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Abstract—In a series of recent publications, we have ad-
dressed a class of traffic coordination problems that can be
formulated as combinatorial scheduling problems, and we have
developed a Lagrangian duality approach for obtaining (i)
strong lower bounds for the corresponding optimal solution,
and (ii) potential “seeds” for the construction of feasible, near-
optimal solutions to these problems. In those past works, the
corresponding “dual” problem was solved through a customized
dual-ascent algorithm that took advantage of a distributed
representation of the sub-differentials of the underlying “dual”
function in order to compute efficiently ascending directions
during the optimization process. In this paper we show that
the fundamental insights that led to the aforementioned past
developments, can also enable an efficient linear programming
formulation for the considered “dual” problem.1

I. INTRODUCTION

The presented work concerns a set of real-time traffic
management problems for the traffic that is generated by a
set of “agents” circulating over a connected digraph which is
known as the “(supporting) guidepath network”. The edges
of the guidepath network define “zones” for the supported
traffic, and in order to ensure the safety of the agent motion,
it is stipulated that each zone can be occupied by at most
one agent at a time. Access to the system zones is granted
by a central controller, and the trip of any given agent from
an “origin” location to a “destination” location constitutes
a “resource allocation process” where the necessary zones
that support the various legs of this trip, are requested and
acquired one zone at a time. Additional constraints regulate
the agent transitioning between zones, and the behavior
of the agents upon reaching their destinations. The main
objective of the considered problems is to enable all traveling
agents to reach their destinations in a way that respects
the imposed regulations, and maintains a certain notion of
expediency for the generated traffic.2
From an application standpoint, the traffic problems out-

lined in the previous paragraph arise naturally in the real-time
operations of various automated unit-load material handling
(MH) systems, like the AGV, overhead monorail and the
complex crane and gantry systems used in many production
and distribution facilities [1], but also in the physical medium
that implements the various elementary operations in the
context of quantum computing [2]; the reader is referred to

1This work was partially supported by NSF grants ECCS-1405156 and
ECCS-1707695, and also by an IRAD grant from the Georgia Tech Research
Institute.

2This high-level description of the considered traffic systems becomes
much more detailed in the subsequent, more technical parts of this work.

[3], [4], [5], [6], [7] for an elaboration on these connections.
In addition, similar guidepath-based traffic models have
drawn recently the attention of the robotics community (e.g.,
[8], [9], [10], [11]), while, in the past, they have been studied
even by the broader CS community in the context of some
classical games like the, so called, “15-puzzle” where 15
uniquely numbered “pebbles” located on a 4×4 grid have to
be re-arranged in the row-major order by “pebble sliding”
through the single unoccupied vertex of the grid [12], [13].
In an ongoing research program of ours, we seek to

develop an effective methodological framework for the real-
time management of the aforementioned traffic systems,
especially as they materialize in the context of the real-
time operations of unit-load, zone-controlled MH systems,
and in quantum computing. This endeavor capitalizes upon
perspectives and results borrowed from (i) combinatorial
scheduling theory [14], (ii) the emergent theory on the
logical control of complex resource allocation systems (RAS)
[15], [16], and (iii) model predictive control (MPC) [17].
More specifically, in the aforementioned research program,
we have adopted an MPC framework that decomposes the
overall traffic management problem by seeking to route the
traveling agents to their next immediate destination in a
way that (i) minimizes the corresponding makespan and (ii)
ensures the liveness of the overall generated traffic (i.e., the
ability of all these agents to visit all their target destinations,
in the desired order, and eventually retire to a “home” station
that is provided by the underlying guidepath network). The
resulting “core” scheduling (sub-)problem of this MPC-based
decomposition, that concerns the expedient routing of the
traveling agents to their immediate destinations, has been
formally modeled as a mixed integer program (MIP) [18].
But while this MIP formulation provides a solid analytical
characterization of the underlying scheduling problem, it is
computationally intractable for most practical instantiations
of this problem. Hence, our research program has also devel-
oped some heuristic algorithms that construct near-optimal
traffic schedules through “local search”-based methods [19].3
Furthermore, in a complementary line of research, we have

