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Abstract—With the advent of the Internet of Things (IoT) and
a rapid deployment of smart devices and wireless sensor networks
(WSNs), humans interact extensively with machine data. These hu-
man decision makers use sensors that provide information through
a sociotechnical network. The sensors can be other human users or
they can be IoT devices. The decision makers themselves are also
part of the network, and there is a need to understand how they
will behave. In this paper, the decision fusion behavior of humans is
analyzed on the basis of behavioral experiments. The data collected
from these experiments demonstrate that people perform decision
fusion in a stochastic manner dependent on various factors, un-
like machines that perform this task in a deterministic manner.
A Bayesian hierarchical model is developed to characterize the
observed stochastic human behavior. This hierarchical model cap-
tures the differences observed in people at individual, crowd, and
population levels. The implications of such a model on designing
large-scale inference systems are presented by developing optimal
decision fusion trees with both human and machine agents.

Index Terms—Human behavior modeling, decision fusion,
Bayesian hierarchical modeling, sociotechnical networks.

I. INTRODUCTION

OCIOTECHNICAL networks capture the interaction of hu-
man behavior with society’s complex infrastructures. The
optimal design of such networks considers human, social, and
organizational factors, besides technical ones [2]. The informa-
tion flow within such systems is supported by the technical part
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System model consisting of local decision makers and a global decision

such as a sensor network. The presence of humans in the sys-
tem, who can take actions, affects both the sociotechnical and
the technical parts of the system [3]-[7]. For example, human
decisions determine movement patterns for many mobile de-
vices, which in turn impact load and connectivity. These same
decisions impact the ability of people to observe a given phe-
nomenon. While human actions are not completely determin-
istic, they can be predictable. Consider a crowdsensing system
where humans make decisions based on local decisions from
information sources such as other people or IoT devices. These
decisions are then sent over (imperfect) channels to a fusion
center for decision making. For such systems, it is important
to develop efficient techniques to model human behavior while
fusing decisions. To characterize how people fuse multiple deci-
sions to make their own decisions, this work presents behavioral
experiments for this task and develops a Bayesian hierarchical
model that describes this behavior. Further, making use of our
Bayesian hierarchical model of human behavior, we develop op-
timal decision fusion trees with both humans and IoT devices.
In particular, we incorporate the randomness associated with
human behavior into the design of fusion rules and show the
improvement in performance by using such rules.

Decision fusion is the process of integrating decisions made
by multiple entities about the same phenomenon into a single
final decision. The typical framework of parallel decision fu-
sion is shown in Fig. 1, where a set of local decision makers
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(LDMs) observe a phenomenon and make decisions regarding
its presence or absence (Yes/No binary decisions). These local
decisions are received by a global decision maker (GDM) who
fuses the received data to make the final decision.

In the signal processing literature, such problems have been
extensively studied when all the decision makers are machines
[8]-[11] and optimal decision rules for both local decision mak-
ers and global decision maker have been designed under various
assumptions [8], [12], [13]. When the global decision maker is
using an optimized fusion rule but the local decision makers are
humans, the above framework addresses the paradigm of crowd-
sensing for distributed inference tasks [14]-[17]. In such sys-
tems, one can analyze the system performance and design simple
easy-to-perform tasks to improve the overall performance of the
system [18]. To engineer networks where the global decision
maker is also a human which arises in the sociotechnical sys-
tems described above, it is of interest to understand how people
fuse decisions. In this paper, based on experimental results, we
develop a particular bounded rationality model (cf. [19]).

Understanding the human-decision making process using
signal processing techniques and its effect on sociotechni-
cal systems has gained increasing interest among researchers
[20]-[25], especially due to the advent of social networks. In
[21], Rhim et al. study collaborative distributed hypothesis test-
ing by a group of agents who have knowledge of quantized prior
probabilities [20], drawn from an ensemble. They study the ef-
fect of such quantization of prior probabilities on distributed de-
tection performance. Wimalajeewa and Varshney also consider
the problem of collaborative human decision making but model
the humans as decision makers who follow threshold-based de-
cision schemes and model the thresholds as random variables
[22]. The performance of such systems is characterized in terms
of probability of error and the optimal statistical parameters of
the threshold distributions are analytically derived. In contrast,
[25] considers the framework where the human agents make
sequential decisions where the next agent’s decision depends on
their private observation and the previous agent’s decision. The
performance of such a social learning framework is contrasted to
the typical distributed decision making framework under differ-
ent scenarios. While our paper deals with the same framework
when decision making agents are all humans, the specific focus
here is on the case where a human global decision maker is
fusing decisions from multiple human local decision makers.

