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Abstract—With the advent of the Internet of Things (IoT) and
a rapid deployment of smart devices and wireless sensor networks
(WSNs), humans interact extensively with machine data. These hu-
man decision makers use sensors that provide information through
a sociotechnical network. The sensors can be other human users or
they can be IoT devices. The decision makers themselves are also
part of the network, and there is a need to understand how they
will behave. In this paper, the decision fusion behavior of humans is
analyzed on the basis of behavioral experiments. The data collected
from these experiments demonstrate that people perform decision
fusion in a stochastic manner dependent on various factors, un-
like machines that perform this task in a deterministic manner.
A Bayesian hierarchical model is developed to characterize the
observed stochastic human behavior. This hierarchical model cap-
tures the differences observed in people at individual, crowd, and
population levels. The implications of such a model on designing
large-scale inference systems are presented by developing optimal
decision fusion trees with both human and machine agents.

Index Terms—Human behavior modeling, decision fusion,
Bayesian hierarchical modeling, sociotechnical networks.

I. INTRODUCTION

S
OCIOTECHNICAL networks capture the interaction of hu-

man behavior with society’s complex infrastructures. The

optimal design of such networks considers human, social, and

organizational factors, besides technical ones [2]. The informa-

tion flow within such systems is supported by the technical part
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Fig. 1. System model consisting of local decision makers and a global decision
maker.

such as a sensor network. The presence of humans in the sys-

tem, who can take actions, affects both the sociotechnical and

the technical parts of the system [3]–[7]. For example, human

decisions determine movement patterns for many mobile de-

vices, which in turn impact load and connectivity. These same

decisions impact the ability of people to observe a given phe-

nomenon. While human actions are not completely determin-

istic, they can be predictable. Consider a crowdsensing system

where humans make decisions based on local decisions from

information sources such as other people or IoT devices. These

decisions are then sent over (imperfect) channels to a fusion

center for decision making. For such systems, it is important

to develop efficient techniques to model human behavior while

fusing decisions. To characterize how people fuse multiple deci-

sions to make their own decisions, this work presents behavioral

experiments for this task and develops a Bayesian hierarchical

model that describes this behavior. Further, making use of our

Bayesian hierarchical model of human behavior, we develop op-

timal decision fusion trees with both humans and IoT devices.

In particular, we incorporate the randomness associated with

human behavior into the design of fusion rules and show the

improvement in performance by using such rules.

Decision fusion is the process of integrating decisions made

by multiple entities about the same phenomenon into a single

final decision. The typical framework of parallel decision fu-

sion is shown in Fig. 1, where a set of local decision makers
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(LDMs) observe a phenomenon and make decisions regarding

its presence or absence (Yes/No binary decisions). These local

decisions are received by a global decision maker (GDM) who

fuses the received data to make the final decision.

In the signal processing literature, such problems have been

extensively studied when all the decision makers are machines

[8]–[11] and optimal decision rules for both local decision mak-

ers and global decision maker have been designed under various

assumptions [8], [12], [13]. When the global decision maker is

using an optimized fusion rule but the local decision makers are

humans, the above framework addresses the paradigm of crowd-

sensing for distributed inference tasks [14]–[17]. In such sys-

tems, one can analyze the system performance and design simple

easy-to-perform tasks to improve the overall performance of the

system [18]. To engineer networks where the global decision

maker is also a human which arises in the sociotechnical sys-

tems described above, it is of interest to understand how people

fuse decisions. In this paper, based on experimental results, we

develop a particular bounded rationality model (cf. [19]).

Understanding the human-decision making process using

signal processing techniques and its effect on sociotechni-

cal systems has gained increasing interest among researchers

[20]–[25], especially due to the advent of social networks. In

[21], Rhim et al. study collaborative distributed hypothesis test-

ing by a group of agents who have knowledge of quantized prior

probabilities [20], drawn from an ensemble. They study the ef-

fect of such quantization of prior probabilities on distributed de-

tection performance. Wimalajeewa and Varshney also consider

the problem of collaborative human decision making but model

the humans as decision makers who follow threshold-based de-

cision schemes and model the thresholds as random variables

[22]. The performance of such systems is characterized in terms

of probability of error and the optimal statistical parameters of

the threshold distributions are analytically derived. In contrast,

[25] considers the framework where the human agents make

sequential decisions where the next agent’s decision depends on

their private observation and the previous agent’s decision. The

performance of such a social learning framework is contrasted to

the typical distributed decision making framework under differ-

ent scenarios. While our paper deals with the same framework

when decision making agents are all humans, the specific focus

here is on the case where a human global decision maker is

fusing decisions from multiple human local decision makers.

In this paper, a similar signal processing methodology is ap-

plied to understand the process of decision fusion by humans.

The problem of fusing multiple human decisions has been in-

vestigated in different contexts in the psychology literature (see

[26], [27], and references therein). Such a framework is also

very similar to problems in social choice theory and voting.