3In fact, for the considered class of scheduling problems, even the
construction of just a feasible solution is, in general, an NP-hard problem
[20]. However, the considered research has identified a number of conditions
that will render quite tractable the construction of a first initial solution. Sub-
sequently, a pertinent specification and representation of the “neighborhood”
structure to be used in the pursued local search, together with some novel
dynamic programming (DP) formulations for effecting this search, enable
the expedient identification of some very efficient schedules, even for some
very hard problem instances.
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pursued a Lagrangian relaxation approach [21], [22] for
the aforementioned MIP formulation, that can provide (a)
strong lower bounds to its optimal value, and (ii) potential
“seeds” for the construction of near-optimal solutions to the
original scheduling problem. In this last line of research, the
corresponding (Lagrangian) dual problem, which is a chal-
lenging problem in itself [22], is solved through a customized
dual-ascent algorithm that takes advantage of a distributed
representation of the sub-differentials involved in the relevant
optimization process. More specifically, by means of this
representation, our algorithm is able to identify an improving
direction at each iteration, and attains a monotonic, finite
convergence to an optimal set of Lagrange multipliers. De-
tailed, technical treatments of the aforementioned results can
be found in [3], [4], [5], [6], [7]. These publications also
contain numerical results that demonstrate and assess more
empirically the efficacy of the aforementioned developments.
In the context of all these past developments, the main

objective of the current work is to establish the theoretically
interesting and computationally useful additional result that
the aforementioned Lagrangian dual problem can be reduced
to a Linear Program (LP) [23]. Furthermore, the fundamental
insights that have led to the customized dual-ascent algorithm
discussed in the previous paragraph, also enable an efficient
representation of the new LP in terms of the numbers of
variables and constraints involved. Hence, the presented
results render the Lagrangian dual problems addressed in this
work solvable by the powerful LP solvers that are currently
available. This possibility is effectively demonstrated through
some numerical experimentation that is reported in the last
part of the paper.
The rest of this paper is organized as follows: Section II

overviews the MIP formulation for the basic traffic schedul-
ing problem considered in this work, as well as the employed
Lagrangian relaxation and the corresponding dual problem.
Subsequently, Section III establishes the reduction of this
dual problem to the aforementioned LP, and Section IV
reports the numerical experimentation that demonstrates the
tractability of this LP formulation. Finally, Section V con-
cludes the paper and discusses some directions for future
work.

II. THE CONSIDERED TRAFFIC SCHEDULING PROBLEM
AND THE CORRESPONDING DUAL PROBLEM

In this section we overview the MIP formulation that
constitutes the core (sub-)problem for the pursued MPC
framework, and the Lagrangian relaxation approach that
we have pursued in [3], [4] for the derivation of strong
lower bounds to this MIP formulation. Given the imposed
page limits for this document, our presentation is limited
to the minimal amount of information that is necessary for
the development of the main results of this work, that are
presented in Section III; the interested reader is referred to
[3], [4], [5], [6] and [7] for a more extensive discussion
of the considered formulations and the underlying modeling
assumptions.

A. The considered traffic scheduling problem and its MIP
formulation

To begin with the formal representation of the considered
traffic scheduling problem, let us denote the set of the
traveling agents by A, and the underlying guidepath network
by the digraph G = (V,E). As mentioned in the introductory
section, the edges e ∈ E of G define “zones” that are
allocated sequentially and exclusively to the traveling agents
by the system controller. From a physical standpoint, each
zone can be modeled by an undirected edge {vi, vj}. But
in our model, {vi, vj} is represented by the pair of directed
edges e1 = (vi, vj) and e2 = (vj , vi) in E, so that we can
also encode a sense of direction of the traveling agent on this
edge. Edges e1 and e2 are said to be “complementary”, and
this fact is denoted by writing e2 = ē1 (and, equivalently,
e1 = ē2). Also, for any given edge e, e• denotes the set of
“output” edges for e, i.e., all these edges e′ ∈ E that can
be accessed by an agent located in e upon leaving edge e.
On the other hand, the set •el contains the “input” edges of
e, i.e., the edges e′ ∈ E that constitute entry points for e.
Furthermore, in the basic positioning of the considered traffic
scheduling problem, all edges e ∈ E have a uniform length,
and therefore, they can be traversed by any agent a ∈ A at a
constant time. Taking this traversal time as the corresponding
“time unit”, we also obtain a discretization of the dynamics
of the underlying traffic.
In the context of the notation introduced in the previous

paragraph, the considered scheduling problem seeks to trans-
port each traveling agent a ∈ A from an initial edge sa to a
destination edge da while minimizing the total time that is
necessary for these transports. This time is considered in the
discretized setting that was defined in the previous paragraph,
it is characterized as the “makespan” of the corresponding
schedule, and it will be denoted by w. Furthermore, as
remarked in the introductory section, a feasible schedule
must ensure an exclusive allocation of the various zones to
the traveling agents, and this allocation must also observe
an additional set of rules that seeks to ensure the safety
of the agent motion by enforcing some further levels of
separation among them. Finally, letting T denote an available
upper bound for w,4 and setting T = {0, 1, . . . , T}, we can
express the considered traffic scheduling problem through
the following MIP:

minw (1)

s.t.