In this paper, a similar signal processing methodology is ap-
plied to understand the process of decision fusion by humans.
The problem of fusing multiple human decisions has been in-
vestigated in different contexts in the psychology literature (see
[26], [27], and references therein). Such a framework is also
very similar to problems in social choice theory and voting.
These systems have been studied under idealizations of human
behavior, including likelihood ratio tests with Bayes-optimal
thresholds and deterministic, optimized, symmetric decision fu-
sion. However, past literature and our new experimental data
show that human behavior is not generally deterministic and
so people do not perform Bayes-optimal decision fusion. We
find through experimentation that none of the five reasonable
fusion rules considered here provide a good match to human
behavior. Therefore, we propose a Bayesian hierarchical model

2961

[28] to replicate the behavior of a population of human deci-
sion aggregators. The model is a symmetric perturbation of one
of three fusion rules (to be detailed later). Note that the model
does not necessarily capture human behavior at the level of
individual choices, but instead replicates the randomness asso-
ciated with human decision making through a generative model.
This helps in the design of large-scale systems that are affected
by such human behavior. In such cases, it is useful to know
how a population performs fusion because there may be further
downstream decision making that can be optimized based on
an understanding of how the intermediate decisions have been
made. We demonstrate the potential improvement quantitatively
using analytical expressions and simulations.

This paper builds on the preliminary work reported in [1].
Significantly more experimental data (almost three times the
preliminary work) was collected for this paper, resulting in more
accurate results. Besides the experimental data, this paper also
improves the Bayesian hierarchical model used in [1] to accom-
modate multiple fusion rules by humans. Our preliminary work
focused only on the optimal fusion rule (Chair-Varshney rule).
However, further discussions within the research team, which
includes psychologists, revealed several other sub-optimal fu-
sion rules that are used by humans (see Section III-A). There-
fore, the model was enhanced by adding another dimension of
stochasticity to accommodate the existence of different fusion
rules. The larger experimental data, the enhanced models, and
more accurate results make this work a complete version of the
preliminary work reported in [1].

The remainder of the paper is organized as follows. In
Section II, we describe psychology experiments designed to
understand human decision fusion. Preliminary analysis of the
collected data is performed in Section III by comparing the ob-
served decisions with several popularly used fusion rules. After
establishing that existing decision fusion models cannot explain
the human behavior, in Section IV we build a Bayesian hierar-
chical model to explain the observed behavior. In Section V, we
discuss its implications by demonstrating its effect on the design
of large-scale hierarchical sociotechnical systems, consisting of
multiple human decision fusion components. We conclude the
paper in Section VI.

II. EXPERIMENTS

To understand decision fusion behavior in humans, experi-
ments replicating the process of Fig. 1 were designed. Human
subjects consisting of undergraduate students at Syracuse Uni-
versity were enrolled for this task.' The experiment consisted of
data collection in two stages: the first stage models local decision
making and the second stage models data fusion. The experi-
ment is that of a memory-based task and is described as follows.

A. Stage 1: Local Decision Making

1) Participants: A total of 45 introductory psychology
students from Syracuse University performed the first stage
of the experiment that models local decision making. All

'The necessary IRB approval was obtained before conducting the
experiments.
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Project

Decision ACC Pr("yes")
Source A Yes 0.66 0.57
Source B Yes 0.80 0.36
Source C Yes 0.73 0.68
Source D No 0.87 0.54
Source E No 0.80 0.40
z Do you think this item was actually studied? /?
YES NO

Fig. 2. Example trial where participants in Stage 2 had to decide if the word
Project is a part of the study list S or the distractor list A/ using information
provided by participants from Stage 1.

participants received partial fulfillment of course requirements
for their participation.

2) Stimulus Materials: A study list D containing 100 English
words ranging in length from 5 to 11 letters (median = 7), and
ranging between 8.41 and 12.17 log frequency (mean = 10.33,
standard deviation = 0.93) in the Hyperspace Analog to Lan-
guage Corpus (HAL) [29] was provided to the participants. A
test list S containing words in D, and an additional 100 dis-
tractor words N was prepared (S = D U N). These distractor
words in A/ were between 5 and 12 letters in length (median =
7), and ranged from 8.10 to 13.27 log frequency (mean = 10.34,
standard deviation = 0.94) in the HAL Corpus.

3) Procedure: After providing informed consent, participants
were seated in individual testing booths and instructed that they
would study a series of words and then have their memory for
those words tested. During the study phase, participants were
asked to indicate whether each of the presented words s € S
belonged to the previously memorized target set (s € D) or
the unseen distractor set (s € N). Participants were required
to make this judgment within 6 seconds, or else the trial was
discarded and the next item would appear automatically. Each
participant completed 200 such trials. The order in which these
200 trials unfolded was randomized for each participant.

B. Stage 2: Global Decision Making

1) Farticipants: A total of 60 introductory psychology stu-
dents from Syracuse University participated in the experiment.
All participants received partial fulfillment of course require-
ments for their participation.

2) Stimulus Materials: The stimuli used in the second stage
are the recognition judgments provided by participants in Stage
1. For example, in the first stage, participants had their memory
tested for the word Project. A trial in the second stage showed the
word Project as well as the recognition judgments from a varying
number of “sources” (i.e., participants in the first stage). For each
of these sources, participants saw three pieces of information:
sources’ decisions, accuracies, and bias values. See Fig. 2 for an
example. Source accuracy is defined as the proportion of correct
answers (i.e., “hits” on target trials and “correct rejections” on
distractor trials) over the course of the experiment (excluding

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 11, JUNE 1, 2018

trials on which no answer was given, as described above). The
bias values (the far right column of Fig. 2) represented how
frequently a source gave a “yes” response across both target and
distractor trials.

