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Abstract—This paper presents a heuristic algorithm for
minimizing the makespan required to route a set of agents
inhabiting a shared guidepath network from their initial loca-
tions to their respective destinations while observing a set of
regulations that seek to ensure the safety and the integrity of the
generated traffic. From an application standpoint, the presented
developments are motivated by the traffic coordination challenges
that arise in the context of many automated unit-load material
handling systems and also in the transport of the ionized
atoms that takes place in the context of quantum computing.
From a methodological standpoint, our developments constitute a
customization of the general “local-search” framework of combi-
natorial optimization theory to the traffic management problem
that is considered in this paper. Hence, the presented results
include a rigorous characterization of the considered problem
and its solution space, detailed algorithms for the construction
of the necessary initial solutions and the improving step for the
pursued search, a complexity analysis of these algorithms, and
a set of computational experiments that reveal and assess the
computational efficiency of the presented algorithms and the
efficacy of the derived solutions. The paper concludes with some
suggestions for potential extensions of the presented results.

Note to Practitioners—In many contemporary applications of
automation science and engineering, a number of entities—or
“agents”—must be transported expediently from their initial
locations to certain destinations using a set of links that define
the underlying “guidepath network.” Furthermore, various safety
considerations require that the agents must be adequately sepa-
rated during these transports, and the imposed restrictions turn
the corresponding traffic coordination problem into a complex
resource allocation problem, where the contested resources are
the guidepath-network links. This paper presents a set of algo-
rithms that can provide high-quality schedules for the resulting
traffic-scheduling problems in a computationally efficient man-
ner. These properties of our algorithms are established through
the necessary theoretical analysis, but they are also demonstrated
through a series of numerical experiments where they are shown
capable to provide near-optimal solutions for some very complex
problem instances in no more than a few seconds. In addition,
our algorithms are “complete,” i.e., they will always provide a
feasible schedule for any instantiation of the traffic-scheduling
problem considered in this paper. Hence, they can effectively
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address the needs for “real-time” traffic management that arise
in the context of the considered applications.

Index Terms—Combinatorial scheduling, conflict manage-
ment, congestion control, guidepath-based transport systems,
multiagent routing, multirobot path planning.

I. INTRODUCTION

IN THIS paper, we consider a class of traffic scheduling
problems that concern the circulation of a set of “agents”

on the edges of a connected graph, which is known as the
“(supporting) guidepath network.” The edges of the guidepath
network define “zones” for the supported traffic that can be
occupied by at most one agent at a time. Access to the
guidepath zones is granted by a central controller, and in this
way, the trip of any given agent from an “origin” location to a
“destination” location becomes a “resource allocation process”
where the necessary zones that support the various legs of this
trip are requested and acquired one zone at a time. Additional
constraints regulate the agent transitioning between the zones
and the behavior of the agents upon reaching their destinations.
Our main concern is to enable all traveling agents to reach their
destinations in a way that: 1) respects the imposed regulations
and 2) minimizes the “(time) makespan” of the corresponding
traffic schedule.1

From a practical standpoint, the aforementioned problem
arises in a broad spectrum of applications that includes various
robotics [1] and automated industrial material-handling [2]
applications, the design and the analysis of various classical
games [3] and animated computer-game [4] applications, and
the efficient processing of the ionized atoms that are the
elementary information carriers in the context of quantum
computing [5]. Each of these application contexts gives rise
to different detailed formulations of the considered traf-
fic scheduling problem, with the corresponding formulations
being differentiated in terms of: 1) the zone-allocation con-
straints that define the dynamics of the generated traffic and
2) the performance objective that characterizes the notions of
the “traffic expediency” and “efficiency.” Furthermore, as it
happens with many other classes of combinatorial optimiza-
tion/scheduling problems, each of these formulations can vary
substantially in terms of the computational complexity of the
corresponding optimization problem but also in terms of the
feasibility of its various instantiations and the complexity of
the construction of a feasible—or “satisficing”—solution for it.
The particular problem version that is considered in this

paper arises in the operational context of a very broad class

1This high-level description of the considered traffic systems becomes much
more detailed in the subsequent, more technical parts of this paper.
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of automated material handling systems (MHS), known as
“unit-load, zone-controlled” MHS [2], and also in the afore-
mentioned operational context of quantum computing. More
specifically, in many industrial settings, the necessary material
handling operations are supported by a fleet of autonomous
agents that transport material among a set of locations while
moving on a set of very detailed pathways that link these
locations and define the corresponding “guidepath network.”
Particular instantiations of this basic description include the
automated guided vehicle (AGV) systems that are used in
many production and distribution environments [2], the over-
head monorail systems that have been the typical MHS in
semiconductor manufacturing [6], [7], and the complex gantry
crane systems that are used in some large ports and railway
yards [2]. In all these environments, in order to avoid collisions
among the system agents, the links of the guidepath network
are split up into “zones,” and it is required that, at any time
point, each zone is occupied by at most one vehicle. This
requirement is enforced by a traffic supervisor that monitors
the zone occupancy by the traveling vehicles and grants
accessibility to these zones. Additional safety concerns and
other practical considerations define further conditions that
must be satisfied by an admissible transition of an agent from
its current zone to a neighboring one on the guidepath network.
Such a typical condition is that an agent can move from its
current zone to a neighboring one only if the requested zone
is currently unoccupied; this requirement: 1) ensures the agent
separation in the face of the uncertainty that is introduced by
the asynchronous nature of the agent transitions between their
consecutive zones and 2) also prevents zone “swapping” by
agents that occupy neighboring zones, since in the context
of the considered environments, such zone swaps are not
physically possible.
In the aforementioned settings, the agent traveling can be

perceived as a set of “mission trips” corresponding to a
transport operation between an origin and a destination node
of the guidepath network. The transport requirements arise in
a dynamic manner, and they are assigned to the system agents
according to certain logic that will be taken as prespecified
and outside the scope of the considered work. Furthermore,
the system configuration possesses a “resting area” where
agents that have completed their previously assigned missions
are retired and potentially recharge their batteries. Hence,
in this operational setting, the task of the traffic controller
is to enable each agent to complete its current mission in an
expedient manner, and reach successfully the resting area.2

In particular, under an arbitrary topology for the underlying
guidepath network, and certain further assumptions about the
agent maneuverability while traversing the various zones of
this network, the aforementioned restrictions on the zone
allocation process can also give rise to “deadlock” formations
where a subset of agents blocks each other’s advancement
toward the completion of their mission trips in a permanent
manner [8]; in these cases, the traffic controller must also
effectively predict and prevent such potential deadlocks.

2In fact, agents that have completed their mission and are heading to the
resting area can also be reassigned to a new mission before actually returning
to the resting area.

The traffic coordination problem for the unit-load, zone-
controlled MHS that was described in the previous paragraphs
arises essentially identical in the physical operations that take
place in the context of quantum computing. In this case,
the traveling agents are the ionized atoms that hold the ele-
mentary information that is processed in those computational
platforms, and are known as “qubits” [5]. These qubits must
have their quantum state altered in a controlled manner by
bringing them in certain locations where they will interact
with certain local fields and possibly with each other. The
qubit circulation among these locations is facilitated by a
“maze” of “ion traps” that contain physically the qubits and
isolate them from their surrounding environment and from
each other. Hence, the ion traps play the role of the zones
in the MHS that were described in the previous paragraphs,
and their allocation to the traveling qubits obeys restrictions
and concerns similar to those that arise in those earlier cases.
Furthermore, the role of the resting area is played in this
case by the physical medium implementing the “memory”
that holds qubits that are not currently participating in the
running computation, while the mission trips for the traveling
qubits are defined by the underlying program code and its
decomposition to the elementary computational operations
that are recognized by quantum computing. Finally, in this
new application setting, traveling agents might also need to
satisfy “rendezvous” requirements at certain locations, a fact
that raises additional synchronization concerns and implicit
precedence constraints for the underlying “zone allocation”
problem.
It should be clear from all the above discussions that the

traffic coordination problem arising in the context of the
described operational settings is pretty complex. Indeed,
the agent contest for the zones of the guidepath network
and the corresponding sequential resource allocation process
possesses all the operational characteristics of the notorious
“job shop scheduling” problem [9]. At the same time, this new
problem version is further complicated by: 1) the extensive
routing flexibility that is defined by the underlying guidepath
network; 2) the new spatiotemporal constraints that must be
observed by the zone allocation process; 3) the potential
“rendezvous” requirements among the traveling agents; and
4) the dynamic specification of the various mission trips.
In view of all this complexity and the dynamic evolution of the
underlying requirements, we propose to address the resulting
traffic scheduling problem through a “rolling horizon” scheme
that decomposes the overall problem into a number of sub-
problems seeking to transport all the traveling agents to their
immediate destinations as fast as possible. More specifically,
these subproblems will be specified each time that an agent
reaches its current destination or it is assigned to a new
mission trip, and they will seek to move all the traveling
agents from their current locations to their next immediate
destination in their mission trips while minimizing the time
that is necessary for all these transports; this time is known
as the “makespan” of the corresponding traffic schedule in
the relevant terminology [9]. Additional care must be taken to
ensure that the specification of the intermediate destinations of
the traveling agents, and the resulting problem decomposition,
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will guarantee the “liveness” of the generated traffic, i.e., the
ability of the traveling agents to complete successfully their
mission trips and retire to the provided resting area while
avoiding potential deadlocks. Finally, it is also important to
notice that the subproblems defined by the outlined rolling-
horizon scheme remain pretty hard, as they maintain all four
features of the overall traffic scheduling problem that were
enumerated at the beginning of this paragraph.
In an effort to provide a complete characterization of the

subproblems that arise in the context of the aforementioned
rolling-horizon scheme, in [10] and [11], we presented a
mixed-integer programming (MIP) formulation for these sub-
problems, and also formulated and investigated a Lagrangian
“dual” problem for that formulation. This “dual” problem
can provide some good lower bounds for the performance
of any optimal traffic schedule, but the computation of such
an optimal traffic schedule through the solution of the MIP
formulation itself will not be tractable for many practical
problem instances. Furthermore, the MIP nature of this for-
mulation implies that the optimal solutions of the “dual”
problem will not specify any solutions for the original MIP
formulation [12], [13].3 Hence, there is a remaining need for
some methodology that will provide efficient, near-optimal
solutions for the traffic scheduling problem that was formu-
lated in [10] and [11]. This need is addressed in this paper.
More specifically, in this paper, we provide a heuristic