These systems have been studied under idealizations of human

behavior, including likelihood ratio tests with Bayes-optimal

thresholds and deterministic, optimized, symmetric decision fu-

sion. However, past literature and our new experimental data

show that human behavior is not generally deterministic and

so people do not perform Bayes-optimal decision fusion. We

find through experimentation that none of the five reasonable

fusion rules considered here provide a good match to human

behavior. Therefore, we propose a Bayesian hierarchical model

[28] to replicate the behavior of a population of human deci-

sion aggregators. The model is a symmetric perturbation of one

of three fusion rules (to be detailed later). Note that the model

does not necessarily capture human behavior at the level of

individual choices, but instead replicates the randomness asso-

ciated with human decision making through a generative model.

This helps in the design of large-scale systems that are affected

by such human behavior. In such cases, it is useful to know

how a population performs fusion because there may be further

downstream decision making that can be optimized based on

an understanding of how the intermediate decisions have been

made. We demonstrate the potential improvement quantitatively

using analytical expressions and simulations.

This paper builds on the preliminary work reported in [1].

Significantly more experimental data (almost three times the

preliminary work) was collected for this paper, resulting in more

accurate results. Besides the experimental data, this paper also

improves the Bayesian hierarchical model used in [1] to accom-

modate multiple fusion rules by humans. Our preliminary work

focused only on the optimal fusion rule (Chair-Varshney rule).

However, further discussions within the research team, which

includes psychologists, revealed several other sub-optimal fu-

sion rules that are used by humans (see Section III-A). There-

fore, the model was enhanced by adding another dimension of

stochasticity to accommodate the existence of different fusion

rules. The larger experimental data, the enhanced models, and

more accurate results make this work a complete version of the

preliminary work reported in [1].

The remainder of the paper is organized as follows. In

Section II, we describe psychology experiments designed to

understand human decision fusion. Preliminary analysis of the

collected data is performed in Section III by comparing the ob-

served decisions with several popularly used fusion rules. After

establishing that existing decision fusion models cannot explain

the human behavior, in Section IV we build a Bayesian hierar-

chical model to explain the observed behavior. In Section V, we

discuss its implications by demonstrating its effect on the design

of large-scale hierarchical sociotechnical systems, consisting of

multiple human decision fusion components. We conclude the

paper in Section VI.

II. EXPERIMENTS

To understand decision fusion behavior in humans, experi-

ments replicating the process of Fig. 1 were designed. Human

subjects consisting of undergraduate students at Syracuse Uni-

versity were enrolled for this task.1 The experiment consisted of

data collection in two stages: the first stage models local decision

making and the second stage models data fusion. The experi-

ment is that of a memory-based task and is described as follows.

A. Stage 1: Local Decision Making

1) Participants: A total of 45 introductory psychology

students from Syracuse University performed the first stage

of the experiment that models local decision making. All

1The necessary IRB approval was obtained before conducting the
experiments.
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Fig. 2. Example trial where participants in Stage 2 had to decide if the word
Project is a part of the study list S or the distractor list N using information
provided by participants from Stage 1.

participants received partial fulfillment of course requirements

for their participation.

2) Stimulus Materials: A study list D containing 100 English

words ranging in length from 5 to 11 letters (median = 7), and

ranging between 8.41 and 12.17 log frequency (mean = 10.33,

standard deviation = 0.93) in the Hyperspace Analog to Lan-

guage Corpus (HAL) [29] was provided to the participants. A

test list S containing words in D, and an additional 100 dis-

tractor words N was prepared (S = D ∪N ). These distractor

words in N were between 5 and 12 letters in length (median =
7), and ranged from 8.10 to 13.27 log frequency (mean = 10.34,

standard deviation = 0.94) in the HAL Corpus.

3) Procedure: After providing informed consent, participants

were seated in individual testing booths and instructed that they

would study a series of words and then have their memory for

those words tested. During the study phase, participants were

asked to indicate whether each of the presented words s ∈ S
belonged to the previously memorized target set (s ∈ D) or

the unseen distractor set (s ∈ N ). Participants were required

to make this judgment within 6 seconds, or else the trial was

discarded and the next item would appear automatically. Each

participant completed 200 such trials. The order in which these

200 trials unfolded was randomized for each participant.

B. Stage 2: Global Decision Making

1) Participants: A total of 60 introductory psychology stu-

dents from Syracuse University participated in the experiment.

All participants received partial fulfillment of course require-

ments for their participation.

2) Stimulus Materials: The stimuli used in the second stage

are the recognition judgments provided by participants in Stage

1. For example, in the first stage, participants had their memory

tested for the word Project. A trial in the second stage showed the

word Project as well as the recognition judgments from a varying

number of “sources” (i.e., participants in the first stage). For each

of these sources, participants saw three pieces of information:

sources’ decisions, accuracies, and bias values. See Fig. 2 for an

example. Source accuracy is defined as the proportion of correct

answers (i.e., “hits” on target trials and “correct rejections” on

distractor trials) over the course of the experiment (excluding

trials on which no answer was given, as described above). The

bias values (the far right column of Fig. 2) represented how

frequently a source gave a “yes” response across both target and

distractor trials.

