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Abstract—This paper overviews a research program of ours

that concerns the routing of a number of traveling agents

over a transportation medium that is abstracted as a “zone”-

controlled guidepath network. From an application standpoint,

this class of problems arise in the real-time management of the

traffic that takes place in many contemporary material handling

systems. But quite interestingly, the same problems also arise

in the routing of the ionized atoms that are the elementary

information carriers in the context of quantum computing. The

paper provides a conceptual description and some motivational

applications for the aforementioned problems, places these

problems in the context of the existing literature, and outlines

the methodological base and the key results that have been

developed in the presented research; detailed expositions of

these technical developments can be found in the provided

references.
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I. INTRODUCTION: PROBLEM DESCRIPTION AND
MOTIVATION

The research program presented in this document ad-
dresses the problem of routing a number of traveling agents
along the edges of a connected graph, which is referred to as
a “guidepath network.” Every agent has a set of designated
destinations to which it is being routed. The objective of
this research is to find ways to minimize the time required to
route all agents in the system to their respective destinations,
simultaneously. Since the considered guidepath network is
shared by the entire set of agents, the routes followed by
these agents will be subject to certain congestion – or
“coupling” – constraints that prevent any agent’s route from
causing conflict with the routes of the remaining agents.
Thus, this research aims at providing efficient, conflict-free,
multi-agent routes between arbitrary origins and destinations
within a highly restricted transportation environment.
A particular “real-world” application that motivates this

research is that of flexibly automated, unit-load, zone-
controlled material handling (MH) systems implemented in
various production and distribution settings [1]. In this case,
the vehicle traffic is restricted to a well-defined network
(i.e., a “guidepath network”). The structure of this guidepath
network may be defined naturally by the physical structure of
the MH system, as in the case of (i) the crane or gantry sys-
tems used at certain major ports, and some heavy-industrial
manufacturing plants, and (ii) the monorail systems used
in modern semiconductor fabs. Alternatively, the guidepath
network may also be an externally imposed structure, as in
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the case of automated guided vehicles (AGVs); in this last
case, the traveling vehicles are restricted to certain corridors
of a production or distribution layout in order to avoid
collisions with workers and other shop-floor equipment.
The guidepath network traversed by a set of AGVs (or

other MH systems) is frequently divided into “zones” de-
signed to prevent collisions among the traveling vehicles, by
allowing only one vehicle to reside in a zone at any given
time. Allocation of a zone to a traveling vehicle must be
coordinated through a control mechanism. Furthermore, the
employed zoning scheme induces a natural discretization of
the vehicle trips into “legs,” wherein a route for any given
vehicle can be described by a sequence of adjacent zones
that define the agent’s discrete location at each time step.
Another problem instance that motivates this work (and

maps neatly into the discretization process just described) is
that of coordinating the movement of quantum bits (known
as “qubits”) inside the central processing unit of a quantum
computer [2]. Much like AGVs, qubits must travel between
storage locations and “gate” locations, where they can in-
teract with one another or be subjected to phase-change
operations. And much like AGVs, qubits move along a
specific guidepath network. The exact physical implemen-
tation may vary (e.g., from “ion-trap” to “quantum-dot”
configurations [2]), but the underlying routing problem is
essentially independent from the type of quantum computer.
The above two application contexts share certain opera-

tional characteristics, such as (i) the restrictions against agent
co-residency at points on the guidepath network that do not
serve either as source or destination locations, along with
(ii) a “no-swap” rule that prevents agents from switching
locations between two consecutive time steps. This last
restriction ensures, among other things, that the model will
not expect two AGVs traveling in opposite directions down
a narrow aisle to switch places instantaneously, an operation
that is not physically possible.
There are also some differences between the AGV opera-