algorithm for the traffic scheduling problem that constitutes
the core subproblem of the aforementioned rolling-horizon
framework, by adapting to this problem ideas and techniques
borrowed from the broader area of combinatorial optimiza-
tion [14]. In more technical terms, the presented algorithm can
be perceived as a “local-search” scheme that starts with the
construction of a feasible routing schedule, and subsequently,
it searches for improved solutions over pertinently defined
“neighborhoods” of the underlying solution space. It is well
known that the effective implementation of such a local-search
scheme depends significantly upon the employed represen-
tations of the underlying solution space and the imposed
“neighborhood” structures. We provide these representations
as well as the procedures that will affect the search for
improved solutions.
Furthermore, in the context of the considered traffic schedul-

ing problems, the construction of an initial feasible traffic
schedule can be a challenging task in itself. In fact, for
many instantiations of these problems, the decision problem
of assessing the existence of a feasible routing schedule is
NP-complete [15]. However, the particular class of guidepath-
based traffic systems that is the primary focus of this paper
is defined by a set of operational assumptions regarding the
maneuverability of the traveling agents that: 1) ensure the
feasibility of all the instantiations of the considered traffic
scheduling problem and 2) enable the design of effective and
efficient computational algorithms for the construction of the
necessary initial solutions. When viewed in the context of
the aforementioned rolling-horizon framework, these proper-

3In general, the solution of the Lagrangian “dual” problem might not provide
even a feasible solution for the original MIP formulation.

ties further imply the liveness of the generated traffic, and
therefore, the provided solution is complete in that sense as
well. Moreover, in the closing discussion of this paper, we also
outline some ideas and guidelines for extending the presented
methodological framework to guidepath-based traffic systems
that might not satisfy the complete set of the operational
assumptions that are considered in this paper.
The aforementioned theoretical developments are comple-

mented by a series of computational experiments. The corre-
sponding results reveal that: 1) the traffic schedules generated
by the presented algorithm are very efficient in terms of the
specified objective of minimizing the corresponding makespan
and 2) they can be obtained very fast. Both of these properties
are very important for the practical applicability of the pro-
posed algorithm in the aforementioned application contexts.
Furthermore, additional discussion provided in the last part
of this paper suggests various modifications for the presented
algorithm that can further enhance the quality of the derived
solutions, and facilitate a more explicit tradeoff between: 1) the
representational and the computational complexity of this
algorithm and 2) the operational efficiency of the generated
traffic schedules.
In view of all the above discussions, the rest of this paper is

organized as follows. Section II provides a systematic review
of the current literature on the control of guidepath-based
traffic systems, and positions the developments presented
in this paper in the context of that literature. Section III
presents a formal characterization of the considered traffic
system, the generated traffic dynamics, and the particular
traffic scheduling problem addressed in this paper. Subse-
quently, Section IV presents the key results of this paper,
i.e., the proposed algorithm, together with a formal analysis
of its correctness and its computational complexity. Section V
reports the computational results that demonstrate and assess
the aforementioned efficacies of the presented algorithm.
Section VI discusses potential extensions of the results that are
presented in Section IV, in an effort to expand the applicability
of these results and to further control the tradeoff between the
complexity of the presented algorithm and the efficiency of the
derived solutions. Finally, Section VII concludes this paper.
We also notice, for completeness, that an abridged version of
this material was presented at the IFACWorld Congress 2017.4

II. LITERATURE REVIEW

Because of their very broad applicability that was discussed
in Section I, guidepath-based transport systems have drawn
attention in a number of scientific and engineering communi-
ties. In fact, some of the first studies regarding the dynamics
of this class of traffic systems have been performed by the
computer science community, in the context of the, so-called,
“15-puzzle”. The objective of this puzzle is to reorganize
15 labeled pieces, that are positioned on a 4×4 grid, in a

4That manuscript was developed in a more casual style, and it lacks:
1) the detailed positioning of the work and the expansive literature review
that are provided in this paper; 2) the more formal arguments of Section IV;
3) the more extensive computational experiments that are reported in
Section V; and 4) the second and the third parts of the discussion that is
provided in Section VI.
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row-major arrangement, by using the single empty slot of the
grid. A first feasibility study of this problem was presented
in [3], which studied a generalized version of the problem
that involved n − 1 labeled pebbles located on the vertices
of an n-vertex two-connected graph G. Using permutation
group theory, [3] established that, for nonbipartite graphs G,
the original pebble configuration can be rearranged to any
target configuration, while in the case of bipartite graphs,
the corresponding reachability requirement divides all possi-
ble pebble configurations into two equivalence classes. This
feasibility study was subsequently extended in [16], which
addressed a more general problem version involving: 1) more
general connectivity conditions for the underlying graph G and
2) pebble distributions with more than one empty vertices. This
last paper also provided an O(n3) algorithm that either returns
a feasible solution for the considered problem instance, in the
form of a pebble move sequence, or determines its infeasibility.
More recently, guidepath-based transport systems simi-

lar to those studied in [3] and [16] have been revisited
by the artificial intelligence and the robotics communities
under the theme of “multirobot path planning (MPP).” These
studies have introduced additional assumptions regarding:
1) the topologies of the supporting graph G; 2) the allowed
moves that transform the pebble allocation (or, in this case,
the robot positioning) in this graph; and 3) they have also
converted the original feasibility studies to optimization prob-
lems that seek to optimize the generated move sequence
in terms of some of its attributes. Some interesting works
along the aforementioned lines 1) and 2) are those presented
in [17]–[22]. More specifically, when viewed from a collective
standpoint, these works have specialized the original results
of [3] and [16] for tree topologies of the underlying graph G,
and they have also considered the variations of the original
problem versions that allow for robot substitutability in the
specification of the target configuration, synchronized robot
moves that allow their repositioning and advancement toward
their destinations even in totally congested graphs, and robot
collaboration for the transport of their assigned payloads to the
corresponding destinations. These studies have also provided
feasibility conditions for the corresponding problem instances,
rigorous complexity analyses of the decision problems that are
defined by these feasibility tests, and also complexity analyses
of the various optimization formulations that are defined for
all the above problem versions. Perhaps not surprisingly, most
of these optimization problems turn out to be NP-hard [23].
The negative complexity results for the aforementioned

optimization problems have subsequently determined the algo-
rithmic approaches that have been pursued for their solu-
tion. In the context of the MPP literature, these approaches
are broadly classified into “coupled” and “decoupled”
methods [24]. Decoupled methods seek to control the under-
lying problem complexity by decomposing the overall path-
planning problem across the different agents and addressing
the resulting subproblems sequentially. Path plans that are
generated earlier in this sequence define constraints to be
observed by the remaining subproblems. However, as observed
in [4], [24], and [25], such a decomposition scheme is not
guaranteed to generate a feasible traffic schedule, even if

such a schedule exists, and the algorithm’s ability to generate
a feasible solution, as well as the quality of this solution,
will generally depend on the particular sequence that was
adopted for the solution of the single-agent path-planning
problems. In many cases, these issues can be (partially)
addressed through the iterative execution of the employed
algorithm with pertinently modified sequences for the solution
of the single-agent problems, and/or a localized perturbation of
the generated agent plans at their segments with experienced
conflicts [4]. In some other works of the MPP literature,
the aforementioned limitations of the decoupled methods are
partially addressed through the specification of the entire
traffic schedule as a concatenation of “single-agent [motion]
primitives” that seek to attain certain positions for judiciously
selected agents while possibly incurring the relocation of the
remaining agents in this process. The effectiveness and the
completeness of the resulting algorithms usually depend on the
presumed topology of the underlying guidepath network. Also,
the typical objective of these algorithms is only the synthesis
of a satisficing solution. Some of the most sophisticated exam-
ples of this last line of work are presented in [24] and [26].
Coupled methods of the MPP literature seek to provide

(near-)optimal solutions to the corresponding scheduling prob-
lems by taking a more holistic view of these problems and
their solution spaces. These methods essentially represent the
dynamics of the underlying traffic as a finite-state automaton
(FSA) [27] where: 1) the system states are defined by the
various distributions of the traveling robots to the vertices
(or, in some other cases, the edges) of the guidepath network
and 2) the transitions of the automaton among its various
states are defined by the various “elementary moves” that are
allowable in the considered operational context. Under such
a representation, the resulting optimization problem can be
expressed either as an MIP [21] or as a dynamic program-
ming (DP) problem [25], or even as a “satisfiability (SAT)”
problem [28]. The resulting methods are complete, i.e., they
can provide, in principle, an optimal solution to the considered
traffic scheduling problem, if such a solution exists. But their
applicability is severely limited by the state-space explosion of
the underlying FSA and/or the NP-hardness of the employed
formulations.5