3) Procedure: Upon arrival to the test setting, participants
provided informed consent and received instructions about the
task. All the participants were told that earlier in the semester,
participants like themselves had completed a recognition mem-
ory task (i.e., Stage 1). We simply asked participants to try and
identify whether or not a word was truly studied on the basis
of responses from participants in the previous experiment. The
decision task consisted of 200 trials, where participants were
provided with information from a varying number of sources
(N) from Stage 1 (these were real participants from Stage 1).
Participants saw 2, 5, 10, or 20 source judgments. The number of
sources presented on each trial was randomized over the course
of the experiment, with the lone constraint that there were 50
trials of each type. On each trial, participants were asked to pro-
vide a yes or no response to the question “Do you think this item
was actually studied?” Responses were indicated by a single key
press (“z” or “/7”). Response keys were counterbalanced across
participants. Finally, after making their judgment, participants
were also asked to assess their confidence in that judgment (1
= low; 3 = high). After providing this confidence judgment,
participants proceeded to the next trial. Each datapoint of the
resulting dataset has the following information: word s, true
hypothesis of s (s € D or s € ), number of sources for this
particular task (/V), sources’ decisions (up,...,uy), sources’
accuracy (ap,...,ay) and bias values (by,...,bx), and the
fused decision reported by the global decision maker (d).

Note that for an accurate understanding of human decision
behavior, it was necessary to actually perform the first stage of
the experiment with human subjects instead of randomly gen-
erating local decisions for the humans in the second stage. This
is because humans have item-specific bias and accuracy levels
[30], [31]. For example, people tend to believe that they re-
member negative arousing words (such as murder) regardless of
whether or not they actually studied the word and people tend
to have high accuracy (high hit rates and low false alarm rates)
for uncommon words (such as ire). If decisions were randomly
generated for the second stage, then the data would not reflect
these factors and would probably be distrusted (consciously or
unconsciously) by the decision makers. In a typical experiment,
these problems are avoided by fully randomizing assignment of
words to D or V status. For this experiment, we did not random-
ize so that we could have N decisions under (approximately)
identical circumstances (same D and N') with the added ran-
domness of individual differences among people. However, as
noted before, the order of presentation of trials was randomized
in the second stage since that affects performance [32], [33].

III. PRELIMINARY DATA ANALYSIS

This section presents a preliminary analysis of the col-
lected data.? Decisions made by humans in the experiments are
compared against some known fusion rules. First, traditional

2This data is available on the Open Science Framework at https://osf.io/a7pgz/
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decision fusion rules are presented in Section III-A. The deci-
sions of these traditional decision rules are then compared to the
observed decisions of the humans in Section III-B.

A. Fusion Rules

1) Optimal Fusion Rule (CV): When the sources’ reliabili-
ties are known, optimal decision fusion is achieved by the Chair-
Varshney (CV) rule [12]. Represent the “Yes/No” decisions of
the ith local decision maker as

|

After receiving the N decisions u = [uq, ...
decision ug € {—1,41} is made as follows:

+1,
—1,

if the decision is “Yes”,
if the decision is “No”.

(1)

,uy], the global

. N
d— {Jrl, if my J'rzizlmzuZ > 0, 2
—1, otherwise,
where my = log 157}'%’
1— Py
log M, , ifu; = +1,
Pr;
m; = ’ (3)
log LT 1
og ——, nu; =—1,
s Py
fori = 1,..., N isdefined as the reliability of a decision, and P;

is the prior probability that the underlying hypothesis is “Yes”
(+1), Pyri, Pr; represent the probability of missed detection
and false alarm respectively, of the ith decision maker.

2) Most Accurate Decision (MAD): The most accurate de-
cision rule is a heuristic decision rule that has been described
in human decision making literature. It is defined as follows:
d = u, where

4)

a = argmaxa;,
i

and a; is the accuracy of the ¢th local decision maker. In terms

of missed detection and false alarm probabilities, this is given

as

(&)

This decision rule only depends on the accuracy values of the
local decision makers and is therefore believed to be a strong
heuristic used by humans especially when the number of deci-
sions presented for fusion (V) is large.

3) Most Reliable Decision (MRD): The most reliable deci-
sion rule is another heuristic decision rule considered in this
paper. It is defined as d = u, where

a; = Po(l — PFJ,) + P1(1 — PMJ;).

p = argmaxm,;,
i

and m; is the reliability of ith local decision maker given by (3).
This decision rule depends on both accuracy and bias values of
the local decision makers.