∀a ∈ A, ∀t ∈ T ,
∑

e∈E

xa,e,t = 1 (2)

∀a ∈ A, ∀e ∈ E xa,e,0 = I{e=sa} (3)

∀a ∈ A, xa,da,T = 1 (4)

4 A pertinent T value for any given problem instance is readily provided
by any feasible traffic schedule for this problem instance. Some results for
obtaining such feasible traffic schedules are provided in [5], [6], [7], [13].
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∀a ∈ A, ∀t ∈ T \ {T}, xa,da,t+1 ≥ xa,da,t (5)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {T},
xa,e,t ≤ xa,e,t+1 +

∑

e′∈e•

xa,e′,t+1 (6)

∀e = (vi, vj) ∈ E s.t. i < j, ∀t ∈ T \ {0, T},∑

a∈A
(xa,e,t + xa,ē,t) ≤ 1 (7)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T \ {0},
xa,e,t +

∑

a′∈A:a′ ̸=a

(xa′,e,t−1 + xa′,ē,t−1) ≤ 1 (8)

∀a ∈ A, w ≥
T∑

t=0

(1− xa,da,t) = T + 1−
T∑

t=0

xa,da,t

(9)

∀a ∈ A, ∀e ∈ E, ∀t ∈ T , xa,e,t ∈ {0, 1} (10)

The primary decision variables in the above MIP formu-
lation are the binary variables xa,e,t, a ∈ A, e ∈ E, t ∈ T ,
with xa,e,t = 1 denoting that agent a occupies edge e
at period t. Then, Constraint (2) of the above formulation
imposes the requirement that all agents must occupy one
and only one position at any time period, and Constraint (3)
places the agents a ∈ A at their initial zones sa at time
t = 0. Constraint (4) requires that every agent must reach its
destination edge, da, within the provided time horizon, while
Constraint (5) further stipulates that agents cannot leave
their destination edges after reaching them. Constraint (6)
enforces the fact that agents can only transition to adjacent,
directionally compatible edges, and Constraint (7) prevents
any two agents to cohabit on an edge. Constraint (8) enforces
the additional requirement that an agent can enter an edge at
period t only if this edge was empty during the previous
period, t − 1.5 Constraint (9) together with Equation (1)
define the objective of the considered formulation as the
minimization of the makespan of the generated traffic sched-
ule. Finally, Constraint (10) specifies the binary nature of all
decision variables xa,e,t, and it also implies a free nature for
the remaining decision variable w.
The MIP formulation of Eqs (1)–(10) can be infeasible

for some of its instantiations, and the assessment of the cor-
responding (in-)feasibility can be a hard problem in itself.6

5Hence, Constraint (8) prevents an agent from transitioning into an edge
of the guidepath network while another agent is transitioning out from this
edge at the same time period, and, thus, it ensures the necessary separation
among the traveling agents in the face of the uncertainty that would be
introduced by such simultaneous transitions.

6Generally speaking, the feasibility of the considered MIP will depend
on (i) the topology of the underlying guidepath network and the relative
positioning of the edges sa and da, a ∈ A, in this topology, (ii) the ability of
the agents to reverse their motion within their currently allocated edges, and
(iii) the selection of the parameter T ; please, also c.f. Footnote 4 regarding
the third issue.

But even in the cases where the MIP formulation of Eqs (1)–
(10) is guaranteed to be feasible, it might be intractable
for most practical instantiations of the considered problem.
These computational challenges are especially aggravated by
the “on-line” / “real-time” nature of the considered problem,
and the strict time budgets that this feature implies for the in-
volved computations. Hence, as remarked in the introductory
section, our research program has pursued the development
of efficient heuristic algorithms for the construction of near-
optimal traffic schedules, and also a Lagrangian relaxation
approach for the derivation of (i) lower bounds to the
optimal makespan w∗, and potentially (ii) some additional
information that can be used in the synthesis of the heuristic
algorithms that were mentioned above. Next, we present this
Lagrangian relaxation and the corresponding “dual” problem.