5To circumvent these computational limitations, the coupled methods that
were mentioned in the previous paragraph are typically embedded in a
decomposing scheme that seeks to mitigate the computational complexity of
the eventually solved formulations. Hence, when it comes to the developments
of [21] and [28], it is proposed to cope with the potential intractability
of the respective SAT and MIP formulations by specifying a sequence of
intermediate destinations for each traveling agent and employing a sequence
of simpler SAT and/or MIP-based formulations that will seek to route the
traveling agents to the various configurations that are defined by these inter-
mediate destinations. By employing a dense set of intermediate destinations
and keeping these destinations sufficiently apart from each other, it is possible
to establish a “locality” for the intermediate agent trips that decouples
the corresponding routing problems, simplifies substantially the empirical
complexity of the involved SAT and MIP formulations in terms of the numbers
of variables and constraints involved, and reduces the experienced solution
times. But these simplifications come with a suboptimality for the resulting
traffic schedule that is incurred by the myopic nature of the eventually
employed formulations. Even more importantly, the works of [33] and [34]
essentially “hide” a substantial part of the underlying problem complexity
in the specification of the intermediate destinations, for which they fail to
provide systematic algorithmic procedures.
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On the other hand, some works, like those of [25]
and [29]–[31], have tried to develop in the middle ground
between the coupled and decoupled methods, coming up
with what has been characterized as a “hybrid” method.
This alternative method uses a complete algorithm (frequently
an adaptation of the A∗ algorithm [32] to the considered
problems) in order to determine optimized routing plans for
each single agent, and progressively, it couples these agents
into larger groups every time that the original decoupled
approach fails to generate a complete solution for the under-
lying subgroups. The aforementioned papers also propose a
number of additional heuristics that seek to trade off the
optimality of the generated solution for some control of the
complexity of the generated subproblems and their solution
through the employed variations of the A∗ algorithm. The
resulting hybrid schemes will work effectively for fairly sparse
problem instances, where it is possible to identify optimized
nonconflicting robot paths across small groups of robots; but
they will not scale up to more congested environments where
the pursued decomposition is not possible [21]. Furthermore,
in these harder cases, the premature termination of the exe-
cuted algorithm will fail to provide any feasible solution for
the overall optimization problem.
The problem of the real-time traffic management in

guidepath-based traffic systems, as it materializes in the
context of the automated, unit-load, zone-controlled MHS
that are considered in this paper, has also been addressed,
although rather sporadically, by the IE/OR community. More
specifically, the works of [49] and [50] have formulated the
problem of managing the AGV traffic that takes place over
some complex network topologies by seeking to adapt to this
problem perspectives and formulations that were originally
developed by the IE/OR communities for the more traditional
“vehicle routing” problem [35]. Like the coupled methods dis-
cussed in the previous paragraphs, the developed approaches
provide a complete characterization of the considered problem
and its solution space, and they can return an optimal solution
when applicable. But their practical applicability, especially
in real-time settings, is severely limited by the extensive
computational times that are needed for the solution of the
pursued formulations. On the other hand, the work presented
in [36] is essentially a decoupled method that employs a “DP
with time windows” model for the generation of the traffic
schedules of the various traveling vehicles. Hence, it possesses
all the advantages and limitations that were discussed for these
methods in the previous paragraphs. Furthermore, all three of
the aforementioned methods have failed to consider system-
atically the problem of deadlock that might be encountered
in the generated schedules, and they tend to treat it more
as a “nuance” that must be faced at the end, in the context
of the generated schedules, instead of an integral issue to
be systematically addressed during the generation of these
solutions.
Deadlock avoidance and liveness-enforcing supervision for

the traffic that is generated by the various MHS classes
considered in this paper have been studied quite thoroughly
and extensively by a group of researchers that come from
the control community, and especially a group working in

the area of discrete-event systems (DESs) [37], [38]. Using
linguistic modeling frameworks and abstractions coming from
a qualitative DES theory [37], [38] and its specialization to
the problem of the liveness-enforcing supervision of complex
resource allocation systems [39], [40], this group has studied
the “behavioral”—or “untimed”—dynamics of the considered
traffic systems, and it has provided: 1) a formal character-
ization of the corresponding traffic coordination problems;
2) a notion of “optimal control” for these problems in the
form of “maximal (behavioral) permissiveness” of the derived
solutions; 3) a formal establishment of the computability but
also the NP-hardness of the corresponding optimal control
policies; and 4) a set of suboptimal but computationally
tractable “deadlock avoidance” policies (DAPs) that can ensure
the liveness of the underlying traffic while retaining extensive
levels of the concurrence and the operational flexibilities that
are provided by the underlying system. Characteristic samples
of these works can be found in [8] and [41]–[44], while the
works of [45] and [46] extend the aforementioned results
even in “free-ranging” traffic systems where the system agents
travel over a compact 2-D or 3-D region. But all these results
constitute “preventive” control [37], i.e., the derived DAPs
essentially confine the uncontrolled system behavior in order
to prevent deadlock formations.6

Finally, when it comes to the current industrial prac-
tice, the considered traffic management problems have been
addressed through the adoption of configurations for the
underlying guidepath networks that minimize the need for
traffic control and coordination. As a characteristic example
of this attitude, one can mention the popular “tandem” AGV
systems, which decompose the overall traffic into a set of uni-
directional loops that are interconnected by a set of interfacing
buffers [53]. Such a layout essentially abolishes the entire
traffic coordination problem, since, at each loop, vehicles are
filing behind each other in a perpetual cyclical motion over that
particular loop. But, on the other hand, the resulting operation
involves: 1) unnecessarily long trips for transfers that take
place between closely located stations; 2) an operational speed
for each loop that, for the most part, is regulated by the slowest
vehicles; and 3) the need for “double handling” in the case of
transfers involving stations that are located on different loops.
All the above discussion has substantiated, in much more

concrete terms, the remark that was made in the opening
part of this section that the problem of the (real-time) traffic

6A few works within the DES community that have tried to develop a more
comprehensive approach to the considered scheduling problem by seeking
optimized traffic schedules while considering explicitly the issues of traffic
liveness and liveness-enforcing supervision are those presented in [47]–[50].
More specifically, the works of [49] and [50] essentially pursue some of the
decoupled and the coupled methods that were discussed in the earlier parts
of this section while employing a Petri net-based [51] representation of the
traffic dynamics that enables a more explicit representation of the notions of
“conflict” that arise in the underlying traffic systems. Hence, the algorithms
developed in those works maintain a more proactive and systematic attitude
regarding the issue of conflict management in the generated traffic, but they
also suffer from the completeness and/or scalability limitations that were
discussed in the previous parts of this section. On the other hand, the works of
[47] and [48] have tried to extend to the traffic scheduling problems considered
in this paper, some methodology that was previously developed for the “job-
shop” scheduling problem, and was based on the notion of “(augmented)
Lagrangian relaxation” [52] for the corresponding MIP formulations.
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management in guidepath-based traffic systems has been stud-
ied by many different communities, under different modeling
assumptions and (performance) objectives that are motivated
and defined by the particular needs of those communities.
Furthermore, while the resulting models are conceptually
similar, they can vary substantially in terms of the reachability
properties of the generated traffic, and also in terms of the the-
oretical and empirical complexity of the feasibility analysis of
the posed operational requirements. On the other hand, when
it comes to the optimization of the traffic that is generated
by these models, most of the resulting formulations end up
being NP-hard. Finally, in view of all these subtleties and
computational challenges, the existing algorithms that have
been developed for managing the traffic in various subclasses
of guidepath-based traffic systems are generally limited in
terms of their completeness and/or their scalability.
The work that is presented in the rest of this paper extends

the current state of the art by developing a new class of algo-
rithms for the real-time traffic management in the particular
class of guidepath-based transport systems that are considered
in it. These algorithms are motivated by, and adapt to the con-
sidered problem, some of the broader theories on the design
of heuristic algorithms for hard combinatorial optimization
problems [14]. Particularly, an important characteristic of these
algorithms is that: 1) in the context of the traffic systems
that are considered in this paper, they are complete and 2) at
the same time, they are able to provide efficient solutions
for some very hard problem instances while retaining their
computational tractability.7 Furthermore, the last part of this
paper discusses some additional potentials that are defined by
the presented algorithms for other classes of guidepath-based
traffic systems, and the corresponding traffic management
problems, that will not satisfy all the operational assumptions
that are considered in this paper.

III. FORMAL DESCRIPTION OF THE CONSIDERED TRAFFIC

SYSTEM AND THE CORRESPONDING TRAFFIC

SCHEDULING PROBLEM

The traffic system that is considered in this paper can
be formally abstracted as follows. The system consists of a
guidepath graph G = (V , E ∪ {h}) that is traversed by a set of
agents, A. G is assumed connected and undirected. The edges
e ∈ E of G model the “zones” of the underlying quidepath
network. These edges can be traversed by a traveling agent
a ∈ A in either direction, and, in general, they can hold
not more than one agent at any time. An exception to this
last rule is the case of edge h, which models a “storage”
(or “home”) location that can hold an arbitrary number of
agents that either have not initiated or have completed their
intended trips and, thus, they are essentially retired from the
underlying traffic system. For notational convenience, we also
define E ∪ {h} ≡ Ê .

In the more general model of the considered operations
that was outlined in Section I, a trip for some agent a is
defined by a sequence of edges !a = ⟨e ∈ E⟩ that must be

7This claim is substantiated in Section V, which presents our computational
experiments on a series of instantiations of the considered traffic problem.

visited by a in the specified order, before the agent eventually
retires in edge h.8 However, since in the context of the
work that is presented in this paper, we consider only the
core (sub)problem of the “rolling-horizon” scheme that was
outlined in Section I, in the following, we shall assume that
each agent a ∈ A is associated with a single destination edge
da and the posed problem is to transfer each agent a from its
current edge sa to its destination edge da while minimizing
the required transfer time w, i.e., w denotes the “makespan”
of the corresponding traffic schedule.
Furthermore, in order to simplify the exposition of our key

results, in the main presentation of our algorithm in Section IV,
we shall assume that the traversal time for any given edge
e ∈ E by any agent a ∈ A is deterministic and uniform across
all edge-agent pairs (e, a) ∈ E × A.9 This constant traversal
time defines a “time unit” for the resulting traffic model, and it
induces a natural discretization of the motion dynamics of the
considered traffic system. In the context of these discretized
dynamics, it is further stipulated that an agent cannot move
into an edge e at time t from a neighboring edge, unless e
was empty at time t −1.10 Also, some additional assumptions
that define the considered traffic coordination problem are as
follows. A subset of agents might share the same destination
location, an effect that models a “rendezvous” requirement for
these agents. Since, in the “rolling-horizon” framework that
defines the broader context for the traffic-scheduling problem
addressed in this paper, the initial locations of the traveling
agents in any given problem instance can be their destinations
in some earlier iteration, this “rendezvous” possibility further
implies the potential coincidence of the initial locations sa for
certain agents as well.
Finally, different traffic models will impose different

assumptions regarding the potential (immediate) reversibility
of the agent motion on any given edge e ∈ E . In this paper,
we shall assume that the traveling agents can reverse freely
the direction of their motion on any given edge e ∈ E of the
guidepath network. This assumption is practically justified by
the motion dynamics materialized in many contemporaryMHS
and also by the motion dynamics that govern the traversal
of the ion traps by their resident qubits in the context of
quantum computing. In Section IV, we shall also see that the