4) Censored CV Rule (CCV-1): The censored CV decision
rule with parameter 7 is a censored version of the CV rule of
Section ITI-A1 that may be used by humans when the number

2963

TABLE I
MEAN =+ STANDARD DEVIATION OF MATCH VALUES FOR DIFFERENT VALUES
OF N AND FOR DIFFERENT RULES

[NJ CV | MAD | MRD | CCV0.9 | MAJ |
2 [[ 0.80£0.17 [ 0.81£0.18 | 0.80£0.17 | 0.57£0.12 | 0.47£0.09
5 || 0.83£0.18 | 0.76£0.14 | 0.75£0.14 | 0.7520.18 | 0.46Z0.10
10 || 0.83£0.18 | 0.75£0.14 | 0.74%0.14 | 0.79£0.17 | 0.46%0.09
20 || 0.83£0.18 | 0.73£0.13 | 0.73£0.13 | 0.82%0.17 | 0.45£0.09

of sources is large. It is mathematically given as

. N -~
d— +1, ifmyg _|'_Zz':1 miu; > 0, (6)
—1, otherwise,
where u; is given by (1) and
. m;, ifm; >,
i = {0, otherwise. )

Here, 7 is the censoring threshold that determines when a par-
ticular decision is reliable and therefore, should be considered
in the decision making process.

5) Majority Rule (MAJ): The majorityrule is a very common
decision rule used in practice, especially when the accuracy or
bias values of the local decision makers are unavailable. It is

given as
=

where u; is given by (1).

+1, if 3V u >0,
—1, otherwise,

®)

)

B. Comparison of Fusion Rules

Before building a model of how humans fuse data, we com-
pare the experimental data with the fusion rules described in
Section III-A. For this purpose, final decisions of T' = 60 hu-
man global decision makers are compared with the decision
from the fusion rules described in Section III-A. Note that in
our setup, P, = 0.5, implying my = 0. Each human subject at
the second stage typically performed 100 trials, 25 each with
N = 2,5,10,20. The final decisions made by the humans are
compared with the decisions made by the fusion rules with the
same input. The fraction of times that a decision maker ¢’s de-
cision matches the decision of fusion rule » with the same input
data is defined as the match value p; , of the ith decision maker
with rth rule. Table I shows the mean of match values across all
human subjects for each of the fusion rules with varying number
of local decision makers.

As we can observe from Table I, the average match value
improves with increasing number of sources for the CV-based
(CV and CCV-7) rules but not necessarily for the other rules.
Also, on comparing the individual match values p; , across
the rules, we observed that the CCV and the MAJ rules were
never the best for any of the 60 individuals for any value of V.
However, the other three rules were better for some individuals.
For example, when N = 2, the CV rule was best among all
rules for participant id 61, whereas the MAD rule was the best
one for most of the individuals. On the other hand, for the same
participant with id 61, when N = 5, the CV rule had the highest
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p
Local ) 0 D
Up Local Decisions Fusion Rule (% d
Observations (u“,l 1 1
p
T p

Fig. 3.

Proposed 2-step model where the first step determines a deterministic decision using rule » and the second step models the randomness of an individual

human’s decisions by using a match value p. Here q, o and (3 are hyperparameters that capture the randomness of r and p, among multiple individuals at the

crowd level.

match value. Also, the variability of match values is very high,
with some participants having a match value close to 1, while
some having as low as 0.32. Therefore, a single decision fusion
rule cannot capture every human’s behavior at every time instant.
In the following, we develop a Bayesian hierarchical model to
represent the observed human behavior.

IV. BAYESIAN HIERARCHICAL MODEL

In this section, a Bayesian hierarchical model is developed
which characterizes the human behavior when fusing multiple
decisions. This model encapsulates the variability among hu-
man behavior observed at an individual level, crowd level, and
population level.

A. Description of Model

From the preliminary data analysis of the previous section,
we observed that no single rule perfectly characterizes the be-
havior for all individuals. Consider a discrete set of fusion rules
R. Then, one can model an individual to be using a fixed fusion
rule r; = 7 € R and a fixed match value p;. On the other hand,
this rule r; and the match value p; differs for every individual.
Even among all individuals who use the same fusion rule j, the
match value differs. This behavior can be captured by modeling
the fusion rule r; as a random variable following a distribution
f-(-) with support set R and the match value p; as a random
variable with distribution f, , (). Such a model captures the in-
dividual differences in humans while fusing multiple decisions.
As mentioned before, the differences among humans can be at
multiple levels: individual level, crowd level, and population
level. The individual-level decision model is described below
(Fig. 3):

® A deterministic decision v is determined using the fusion

rule 7, which is fixed for an individual.

® Theindividual’s final decision is determined by flipping the

deterministic decision v with probability (1 — p) where p
is the individual’s match value.?

Therefore, the final decision is now given by:

v7
d{l—v,

3A match value of p > 0 in our model captures the model for limited
rationality.

with probability p,

with probability 1 — p. ©)

This randomness in human decision making can be attributed to
the fact that human perception and encoding (of the stimulus)
is subject to uncertainty. Therefore, rather than implementing a
mechanistic account of that, we characterize the randomness by
introducing noise in the decision for simplicity.