3) Procedure: Upon arrival to the test setting, participants

provided informed consent and received instructions about the

task. All the participants were told that earlier in the semester,

participants like themselves had completed a recognition mem-

ory task (i.e., Stage 1). We simply asked participants to try and

identify whether or not a word was truly studied on the basis

of responses from participants in the previous experiment. The

decision task consisted of 200 trials, where participants were

provided with information from a varying number of sources

(N ) from Stage 1 (these were real participants from Stage 1).

Participants saw 2, 5, 10, or 20 source judgments. The number of

sources presented on each trial was randomized over the course

of the experiment, with the lone constraint that there were 50

trials of each type. On each trial, participants were asked to pro-

vide a yes or no response to the question “Do you think this item

was actually studied?” Responses were indicated by a single key

press (“z” or “/?”). Response keys were counterbalanced across

participants. Finally, after making their judgment, participants

were also asked to assess their confidence in that judgment (1

= low; 3 = high). After providing this confidence judgment,

participants proceeded to the next trial. Each datapoint of the

resulting dataset has the following information: word s, true

hypothesis of s (s ∈ D or s ∈ N ), number of sources for this

particular task (N ), sources’ decisions (u1 , . . . , uN ), sources’

accuracy (a1 , . . . , aN ) and bias values (b1 , . . . , bN ), and the

fused decision reported by the global decision maker (d).

Note that for an accurate understanding of human decision

behavior, it was necessary to actually perform the first stage of

the experiment with human subjects instead of randomly gen-

erating local decisions for the humans in the second stage. This

is because humans have item-specific bias and accuracy levels

[30], [31]. For example, people tend to believe that they re-

member negative arousing words (such as murder) regardless of

whether or not they actually studied the word and people tend

to have high accuracy (high hit rates and low false alarm rates)

for uncommon words (such as ire). If decisions were randomly

generated for the second stage, then the data would not reflect

these factors and would probably be distrusted (consciously or

unconsciously) by the decision makers. In a typical experiment,

these problems are avoided by fully randomizing assignment of

words toD orN status. For this experiment, we did not random-

ize so that we could have N decisions under (approximately)

identical circumstances (same D and N ) with the added ran-

domness of individual differences among people. However, as

noted before, the order of presentation of trials was randomized

in the second stage since that affects performance [32], [33].

III. PRELIMINARY DATA ANALYSIS

This section presents a preliminary analysis of the col-

lected data.2 Decisions made by humans in the experiments are

compared against some known fusion rules. First, traditional

2This data is available on the Open Science Framework at https://osf.io/a7pgz/
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decision fusion rules are presented in Section III-A. The deci-

sions of these traditional decision rules are then compared to the

observed decisions of the humans in Section III-B.

A. Fusion Rules

1) Optimal Fusion Rule (CV): When the sources’ reliabili-

ties are known, optimal decision fusion is achieved by the Chair-

Varshney (CV) rule [12]. Represent the “Yes/No” decisions of

the ith local decision maker as

ui =

{

+1, if the decision is “Yes”,
−1, if the decision is “No”.

(1)

After receiving the N decisions u = [u1 , . . . , uN ], the global

decision u0 ∈ {−1,+1} is made as follows:

d =

{

+1, if m0 +
∑N

i=1 miui > 0,
−1, otherwise,

(2)

where m0 = log P1

1−P1
,

mi =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

log
1 − PM,i

PF,i
, if ui = +1,

log
1 − PF,i

PM,i
, if ui = −1,

(3)

for i = 1, . . . , N is defined as the reliability of a decision, and P1

is the prior probability that the underlying hypothesis is “Yes”

(+1), PM,i , PF,i represent the probability of missed detection

and false alarm respectively, of the ith decision maker.

2) Most Accurate Decision (MAD): The most accurate de-

cision rule is a heuristic decision rule that has been described

in human decision making literature. It is defined as follows:

d = ua where

a = arg max
i

ai , (4)

and ai is the accuracy of the ith local decision maker. In terms

of missed detection and false alarm probabilities, this is given

as

ai = P0(1 − PF,i) + P1(1 − PM,i). (5)

This decision rule only depends on the accuracy values of the

local decision makers and is therefore believed to be a strong

heuristic used by humans especially when the number of deci-

sions presented for fusion (N ) is large.

3) Most Reliable Decision (MRD): The most reliable deci-

sion rule is another heuristic decision rule considered in this

paper. It is defined as d = uρ where

ρ = arg max
i

mi ,

and mi is the reliability of ith local decision maker given by (3).

This decision rule depends on both accuracy and bias values of

the local decision makers.

4) Censored CV Rule (CCV-τ ): The censored CV decision

rule with parameter τ is a censored version of the CV rule of

Section III-A1 that may be used by humans when the number

TABLE I
MEAN ± STANDARD DEVIATION OF MATCH VALUES FOR DIFFERENT VALUES

OF N AND FOR DIFFERENT RULES

of sources is large. It is mathematically given as

d =

{

+1, if m0 +
∑N

i=1 m̃iui > 0,
−1, otherwise,

(6)

where ui is given by (1) and

m̃i =

{

mi , if mi ≥ τ,
0, otherwise.