8As explained in Section I, in the AGV operational setting, the edges of
e ∈ !a model the pairs of pickup and deposition locations that must be
visited by the vehicle during its trip. In the application context of quantum
computing, the edges of !a are the locations where the corresponding qubit
will have its informational content processed, possibly through (controlled)
interaction with some other qubits.
9This assumption will be removed in Section VI, where we discuss the

necessary modifications for the presented algorithm that enable it to cope
with the broader case of nonuniform traversal times for the various edge-
agent pairs (e, a).
10As remarked in Section I, this assumption ensures the required separation

of the different agents in lack of a perfect synchronization of the agent
transitioning across their various zones, and it also implies the agent inability
to swap their occupying edges. Also, as it will be discussed in later parts of
this paper, in certain variants of the considered traffic systems, this particular
condition on the agent motion, when combined with the arbitrary topology
of the guidepath graph G and the bidirectional traversal of its edges by the
traveling agents, can be the source of deadlocks that will permanently stall
the further advancement of the agents involved and necessitates the proactive
management of the underlying traffic with the additional objective of deadlock
avoidance [8], [44].
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Fig. 1. Problem instance employed in the examples of Sections III and IV.

above assumption regarding the reversibility of the motion of
the traveling agents within their allocated edges has a critical
role in the synthesis of the presented solution to the resulting
traffic coordination problem, and therefore, it defines, in a
substantial manner, the class of the zone-controlled, guidepath-
based traffic systems that are amenable to the results that are
presented in this paper.11

Example: An example instance of the traffic scheduling
problem that is considered in this paper is depicted in Fig. 1.
This problem instance concerns the transport of three agents,
ai , i = 1, 2, 3, from the corresponding edges that are indicated
by si in Fig. 1, to the destination edges indicated by di . Agents
can move by at most one edge at a time, and they can reverse
the direction of their motion in their current edge. Furthermore,
the “home” edge in the considered configuration is the edge
labeled by “h” in the depicted graph.
It is interesting to notice that the relative positioning of

the source and the destination edges for each of the three
agents in the underlying guidepath network implies that agent
a1 cannot occupy its destination edge before agents a2 and a3
have gone through it, and a similar remark applies to the pair
of agents a2 and a3. Furthermore, due to the initial placement
of the three agents on the depicted guidepath network, it is
not possible to route these agents from their current locations
to their destinations using the corresponding shortest paths
for each agent. In fact, it is easy to see that the synthesis
of a feasible solution for this problem instance will require
the proactive “sidestepping” of agents a1 and a2 to one of
the “spears” of the guidepath network that are, respectively,
defined by the edge sets {h, e1, e2, e3} and {e13, e14, e15, e16},
in order to allow the agents behind them to pass ahead.
The above remarks further imply that the considered prob-

lem instance cannot be addressed though the sequential logic
of the decoupled approaches that were discussed in Section II.
On the other hand, as we discuss in Section IV, the algorithm

11To help the reader obtain a better appreciation of the significance of
the assumption of the agent motion reversibility for the presented results,
we notice that, under this assumption, the generated traffic will always be
deadlock-free, irrespective of how the agents select their routes and advance in
them. Hence, the corresponding traffic retains its liveness without any further
need for a supervisory control policy. This fact is formally established in
Section IV-B.

that is presented in this paper was able to derive an optimal
traffic schedule for this problem in a few milliseconds while
running on a very simple MacBook Pro.

IV. PROPOSED ALGORITHM

In this section, we present a canonical version of our
heuristic algorithm for the traffic coordination problem that
was defined in Section III. We start by introducing a formal
representation for the solution space of the considered prob-
lem, and subsequently, the presented algorithm is motivated
and discussed as a “local-search” scheme [14] on this solu-
tion space. The presented developments include a worst case
complexity analysis for the basic version of the algorithm,
and they also establish formally the algorithm completeness
and the correctness of the derived solutions. An extensive
numerical evaluation of the presented algorithm is provided
in Section V. In addition, Section VI outlines some variations
of this algorithm that can enhance the quality of the derived
solutions and provide better control of the tradeoff between
the quality of these solutions and the computational effort that
is required for their derivation.

A. Formal Representation for the Sought Traffic Schedules

We start the presentation of our algorithm by discussing
the key (data) structures that are employed by it for the
representation of the sought traffic schedules and some other
data sets that are crucial for the performed computations.
Hence, let T denote an upper bound to the optimal makespan,
w∗; in the subsequent developments of this section, we shall
show that the traffic-scheduling problem that is defined in
Section III is always feasible, and therefore, both T and w∗

will be finite positive integers.12 For any given T , a complete
schedule for the considered problem must specify all the
edges eat that are held by each agent a ∈ A at each period
t ∈ {0, 1, . . . , T }. Hence, a complete traffic schedule is a set
S of |A| finite sequences σ a , each consisting of edges e ∈ Ê
and having length T + 1.
In addition, any tentative schedule S = {σ a : a ∈ A} will be

considered feasible if and only if (iff ) it satisfies the following
conditions.
1) ∀a ∈ A: ea0 = sa ∧ eaT = da .
2) ∀a ∈ A, ∀t ∈ {0, 1, . . . , T −1} : eat+1 ∈ {eat }∪NH (eat ),

where NH (eat ) denotes the set of the neighboring edges
of edge eat in graph G.

3) ∀a, a′ ∈ A, ∀t ∈ {1, . . . , T } : eat = e ∧ ea
′

t =
e′ ,⇒ (e ̸= e′) ∨ (e = e′ = h) ∨ (e = e′ = eaq = ea

′
q ,

∀q ∈ {0, . . . , t}) ∨ (e = da ∧ e′ = da′).
4) ∀a, a′ ∈ A, ∀t ∈ {1, . . . , T }: eat = ea

′
t−1 = e ̸=

eat−1 ,⇒ (e = h) ∨ (da = da′ = e).
Condition 1 in the above list expresses the fact that in

the considered class of feasible schedules, every agent must
start from its current location and be at its destination edge
by the end of the provided time horizon T . Condition 2
stipulates that any feasible route must observe the connectivity

12The integrality of these numbers results from the time discretization that
was introduced in Section III.
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TABLE I

AN OPTIMAL TRAFFIC SCHEDULE FOR THE EXAMPLE
PROBLEM INSTANCE OF FIG. 1

of the underlying guidepath network. Condition 3 enforces
the requirement that two agents cannot cohabit on an edge
at any time unless: 1) it is the “home” edge h; 2) a common
initial location; or 3) a common destination. In particular, parts
2) and 3) of this condition intend to capture the additional
traffic dynamics that can be generated by potential “ren-
dezvous” requirements among the traveling agents; please, see
Sections I and III for some further discussion on these require-
ments. Finally, Condition 4 enforces the requirement that an
agent a can move into an edge e at a period t only if this edge
was empty in period t −1, unless e is the “home” edge or the
common destination for a and some other agent a′.

Example: The above definitions regarding the representation
of a feasible traffic schedule in this paper are highlighted
in Table I that provides a feasible (in fact, optimal) traffic
schedule for the example problem instance of Fig. 1. Table I
provides the edge eait that is occupied by each agent ai , i =
1, 2, 3, at each period t ∈ {0, . . . , 16}. In the provided
schedule, it is interesting to notice: 1) the agents’ ability to
reverse their motion within a particular edge (as exemplified,
for instance, by the moves of agent a1 in periods 3–5) and
2) the observation of Condition 4 by this schedule (e.g., agent
a2 can make its first move, to edge 5, only at period 2, after
agent a3 has moved out from this edge in period 1). Also,
the detailed tracing of this schedule will reveal the agent
coordination in their effort to reach their destination, which
has agents a2 and a3 “sidestep” into the spear that is defined
by edges e1, e2, e3, and h. !
For the computational needs of the presented algorithm, it is

also important to have an efficient representation of all the pos-
sible paths that can take any given agent a ∈ A from its edge
eat = e ∈ Ê at period t , for any t ∈ {0, 1, . . . , T − 1}, to its
destination da , over the remaining time interval {t+1, . . . , T }.
Such an efficient representation is provided by a directed
acyclic graph (DAG) that will be denoted by D(a, e, t, T ).
The nodes of D(a, e, t, T ) are pairs (e′, t ′), for certain e′ ∈ Ê
and t ′ ∈ {t, . . . , T }, and represent the positioning of agent a
at edge e′ at time t ′. From this description, it is easy to see
that the nodes of D(a, e, t, T ) are layered with respect to the
parameter t ′ of their labels. On the other hand, a directed edge
from node (e′, t ′) to node (e′′, t ′ + 1) implies the existence of
a feasible path that contains the corresponding move.
Example: Fig. 2 demonstrates the D(a, e, t, T ) object by

depicting a fragment of the DAG D(a1, e7, 0, 13) for the
example problem instance of Fig. 1. This DAG encodes all
the possible paths that take agent a1 from its initial edge, e7,
to its destination edge, e20, in no more than 13 periods. It is
interesting to notice that the layer of nodes corresponding to

Fig. 2. Fragment of DAG D(a1, e7, 0, 13) for the example problem instance
of Fig. 1. The labels k in the various nodes of the depicted digraph correspond
to the various edges ek in the guidepath graph G of Fig. 1.

Fig. 3. “A forward-search” algorithm for constructing the DAG D(a, e, t, T ).

period 2 does not contain edge e7, even though it is a viable
location for agent a1 during this period, because placing agent
a1 at edge e7 in period 2 will render edge e20, which is the
destination edge of agent a1, inaccessible by this agent in the
remaining 11 periods of the considered time horizon. !
DAG D(a, e, t, T ) can be computed efficiently by the

“forward-search” algorithm that is depicted in Fig. 3. Con-
dition 2 in the second step of the algorithm of Fig. 3 can
be checked efficiently by using the Floyd–Warshall algorithm
[54] to precompute all the pairwise shortest distances among
the various pairs of edges of the guidepath graph G. Clearly,
the number of nodes of the resulting DAG D(a, e, t, T ) cannot
be more than |Ê | · T , and in most practical instantiations of
the considered problem, the actual number of these nodes will
be significantly smaller than the above upper bound.