tional context and that of quantum-computing. For instance,
it is often assumed that AGVs do not reverse direction within
an aisle, but this behavior is acceptable for qubits, and it may,
indeed, be helpful in order to solve the problems addressed
in this work. Another consideration is that AGV systems
are often assumed to have no destination locations that can
also be used as transit locations by other vehicles. In the
quantum-computing context, however, this overlap between
transit and destination locations may be very common since
this possibility offers a scheduler extra freedom when routing
agents to their respective destinations. From the standpoint of
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the traffic management problems considered in this work, the
aforementioned overlap implies a number of quite subtle and
difficult constraints: given that some edges of the guidepath
network that constitute destinations for certain agents are also
used for transit by other agents, it is imperative that no set
of agents residing in their destination locations form a cut of
the guidepath network that separates an agent still in transit
from its own destination.
The bottom line for all of the aforementioned applications

is that agents, irrespective of whether they are qubits or
AGVs, must travel efficiently between various origin and
destination locations while avoiding certain detrimental or
forbidden behaviors. In particular, multiple agents cannot
occupy the same location at the same time during transit, and
two agents cannot swap places from neighboring locations
in the guidepath network. The system must also prevent the
formation of “deadlocks” – i.e., states where multiple agents
block each other’s advancement within the guidepath net-
work – that might arise due to the previous two restrictions.
The model and the algorithms developed for this research
are designed with sufficient generality to cover both types of
problem instances and are even adaptable to other contexts
(e.g., flexible job-shop scheduling) that have slightly different
system behaviors or constraints than the ones discussed here.

II. LITERATURE REVIEW

A number of researchers have studied in depth the problem
of eliminating deadlocks from the considered traffic systems,
along with a similar problem known as “livelocks”; in both
of these problems, a set of traveling agents reach a set of
traffic states from which they are incapable of reaching their
destinations. Hence, these two types of problems are united
by one imperative: The system state (which can sufficiently
be described by the location and the direction of all agents
on the guidepath network at a given moment in time, and
also their remaining visitation requirements) must always be
“safe”; i.e., there must exist a deadlock- and livelock-free
schedule that can return every agent to the system “depot”
after they have successfully visited all their destinations. The
system “depot” itself can be thought of as a single or even
a broader set of locations in the guidepath network, with the
capacity to retain all agents in the system and to dispatch
them in arbitrary order.
Reveliotis [3] formalizes the problem of deadlock avoid-

ance for the considered traffic systems by modeling it as a su-
pervisory control problem of Discrete Event Systems (DES)
theory [4], [5], and provides a computationally efficient
method for enforcing liveness within AGV systems based on
a non-trivial extension of Dijkstra’s Banker’s algorithm [6].
Reveliotis and Roszkowska [7] show that, for the considered
traffic systems, maximally permissive deadlock avoidance
(i.e., deadlock avoidance that guarantees that a system state
will be classified as safe if and only if at least one multi-
agent schedule exists to route all agents back to the “depot”
location) is an NP-hard problem. Additional work in the
DES-related literature that has coped with the problem of
deadlock avoidance in the considered traffic systems can be
found in [8], [9], [10], [11]; a significant part of these works
adapts to the considered traffic systems more general results

regarding the broader problem of deadlock avoidance for
sequential resource allocation that is extensively treated in
[12], [13].
While the aforementioned deadlock-avoidance algorithms

can be used to guarantee that any prescribed traffic schedule
cannot cause deadlocks, they do not address the problem of
optimizing the performance of these schedules with respect
to some time-based objective. In the considered operational
context, such a frequently used objective is the time that will
take all agents to complete their running trips and return to
the system depot, a concept that is technically characterized
as the schedule ”makespan”; the research program outlined
in this document uses the schedule makespan as the primary
objective function.
One perspective that can be used to approach the re-