(7)

Here, τ is the censoring threshold that determines when a par-

ticular decision is reliable and therefore, should be considered

in the decision making process.

5) Majority Rule (MAJ): The majority rule is a very common

decision rule used in practice, especially when the accuracy or

bias values of the local decision makers are unavailable. It is

given as

d =

{

+1, if
∑N

i=1 ui > 0,
−1, otherwise,

(8)

where ui is given by (1).

B. Comparison of Fusion Rules

Before building a model of how humans fuse data, we com-

pare the experimental data with the fusion rules described in

Section III-A. For this purpose, final decisions of T = 60 hu-

man global decision makers are compared with the decision

from the fusion rules described in Section III-A. Note that in

our setup, P1 = 0.5, implying m0 = 0. Each human subject at

the second stage typically performed 100 trials, 25 each with

N = 2, 5, 10, 20. The final decisions made by the humans are

compared with the decisions made by the fusion rules with the

same input. The fraction of times that a decision maker i’s de-

cision matches the decision of fusion rule r with the same input

data is defined as the match value pi,r of the ith decision maker

with rth rule. Table I shows the mean of match values across all

human subjects for each of the fusion rules with varying number

of local decision makers.

As we can observe from Table I, the average match value

improves with increasing number of sources for the CV-based

(CV and CCV-τ ) rules but not necessarily for the other rules.

Also, on comparing the individual match values pi,r across

the rules, we observed that the CCV and the MAJ rules were

never the best for any of the 60 individuals for any value of N .

However, the other three rules were better for some individuals.

For example, when N = 2, the CV rule was best among all

rules for participant id 61, whereas the MAD rule was the best

one for most of the individuals. On the other hand, for the same

participant with id 61, when N = 5, the CV rule had the highest
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Fig. 3. Proposed 2-step model where the first step determines a deterministic decision using rule r and the second step models the randomness of an individual
human’s decisions by using a match value p. Here q, α and β are hyperparameters that capture the randomness of r and p, among multiple individuals at the
crowd level.

match value. Also, the variability of match values is very high,

with some participants having a match value close to 1, while

some having as low as 0.32. Therefore, a single decision fusion

rule cannot capture every human’s behavior at every time instant.

In the following, we develop a Bayesian hierarchical model to

represent the observed human behavior.

IV. BAYESIAN HIERARCHICAL MODEL

In this section, a Bayesian hierarchical model is developed

which characterizes the human behavior when fusing multiple

decisions. This model encapsulates the variability among hu-

man behavior observed at an individual level, crowd level, and

population level.

A. Description of Model

From the preliminary data analysis of the previous section,

we observed that no single rule perfectly characterizes the be-

havior for all individuals. Consider a discrete set of fusion rules

R. Then, one can model an individual to be using a fixed fusion

rule ri = j ∈ R and a fixed match value pi . On the other hand,

this rule ri and the match value pi differs for every individual.

Even among all individuals who use the same fusion rule j, the

match value differs. This behavior can be captured by modeling

the fusion rule ri as a random variable following a distribution

fr (·) with support set R and the match value pi as a random

variable with distribution fp,r (·). Such a model captures the in-

dividual differences in humans while fusing multiple decisions.

As mentioned before, the differences among humans can be at

multiple levels: individual level, crowd level, and population

level. The individual-level decision model is described below

(Fig. 3):
� A deterministic decision v is determined using the fusion

rule j, which is fixed for an individual.
� The individual’s final decision is determined by flipping the

deterministic decision v with probability (1 − p) where p
is the individual’s match value.3

Therefore, the final decision is now given by:

d =

{

v, with probability p,
1 − v, with probability 1 − p.

(9)

3A match value of p > 0 in our model captures the model for limited
rationality.

This randomness in human decision making can be attributed to

the fact that human perception and encoding (of the stimulus)

is subject to uncertainty. Therefore, rather than implementing a

mechanistic account of that, we characterize the randomness by

introducing noise in the decision for simplicity.

Moving another step higher in the hierarchy, at the crowd

level, every individual has their fixed fusion rule ri = j that is

determined by sampling from distribution fr (·) and the match

value pi for the individual is sampled from a distribution fp,r (·).
These distributions fr (·) and fp,r (·) are determined by fitting

a model to experimental data of Section II. For our models,

we consider fr (·) to be a categorical distribution with param-

eters q where qj denotes the probability of choosing fusion

rule j and
∑

j qj = 1. The distribution fp,r (·) is modeled to

be a beta distribution with parameters αj and βj which de-

pend on the fusion rule j. Let α = [α1 , . . . , αj , . . . , αR ] and

β = [β1 , . . . , βj , . . . , βR ] where R = |R| is the total number

of fusion rules. The parameters q, α, and β correspond to the

crowd parameters that serve as hyperparameters for r and p.

As we shall see later, the values of the hyperparameters q, α,

and β themselves depend on the crowd considered, i.e., they de-

pend on the number of sources, whether they are college students

or online participants, the demographics of the participants, etc.