B. Constructing an Initial Feasible Solution

Conditions 3 and 4 of Section IV-A that must be observed
by any feasible schedule for the considered traffic coordina-
tion problems define a notion of “routing conflict” among
the traveling agents that, when combined with the arbitrary
structure of the underlying guidepath network G, further imply
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that the task of assessing the feasibility of any given instance
of the considered traffic scheduling problems can be pretty
challenging, in general [15].
However, in this section, we shall show that the particular

problem version defined in Section III will always be feasible.
We establish this result by construction, i.e., by providing
a systematic procedure that will always generate a feasible
solution. The feasibility of this construction stems from: 1) the
availability of the “home” edge h that can accommodate
simultaneously all agents a ∈ A and 2) the presumed
reversibility of the agent motion within its running edge. More
specifically, the proposed procedure for the construction of a
feasible routing schedule can be perceived as a “two-stage”
computation where, in the first stage, all agents are collected
to the “home” edge h, and in the second stage, they are routed
to their destination edges da . The presumed reversibility of
the agent motion within any given edge further implies that in
each of these two stages, the traveling agents can be routed to
their respective destinations in a way that avoids any potential
conflicts among them. The technical details of this construction
are established by the following two results.
Lemma 1: For the traffic scheduling problem defined in

Section III, it is always possible to reach from the initial traffic
state s0 that is defined by the edge set {sa : a ∈ A} to the traffic
state sh where every agent is located at the “home” edge h.

Proof: Let us assume, without loss of generality, that there
exist some agents a ∈ A with sa ̸= h. Pick any agent a1, from
this set, that is located closest to the “home” edge h, in terms
of the smallest number of edges that must be traversed in order
to reach h from sa1 . Clearly, this selection of agent a1 implies
that all edges on any shortest path leading from its current
location sa1 to the “home” edge h are free. Hence, agent a1
can reach edge h while keeping all other agents still. But then,
Lemma 1 is proved by an inductive invocation of the above
argument for the remaining set of agents a with sa ̸= h. !

Proposition 1: For the traffic scheduling problem defined
in Section III, there is always a routing schedule that takes all
agents a ∈ A from their initial locations sa to their destinations
da , and abides to Conditions 1–4 of Section IV-A.
Proof: Lemma 1 has established that it is possible to reach

from the initial state s0 to the state sh where all agents are
collected on the “home” edge h. An argument similar to
that used in the proof of Lemma 1 can be used to establish
that, from state sh , all agents a ∈ A can be routed to their
destinations da one at a time, starting with the agents for which
their destination edge da is furthest from the “home” edge h;
the relevant details are pretty straightforward, and they are left
to the reader. !
Besides establishing the feasibility of all the instantiations

of the considered traffic scheduling problem, the proof of
Proposition 1 further implies that a feasible traffic schedule
can be computed in polynomial time with respect to the size
of the guidepath network G and the number of the traveling
agents, |A|. It is also useful to notice that the construction of
an initial feasible traffic schedule for the considered problem
instances that was outlined in Lemma 1 and Proposition 1 is
meant as a formal argument regarding the problem feasibility.
A more practical implementation of this procedure first will

prioritize the agent trips at each of the two stages according
to the corresponding logic that was established in the proofs
of Lemma 1 and Proposition 1, but subsequently, it will
allow all agents to advance simultaneously to their (stage-
dependent) destinations, as long as such an advancement
does not impede any agents with higher traveling priority to
reach their own destinations; such potential blockages can be
assessed and resolved very efficiently through some testing
procedures similar to those that were presented in [8] for an
efficient implementation of Dijkstra’s Banker’s algorithm [55]
in guidepath-based traffic systems.
Example: In the example problem instance of Fig. 1, an ini-

tial traffic schedule can be obtained by first routing agents a3,
a2, and a1 (in this order) to the “home” edge h through the
corresponding shortest paths, and subsequently routing them
from edge h to their respective destinations, in the sequence
⟨a1, a2, a3⟩. The reader can also check that the first part of this
traffic schedule can executed with a minimal makespan of 10
periods, while the more naive implementation of this part that
routes the three agents to edge h one at a time will lead to
a makespan for this part of 18 periods. Similarly, an efficient
implementation of the second part of the proposed routing
plan has a minimum required makespan of 14 periods, while
the naive implementation of this part that routes one agent at
a time will have a makespan of 33 periods. Hence, the total
makespans for the two initial traffic schedules that are con-
structed by the naive and the efficient implementation of the
corresponding procedure are 51 and 24 periods, respectively.
On the other hand, in both of these plans, the last agent to
reach its destination in this schedule is agent a3, and the length
of the corresponding sequence σ a3 defines the makespan of the
entire schedule.

C. Searching Locally for an Improved Solution

In this section, we detail a basic version for the “improving
step” of the proposed algorithm. This version will be further
enhanced in Section IV-B and through the discussion that is
provided in Section VI.
Hence, suppose that we have already computed a feasible

schedule S = {σ a : a ∈ A} with makespan w. By the
definition of the “makespan” concept, there exists a set of
agents Ȧ ⊆ A that reach their corresponding destinations da
exactly at period w. The proposed improving step seeks to
find an agent â ∈ Ȧ and a new route σ̂ â for this agent that:
1) presents no conflicts with the routes σ a that are specified
by the original schedule S for all the other agents a ∈ A\ {â}
and 2) places agent â to its destination location dâ at a period
earlier than w. In such a case, the original schedule S is
replaced by the schedule Ŝ ≡ {σ a : a ∈ A \ {â}} ∪ {σ̂ â},
which is considered as an “improving” schedule with respect
to S.
To provide a complete description of the improving step

that was outlined in the previous paragraph, we also
need to describe the mechanism that computes a feasible
route σ̂ â , provided that such a route is available for the
selected agent â. This can be done by formulating and
solving a simple “shortest-path” problem [54] on the DAG
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D(â, sâ, 0, w − 1) that was introduced in Section IV-A.
According to the relevant definitions that were provided in
that section, DAG D(â, sâ, 0, w − 1) encodes all the possible
routes that take agent â from its initial location sâ to its
destination location dâ no later than period w − 1, and each
node of this DAG carries a label (e, t) indicating that agent â is
located at edge e at period t . To formulate the aforementioned
“shortest-path” problem, we also associate a “cost” with each
node (e, t) of DAG D(â, sâ, 0, w − 1) that expresses the
number of conflicts that are generated with respect to the
remaining routes σ a, a ∈ A \ {â}, by placing agent â at
edge e at period t . Then, it is easy to see that any feasible
route σ̂ â with respect to the specifications that are defined by
Conditions 1–4 in Section IV-A is represented by a path
of zero total cost leading from the “root” node (sâ, 0) of
DAG D(â, sâ, 0, w − 1) to its “terminal” node (dâ, w − 1).
The considered method will identify all the zero-cost paths
by formulating and solving the corresponding shortest-path
problem, and eventually, it will select as the new route σ̂ â ,
for agent â, any of these zero-cost paths that takes agent â to
its destination as soon as possible.
Example: As remarked in the example of Section IV-B,

the naive and the efficient implementations of the construction
procedure that was developed in that section will provide
initial schedules for the example problem instance of Fig. 1
with the respective makespans of 51 and 24 periods. Fur-
thermore, in each of these two schedules, the makespan is
defined by the routing plan of agent a3. Hence, assuming
that we have started with the schedule that is generated by
the naive implementation of the corresponding procedure,
the application of the improving step of our algorithm on that
schedule will seek to identify a new routing plan for agent
a3 that will bring this agent to its destination edge e18 in no
more than 50 periods. It can be easily checked in Fig. 1 that,
in view of the routing plans that are provided by the considered
schedule for agents a1 and a2, such an improved plan for agent
a3 can be obtained either: 1) by advancing agent a3 from edge
h toward its destination edge e18 before agent a2 reaches its
own destination or 2) by initially routing this agent to edge
e16 (instead of edge h), and keeping it there until agents a1
and a2 have cleared through edge e17.
On the other hand, it is also interesting to notice that

neither of the above two options will work in the case
where the initial traffic schedule is the efficient one with the
makespan of 24 periods. In fact, in this case, the improving
step that was described in the previous paragraphs will fail
to identify an improved routing plan for agent a3, and the
basic implementation of our algorithm will exit with the initial
schedule as the proposed solution. !
We close the discussion of this section with the following

two remarks.
Remark 1: The “shortest-path” problem outlined in the

earlier part of this section can also be perceived as a “reacha-
bility” problem on the subgraph of DAG D(â, sâ, 0, w−1) that
is defined by its zero-cost edges. Therefore, this problem is
also solvable through the simpler enumerative techniques that
are available for such “reachability” problems [38]. But we
have pronounced the “shortest-path” perspective in the above

discussion, because it provides naturally some additional
information that is exploited in the algorithmic enhancement
discussed in Section IV-F.
Remark 2: We also notice, for completeness, that in certain

variations of the traffic scheduling problem considered in
this paper, it might be necessary to enforce the additional
requirement that, in the derived schedules S, an agent a
reaching its destination da at some period t will remain at this
edge until the end of the planning horizon T . This requirement
can be expressed by adding the condition

∀a ∈ A, ∀t ∈ {1, . . . , T − 1}, eat = da ,⇒ eat+1 = da

to the four conditions in Section IV-A that define the sched-
ule feasibility in the considered problem context. This new
condition will be naturally satisfied during the construction
of the initial feasible solution that is presented Section IV-B,
thanks to the agent ordering that is adopted in the second
part of the corresponding procedure. On the other hand, in the
context of the schedule-improving procedure that is presented
in this section, Condition 5 can be easily enforced by pruning
accordingly the DAGs D(â, sâ , 0, w − 1).