sulting scheduling problem is that of “job-shop” scheduling
[14]. When the considered multi-agent routing problem is
mapped to the “job-shop” scheduling paradigm, “machines”
are replaced by the zones of the guidepath network, and
the executed “jobs” correspond to the agent trips between
different locations. The literature on job-shop scheduling
offers a variety of methods to approach this problem. For
instance, these methods include certain adaptations of the
more general “branch-and-bound” algorithm to this particular
problem [14], [15]. The corresponding algorithms have the
potential to find optimal solutions, but usually they will
execute in prohibitively long times; this last effect is espe-
cially true for the real-time traffic-management context that
is considered in this work. Job-shop scheduling algorithms
also include disjunctive programming [14], [16] and various
efficient heuristics such as the “shifting-bottleneck” heuristic
[17], [18]; but these algorithms cannot accommodate easily
the extraordinary flexibility that exists in many guidepath
networks.
There is also some prior research that addresses more

explicitly routing problems similar to those considered in this
work, coming from the communities of industrial engineering
(IE) and operations research (OR). The most prominent of
these works can be found in [19], [20], [21]. However, the
perusal of this material reveals that, for the most part, these
works essentially seek to adapt to the considered problem
context, perspectives and methodology that were originally
developed for the more traditional “vehicle routing” problem
[22], that has been extensively addressed by those two
communities. As a result, the proposed solutions (i) fail
to provide a thorough treatment of the more behavioral /
structural issue of deadlock avoidance, and (ii) they are
also computationally intensive, to the point that they may
not be practically applicable to the “large-scale” and “real-
time” operational context that is defined by the underlying
applications.
As a case in point of the limitations that are experienced

when trying to apply the aforementioned lines of work to the
guidepath-based traffic systems that are considered in the
presented research program, next, we focus, in particular,
to the approach that is presented in [21] (see also [23]).
This approach routes agents iteratively, one at a time, while
imposing a set of time-window constraints, in order to find
solutions that are efficient and (often) deadlock-free. More
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Fig. 1: This figure represents a problem where Agents 1,
2, and 3 must travel from the lower-left corner of the
guidepath network to the upper-right, after reversing their
order. A “depot” location is circled in the lower-right corner,
where agents may be pooled and re-dispatched, but doing
so would not be a strong solution to this problem. The
arrows depicted in Figure 1 constitute a modeling abstraction
that is useful especially for contexts where agents cannot
necessarily reverse their direction of travel. The resulting
directed graph, and the associated labeling and notation,
exemplify the abstracting representation of the dynamics of
the considered traffic systems and of their state, that is used
by the considered research program.

specifically, the route of each agent is determined according
to a shortest-path problem with time windows (SPPTW),
where the time windows prevent conflicts with the agents
routed earlier. The ad hoc decomposition of the overall
routing problem that is adopted by this routing method,
renders it computationally more efficient than some of the
other methods that were cited in the previous paragraph,
and possibly tractable in the real-time context of the routing
problems that are considered in this work. Yet, there are
problem instances where this method will fail to provide any
solution.
For a more concrete example of the aforementioned limita-

tions, consider Figure 1. The routing problem depicted in this
figure requires three agents to start in the lower-left corner
and finish in the upper-right, after reversing their order. If
one were to attempt to route these three agents using the
aforementioned SPPTW approach for each agent, then one
would first find that Agent 3 must be the first to move. After

that, no conflict-free path will exist for either Agent 2 or
Agent 3 to reach its destination. Hence, approaching this
problem instance as a series of SPPTWs would return no
solution.
The ability of a small problem like that discussed in the

previous paragraph to defeat some of the most promising
existing algorithms hints at (i) the very high difficulty of the
considered routing problems, and (ii) the need to pay close
attention to all the operational constraints that are defined
by the spatio-temporal dynamics of the underlying traffic. In
the considered example, it is important that no subset of the
agents that have come to rest at their respective destinations
forms a cut blocking any agents still in transit from their own
destinations. One of the key contributions of the presented
research is its ability to recognize and address systematically
all these complications and nuances.