This takes us to the higher level in the model where these values

of q, α, and β, or in other words, the distributions fr (·) and

fp,r (·) themselves depend on the underlying crowd chosen for

the task. Different crowds would have different values of q, α,

and β. Hidden variables like demographics, motivation, etc. can

affect the parameters of the randomized decision rule model

discussed above. Therefore, continuing on the Bayesian mod-

eling approach, these parameters q, α, and β can be modeled

as random variables sampled from a distribution with parame-

ters P (population parameters). The distribution of q could be

the conjugate prior of categorical distribution, i.e., the Dirichlet

distribution. Similarly, the distribution α and β can be the con-

jugate prior of the beta distribution, which exists since the beta

distribution falls under the family of exponential distributions.

In this case, the parameters of the Dirichlet distribution and

the parameters of the conjugate prior of Beta distribution serve

as the population parameters. Population parameters govern the

entire population as a whole from which different sets of crowds

are sampled. This complete model can be captured by Fig. 4.
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Fig. 4. Bayesian hierarchical model of decision fusion by humans using the plate notation of representing variables in a graphical model.

B. Model Inference

In this section, we infer the parameters of the model using

data collected in Section II. From our observations, we saw that

the CCV rule and the MAJ rule were not the best fit rules for

any individuals in our dataset. Therefore, we consider R = 3
and consider the rules to be [CV, MAD, MRD]. The optimal

approach of using a joint maximum likelihood approach would

require the knowledge of the latent variable, i.e., the knowledge

of fusion rule being used by each individual. We first infer q

followed by the parameters (αj , βj ) as follows. Note that these

parameters can also be jointly estimated using an EM-based

method.

1) Inferring q: The rule selection parameter q is inferred

using a maximum likelihood estimate as follows. We first de-

termine the match values corresponding to every rule for every

individual. Represent the match value of individual i with rule

j as pi,j . Let p̃i represent the maximum value among all pi,j for

a fixed i, i.e.,

p̃i = max
j

pi,j . (10)

Now, let 0 ≤ Tj ≤ T represent the number of individuals among

the T individuals for whom p̃i = pi,j . This is the empirical

number of individuals that follow rule j. The estimate of q is

then determined as a (normalized) version of

q̂j =
Tj

T
. (11)

An additional normalization step might be needed since mul-

tiple rules can result in the same match value that is equal to

the maximum one. Normalization ensures that the constraint
∑

j qj = 1 is satisfied.

2) Inferring α and β: The parameters of the beta distribu-

tion are identified as follows. For learning αj and βj , we only

consider the Tj individuals who follow rule j. Due to the limited

number of data points, a bootstrap model is used for data fitting,

where t = 0.7Tj data points among the total Tj data points are

randomly selected for which a beta distribution is fit. This pro-

cess is repeated Nmc = 1000 times. If αk and βk represent the

parameters from the kth trial, the final parameters are decided

by taking an average of these parameters.

3) Inference Results: The results are compiled in Table II

and Figs. 5–8. Table II presents all the inferred parameter val-

ues for different values of N (the number of sources). As we can

observe, more individuals followed sub-optimal fusion rules for

lower values of N and the optimal CV rule for higher number of

sources. Also, the mean of the match value, E[p] = α/(α + β)
increases with an increase in N . To gain further insights on

how the distribution of the match value varies for different

rules and for different values of N , we plot the distributions

Fig. 5. Distribution fp ,j (·) of match value p for different fusion rules j
when N = 2, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.

Fig. 6. Distribution fp ,j (·) of match value p for different fusion rules j
when N = 5, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.

Fig. 7. Distribution fp ,j (·) of match value p for different fusion rules j
when N = 10, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.
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TABLE II
PARAMETERS FOR DIFFERENT VALUES OF N

Fig. 8. Distribution fp ,j (·) of match value p for different fusion rules j
when N = 20, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.

in Figs. 5–8. An interesting observation is that the distribution

fp,C V rule(·) has increasing mean and shifts to the right with

increase in N , while the distributions of other rules (MAD and

MRD) do not necessarily follow such a trend. Also, the distri-

bution fp,C V rule(·) corresponding to the optimal CV rule has

constant shape and robust parameters with increasing N while

the distributions for the MAD and MRD rules are less robust

to the number of sources. This could be an artifact of limited

data as there were relatively lesser data points for these rules in

comparison to CV rule. This intuition will be further explored

in the future by collecting higher number of data points.

From the proposed model, it is clear that for a complete study,

one has to repeat human subject experiments with different

crowds, to determine the population parameters and their effect

on the crowd parameters q, α, and β. For example, one might get

different results from online participants, such as crowd work-

ers as compared to a group of college students [34]. Also, it has

been found that age of the crowd (older vs. younger adults), or

disease conditions of typical vs. atypical crowds (PTSD, demen-

tia, Alzheimer’s, etc.), might give different results [35]. From

the experiments, an ensemble of parameters can be determined,

which will help us in getting population-level insight into indi-

vidual differences regarding how people fuse decisions. Such a

hierarchical model can be used for understanding and designing

larger signal processing systems that have a human decision fu-

sion component such as distributed detection systems [8], [36]

where each agent is not a single cognitive agent, but rather

a human-based decision fusion system (Fig. 9). Also, cogni-

tive agents in such systems may be drawn from a specialized

sub-population.