B. The Lagrangian relaxation of the considered MIP and the
corresponding dual problem

The Lagrangian relaxation for the MIP formulation of
Eqs (1)–(10) that has been considered in our past work, is
obtained by relaxing the constraints of Eqs (7)–(9), which
act as “coupling” constraints for the variable sets {xa,e,t :
e ∈ E, t ∈ T }, a ∈ A. Denoting by λ, µ and ν the
(row) vectors that collect the corresponding sets of Lagrange
multipliers, we obtain the following Lagrange relaxation for
the original MIP:

θ(λ,µ,ν) ≡ min
x,w

{
w +

+
∑

{e∈E:vi<vj}

∑

t∈T \{0,T}

λe,t

[
∑

a∈A
(xa,e,t + xa,ē,t)− 1

]
+

+
∑

a∈A

∑

e∈E

∑

t∈T \{0}

µa,e,t

[
xa,e,t+

+
∑

{a′∈A:a′ ̸=a}

(xa′,e,t−1 + xa′,ē,t−1)− 1

]
+

+
∑

a∈A
νa

[
T + 1− w −

∑

t∈T
xa,da,t

]}
(11)

s.t. the primal constraint sets (2)–(6) and (10)
The function θ(λ,µ,ν) constitutes the “dual” function for

the considered relaxation, and it provides a lower bound
to the optimal makespan, w∗, for any (λ,µ,ν) ≥ 0.
Hence, the tightest lower bound for w∗ provided by the
above Lagrangian relaxation, can be obtained by solving
the following mathematical programming (MP) formulation,
which is known as the corresponding “dual” problem:

max
λ,µ,ν

θ(λ,µ,ν) (12)

s.t. (λ,µ,ν) ≥ 0
In [4] it is further shown that any optimal solution of the

aforestated dual problem must also satisfy
∑

a∈A νa = 1,
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and thus, the dual problem reduces to:

max
λ,µ,ν

θ(λ,µ,ν) ≡ (T + 1) +∆λ,µ+

+ min
x∈X

{
∑

a∈A

[
∑

e∈E

∑

t∈T
Cλ,µ

a,e,txa,e,t − νa
∑

t∈T
xa,da,t

]}

(13)
s.t.

λ ≥ 0; µ ≥ 0; ν ≥ 0;
∑

a∈A
νa = 1.0 (14)

where ∆λ,µ and Cλ,µ
a,e,txa,e,t are linear functions of

the corresponding Lagrange multipliers,7 and X ≡{
x satisfying the primary constraint sets (2)–(6) and (10)

}
.

The reader should notice that Eq. (13) implies the sepa-
rability of the minimization problem that is involved in the
definition of the dual function θ(λ,µ,ν) with respect to the
agent set A. Furthermore, the structure of the right-hand-side
of Eq. (13), when combined with the aforestated linearity of
the quantities ∆λ,µ and Cλ,µ

a,e,txa,e,t with respect to the cor-
responding Lagrange multipliers, imply that the considered
dual function can also be expressed in the following form,
for appropriately defined (row) vectors g(x), x ∈ X:

θ(λ,µ,ν) = min
x∈X

{
g(x) · (λ,µ,ν)T

}
+ (T + 1) (15)

Finally, Eq. (15), when combined with the finiteness of
the involved set X , implies a concave, polyhedral structure
for θ(λ,µ,ν). This structure was exploited in [3], [4] in
order to develop a customized dual-ascent algorithm for the
solution of the corresponding dual problem. However, in
the next section, we shall show that Eq. (15) also enables
the representation of the considered dual problem as an
LP. Furthermore, the aforementioned separability of the
minimization problem that is involved in the definition of the
dual function θ(λ,µ,ν) with respect to the set A, enables
a quite compact representation of this LP in terms of the
involved sets of its constraints and decision variables. Hence,
it can be tractable for quite large instantiations of the dual
problem; this fact is demonstrated numerically in Section IV.

III. THE MAIN RESULT

To derive the main result of this paper, we start with
the observation that the representation of the dual function
according to Eq. (15) allows us to express the dual problem
of Eqs (13)–(14) as the following LP:

max
λ,µ,ν,u

u (16)

s.t.
∀x ∈ X, u ≤ g(x) · (λ,µ,ν)T (17)

∑

a∈A
νa = 1.0 (18)

λ ≥ 0; µ ≥ 0; ν ≥ 0 (19)

7Due to the imposed space limitations, the reader is referred to [4] for
the detailed definition of these quantities.