III. GOALS AND OUTLINE OF THE PRESENTED
RESEARCH PROGRAM

As already stated in the previous section, the presented
research program addresses the problem of finding routing
schedules for the considered multi-agent traffic systems that
are conflict-, deadlock- and livelock-free, and also have
minimized makespans.
Conceptually, each agent trip starts and finishes with the

agent at the depot, and the trip itself is formally specified as
a sequence of “target” locations that must be visited by the
traveling agent, in the specified order. Such a formal spec-
ification of the “trip” concept is necessary for formalizing
the underlying traffic dynamics and for stating and proving
important properties for the agent motion, like its safety
and its liveness. However, from a more practical operational
standpoint, the synthesized solution will retain the possibility
to redirect agents that have completed the key milestones
of their trip to another mission, before actually returning to
the depot. On the other hand, the problem of the optimized
assignment of the various mission trips to the available
agents is not part of the considered research program, but
it constitutes a natural theme for follow-up work.
From a methodological standpoint, the considered research

program must strike a pertinent balance between (i) the
aforestated objective of minimizing the makespan of the
adopted traffic schedules while ensuring the safety and the
liveness of the resulting traffic, and (ii) the super-polynomial
computational complexity of this task. We seek to establish
this balance through a Model Predictive Control (MPC)
framework [24], that decomposes the overall routing problem
on the basis of the most immediate destinations of the trav-
eling agents. Hence, this MPC framework seeks to develop
an optimized route for each traveling agent, but only with
respect to its next destination. At the same time, the resulting
decomposition must ensure the safety and the liveness of the
entire traffic that is generated by this approach; this last set
of requirements can be perceived as a notion of “stability”
customized to the considered operational context.
Within this MPC framework, the currently available results

from the presented research program can be summarized as
follows:
1) The program has formalized the aforementioned MPC
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framework for the considered traffic scheduling prob-
lems, at a level of abstraction that applies to all the
application contexts that were discussed in the previous
sections of this document.

2) It has developed a complete Mixed Integer Program-
ming (MIP) formulation for the “core” scheduling
(sub-)problem of the considered MPC framework, that
concerns the expedient routing of the traveling agents
to their immediate destinations. This formulation ren-
ders the addressed problem amenable to the perspec-
tives and the techniques of combinatorial scheduling
theory [14].

3) It has developed a Lagrangian relaxation approach for
the MIP formulation of item #2 above [25], [26], that
can provide (a) strong lower bounds to this formu-
lation, and (ii) potential “seeds” for the construction
of near-optimal solutions to the original scheduling
problem.

4) A particularly strong development in the context of
item #3 above is the development of a set of cus-
tomized approaches for the exact and expedient solu-
tion of the corresponding (Lagrangian) dual problem,
a challenging task in itself [26]; these approaches take
advantage of a distributed representation of the sub-
differentials involved, which allow (i) the effective
identification of ascending directions in the context of
certain ascent-type methods, and even (ii) the reduction
of the entire dual problem to a single linear program.

5) An additional set of results, complementary to the
results of items #3 and #4 above, concerns the devel-
opment of novel heuristic algorithms for the consid-
ered scheduling problems that take the form of “local
search”-based methods [15]. We should also notice at
this point that for the considered scheduling problems,
it can be shown that even the construction of just a
feasible solution is, in general, an NP-hard problem
[7]. However, the considered research has identified
a number of conditions that will render quite tractable
the construction of a first initial solution. Subsequently,
the employment of a pertinent specification and repre-
sentation of the “neighborhood” structure to be used
in the pursued local search, together with some novel
dynamic programming (DP) formulations for effecting
this search, enable the expedient identification of some
very efficient schedules, even for some very hard
problem instances.

Detailed, technical treatments of the aforementioned re-
sults can be found in the following more technical publi-
cations of ours: [27], [28] for items #1 – #4 in the above
list, and [29], [30] for items #1 and #5. In the next section,
we also present results from some numerical experimentation
that demonstrates and assesses more empirically the efficacy
of the aforementioned developments.