V. OPTIMAL DESIGN OF SOCIOTECHNICAL NETWORKS

As described in Section I, crowdsensing with human decision

fusion components plays a key role in sociotechnical systems.

Fig. 9. Hierarchical system consisting of human decision fusion components.

Here we consider designing such sociotechnical systems with

machines and with humans, as modeled through our Bayesian

hierarchical framework.4 Consider a system like Fig. 9 where

multiple levels of decision makers are present in the system with

human decision makers fusing data from multiple subordinate

agents (humans or machines) before sending their fused obser-

vations to a final fusion center via imperfect channels. If these

last-level agents were IoT devices rather than humans, one could

use the optimal fusion rule to fuse the data [12]. Note that this

optimal fusion rule weighs the decisions with their reliabilities

which are deterministically known. However, when the final fu-

sion center receives data from humans and via imperfect mobile

channels, one needs to use the Bayesian hierarchical model of

human decision fusers along with the channel effects to design

the fusion rule at the fusion center.5

Considering the Bayesian formulation, the optimal fusion rule

at the fusion center is developed by adopting a methodology sim-

ilar to [12]. Let the phenomenon of interest be a binary hypoth-

esis testing problem with prior probabilities P (H0) = P0 and

P (H1) = P1 = 1 − P0 . Assume that the fusion center receives

decisions from M human decision fusion components. We rep-

resent the received decisions by ri ∈ {−1,+1} and the deci-

sions made by the decision fusion component as di ∈ {−1,+1},

for i ∈ {1, . . . , M}, where ri = ±1, if the decision received

from the ith component is H1 or H0 , respectively. The fusion

center makes the final decision r0 = f(r1 , . . . , rM ) using the M
decisions based on the fusion rule f(·). The goal is to design the

optimal fusion rule f(·) based on the hierarchical decision mak-

ing model of the components as discussed above (see Fig. 4) and

the channel model between the decision fusion component and

the fusion center. Consider the channels between the decision

fusion component and the fusion center to be binary symmetric

channels (BSC) with crossover probability pb .

The optimal decision rule that minimizes the probability of

error at the fusion center is given by the following likelihood

ratio test6

P (r1 , . . . , rM |H1)

P (r1 , . . . , rM |H0)

H1

≷
H0

P0

P1
, (12)

4Note that these intermediate agents implicitly have the goal of being right
in contrast to the goal of being informative to later-acting agents [37].

5Note there are two kinds of hierarchies considered herein: the Bayesian
hierarchy for human modeling and tree hierarchy of decision making.

6Note that we consider the case where the Bayes cost ratio equals 1.
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or equivalently,

log
P (H1 |r1 , . . . , rM )

P (H0 |r1 , . . . , rM )

H1

≷
H0

0. (13)

This optimal fusion rule can be written as

log
P1

P0
+

∑

S⊕

log
P (ri = +1|H1)

P (ri = +1|H0)

+
∑

S�

log
P (ri = −1|H1)

P (ri = −1|H0)

H1

≷
H0

0, (14)

where S⊕ and S� are the sets of all components whose received

decision is ri = +1 or ri = −1, respectively.

The terms in (14) can be further simplified as

P (ri = +1|H1)

= P (ri = +1|di = 1,H1)P (di = +1|H1)

+ P (ri = +1|di = −1,H1)P (di = −1|H1)

= (1 − pb)P (di = +1|H1) + pbP (di = −1|H1). (15)

Here, P (di = +1|H1) is the probability that the ith decision

fusion component made a decision di = +1 when the true hy-

pothesis is H1 and is determined using the Bayesian hierarchical

model as

P (di = +1|H1)

= P (di = +1, di,j = +1|H1) + P (di = +1, di,j = −1|H1)

= P (di = +1|di,j = +1)P (di,j = +1|H1)

+ P (di = +1|di,j = −1)P (di,j = −1|H1)

= piPd,i,j + (1 − pi)(1 − Pd,i,j )

= 1 − pi − Pd,i,j + 2piPd,i,j (16)

where di,j ∈ {−1,+1} is the decision that the ith human fusion

center would make using its fusion rule j, pi is the match value

of the ith human corresponding to his/her rule j,7 and Pd,i,j �
P (di,j = +1|H1) is the probability of detection of ith decision

fusion component using fusion rule j. Similarly, the expressions

for P (di = +1|H0), P (di = −1|H1), and P (di = −1|H0) can

be derived as a function of Pf ,i,j � P (di,j = +1|H0) (false

alarm probability) and are given as

P (di = +1|H0) = 1 − pi − Pf ,i,j + 2piPf ,i,j , (17)

P (di = −1|H1) = pi + Pd,i,j − 2piPd,i,j , (18)

and

P (di = −1|H0) = pi + Pf ,i,j − 2piPf ,i,j . (19)

7This value is p̃i in (10) but the ∼ at the top has been dropped for notational
simplicity.