Furthermore, from standard LP duality theory [23], the
optimal value of the above LP can also be obtained by
solving its dual LP, that has the following form:

min
γ,z,ψ

ψ (20)

s.t.
[−I 1ν ] ·

[
z
ψ

]
=

∑

x∈X

γx · g(x)T (21)

∑

x∈X

γx = 1.0 (22)

γ ≥ 0; z ≥ 0 (23)

In the above LP formulation, the nonnegative vector γ
collects the dual variables that correspond to the constraints
of Eq. (17) in the primal LP, and the free variable ψ is the
dual variable corresponding to the constraint of Eq. (18).
On the other hand, vector z is a set of “slack” variables
that converts the constraint of Eq. (21) to an “equality”
constraint. Furthermore, in Eq. (21), I denotes the identity
matrix of dimensionality k equal to the total number of
Lagrange multipliers λ, µ and ν, and 1ν is a k-dimensional
binary (column) vector with its unit elements placed at the
components that correspond to Lagrange multipliers ν.
While the formulations of Eqs (16)–(19) and Eqs (20)–

(23) provide valid LP representations for the dual problem
of Eqs (13)–(14), their practical usefulness is limited by
the fact that they require a complete enumeration of set
X . However, in the following we shall show that, in the
considered context,X admits a distributed representation that
enables the representation of the above LPs in a much more
compact form in terms of the employed numbers of variables
and constraints.
The starting point for obtaining these new formulations

is the observation that the constraints defining the set X are
totally separable across the agents a ∈ A.8 In more technical
terms, vector x can be perceived as a concatenation of the
vectors xa, a ∈ A, and each vector xa lives in a space Xa

that is defined by the corresponding subset of the Constraints
(2)–(6) and (10) that refer to agent a. The aforementioned
separability of these constraint sets (2)–(6) and (10) across
the agent set A implies that

X = ×a∈AXa (24)

From a more conceptual standpoint, each set Xa, a ∈ A,
encodes all the possible routes in G for taking agent a from
initial location sa to its destination location da within the
provided time span T . A compact way to represent all these
routes is by an acyclic digraph Ga. The nodes of this graph
are labeled by (e, t) and signify the placement of agent a at
(directed) edge e at time period t. On the other hand, the
edges of Ga connect nodes (e, t) for t ∈ {0, 1, . . . , T − 1}
to nodes (e′, t + 1) with e′ ∈ {e} ∪ e•. Furthermore, for
T adequately large to ensure the feasibility of the original
MIP of Section II-A, the digraph Ga will have node (sa, 0)
as its single “source” node, and node (da, T ) as its single

8This separability is a consequence of the logic that has defined the
employed Lagrange relaxation for the original MIP of Section II-A.

5663



“sink” node. Each feasible route in Xa corresponds to a
path leading from node (sa, 0) to node (da, T ). Finally, the
construction of the digraphs Ga, a ∈ A, can be performed
through elementary reachability analysis on the guidepath
network G.
The LP formulation of Eqs (20)–(23) essentially employs

the convex hull of the vector set
{
g(x) : x ∈ X

}
. Following

a proof similar to that of Lemma 5.1 in [4], we can show
that this convex hull can be represented as

{
g(q) : q ∈

Conv(X)
}
, where Conv(X) denotes the convex hull of X .

Eq. (24) further implies that

Conv(X) = ×a∈AConv(Xa) (25)

But each element qa ∈ Conv(Xa), a ∈ A, can be
represented by means of the aforementioned graph Ga, as a
flow transferring a unit of fluid from the “source” node of Ga

to its “sink” node. Hence, for each a ∈ A, the corresponding
Conv(Xa) can be represented parametrically by a set of
linear equations

Fa · qa = β1
a ; qa ≥ 0 (26)

Furthermore, we can combine the linear systems of equations
that are defined in Eq. (26) for each agent a ∈ A, in order
to obtain a similar representation for the entire convex hull
Conv(X):

F · q = β1 ; q ≥ 0 (27)

Finally, let
g(x)T = A · x+ β2 (28)

for some appropriately specified matrix A and vector β2.
Then, in view of all the above discussion, the original LP

formulation of Eqs (20)–(23) can be rewritten as

min
q,z,ψ

ψ (29)

s.t. [
F 0 0
−A −I 1ν

]
·

⎡

⎣
q
z
ψ

⎤

⎦ =

[
β1

β2

]
(30)

q ≥ 0; z ≥ 0 (31)