D. Complete Canonical Version of the Presented Algorithm

In view of all the above discussions, a complete canoni-
cal version for the proposed algorithm can be organized as
follows. The algorithm will start by constructing an initial
feasible schedule according to the methodology that was
presented in Section IV-B. Then, with this initial feasible
schedule available, the algorithm will go into an iterative mode
that seeks to generate a sequence of improving schedules
according to the logic that was described in Section IV-C.
More specifically, at the i th iteration, for i = 1, 2, . . . ,,
the algorithm will work with the schedule S(i−1) that was
obtained during the previous iterations (or the initial schedule,
in the case that i = 1), and it will search the corresponding set
Ȧ(i−1) for an agent a(i) ∈ Ȧ(i−1) that can be used to construct
an improving schedule. In the absence of any other pertinent
information, this search for the agent a(i) through the elements
of the set Ȧ(i−1) can be done opportunistically (ensuring,
however, that we avoid the repetitive selection of the same
agents). On the other hand, once an improving schedule Ŝ is
constructed, this schedule becomes the incumbent schedule
S(i), and the algorithm advances to iteration i + 1. The
algorithm will terminate at the first iteration k, where it is
not possible to identify an improving schedule for any of the
agents a ∈ Ȧ(k−1); at that point, the algorithm will return
the schedule S(k−1) as its final solution, with corresponding
makespan w(k−1).
Fig. 4 provides a more formal statement of the algorithm

that was outlined in the previous paragraph. The completeness
of this algorithm and the correctness of the returned schedule S
result immediately from all the developments that were pre-
sented in the earlier parts of this section. Furthermore, since
in the new schedule Ŝ that is generated at every iteration
of Steps 3 and 4, one of the traveling agents reaches its
destination earlier by one period, the algorithm will terminate
in a finite number of iterations, and the returned schedule S
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Fig. 4. Basic version of the heuristic algorithm for the traffic-scheduling
problem that is considered in this paper.

will have a makespan that is not greater than the makespan of
the initially constructed schedule S(0).

Example: The execution of the algorithm of Fig. 4 on the
example problem instance of Fig. 1, with the basic computa-
tional scheme that is suggested by the proof of Proposition 1
for the generation of the initial schedule (i.e., the “naive” initial
schedule described in the example of Section IV-B), lasted
25 ms, and it resulted in the traffic schedule that is presented
in Table I. The reader can verify that this is an optimal traffic
schedule for the considered problem instance.

E. Complexity Analysis for the Algorithm of Fig. 4

In this section, we provide a complexity analysis for the
algorithmic version of Fig. 4. As discussed in the earlier parts
of Section IV, the proposed algorithm will benefit from an
initial, “off-line” execution of the Floyd–Warshall algorithm
for the computation of the pairwise shortest distances among
the edges of the set Ê . The same information can also be used
for the specification of the shortest paths that are necessary for
the construction of the initial schedule S(0). The computational
cost of the Floyd–Warshall algorithm is O(|Ê |3) [54].

On the other hand, for the iterative part of the algorithm
that is presented in Fig. 4, we have the following complexity
result.
Proposition 2: Let w∗ denote the optimal makespan for the

considered problem instance, and ŵ denote the makespan of
the initially constructed traffic schedule S(0). Then, the (worst
case) computational complexity of the iterative part of the
algorithm presented in Fig. 4 is O((ŵ2 − w∗2)|A|2|Ê |2).
Proof: First, consider the test that is performed in Step (4b)

of the algorithm in Fig. 4. As remarked in Section IV-C,
this test can be organized efficiently as a “reachability”
test that seeks the existence of a zero-cost path in DAG
D(â, sâ, 0, w∗ + i), leading from node (sâ, 0) to node
(dâ, w∗ + i) for some â ∈ A and i ∈ {0, . . . , ŵ − 1 − w∗}.
DAG D(â, sâ, 0, w∗ + i) will have O(|Ê |(w∗+ i)) nodes, and
each node will have O(|Ê |) emanating edges. Assessing the
availability of any of these edges in the underlying reachability
problem requires the assessment of potential conflict between

the corresponding step and the incumbent schedules of the
remaining agents, a task that has a cost of O(|A|). Hence,
the total cost for a single execution of the considered test is
O(|A||Ê |2(w∗ + i)). According to the “while”-loop of Step
(4), at any given i , this test will be performed O(|A|) times.
Finally, the result of Proposition 2 is obtained by further
noticing that

∑ŵ−1−w∗
i=0 (w∗ + i) = O(ŵ2 − w∗2). !

When the initial traffic schedule is obtained through the
“naive” implementation of the procedure of Section IV-B,
the corresponding makespan ŵ is O(|A|D̄), where D̄ denotes
the largest distance, among the edges e ∈ E , from the “home”
edge h. Hence, the computational complexity of the iterative
part of the algorithm of Fig. 4 is O(|A|3|Ê |2 D̄).

On the other hand, the factor (ŵ2 − w∗2) appearing in the
more general result of Proposition 2 reveals quite vividly the
computational value of having a good initial traffic schedule.
In Section V, we also present a set of numerical results that
evaluate the computational complexity of our algorithm from
a more empirical standpoint that focuses upon the observed
execution times. The corresponding results indicate that the
algorithm executes very fast. Next, we introduce a variation
of the algorithm of Fig. 4 that will retain the computational
efficiency of the original version, and, at the same time, it will
return more competitive solutions for the underlying traffic
coordination problem.

F. Enhancing the Algorithm Performance by Digressing into
the Infeasible Region

In this section, we discuss a modification of the algorithm
presented in the earlier parts of Section IV that has proved par-
ticularly effective in terms of avoiding a premature entrapment
into some bad local optima. This is attained by allowing the
algorithm to take controlled excursions to infeasible solutions
that are close to a reached local optimum, in expectation of
the eventual identification of an improved feasible schedule.
The computational results reported in Section V will reveal
that this new mechanism can enhance very substantially the
algorithm performance, enabling the computation of very
efficient solutions even for some pretty hard problem instances,
with very short execution times.
Under the proposed enhancement, every time that the algo-

rithm of Fig. 4 will reach an iteration k where no improving
schedule can be identified, it will go into a new phase of the
overall computation that works as follows.
First, the algorithm will seek to identify among the paths

of the DAGs D(a, sa, 0, (w − 1)(k−1)), a ∈ Ȧ(k−1), that
were computed in iteration k, one of minimal total cost
(i.e., minimal conflict with respect to the remaining fixed
routes of schedule S(k−1)); in the selection of this path,
potential ties are resolved arbitrarily. For further reference, let
us denote by a1 the agent that corresponds to the selected path,
and by σ a1

1 the routing schedule for agent a1 that is defined by
this path. We shall also denote by S(k−1)

1 the routing schedule
that is obtained by replacing the route of agent a1 in schedule
S(k−1) by σ a1

1 .
Next, the algorithm will try to obtain a new feasible traffic

schedule from schedule S(k−1)
1 by eliminating incrementally
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the various conflicts that are present in this schedule. This is
done by starting with the new schedule S(k−1)

1 and trying to
identify an agent a2 ∈ A \ {a1} that possesses a minimal-cost
path in the corresponding DAG D(a2, sa2 , 0, w

(k−1)), such
that the corresponding total cost is lower than the number
of conflicts between agent a2 and all the remaining agents in
schedule S(k−1)

1 . Replacing the route of agent a2 in schedule
S(k−1)
1 with the route σ a2

2 that is defined by the aforementioned
minimal-cost path will lead to schedule S(k−1)

2 , and it can
be easily checked that, by its construction, schedule S(k−1)

2
involves a smaller number of conflicts than schedule S(k−1)

1 .
Hence, iterating the above computation on the new schedule
S(k−1)
2 and the further schedules that are obtained in this

manner, either we shall reach a schedule S(k−1)
n involving

zero conflicts or the algorithm will get stuck with an infeasible
schedule and no possibility for further reduction of the number
of the existing conflicts. In the first case, schedule S(k−1)

n can
be treated as schedule S(k), i.e., as a new feasible schedule
obtained in the kth iteration of the original algorithm of Fig. 4,
and the algorithm can move on with the next basic iteration
k + 1, as specified in Fig. 4. In the opposite case, no further
progress is possible, and the algorithm will exit returning as its
solution the feasible schedule S(k−1) that was the best schedule
available at the beginning of the considered excursion to the
infeasible region. Section V presents a series of computational
experiments that demonstrate very vividly the efficacy of the
resulting algorithm.

V. COMPUTATIONAL RESULTS

In the first part of this section, we report the results from
the application of the presented algorithm on another hard
instance of the traffic-scheduling problem that is considered
in this paper. The second part of the section reports the
results of a more extensive computational experiment that has
been designed to demonstrate and assess the computational
efficiency of the presented algorithm and the quality of the
derived solutions, as it is applied on increasingly congested
traffic systems. An additional role of this experiment is to
identify some further important factors that can impact the
algorithm performance with respect to its computational effi-
ciency and the quality of the derived solutions. Finally, part
of this experiment also demonstrates the limitations of the
coupled methods discussed in Section II when applied on
increasingly harder problem instances.