Using (15)–(19), the optimal fusion rule (14) becomes

log
P1

P0
+

∑

S⊕

log
pb + (1 − 2pb)(1 − pi − Pd,i,j + 2piPd,i,j )

pb + (1 − 2pb)(1 − pi − Pf ,i,j + 2piPf ,i,j )

+
∑

S�

log
pb + (1 − 2pb)(pi + Pd,i,j − 2piPd,i,j )

pb + (1 − 2pb)(pi + Pf ,i,j − 2piPf ,i,j )

H1

≷
H0

0.

Note that the above expression requires the knowledge of

every individual decision fusion component’s rule j and match

value pi . When this knowledge is not available, but the crowd

parameters q, α, and β are known (refer to Fig. 4), (16) becomes

P (di = + 1|H1) =
∑

j

qjP (di = +1|j,H1),

=
∑

j

qj

∫

p

P (di = +1|j, pi ,H1)fp,j (p)dp

=
∑

j

qj

(

pb + (1 − 2pb)

(

1 −
αj

αj + βj
− Pd,i,j + 2

αjPd,i,j

αj + βj

)

)

= pb + (1 − 2pb)
⎛

⎝1 −
∑

j

qjµj −
∑

j

qjPd,i,j + 2
∑

j

qjµjPd,i,j

⎞

⎠.

where µj � α j

α j +βj
. Similarly the expressions in (17)–(19)

change accordingly.

Therefore, when all the decision fusion components are iden-

tical (same number of sources, identically distributed sources,

identically distribution fusion rule selection, etc.), then the

optimal fusion rule becomes a K-out-of-M rule. The optimal

K is easy to derive and is given by

K∗ =

⎡

⎢

⎢

⎢

log P0

P1
− M log a∗

�

log
a∗
⊕

a∗
�

⎤

⎥

⎥

⎥

, (20)

where

a∗
⊕ =

pb + (1 − 2pb)
(

1−
∑

j qjµj −
∑

j qjPd,j + 2
∑

j qjµjPd,j

)

pb + (1 − 2pb)
(

1 −
∑

j qjµj −
∑

j qjPf ,j +2
∑

j qjµjPf ,j

)

and

a∗
� =

1− pb− (1−2pb)
(

1−
∑

j qjµj −
∑

j qjPd,j +2
∑

j qjµjPd,j

)

1−pb − (1−2pb)
(

1−
∑

j qjµj −
∑

j qjPf ,j +2
∑

j qjµjPf ,j

) .

If these data fusion components of Fig. 9 are from different

crowds, one can go higher in the Bayesian hierarchical model

and use the population parameters to determine the optimal fu-

sion rule. Also, any machines using CV rules in the penultimate
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level of the hierarchical sociotechnical network can be regarded

as a human agent with q = [1, 0, . . . , 0] and perfect match value

of p = 1. Such a generality can help us in constructing arbitrary-

depth trees of sociotechnical decision making, where humans

are modeled and the machines are optimized.

In the following, the benefit associated with the Bayesian

hierarchical model is characterized. Consider the case when

such a model of human decision fusion is ignored and are instead

considered to be machines, then the optimal K for the K-out-

of-M rule is given by

K∗
sen =

⎡

⎢

⎢

⎢

log P0

P1
− M log 1 − pb − (1 − 2pb )Pd

1 − pb − (1 − 2pb )Pf

log
(pb +(1 − 2pb )Pd )(1 − pb − (1 − 2pb )Pf )
(pb +(1 − 2pb )Pf )(1 − pb − (1 − 2pb )Pd )

⎤

⎥

⎥

⎥

. (21)

From (20) and (21), we can observe that the basic differ-

ence between K∗ and K∗
sen arises from the Pd and Pf of the

intermediate decision fusion systems. If the intermediate deci-

sion fusion systems are machines, they have deterministic Pd

and Pf , while the human decision fusion components modeled

using the Bayesian hierarchical model have Pd and Pf that in-

corporate randomness. As we shall observe later in the paper,

this incorporation of randomness into the optimal K improves

system performance.

The error probability for fixed K is

Pe(K) =

P0

M
∑

i=K

(

M

i

)

(

P̃f

)i (

1 − P̃f

)M −i

+ P1

K−1
∑

i=0

(

M

i

)

(

P̃d

)i (

1 − P̃d

)M −i

, (22)

where

P̃d = pb + (1 − 2pb)
⎛

⎝1 −
∑

j

qjµj −
∑

j

qjPd,j + 2
∑

j

qjµjPd,j

⎞

⎠ (23)

and

P̃f = pb + (1 − 2pb)
⎛

⎝1 −
∑

j

qjµj −
∑

j

qjPf ,j + 2
∑

j

qjµjPf ,j

⎞

⎠. (24)

Therefore, the performance loss by ignoring the effect of humans

in the system is due to the mismatched K value and is given

by Eqn. (25) shown at the bottom of this page.