Moving another step higher in the hierarchy, at the crowd
level, every individual has their fixed fusion rule r; = j that is
determined by sampling from distribution f, () and the match
value p; for the individual is sampled from a distribution f, ,.(-).
These distributions f, () and f, () are determined by fitting
a model to experimental data of Section II. For our models,
we consider f, (-) to be a categorical distribution with param-
eters q where ¢; denotes the probability of choosing fusion
rule j and ), g; = 1. The distribution f, ,(-) is modeled to
be a beta distribution with parameters o; and 3; which de-
pend on the fusion rule j. Let o = [avy,...,q5,...,ar] and
B=1[p,...,0,...,0r] where R =|R] is the total number
of fusion rules. The parameters q, «, and (3 correspond to the
crowd parameters that serve as hyperparameters for  and p.

As we shall see later, the values of the hyperparameters q, a,
and [ themselves depend on the crowd considered, i.e., they de-
pend on the number of sources, whether they are college students
or online participants, the demographics of the participants, etc.
This takes us to the higher level in the model where these values
of q, a, and 3, or in other words, the distributions f, (-) and
fp.r(-) themselves depend on the underlying crowd chosen for
the task. Different crowds would have different values of q, a,
and /3. Hidden variables like demographics, motivation, etc. can
affect the parameters of the randomized decision rule model
discussed above. Therefore, continuing on the Bayesian mod-
eling approach, these parameters q, o, and 3 can be modeled
as random variables sampled from a distribution with parame-
ters P (population parameters). The distribution of g could be
the conjugate prior of categorical distribution, i.e., the Dirichlet
distribution. Similarly, the distribution « and (3 can be the con-
jugate prior of the beta distribution, which exists since the beta
distribution falls under the family of exponential distributions.
In this case, the parameters of the Dirichlet distribution and
the parameters of the conjugate prior of Beta distribution serve
as the population parameters. Population parameters govern the
entire population as a whole from which different sets of crowds
are sampled. This complete model can be captured by Fig. 4.
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D d

Individual
parameters

Individual
decision

Fig. 4.
B. Model Inference

In this section, we infer the parameters of the model using
data collected in Section II. From our observations, we saw that
the CCV rule and the MAJ rule were not the best fit rules for
any individuals in our dataset. Therefore, we consider R = 3
and consider the rules to be [CV, MAD, MRD]. The optimal
approach of using a joint maximum likelihood approach would
require the knowledge of the latent variable, i.e., the knowledge
of fusion rule being used by each individual. We first infer q
followed by the parameters (c;, 3;) as follows. Note that these
parameters can also be jointly estimated using an EM-based
method.

1) Inferring q: The rule selection parameter q is inferred
using a maximum likelihood estimate as follows. We first de-
termine the match values corresponding to every rule for every
individual. Represent the match value of individual ¢ with rule
j as p; ;. Let p; represent the maximum value among all p; ; for
afixed i, i.e.,

Di = maxpj,j- (10)
Now, let0 < T < T'represent the number of individuals among
the 7" individuals for whom p; = p; ;. This is the empirical
number of individuals that follow rule j. The estimate of q is
then determined as a (normalized) version of

G = —=. (11)

An additional normalization step might be needed since mul-
tiple rules can result in the same match value that is equal to
the maximum one. Normalization ensures that the constraint
>_; ¢ = lis satisfied.

2) Inferring o and (3: The parameters of the beta distribu-
tion are identified as follows. For learning «;; and 3;, we only
consider the T} individuals who follow rule j. Due to the limited
number of data points, a bootstrap model is used for data fitting,
where ¢ = 0.77T; data points among the total T); data points are
randomly selected for which a beta distribution is fit. This pro-
cess is repeated V,,. = 1000 times. If ay; and ) represent the
parameters from the kth trial, the final parameters are decided
by taking an average of these parameters.

3) Inference Results: The results are compiled in Table II
and Figs. 5-8. Table II presents all the inferred parameter val-
ues for different values of NV (the number of sources). As we can
observe, more individuals followed sub-optimal fusion rules for
lower values of NV and the optimal CV rule for higher number of
sources. Also, the mean of the match value, E[p] = a/(a + 3)
increases with an increase in N. To gain further insights on
how the distribution of the match value varies for different
rules and for different values of N, we plot the distributions

Bayesian hierarchical model of decision fusion by humans using the plate notation of representing variables in a graphical model.

45
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20
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Oo — -.- i i
0.1 02 03 04 05 06 0.7 08 09 10

Fig. 5. Distribution f, ;(-) of match value p for different fusion rules j
when N = 2, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.

10
— v
- - MAD =
8 . ' 7N
MRD . f \
' L]
6 ' |I
i \
4
2
o — ) e
02 03 o4 05 0.6 07 o8 09 10

Fig. 6. Distribution f, ;(-) of match value p for different fusion rules j
when NV = 5, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.