IV. SOME NUMERICAL RESULTS

In a first set of experiments, we have sought the application
of the methodology that was outlined in Section III to the
particular problem instance that is depicted in Figure 1.
The intricacies of this problem instance that were discussed

TABLE I: An optimal set of agent routes computed for the
problem instance of Figure 1 – adapted from [30].

t a1 a2 a3 t a1 a2 a3 t a1 a2 a3

0 28 30 32 6 25 35 37 12 12 17 21
1 28 30 34 7 23 33 37 13 14 10 19
2 28 32 25 8 21 25 35 14 16 12 17
3 30 34 36 9 19 23 33 15 16 14 10
4 32 25 38 10 17 21 25 16 16 14 12
5 34 36 38 11 10 19 23

during its introduction in Section II, have rendered it as some
sort of “benchmark” in the corresponding community and
literature.
The application of the heuristic algorithms discussed in

item #5 of the previous section to the aforementioned prob-
lem instance gave an optimal set of routes that is tabulated
in Table I. In particular, Table I reveals that the optimal
makespan for the considered problem is 16 periods, and
the agent routes are represented by the edge sequences
that are occupied by each agent ai, i = 1, 2, 3, over the
horizon {0, . . . 16}. The detailed tracing of the reported
routes manifests the extent of coordination and “intelligence”
that must be exhibited by the considered set of agents.1 On
the other hand, our algorithms were able to compute this
optimal schedule in 25 msecs while running on a simple
MacBook Pro.
Another line of experimentation, originally reported in

[30], has sought to assess more systematically the perfor-
mance of the routing algorithms that have been developed in
our work, and to identify some factors that might impact this
performance. This experiment was executed by means of the
guidepath network that is depicted in Figure 2. More specif-
ically, Figure 2 depicts a “dual” version of the employed
guidepath graph, where the various zones are represented
by the nodes of the depicted graph, while the edges that
connect these nodes define the neighboring structure of these
zones. As it can be seen in Figure 2, the employed guidepath
network consists of 133 zones, organized in a grid structure.
The red node at the center of the graph depicted in Figure 2

indicates the location of the “depot”. More specifically, in our
experiments, the depot was placed at two different locations:
(i) the middle of the guidepath network, as indicated in
Figure 2, and also (ii) one of the four corners of the depicted
graph.2 The results that are reported in the rest of this section
reveal that the depot placement can have a significant impact
on the performance of the presented algorithm.
The problem instances addressed in the considered ex-

periment for each of the two depot placements involved a
number of agents ranging from 3 to 45, with a step-increase
of three agents. The starting and the destination locations
for each agent were determined randomly. Furthermore, the
construction of these problem instances was such that the

1To facilitate this route tracing, we must also notice that (i) the considered
problem instance assumes that agents can reverse the direction of their
motion within any given edge, and (ii) the computed schedules enforce the
separation requirement stated in Section I that an agent cannot move into
a zone that was occupied in the previous period. However, none of these
two assumptions is critical for the effective implementation of the presented
methodology.

2Due to the symmetries of the graph of Figure 2, all these corners are
topologically equivalent.
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Fig. 2: The guidepath graph used in the numerical experiment discussed in Section IV – reproduced from [30].
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Fig. 3: Plotting the optimality gap for the numerical experi-
ment of Section IV – reproduced from [30].

problem instance involving n agents subsumed the problem
instance that was defined with n�3 agents, n = 6, 9, . . . , 45.
This structure of the experiment in terms of the number of
the traveling agents and their routing specifications intended
to assess the performance of the algorithm as the guide-
path network became increasingly more congested; indeed,
problem instances with 45 agents imply a pretty congested
guidepath network, since, at each time period, the traveling
agents occupy about 1/3 of the available zones.
We executed five replications of the aforementioned ex-

periment on an HP Z230 workstation with an Intel core
i7 processor and 8 GB RAM, running Fedora Linux. The
obtained results are summarized in Figures 3 and 4.
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Fig. 4: Plotting the computational times for the numerical
experiment of Section IV – reproduced from [30].