Fig. 10 shows the gain in performance by using the Bayesian

hierarchical model of humans in comparison to assuming them

Fig. 10. Percentage improvement in system performance by using the
Bayesian hierarchical model for system design with varying prior probability.

to be machines, against prior probability for different values of

N . The parameters used are M = 5, Pd = [0.9, 0.8, 0.8] and

Pf = [0.1, 0.2, 0.3] for the three different rules, and the param-

eters q, α, and β are the ones inferred from data and as listed in

Table II. We plot the case when the channels are perfect (pb = 0),

to emphasize the gain associated with the models developed for

human decision making in this paper. Fig. 10 clearly shows

the high gain in performance by using the model developed in

this paper. The gain in performance is highest for N = 20, i.e.

when the number of sources for the decision fusion compo-

nents is high. We observe some sudden jumps in performance

gain around P0 = 0.1 and P0 = 0.9, and lack of performance

improvement in the region around P0 = 0.5. These regions are

further explored for a simple case below.

For further insights, we consider the case when R = 1 in the

following and only use the CV rule as a potential rule. In Fig. 11,

the performance gain by using the Bayesian hierarchical model

is plotted against different values of prior probability for this

case. The parameters used are M = 5, Pd = 0.9, Pf = 0.1, α =
5, and β = 3. As can be observed, by utilizing the knowledge of

human decision fusion components in the system during system

design, one can improve the performance by around 35% on

average.

The sudden jump in performance gain around priors P0 = 0.1
and P0 = 0.9 is due to the chosen values of Pd and Pf and can

be analytically determined using the expressions in (20) and

(21). Also, note that the region around P0 = 0.5 for which there

is no performance improvement is due to the situation when the

term dependent on the prior dominates the other terms in the

expressions of K∗ and K∗
sen , thereby resulting in equal values

of K∗ and K∗
sen. The width of this region where there is no

performance gain depends on the values of α and β as we can

∆Pe =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑K ∗−1
i=K ∗

s e n

(

M
i

)

[

P0

(

P̃f

)i (

1 − P̃f

)M −i

− P1

(

P̃d

)i (

1 − P̃d

)M −i
]

, if K∗ > K∗
sen,

∑K ∗
s e n −1

i=K ∗

(

M
i

)

[

P1

(

P̃d

)i (

1 − P̃d

)M −i

− P0

(

P̃f

)i (

1 − P̂f

)M −i
]

, if K∗ < K∗
sen

(25)
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Fig. 11. Percentage improvement in system performance by using the
Bayesian hierarchical model for system design with varying prior probability
for a fixed CV rule.

Fig. 12. Percentage improvement in system performance by using the
Bayesian hierarchical model for system design with varying values of β and
α = 0.5.

see in Fig. 12. Here, P0 = 0.3 is outside this region for β ≥ 1.5
while it is within this region for β < 1.5. Similar observations

can be made for different values of priors. This suggests that the

performance gain with the Bayesian hierarchical model devel-

oped in this paper depends on the apriori information (P0) about

the task and the parameters of the crowd taking part in the task.

As the crowd gets more unreliable (β increases), the proposed

model can improve performance for a larger range of task prior

probabilities.

VI. DISCUSSION

In this paper, the human behavior in human-in-the-loop so-

ciotechnical systems is studied. Specifically, the task of decision

fusion has been considered. It was first observed that determin-

istic fusion rules, such as the CV rule, do not characterize hu-

man behavior, since data fusion by humans is not deterministic

in nature. For a given set of data, deterministic rules give the

same output at any time instant. On the other hand, the output

changes for different humans and in some cases, for the same

human at different time instants, as pointed out by Payne and

Bettman [38]. This suggests the use of a randomized decision

rule, which was the focus of the next part of the paper.

We developed hierarchical models which characterize this be-

havior. Due to the hierarchical nature, this model encompasses

human variation observed at various levels: individual level,

crowd level, and population level. On an individual level, ev-

ery human has a different bias which affects his/her decision

fusion process. A crowd is a collection of people who have sim-

ilar understanding due to cultural, societal, or other factors, and

therefore, might have similar characteristics in performing tasks.

On a population level, there are differences in societies, cultures,

or demographics, which affect the decision fusion process. The

effect of such models on the design of larger human-machine

systems has been demonstrated. It was shown that there is a sub-

stantial improvement in performance when the human-behavior

models are used for designing human-in-the-loop systems.

This work demonstrates the benefits of the methodology in-

volving the design of experiments to study human behavior,

building statistical models that capture the essence of the ob-

served human behavior, and using these models to optimize the

design of large-scale human-machine systems. This methodol-

ogy can be followed to model and understand other human user

behavior. For example, data can be collected with a large num-

ber of sources (N ) to verify some asymptotic approximations.

In other words, this data can be used to verify the hypothesis that

humans use heuristic decision rules when the amount of data is

large. On similar lines, time-constrained tasks can be designed

to verify if heuristic rules such as pick-the-best rule (MAD rule)

work better under time-constrained situations. A psychological

understanding of the observations might also provide insights

towards comprehending complex human behavior. Computa-

tional social science data can also be used in lieu of psychology

experiments used in this paper.
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