0 R )
02 03 04 05 06 07 o8 09 10

Fig. 7. Distribution f, ;(-) of match value p for different fusion rules j
when N = 10, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.
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TABLE II
PARAMETERS FOR DIFFERENT VALUES OF N

l a l B l
[3.52, 4.82, 3.70] [1.03, 1.03, 1.05]
[5.35, 53.41, 77.69] | [1.06, 13.11, 53.86]
[5.45, 28.24, 45.92] | [1.01, 15.68, 23.25]
[6.04, 18.28, 29.71] [0.98, 8.55, 15.76]

N q

2 [ 0.26, 0.47, 0.27]
5 [ 0.84, 0.10, 0.06]
10

20

[ 0.81, 0.10, 0.09]
[ 0.80, 0.09, 0.11]

0.3 04 05 06 0.7 0.8 09 10

Fig. 8. Distribution f, j(-) of match value p for different fusion rules j
when NV = 20, based on data fitting. The mean value is also highlighted. Cross
represents mean value of the distribution.

in Figs. 5-8. An interesting observation is that the distribution
fp.cVruie(-) has increasing mean and shifts to the right with
increase in /N, while the distributions of other rules (MAD and
MRD) do not necessarily follow such a trend. Also, the distri-
bution f, cvrure(+) corresponding to the optimal CV rule has
constant shape and robust parameters with increasing /N while
the distributions for the MAD and MRD rules are less robust
to the number of sources. This could be an artifact of limited
data as there were relatively lesser data points for these rules in
comparison to CV rule. This intuition will be further explored
in the future by collecting higher number of data points.

From the proposed model, it is clear that for a complete study,
one has to repeat human subject experiments with different
crowds, to determine the population parameters and their effect
on the crowd parameters q, «, and 3. For example, one might get
different results from online participants, such as crowd work-
ers as compared to a group of college students [34]. Also, it has
been found that age of the crowd (older vs. younger adults), or
disease conditions of typical vs. atypical crowds (PTSD, demen-
tia, Alzheimer’s, etc.), might give different results [35]. From
the experiments, an ensemble of parameters can be determined,
which will help us in getting population-level insight into indi-
vidual differences regarding how people fuse decisions. Such a
hierarchical model can be used for understanding and designing
larger signal processing systems that have a human decision fu-
sion component such as distributed detection systems [8], [36]
where each agent is not a single cognitive agent, but rather
a human-based decision fusion system (Fig. 9). Also, cogni-
tive agents in such systems may be drawn from a specialized
sub-population.

V. OPTIMAL DESIGN OF SOCIOTECHNICAL NETWORKS

As described in Section I, crowdsensing with human decision
fusion components plays a key role in sociotechnical systems.
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Hierarchical system consisting of human decision fusion components.
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Fig. 9.

Here we consider designing such sociotechnical systems with
machines and with humans, as modeled through our Bayesian
hierarchical framework.* Consider a system like Fig. 9 where
multiple levels of decision makers are present in the system with
human decision makers fusing data from multiple subordinate
agents (humans or machines) before sending their fused obser-
vations to a final fusion center via imperfect channels. If these
last-level agents were IoT devices rather than humans, one could
use the optimal fusion rule to fuse the data [12]. Note that this
optimal fusion rule weighs the decisions with their reliabilities
which are deterministically known. However, when the final fu-
sion center receives data from humans and via imperfect mobile
channels, one needs to use the Bayesian hierarchical model of
human decision fusers along with the channel effects to design
the fusion rule at the fusion center.’

Considering the Bayesian formulation, the optimal fusion rule
at the fusion center is developed by adopting a methodology sim-
ilar to [12]. Let the phenomenon of interest be a binary hypoth-
esis testing problem with prior probabilities P(H,) = P, and
P(H,) = P, =1 — P,. Assume that the fusion center receives
decisions from M human decision fusion components. We rep-
resent the received decisions by r; € {—1,+1} and the deci-
sions made by the decision fusion componentasd; € {—1,+1},
for i € {1,..., M}, where r; = %1, if the decision received
from the ith component is H; or Hy, respectively. The fusion
center makes the final decisionry = f(r1,..., 7)) using the M
decisions based on the fusion rule f(-). The goal is to design the
optimal fusion rule f(-) based on the hierarchical decision mak-
ing model of the components as discussed above (see Fig. 4) and
the channel model between the decision fusion component and
the fusion center. Consider the channels between the decision
fusion component and the fusion center to be binary symmetric
channels (BSC) with crossover probability py,.

The optimal decision rule that minimizes the probability of
error at the fusion center is given by the following likelihood
ratio test®

P(’I‘l,...,
P(’I“l,...,

ra|Hy)
rar | Ho)

i)
P’

"
> 12)
H,

4Note that these intermediate agents implicitly have the goal of being right
in contrast to the goal of being informative to later-acting agents [37].

SNote there are two kinds of hierarchies considered herein: the Bayesian
hierarchy for human modeling and tree hierarchy of decision making.