A. Applying the Algorithms of Section IV on the
Problem Instance of Fig. 5

In this part of our computational experiments, we applied
the algorithms presented in Section IV to the problem instance
that is depicted in Fig. 5. This problem instance was carefully
crafted in order to assess the performance of our algorithm in a
very congested environment that involves an extensive overlap
among the available paths of the traveling agents toward their
target destinations. In addition, the “home” edge h was placed
at a very remote location in an effort to assess the potential
inefficiencies that may be incurred by the role of this edge

Fig. 5. Problem instance addressed in the first part of Section V.

in the construction of the initial traffic schedule, especially in
such an adversarial situation.
For a proper understanding of the problem instance that

is depicted in Fig. 5, the reader should also notice that the
problem representation employed in Fig. 5 differs slightly from
the previous models presented in this paper. The traveling
agents are placed at the nodes instead of the edges of the
underlying guidepath network, and the graph connectivity now
defines a notion of “neighborhood” among the different nodes;
nevertheless, all the rules of Conditions 1–4 in Section IV that
define the dynamics of the underlying traffic extend naturally
to this new setting, and the same applies to the logic of the
algorithms that were presented in that section.13

Under the aforementioned interpretation, the consid-
ered problem instance involves 12 agents ai , i = 1,
. . . , 12, each initially located at the corresponding node
that is marked by si . These agents must swap their
positions pairwise with the corresponding pairs being
{a1, a10}, {a2, a11}, {a3, a12}, {a4, a7}, {a5, a8}, and {a6, a9}.
The “home” location is the node at the top-left corner of Fig. 5,
and it is connected to the rest of the graph by the depicted
long path between nodes h and 19.
The application to this problem instance of the canonical

version of our algorithm that is depicted in Fig. 4, on an HP
Z230 workstation with an Intel core i7 processor and 8 GB
RAM, running Fedora, lasted 739 ms and gave a feasible
schedule with a makespan equal to 72 periods. We also applied
the variation of our algorithm that allows for excursions to
the infeasible region, in an effort to overcome a prema-
ture entrapment in local optima (see Section IV-F). In this
case, the algorithm ran in 8.6 s, and the obtained schedule
is presented in Table II; the corresponding makespan was
24 periods. Finally, we also applied the MIP formulation of
[10] and [11] to this problem instance. The solution of this
formulation through CPLEX lasted almost five days, but the
solver was eventually able to come up with an optimal solution
of 12 periods; this solution is tabulated in Table III.

13These remarks essentially reveal an existing “duality” in the role of the
“node” and “edge” concepts in the graphical representation of the traffic
dynamics that are considered in this paper. At the end, what really matters is
the set of the available “locations” for the traveling agents, and the “proximity”
relation that is defined among them.
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Fig. 6. Guidepath graph used in the numerical experiment of Section V-B.

TABLE II

TRAFFIC SCHEDULE COMPUTED FOR THE PROBLEM INSTANCE
OF FIG. 5 BY THE VARIATION OF THE PROPOSED ALGORITHM

THAT ALLOWS FOR EXCURSIONS TO THE INFEASIBLE
REGION (SEE SECTION IV-F)

B. More Extensive Numerical Experiment

As stated in the opening part of this section, in this part,
we report a numerical experiment that was designed to:
1) assess more systematically the performance of the traffic-
scheduling algorithm that is presented in this paper and
2) identify critical factors that will impact this performance.
The guidepath network used in this experiment has the par-
ticular structure of a “grid” that has been used in similar
experiments reported in the past literature, and the traffic

TABLE III

OPTIMAL TRAFFIC SCHEDULE FOR THE PROBLEM INSTANCE OF FIG. 5
COMPUTED THROUGH THE MIP FORMULATION OF [10] AND [11]

congestion is determined by controlling the number of agents
that circulate on this grid. The employed grid is depicted
in Fig. 6, and as in the case of Fig. 5, this figure provides a
“dual” representation of the employed guidepath graph, where
the various zones are represented by the nodes of the depicted
graph, and the edges define the neighboring structure of these
zones.
There are 133 nodes in the grid of Fig. 6. The red node at the

center of this grid indicates the location of the “home” zone.
In fact, in our experiments, the “home” zone was placed at two
different locations: 1) the middle of the guidepath network,
as indicated in Fig. 6 and 2) one of the four corners of the
depicted graph.14 The results that are reported in the rest of
this section reveal that the aforementioned placement of the
“home” zone can have a significant impact on the performance
of the presented algorithm.

14Due to the symmetries of the graph of Fig. 6, all these corners are
topologically equivalent.
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TABLE IV

ESTIMATES OF THE OPTIMALITY GAP FOR THE NUMERICAL EXPERIMENT THAT IS REPORTED IN SECTION V-B

The problem instances addressed in the considered exper-
iment, for each of the two placements of the “home” zone,
involved a number of agents ranging from 3 to 45, with
a step increase of three agents. The starting and the desti-
nation locations for each agent were determined randomly,
with the provision that the resulting problem instance was
consistent with the problem formulation that was introduced
in Section III. Furthermore, the construction of these problem
instances was such that the problem instance involving n
agents subsumed the problem instance that was defined with
n−3 agents, n = 6, 9, . . . , 45. This structure of the experiment
in terms of the number of the traveling agents and their
routing specifications intended to assess the performance of
the algorithm as the guidepath network became increasingly
more congested.15

We executed five replications of the aforementioned exper-
iment, and the obtained results are reported in Table IV.
More specifically, Table IV reports for each problem instance
addressed in the experiment, an estimate of the optimality
gap for the obtained schedule, assessed through the solution
of the Lagrangian dual problem of the considered problem
instance that is studied in [10] and [11]; in particular, for each
considered problem instance, the value reported in Table IV
is computed by the following formula:

obt. sched. makespan− opt. value of Lagrangian dual
opt. value of Lagrangian dual

× 100.

Also, Fig. 7 depicts the evolution of the average of these
numbers, as the traffic density increases from 3 traveling
agents to 45. The two plots presented in Fig. 7 suggest that
the performance of the presented algorithm is pretty close to
the optimal in environments with a low zone occupancy by the
traveling agents, but this performance degrades as the ratio of
the number of the traveling agents to the number of zones
of the guidepath network increases to some higher levels.
Furthermore, the experienced degradation is higher in the case
that the underlying “home” zone is located away from the
“center” of the guidepath network. This effect is explainable

15Problem instances with 45 agents imply a pretty congested guidepath
network, since, at each time period, the traveling agents occupy about 1/3 of
the available zones.

Fig. 7. Plotting the optimality gap for the numerical experiment of
Section V-B.

by the fact that, in this case, the initially constructed schedules
by the presented algorithm will possess a highly congested
phase that results from the collection of the traveling agents to
the “home” zone; the recovery from this congesting effect will
require a pretty drastic revision of the originally constructed
schedules that can be facilitated only by “neighborhood”
structures involving a high representational and computational
complexity.16

The careful perusal of the numbers that are reported
in Table IV also reveals considerable variability across the
performed replications, especially in the case of dense traffic.
This variability is interpretable by the distribution of the
agent starting locations and their destinations across the entire
guidepath network. For reasons similar to those discussed in
the previous paragraph, some of the more difficult problem
instances for the considered algorithm are those where the
destination edges for a group of agents are clustered together
in a pretty compact area of the underlying guidepath network.
Such a situation implies extensive coupling among all the
efficient routing plans for the involved agents, and it requires

16In fact, this effect was also manifested in the example of Section IV-C
where the improving procedure was unable to identify an improved routing
plan for agent a3 in the case of the “efficient” initial traffic schedule.
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TABLE V

COMPUTATIONAL TIMES, IN SECONDS, FOR THE NUMERICAL EXPERIMENT THAT IS REPORTED IN SECTION V-B

Fig. 8. Plotting the computational times for the numerical experiment of
Section V-B.

a very careful coordination of the order in which these agents
approach and eventually occupy their destinations.
Next, we discuss the results of this experiment from the

standpoint of the computational efficacy of the presented
algorithm. We start by noticing that the reported experiment
was executed on an HP Z230 workstation with an Intel core
i7 processor and 8-GB RAM, running Fedora Linux. Further-
more, Table V reports the computational times, in seconds,
for the execution of the presented algorithm on the aforemen-
tioned problem instances, while Fig. 8 plots the corresponding
averages as a function of the traffic density. As it can be
seen in the provided data, our algorithm executes very fast,
even for problem instances that correspond to highly congested
environments. Also, the plots of Fig. 8 are consistent with our
earlier remarks regarding the identification of: 1) the traffic
density and 2) the centrality of the location of the “home”
zone as the important factors that determine the difficulty of
the considered problem instance.
Finally, Table VI highlights the performance of the MIP

formulation of [10] and [11] when applied to some of the
problem instances that were considered in this experiment.
More specifically, we employed this formulation for generating
feasible and/or optimal schedules for the various problem
instances considered in this experiment, and Table VI reports
the results obtained for the first five problem instances of

TABLE VI

CHARACTERIZING THE PERFORMANCE OF THE MIP-BASED APPROACH
FOR THE CONSIDERED PROBLEM INSTANCES

the second problem set corresponding to the “Center Depot”
case that was employed in the generation of Tables IV and V.
For each of these instances, Table VI provides the performance
of the progression of the improving traffic schedules that
were generated through the solution of the corresponding MIP
formulation by CPLEX and the computation times involved.
In each case, the solver either ran to completion or it was
stopped after 1 h of computation. The juxtaposition of the
reported results in Table VI with the corresponding results
reported in Tables IV and V reveals very clearly the limitations
of the MIP-based approach and its inability to cope effectively
with the increasing problem complexity.17

VI. DISCUSSION

In this section, we discuss some further possibilities that
can enhance the quality of the traffic schedules that are
returned by the considered algorithm, and enable a more
explicit management of the tradeoff between the quality of the
derived solutions and the corresponding computational cost.
Furthermore, we address briefly the extension of the presented
results toward the real-time management of the traffic taking
place in guidepath-based transport systems that might not
fit exactly the modeling assumptions that have enabled the
algorithmic developments that are presented in this paper,
and the integration of these results in the “rolling-horizon”
framework that was outlined in Section I.