Also, the dual of the above LP has the form:

max
η,ρ

(β1)T · η + (β2)T · ρ (32)

s.t.
FT · η −AT · ρ ≤ 0 (33)

1T
ν · ρ = 1.0 (34)

ρ ≥ 0 (35)

The vectors η and ρ that constitute the decision variables
in this last formulation, collect, respectively, the dual vari-
ables for the constraints that correspond to the first and the
second rows in Eq. (30). Furthermore, this last LP is the
analogue of the original LP formulation of Eqs (16)–(19) in
the distributed representation of the set X and its convex hull
Conv(X) that were introduced in the previous paragraphs.

Fig. 1: The guidepath network used in our experiment.

Taking a closer look at the structure of these two LPs and
their respective duals, it can be seen that the role of the
variable vector ρ in the last LP is equivalent to that of the
variable vector (λ,µ,ν)T in the LP of Eqs (16)–(19). Hence,
we have reached to the following result:
Theorem 3.1: The LP formulation of Eqs (32)–(35) is a

valid representation of the “dual” problem of Eqs (13)–(14).
Furthermore, for any optimal solution of this LP, (η∗,ρ∗),
the vector ρ∗ defines an optimal solution for the problem of
Eqs (13)–(14).

IV. SOME NUMERICAL RESULTS

In addition to revealing some further special structure for
the “dual” problem that is defined by Eqs (13)–(14), the
results of Section III have a significant practical implication
for the solution of this problem, since they render it amenable
to the capabilities of the various commercial solvers that
are currently available for the solution of some pretty large
LP formulations. To further demonstrate and assess this
potential, we set up and solved the LP formulations corre-
sponding to the “dual” problem that is defined by a number
of instantiations of the traffic scheduling problem considered
in Section II; all these instantiations were defined by means
of the guidepath network depicted in Figure 1.
The guidepath network of Figure 1 provides 133 distinct

zones for the traveling agents, organized in the depicted
grid.9 In the performed experiment, we generated randomly
a number of instances of the original MIP formulation of
Section II-A, while varying the number of traveling agents
from 3 to 30, with a step-increase of 3. For each of
these levels, we generated five replications, and for each
replication, we obtained an upper bound T to the optimal
makespan w∗ using some of the heuristic algorithms that

9We should also notice that in the graph of Figure 1 the available zones
are encoded by the graph nodes and not by its edges; but the translation
of this structure to the corresponding model of Section II-A is pretty
straightforward.
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Fig. 2: A plot reporting the computational times observed in
our experiments.

are reported in [6], [5]. Subsequently, we formulated and
solved the corresponding LP formulation of Eqs (32)–(35).
All the LP formulations were solved through CPLEX, while
the preparation of the input files for CPLEX from the
original problem data was performed through MATLAB.
The corresponding computation was executed on a 2013
Macbook Pro with a 2.4 GHz Intel Core i5 processor and 8
GB of 1600 MHz DDR3 RAM.
Figure 2 plots the computational times required for set-

ting up and solving these formulations, as a function of
the number of traveling agents; in particular, the reported
numbers are the averages of the computational times that
were observed for the corresponding replications. As it can
be seen from the plot of Figure 2, the computational time re-
quired by the presented approach increases with the number
of agents involved and the congestion that is experienced
in the underlying guidepath network,10 but the approach
remains tractable for pretty large instances of the underlying
scheduling problem.11 Finally, to provide the reader with
some more concrete appreciation of the computational effort
that was involved in the presented experiment, we also notice
that the largest LP formulated and solved in this experiment
employed 184,444 variables and 316,025 constraints.

V. CONCLUSIONS

This work has complemented our earlier developments on
the problem of managing the traffic generated by a set of

10The impact of this congestion in the context of the considered ex-
periment is primarily through the quality / “tightness” of the T -values
that are returned by our heuristic algorithms as estimates of the optimal
makespan; more specifically, the application of our heuristic algorithms to
more congested problem instances tends to increase the deviation of the
returned schedules from the optimal makespan, and, thus, it leads to larger
estimates for parameter T .

