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Abstract

We investigate high-order finite difference schemes for the Hamilton-Jacobi equation
continuum limit of nondominated sorting. Nondominated sorting is an algorithm for
sorting points in Euclidean space into layers by repeatedly removing minimal elements. It
is widely used in multi-objective optimization, which finds applications in many scientific
and engineering contexts, including machine learning. In this paper, we show how to
construct filtered schemes, which combine high order possibly unstable schemes with first
order monotone schemes in a way that guarantees stability and convergence while enjoying
the additional accuracy of the higher order scheme in regions where the solution is smooth.
We prove that our filtered schemes are stable and converge to the viscosity solution of the
Hamilton-Jacobi equation, and we provide numerical simulations to investigate the rate
of convergence of the new schemes.

1 Introduction

In this paper, we investigate high-order finite difference schemes for the Hamilton-Jacobi
equation

ux1 · · ·uxn = f in (0, 1]n

u = 0 on ∂[0, 1]n \ (0, 1]n,

}
(1.1)

where f ≥ 0. This Hamilton-Jacobi equation is the continuum limit of nondominated sorting,
which is an algorithm for arranging points in Euclidean space into layers by peeling away
extremal points. Nondominated sorting is fundamental in multi-objective optimization prob-
lems, which are ubiquitous in science and engineering, and more recently in machine learning.
For more details on the connection to nondominated sorting and applications, we refer the
reader to [3, 5–9,11–14].

The Hamilton-Jacobi equation (1.1) has a unique non-decreasing viscosity solution. In
order to select the viscosity solution of (1.1), the finite difference scheme is required to be
monotone [1]. Roughly speaking, the monotonicity property leads to a maximum principle for
the scheme, which is one of the main techniques for proving stability and ensuring convergence
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to the viscosity solution. Unfortunately, all monotone schemes are necessarily first order at
best [4].

It has been observed [1, 16] that the monotonicity property can be relaxed to hold only
approximately, with a residual error that vanishes as the grid is refined, while still ensuring the
scheme converges to the viscosity solution. This allows one to design so-called filtered schemes,
which blend together high-order nonmonotone schemes with monotone first-order schemes in
such a way that the resulting filtered scheme is approximately monotone. The idea at a high
level is to use the higher order scheme in regions where the solution is smooth while falling
back on the monotone scheme near singularities. High order filtered schemes have received a
lot of attention recently [2, 10,15–18,20].

In this paper, we show how to construct arbitrary order filtered upwind finite schemes for
the Hamilton-Jacobi equation (1.1). The upwind direction for this Hamilton-Jacobi equation is
to look backwards along the coordinate axes. Therefore, our upwind schemes all use backward
difference quotients in order to follow the flow of the characteristics and select the viscosity
solution. This allows the schemes to be solved in a single pass yielding fast (linear complexity)
algorithms. We prove that our filtered schemes are stable and convergent for any order, and
we present numerical simulations investigating rates of convergence.

Our numerical simulations lead to two surprising conclusions that merit future work. First,
we observe that backward differences (without filtering) for the two dimensional version of (1.1)
appear to be stable for order k ≤ 2, borderline stable for k = 3 (numerical solutions remain
bounded but do not converge), and highly unstable for k ≥ 4. We recall that it is a classical
fact that backward differences for the one-dimensional version of (1.1) (e.g., u′(x) = f(x))
are stable for order k ≤ 6 and unstable for k ≥ 7. It would be interesting to prove the order
k = 2 scheme is stable for (1.1), and examine the situation in higher dimensions. We note the
filtered higher order schemes are stable for any k.

Second, we observe that filtering higher order schemes with first order monotone schemes
is only successful at increasing accuracy for order k = 2. For order k ≥ 3, we find that
the filtering relies too much on the first order scheme, and while the schemes are stable and
convergent, the order of accuracy is closer to first order. This is true even when the solution
of (1.1) is smooth. As far as we are aware, this observation has not appeared in the literature
on filtered schemes; the existing literature [2, 10, 15–18, 20] has only considered numerical
experiments with second order schemes. This observation refutes the conventional wisdom
that one can filter any higher order scheme—the choice of the higher order scheme may be
crucial, and would be an interesting problem to pursue in future work.