17We should also mention that the experience reported in Table VI is
representative of the performance that we obtained when the MIP-based
approach was applied on any other problem set of the considered experiment.
Also, we chose to focus this reporting on the “Center Depot” case, since, for
the reasons that were discussed in the earlier part of this section, this case is
easier than the “Corner Depot” one.
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A. Some Further Enhancements of the Presented Algorithm
These enhancement possibilities for our algorithm are

defined by: 1) the revision of the representations for the
underlying solution space and the “neighborhood” structure
that are employed in the conducted local search and 2) the
design of additional mechanisms for resolving certain choices
that arise during the execution of the algorithm.
Regarding the first of the above two items, one can consider

the simultaneous perturbation of the routes of more than one
agent during the search for an improved schedule. In order
to effect such a simultaneous perturbation of n agent routes,
for some n = 2, 3, . . . , we shall need the redefinition of the
DAG structure that is employed in the improving step, so that
it is capable to represent, through the employed nodes and
their connectivity, all the feasible routes that will enable the
considered n agents to reach their corresponding destinations
under the imposed timing constraints without any conflicts
among themselves. The specification of such a DAG and its
systematic construction can be performed in an incremental
manner through a “composing” process of the corresponding
single-agent DAGs. An algorithmic procedure for this con-
struction is presented in [56].
Reference [56] also reports some experimental results

with this augmented version of the algorithm. As expected,
the resulting algorithm can be more powerful than the algo-
rithmic versions that were presented in Section IV, since
it employs a more coupling approach in its search for an
improved schedule. But, similar to the case of the various
coupled methods discussed in Section II, as the parameter
n increases to even some moderate values, the size of the
generated DAGs explodes pretty fast. An additional interesting
finding of the experiments that are reported in [56] is that for
values of n that maintain practical tractability for the resulting
algorithm, the improvements incurred in the quality of the
obtained solutions are not very significant compared with the
solutions that are generated by the algorithm implementation
for n = 1. More generally, the selection of a pertinent value for
the parameter n in any given implementation of the considered
algorithm should be based on: 1) the available time budget and
2) the significance of the incremental improvements that are
attained for the returned solutions.
As for the potential development of mechanisms that will

resolve the various choices that arise during the execution of
the algorithm in a more pertinent manner, one can consider
developing a number of heuristics that will employ any
available information regarding the topology of the under-
lying guidepath network, the proximity of the various trav-
eling agents to their respective destinations, and also any
information that is contained in the optimal solution of the
corresponding “(Lagrangian) dual” problem that was discussed
in Section I. Reference [56] also reports some experimentation
along these lines. This experimentation has revealed that the
integration in the employed algorithm of available information
on: 1) the particular structure of the underlying guidepath
network and 2) the relative positioning of the different agents
with respect to their destinations and each other does have
the potential to enhance its computational efficiency and the
quality of the solutions that are returned by it. On the other

hand, we have not been able to employ with significant
advantage the information that is provided in the optimal
solutions of the Lagrangian dual problem.
Another way to take advantage of the arbitration that

is discussed in the previous paragraph, especially for deci-
sions that cannot be resolved very clearly by an efficient
heuristic rule, is by randomizing the corresponding decisions.
Such randomization will introduce an additional exploration
mechanism in the computational dynamics of the considered
algorithm, taking these dynamics to broader regions of the
underlying solution space, and increasing, thus, the probability
of encountering some high-quality solutions. It also subsumes
the frequently used idea of randomizing the starting point of
any local search algorithm; in the computational context of
our algorithm, the randomization of this particular element can
be incurred by randomizing certain indeterminate aspects of
the corresponding construction procedure that was described
in Section IV-B, like the priority-assignment to agents that
are at equal distance from the “home” edge, or the selection
of the particular shortest path to be followed by each agent.
Of course, the price to be paid for the resulting enrichment
of the solution space is the additional computational cost that
will result from the need for multiple runs of the algorithm.
The detailed determination of the number of these runs con-
stitutes another control parameter for managing the existing
tradeoff between the quality of the generated schedules and
the corresponding computational cost, and it can be based on
the available time budget.

B. Extending the Presented Results to Other Classes of
Guidepath-Based Transport Systems

As discussed in the earlier sections of this paper, the detailed
development of the algorithm that is presented in Section IV
has been facilitated by: 1) the presence of the “home” edge h
in the underlying guidepath network and 2) the ability of the
traveling agents to reverse their direction of motion on any
edge of this network. Moreover, an additional assumption that
underlies all the presented developments is the uniformity of
the traveling times that are required for the traversal of any
given zone by a traveling agent. While these three conditions
will be satisfied straightforwardly by most instantiations of the
particular applications that are targeted in this paper, it is also
natural to consider the extension of the presented method to
other classes of guidepath-based transport systems that might
not satisfy these conditions. In regard to this question, we want
to make the following remarks.
First, the reader should notice that while Conditions 1 and

2) in the previous paragraph are especially useful for construct-
ing the initial feasible schedule that is eventually employed by
our algorithm in its improving step, the improving step itself
can be easily adapted to any new set of assumptions about the
traveling agents by adjusting accordingly: 1) the construction
logic of the DAGs that are employed by this step and 2) the
specification of the costs that are associated with the various
nodes of this graph during the formulation and solution of the
corresponding shortest-path problems. Hence, the possibility
of employing our “local-search” algorithm for the real-time
traffic management in guidepath-based transport systems that
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will not satisfy any of the aforementioned conditions 1 and 2 is
primarily determined by the possibility of obtaining easily an
initial traffic schedule for the corresponding problem.
More specifically, in the case of guidepath-based traffic

networks that do not possess a “home” edge,18 the results
of [16] that were discussed in Section II suggest that, as long
as the target agent configuration is reachable from the initial
configuration, then an initial solution can be constructed
through the algorithm that is provided in that work with
cubic computational complexity with respect to the number
of the locations that are provided by the underlying guidepath
network. Hence, our algorithm can be easily extended to this
new class of guidepath-based transport systems.
On the other hand, removing the ability of the agents to

reverse the direction of their motion within their assigned
zone, while retaining an arbitrary structure for the underlying
guidepath network, can give rise to potential deadlocks, and
renders the issue of the feasibility of the corresponding traffic
scheduling problem that is addressed in this paper a signifi-
cantly harder problem, and these complications arise even in
the presence of a “home” edge [15]. Hence, the application
of our algorithm in this particular class of guidepath-based
traffic systems seems much more challenging. A particular
way to deal with the very high computational complexity that
arises in this last case, while retaining the completeness and
the computational efficiency of our algorithm, is by restricting
the overall operation of the underlying traffic system into an
operational subspace where: 1) the agent “configurations”—
or, alternatively, the “traffic states”—admitted by this subspace
are mutually reachable from each other and 2) for any given
pair (s, s′) of these traffic states, a traffic schedule taking the
underlying traffic system from state s to state s′ is efficiently
computable. In the case of guidepath-based traffic systems
that possess a “home” edge, such a pertinent subspace can
be defined by an adaptation of the notion of the “ordered”
traffic state that is presented in [8]; we shall further discuss
the employment of this concept in the last part of this section,
which addresses the broader issue of the integration of the
results that are presented in this paper to the “rolling-horizon”
scheme that was outlined in Section I.
Next, we consider the necessary modifications of our algo-

rithm in order to accommodate deterministic but nonuniform
zone traversal times for each zone-agent pair (e, a) ∈ E ×A.
Along these lines, first, we notice that the procedure for the
construction of the initial feasible traffic schedule extends nat-
urally in this case, since the notion of the “shortest paths” that
are involved in this construction was defined in Section IV-B
on the basis of the number of edges that must be traversed
by each agent toward the corresponding destinations and not
through the required traversal time. Furthermore, the logic that
supports the improving step can also be adapted easily to this
new case by: 1) having the length of the discrete time period
t defined as the greatest common divisor of the zone traversal
times for the various zone-agent pairs and 2) having the arc
connectivity of the DAGs that are employed by the improving

18In the context of the AGV literature, the corresponding MHS is charac-
terized as “closed” [44], [57].

step, reflect the corresponding delays. Everything else in the
algorithm logic remains exactly the same as described in
Section IV.

C. Integration of the Presented Results in a
“Rolling-Horizon” Framework

As remarked in Section I, the “rolling-horizon” scheme that
will decompose the overall traffic management problem to a
sequence of subproblems of the type that are studied in this
paper must ensure the liveness of the resulting traffic, i.e., the
ability of every agent to complete its current mission and
eventually retire to the “home” location h of the guidepath
network. In the more technical context of the developments
that are presented in this paper, traffic liveness implies the
feasibility of the various subproblems that are formulated and
solved by the employed “rolling-horizon” scheme. Along these
lines, an important implication of Proposition 1 is that, for the
particular class of guidepath-based transport systems defined
in Section III, any agent configuration will be reachable from
any other configuration, and the algorithm(s) presented in
Section IV will be able to provide the necessary traffic sched-
ules. Hence, the embedding of our algorithm in any employed
“rolling-horizon” scheme is a trivial task in this case.
On the other hand, when seeking to employ our algorithm

for some other classes of guidepath-based transport sys-
tems, it is important that the corresponding “rolling-horizon”
scheme generates feasible and efficiently solvable subproblems
through a pertinent specification of the vehicle “mission”
trips and the decomposition of these trips into a sequence
of intermediate destinations. The investigation of this last
problem is beyond the scope of this paper, but as we mentioned
in the previous paragraphs, we believe that this problem can
be resolved effectively and efficiently using concepts and
algorithms similar to those that are employed in [8] for the
liveness-enforcement supervision of the class of AGV systems
that are addressed in that work; the detailed development of
the corresponding methodological framework is part of our
future work with respect to this paper.

VII. CONCLUSION

The work presented in this paper has developed an efficient
heuristic algorithm for the real-time management of the traffic
that is generated in a class of guidepath-based transport sys-
tems arising in various MHS applications and in quantum com-
puting. This algorithm customizes to the considered problem
the broader “local-search” framework that is frequently used
in the solution of hard combinatorial optimization problems.
Furthermore, this paper reports the results from numerical
experimentation with this algorithm, which indicates that the
proposed algorithm can return very efficient schedules in very
short computational times, even for some very hard cases of
the considered problem. Hence, our algorithm is very well
suited for the real-time applications that have motivated the
considered problem. Finally, the discussion that was provided
in the last part of this paper, in combination with the extensive
literature review of Section II, have also defined a signifi-
cant potential of the presented algorithm for adaptation and
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applicability to additional guidepath-based transport systems
that will not satisfy the complete set of the structural and
the operational features characterizing the transport systems
primarily addressed in this paper.
Our future work will seek to extend the applicability of our

algorithm along the lines that were discussed in the previous
paragraph and in the last part of Section VI. It will also seek
to develop a broader decision-making framework for the con-
sidered traffic systems that will address higher level decisions
concerning the pertinent assignment of the arising transport
requests to the system agents. Finally, it is also interesting to
extend the presented developments so that they can address
more explicitly various notions of randomness/stochasticity
that might arise in the operational context of the considered
traffic systems.19
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