11In fact, the largest part of the times reported in Figure 2 was consumed
by MATLAB for setting up the corresponding formulations. We believe that
the reported times can be curtailed considerably by using a more streamlined
code for this task, developed in a more basic programming language like
C.

agents that circulate in the restricted environment of a zone-
controlled guidepath network, by providing an efficient LP-
based (re-)formulation of the “dual” problem that is defined
by a Lagrangian relaxation of the original scheduling prob-
lem. Furthermore, the numerical experimentation reported
in Section IV has demonstrated that this new LP-based
representation enables the solution of the aforementioned
“dual” problem through the currently available LP solvers,
even for some pretty large problem instances. Our future
work will seek to exploit this new computational capability
in the heuristic algorithms that we have been developing for
the traffic-management problems considered in this work.

REFERENCES

[1] S. S. Heragu, Facilities Design (3rd ed.). CRC Press, 2008.
[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information. Cambridge, UK: Cambridge University Press, 2010.
[3] G. Daugherty, S. Reveliotis, and G. Mohler, “Some novel traffic

coordination problems and their analytical study based on Lagrangian
Duality theory,” in Proceedings of the 55th IEEE Conf. on Decision
and Control (CDC 2016). IEEE, 2016, pp. –.

[4] ——, “A customized dual ascent algorithm for a class of traffic coor-
dination problems,” ISyE, Georgia Institute of Technology (submitted
for publication), Tech. Rep., 2016.

[5] ——, “Optimized multi-agent routing in guidepath networks,” in
Proceedings of the 2017 IFAC World Congress. IFAC, 2017, pp. –.

[6] ——, “Optimized multi-agent routing for a class of guidepath-based
transport systems,” ISyE, Georgia Institute of Technology (submitted
for publication), Tech. Rep., 2017.

[7] G. Daugherty, “Multi-agent routing in shared guidepath networks,”
Ph.D. dissertation, Georgia Tech, Atlanta, GA, 2017.

[8] T. Stanley and R. Korf, “Complete algorithms for cooperative pathfind-
ing problems,” in Proc. 22nd Intl. Joint Conf. Artif. Intell., 2011.

[9] Q. Sajid, R. Luna, and K. E. Bekris, “Multi-agent path finding with
simultaneous execution of single-agent primitives,” in 5th Symposium
on Combinatorial Search, 2012.

[10] J. Yu and S. M. LaValle, “Optimal multirobot path planning on
graphs: Complete algorithms and effective heuristics,” IEEE Trans.
on Robotics, vol. 32, pp. 1163–1177, 2016.

[11] H. Ma, C. Tovey, G. Sharon, S. Kumar, and S. Koenig, “Multi-agent
path finding with payload transfers and the package-exchange robot-
routing problem,” in AAAI 2016, 2016, pp. 3166–3173.

[12] R. M. Wilson, “Graph puzzles, homotopy, and the alternating group,”
Journal of Combinatorial Theory, B, vol. 16, pp. 86–96, 1974.

[13] D. Kornhauser, G. Miller, and P. Spirakis, “Coordinating pebble mo-
tion on graphs, the diameter of permutation groups, and applications,”
in Proc. IEEE Symp. Found. Comput. Sci. IEEE, 1984, pp. 241–250.

[14] M. Pinedo, Scheduling. Upper Saddle River, NJ: Prentice Hall, 2002.
[15] S. A. Reveliotis, Real-time Management of Resource Allocation Sys-

tems: A Discrete Event Systems Approach. NY, NY: Springer, 2005.
[16] S. Reveliotis, “Logical Control of Complex Resource Allocation

Systems,” NOW Series on Foundations and Trends in Systems and
Control, vol. 4, pp. 1–223, 2017.

[17] B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical,
Robust and Stochastic. London, UK: Springer, 2015.

[18] L. A. Wolsey, Integer Programming. NY, NY: John Wiley & Sons,
1998.

[19] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Mineola, NY: Dover, 1998.

[20] S. Reveliotis and E. Roszkowska, “On the complexity of maximally
permissive deadlock avoidance in multi-vehicle traffic systems,” IEEE
Trans. on Automatic Control, vol. 55, pp. 1646–1651, 2010.

[21] M. L. Fisher, “The Lagrangian relaxation method for solving integer
programming problems,” Management Science, vol. 27, pp. 1–18,
1981.

[22] D. P. Bertsekas, Nonlinear Programming (2nd ed.). Belmont, MA:
Athena Scientific, 1999.

[23] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming (4th
ed.). NY, NY: Springer, 2016.

5665