Note that we consider the case where the Bayes cost ratio equals 1.
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or equivalently,

P(H1|T‘1,...,7”]\,[)H1

lo = 0. 13
S P(Holr1, - 7o) iy (13
This optimal fusion rule can be written as
P(r; = +1|Hy)
lo + > log—/—7-—"7=
5 218 By, =1l
=—1|Hy) 2
1 > 0 14
+Zogp A (14)

where S and S5 are the sets of all components whose received
decision is r; = +1 or r; = —1, respectively.
The terms in (14) can be further simplified as

P(’I‘i = +1|H1)
+P(T2' = +1‘dl = —].,HI)P(dZ = —1|H1)

= (1= p)P(d; = +1|H)) + p, P(d; = —1|H;).  (15)

Here, P(d; = +1|H,) is the probability that the ith decision
fusion component made a decision d; = +1 when the true hy-
pothesis is H; and is determined using the Bayesian hierarchical
model as

P(d; = +1|Hy)
= P(d; = +1,d; j = +1|Hy) + P(d; = +1,d; j = —1|H,)
= P(d; = +1|d;, ; = +1)P(d; ; = +1|H:)
+ P(d; = +1|d; ; = —1)P(d;; = —1|H1)
=piPuij+ 1 —pi)(1— Paij)

=1—pi—Pyij;+2piPy;; (16)
where d; ; € {—1,+1} is the decision that the ith human fusion
center would make using its fusion rule j, p; is the match value
of the ith human corresponding to his/her rule j,” and P, ; £
P(d; j = +1|H,) is the probability of detection of ith decision
fusion component using fusion rule j. Similarly, the expressions
for P(d; = +1|Hy), P(d; = —1|Hy),and P(d; = —1|H) can
be derived as a function of Py, ; £ P(d;; = +1|Hy) (false
alarm probability) and are given as

P(d; = +1|Hy) =1—p; — Py j + 2pi Py 5, (17
P(d; =—1|H1) =p; + Pai; — 2pi Pai j, (18)
and

"This value is ; in (10) but the ~ at the top has been dropped for notational
simplicity.
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Using (15)—(19), the optimal fusion rule (14) becomes

-2 1—pi —Pyii +2p; Py
log— +Zl Dy + pb)( p d.i.j T 2D d,zﬁj)
0 s, o+ (1 —=2pp)(1 —pi — Pyrij +2piPyij)

—2py)(pi + Paij

+Zl oo+ —2p; Py ;)
S5 Py + 1_2pb)(pz+Pf2j

= 0.
2pi Py i) o

0
Note that the above expression requires the knowledge of
every individual decision fusion component’s rule j and match
value p;. When this knowledge is not available, but the crowd
parameters q, «, and 3 are known (refer to Fig. 4), (16) becomes

P(d; = +1|Hy) =Y _q;P(d; = +1j, Hy),
J
= Z%‘ /P(di = +1{j,pi, H1) fp,; (p)dp
j p
> 4 (pb + (1 —2py)
J
ij oszd,m)
- Pd ij T 2
( a; + B ! j + Bj )
=py + (1 —2py)
1- quuj - Z%’Pd,i,j + Qqu'Nde,i.j
J J J
where 11 £ aiﬁ Similarly the expressions in (17)—(19)

change accordlngly

Therefore, when all the decision fusion components are iden-
tical (same number of sources, identically distributed sources,
identically distribution fusion rule selection, etc.), then the
optimal fusion rule becomes a K-out-of-M rule. The optimal
K is easy to derive and is given by

K* = =1, (20)

where

a

Py + (1 —2py) (1—2,74 qiti— > 4P +23; CIijPd,j)
po + (1 —2py) (1 =2 Gk =22 4 P23 qjuij-)

and

o *

A =
1=py— (1—2pb)(1—2j qimj =325 45 Fai+23; qjude,j)

L—p, — (1*21%)(1*2]- aipi =22 4 Pri+2>2; quijJ)

If these data fusion components of Fig. 9 are from different
crowds, one can go higher in the Bayesian hierarchical model
and use the population parameters to determine the optimal fu-
sion rule. Also, any machines using CV rules in the penultimate
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level of the hierarchical sociotechnical network can be regarded
as a human agent with q = [1,0, ..., 0] and perfect match value
of p = 1. Such a generality can help us in constructing arbitrary-
depth trees of sociotechnical decision making, where humans
are modeled and the machines are optimized.

In the following, the benefit associated with the Bayesian
hierarchical model is characterized. Consider the case when
such a model of human decision fusion is ignored and are instead
considered to be machines, then the optimal K for the K-out-
of-M rule is given by
(1—2py) Py
(1—2py )Py
(po+ (1 —2py) Pa) (1 —py — (1 —2py) Pr)
(po+(1=2py)Ps) (L —pp — (L —2ps) Pa)

From (20) and (21), we can observe that the basic differ-
ence between K* and K, arises from the F; and Py of the
intermediate decision fusion systems. If the intermediate deci-
sion fusion systems are machines, they have deterministic Py
and Py, while the human decision fusion components modeled
using the Bayesian hierarchical model have F; and Py that in-
corporate randomness. As we shall observe later in the paper,
this incorporation of randomness into the optimal K improves
system performance.

