in Table 7.

5. Concluding remarks

We present in this paper a new numerical method for solving the boundary value problem of the linearized Poisson–
Boltzmann equation, which is widely used to model the electric potential for macromolecules in solvent. Our new method 
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Table 6
Numerical results on protein 1A2K under different algorithmic parameters.

Grid size h (Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) Area (Å2)

1283 1.08E+0 1 99,783 12 −7190.38 1032 29497
2563 5.42E−1 1 429,451 17 −8902.62 6120 31501
3843 3.61E−1 1 983,418 17 −8920.93 11948 32047
5123 2.71E−1 1 1,765,673 18 −8963.12 25496* 32364

1283 1.08E+0 0.5 99,783 21 −9004.68 2309 29497
2563 5.42E−1 0.5 429,451 43 −8789.45 15528 31501
3843 3.61E−1 0.5 983,418 40 −8859.47 26030 32047
5123 2.71E−1 0.5 1,765,673 23 −8921.64 33558* 32364

Fig. 8. The electrostatic potential on molecular surface for the proteasome from thermoplasma acidophilum (PDB id: 1PMA). Left: the potential computed 
on a 1283 grid. Right: the potential computed on a 5123 grid.

Table 7
Protein 1PMA. IBIM’s result of relative error in polarization energy and total run time w.r.t. different grid sizes.

Grid size h (Å) τ/h D.O.F. GMRES Gpol (kcal/mol) CPU (s) Area (Å2)

1283 1.67E+0 1 222,478 15 −15544.35 3360 1.6014E+5
2563 8.35E−1 1 1,026,938 18 −46865.78 14141* 1.8034E+5
3843 5.56E−1 1 2,429,367 20 −50071.90 42927* 1.8851E+5
5123 4.17E−1 1 4,418,314 22 −50144.63 70880* 1.9262E+5

relies on the standard level set method [66,67] for preparing the distance function to the “molecular surface”. Contrary 
to the typical level set method, in which some partial differential equations are discretized with some suitable boundary 
conditions, ours involves the solution of an integral equation which is derived from an implicit boundary integral formu-
lation [47]. Similar to the typical level set methods, and contrary to the typical boundary integral methods, the proposed 
method involves computation only with functions defined on uniform Cartesian grids. Our numerical simulations show that 
in addition to the flexibility that comes from the level set methods, the proposed method can be as computationally effi-
cient as other boundary integral based algorithms. We show by our numerical simulations that the solutions of the resulting 
linear systems can be accelerated easily by some existing fast multipole methods. Furthermore, the eikonal flow and reini-
tialization in Stage (1) of the proposed algorithm rely on widely available explicit solvers and can be trivially parallelized.

There are several possible improvements that could be investigated in the future. First of all, the quadrature for the 
implicit boundary integral formulation can be improved to increase the order of accuracy. This includes improvement of the 
regularization of the kernel singularities and the use of full expression of the Jacobian J . One may also consider different 
grid geometries, as the underlying mathematical formulation does not require uniform Cartesian grids. For example, the 
adaptive oct-tree structure used in [36] or radial basis functions may be considered.

As all the presented simulations were computed on two moderate desktop computers, the reported results show the 
potential of the proposed method for molecular dynamics simulations involving very large molecules.

Finally, let us mention that the numerical method we proposed here can be generalized to solve many similar model 
problems for electrostatics in related areas of electrochemistry [40,59,61,34,35].
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