Figure 3 reports the optimality gaps for the obtained
schedules, averaged across the five replications for each
considered problem instance. These optimality gaps were
assessed through the solution of the Lagrangian dual problem
of the considered problem instances that is studied in [28],
[27]; in particular, for each replication, the reported value for
the optimality gap was computed by the following formula:
obt. sched. makespan � opt. value of Lagr. dual

opt. value of Lagr. dual
⇥ 100

The two plots presented in Figure 3 suggest that the
performance of our algorithms is pretty close to the optimal
in environments where the zone occupancy by the traveling
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agents is fairly low, but this performance degrades as the
ratio of the number of the traveling agents to the number
of zones of the guidepath network increases to some higher
levels. Furthermore, the experienced degradation is higher
in the case that the agent depot is located away from the
“center” of the guidepath network.3

Figure 4 plots the algorithm computational times as a
function of the traffic density. Again, the reported times
are averaged across the five replications of each considered
problem instance. As it can be seen in the provided plots,
our algorithms execute very fast, even for problem instances
that correspond to highly congested environments. Also, the
plots of Figure 4 are consistent with the plots of Figure 3
in identifying (i) the traffic density, and (ii) the centrality
of the depot location as important factors that determine the
difficulty of the considered problem instance.

V. CONCLUSIONS

In this paper we have overviewed an ongoing research
program concerning the real-time traffic management for a
set of agents that travel over a zone-controlled guidepath
network, in order to ensure the expediency of the agent
trips, but also the safety and the liveness of the resulting
motion. We have discussed a number of application contexts
that motivate the considered problem, and we have posi-
tioned this problem and our technical developments in the
relevant literature; along these lines, we have characterized
the affinity of the considered problem to some previously
studied scheduling problems, but also the new analytical
and computational challenges that are defined by it. We
have overviewed the pursued methodological framework, and
the primary technical developments that have been attained
in the context of this framework. In the last section, we
also reported some numerical results that demonstrate the
practical potency of the presented developments. Finally,
we should add at this point that the derived results have
been implemented in a high-fidelity simulator for quantum
computing that is developed by a research team at the
Georgia Tech Research Institute (GTRI).
Our future work will seek to strengthen further the re-

ported developments by improving the currently attained
trade-off between the computational efficiency of the de-
veloped methods and the efficacy of the derived solutions.
It will also seek to embed more systematically the current
developments in the MPC framework that was discussed
in Section III, and to extend this framework in order to
address more complicated traffic dynamics and higher-level
decisions, like the agent matching with the emerging trans-
port requests. Finally, we shall also seek the application of
the derived results to some “real-life” instantiations of the
material handling systems that were discussed in Section I.
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[23] E. Gawrilow, E. Köhler, R. H. Möhring, and B. Stenzel, “Dynamic
routing of automated guided vehicles in real-time,” in Mathematics –
Key Technology for the Future. Springer, 2008, pp. 165–177.

[24] B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical,
Robust and Stochastic. London, UK: Springer, 2015.

[25] M. L. Fisher, “The Lagrangian relaxation method for solving integer
programming problems,” Management Science, vol. 27, pp. 1–18,
1981.

[26] D. P. Bertsekas, Nonlinear Programming (2nd ed.). Belmont, MA:
Athena Scientific, 1999.

[27] G. Daugherty, S. Reveliotis, and G. Mohler, “Some novel traffic
coordination problems and their analytical study based on Lagrangian
Duality theory,” in Proceedings of the 55th IEEE Conf. on Decision
and Control (CDC 2016). IEEE, 2016, pp. –.

[28] ——, “A customized dual ascent algorithm for a class of traffic coor-
dination problems,” ISyE, Georgia Institute of Technology (submitted
for publication), Tech. Rep., 2016.

[29] ——, “Optimized multi-agent routing in guidepath networks,” in
Proceedings of the 2017 IFAC World Congress. IFAC, 2017, pp. –.

[30] ——, “Optimized multi-agent routing in guidepath networks,” ISyE,
Georgia Institute of Technology (submitted for publication), Tech.
Rep., 2017.

73