The error probability for fixed K is

1og%’—M10gi:£Z:

2y

log

P.(K) =
nE ()Y 02"
+ PlKi <M> <Pd)i (1_&)%’ (22)

where

Py =p, + (1 —2p)

1— Z qjr — Z qjFPaj+2 Z qj ;P
j j j

(23)

and

Py =p, + (1 —2p)

L= qimy =Y a4 Pry +2)_ aiuPr
i i i

Therefore, the performance loss by ignoring the effect of humans
in the system is due to the mismatched K value and is given
by Eqn. (25) shown at the bottom of this page.

Fig. 10 shows the gain in performance by using the Bayesian
hierarchical model of humans in comparison to assuming them

(24)
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Fig. 10. Percentage improvement in system performance by using the

Bayesian hierarchical model for system design with varying prior probability.

to be machines, against prior probability for different values of
N. The parameters used are M =5, P; =[0.9,0.8,0.8] and
Py =10.1,0.2, 0.3] for the three different rules, and the param-
eters q, «, and (3 are the ones inferred from data and as listed in
Table II. We plot the case when the channels are perfect (p, = 0),
to emphasize the gain associated with the models developed for
human decision making in this paper. Fig. 10 clearly shows
the high gain in performance by using the model developed in
this paper. The gain in performance is highest for N = 20, i.e.
when the number of sources for the decision fusion compo-
nents is high. We observe some sudden jumps in performance
gain around ) = 0.1 and By = 0.9, and lack of performance
improvement in the region around ) = 0.5. These regions are
further explored for a simple case below.

For further insights, we consider the case when R = 1 in the
following and only use the CV rule as a potential rule. In Fig. 11,
the performance gain by using the Bayesian hierarchical model
is plotted against different values of prior probability for this
case. The parametersusedare M = 5, P; = 0.9, Py = 0.1, =
5,and B = 3. As can be observed, by utilizing the knowledge of
human decision fusion components in the system during system
design, one can improve the performance by around 35% on
average.

The sudden jump in performance gain around priors Py = 0.1
and Py = 0.9 is due to the chosen values of F; and Py and can
be analytically determined using the expressions in (20) and
(21). Also, note that the region around Py = 0.5 for which there
is no performance improvement is due to the situation when the
term dependent on the prior dominates the other terms in the
expressions of K* and K7, , thereby resulting in equal values
of K* and K. The width of this region where there is no
performance gain depends on the values of « and 3 as we can

sen

oo y ~ \ N M—i
S P (P) (1= Pa)

. ’, - i - M —i
S, |1 (B) (1-7)
AP,

3 - 7 ~ M —i
~p(B) (=R

if K* > K

(25)
it K* < K}

Sen

) (ﬁf)i (1 e
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see in Fig. 12. Here, Py = 0.3 is outside this region for # > 1.5
while it is within this region for 8 < 1.5. Similar observations
can be made for different values of priors. This suggests that the
performance gain with the Bayesian hierarchical model devel-
oped in this paper depends on the apriori information (/) about
the task and the parameters of the crowd taking part in the task.
As the crowd gets more unreliable (/3 increases), the proposed
model can improve performance for a larger range of task prior
probabilities.

VI. DISCUSSION

In this paper, the human behavior in human-in-the-loop so-
ciotechnical systems is studied. Specifically, the task of decision
fusion has been considered. It was first observed that determin-
istic fusion rules, such as the CV rule, do not characterize hu-
man behavior, since data fusion by humans is not deterministic
in nature. For a given set of data, deterministic rules give the
same output at any time instant. On the other hand, the output
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changes for different humans and in some cases, for the same
human at different time instants, as pointed out by Payne and
Bettman [38]. This suggests the use of a randomized decision
rule, which was the focus of the next part of the paper.

We developed hierarchical models which characterize this be-
havior. Due to the hierarchical nature, this model encompasses
human variation observed at various levels: individual level,
crowd level, and population level. On an individual level, ev-
ery human has a different bias which affects his/her decision
fusion process. A crowd is a collection of people who have sim-
ilar understanding due to cultural, societal, or other factors, and
therefore, might have similar characteristics in performing tasks.
On a population level, there are differences in societies, cultures,
or demographics, which affect the decision fusion process. The
effect of such models on the design of larger human-machine
systems has been demonstrated. It was shown that there is a sub-
stantial improvement in performance when the human-behavior
models are used for designing human-in-the-loop systems.

This work demonstrates the benefits of the methodology in-
volving the design of experiments to study human behavior,
building statistical models that capture the essence of the ob-
served human behavior, and using these models to optimize the
design of large-scale human-machine systems. This methodol-
ogy can be followed to model and understand other human user
behavior. For example, data can be collected with a large num-
ber of sources (V) to verify some asymptotic approximations.
In other words, this data can be used to verify the hypothesis that
humans use heuristic decision rules when the amount of data is
large. On similar lines, time-constrained tasks can be designed
to verify if heuristic rules such as pick-the-best rule (MAD rule)
work better under time-constrained situations. A psychological
understanding of the observations might also provide insights
towards comprehending complex human behavior. Computa-
tional social science data can also be used in lieu of psychology
experiments used in this paper.
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