We should note that while some filtered schemes show higher order convergence rates in
some test cases, there are no proofs that any schemes have convergence rates better than first
order in general. This is a limitation in the viscosity solution theory; in fact, since solutions are
not classical, the best provable rate in general is O(

√
h), with a one-sided O(h) rate when the

solution is semi-concave [4]. Even in the special case where the solution of the Hamilton-Jacobi
equation is smooth, it is generally difficult to prove a higher order convergence rate, since it
requires a strong stability result for the higher order scheme and the maximum principle is
unavailable.

The coefficients of the difference quotients in our schemes can be obtained by solving a
small linear system involving a Vandermonde matrix, as is common in the literature. As an
interesting addition to the paper, we give explicit formulas for the coefficients for arbitrary
order backward difference quotients, and give simple direct proofs of the formulas. We expect
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these coefficients have appeared explicitly before in the literature, but we include the results
for completeness. Our method extends to computing the coefficients for nonsymmetric and
offset centered differences, which we explore in Section 4. We do not explicitly invert the
Vandermonde matrix, but this could be done via an LU factorization as was given in [19].

In [7] a fast approximate nondominated sorting algorithm was developed based on estimat-
ing the distribution of the data, which is the right-hand side f , and solving the Hamilton-Jacobi
equation (1.1) numerically. The algorithm is called PDE-based ranking and was shown to be
significantly faster than nondominated sorting in low dimensions. The higher order filtered
schemes developed in this paper can be directly used in the PDE-based ranking algorithm to
improve the accuracy with minimal additional computational cost. Thus, this work has the
potential to have a broad impact in applications of nondominated sorting.

This paper is organized as follows. In Section 2 we present our filtered schemes and prove
stability and convergence. In Section 3 we present the results of numerical simulations, and
in Section 4 we give explicit formulas for the coefficients of various difference quotients.

2 Filtered schemes

In this section we introduce our filtered schemes and prove stability and convergence.

2.1 Backward differences

Since the upwind direction for (1.1) is the negative orthant, our higher order schemes will all
use backward difference quotients. The following theorem gives the exact coefficients for all
backward different quotients for first derivatives. We expect this is known in the literature,
but we give the proof for completeness.

Theorem 2.1. Let k be a positive integer and f ∈ Ck+1. Then

f ′(x) =
1

h

k∑
i=1

ci [f(x− ih)− f(x)] +O(hk)

where

ci =
(−1)i

i

(
k

i

)
for i = 1, . . . , k.

The proof relies on an elementary lemma, which is useful to state independently.

Lemma 2.2. For any given integer m and positive integer n ≥ 2,

n∑
i=0

(i+m)k
(
n

i

)
(−1)i = 0,

for all k = 1, 2, . . . , n− 1.

Proof. Let

q0(x) = xm(x− 1)n =

n∑
i=0

(
n

i

)
xi+m(−1)n−i.
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For k ⩾ 1, define

qk(x) = x
dqk−1(x)

dx
.

So,

qk(x) =
n∑

i=0

(i+m)k
(
n

i

)
xi+m(−1)n−i.

It’s can also be observed that for all k ≤ n− 1, qk(1) = 0.
Therefore,

n∑
i=0

(i+m)k
(
n

i

)
(−1)i = (−1)−nqk(1) = 0.

We now give the proof of Theorem 2.1.

Proof. By using a Taylor series expansion, we obtain

k∑
i=1

ci

⎡⎣ k∑
j=1

(−ih)j

j!
f (j)(x)

⎤⎦+O(hk+1) =
k∑

i=1

ci [f(x− ih)− f(x).] (2.1)

Rearranging the left hand side of equation (2.1), we deduce

k∑
i=1

ci

⎡⎣ k∑
j=1

(−ih)j

j!
f (j)(x)

⎤⎦+O(hk+1) =
k∑

j=1

hj

j!
f (j)(x)

[
k∑

i=1

ci · (−i)j

]
+O(hk+1).

By binomial expansion,

k∑
i=1

ci · (−i) = −
k∑

i=1

(
k

i

)
(−1)i =

(
k

0

)
−

k∑
i=0

(
k

i

)
(−1)i = 1.

By Lemma 2.2, for j = 2, . . . , k,

k∑
i=1

ci(−i)j = (−1)j
k∑

i=1

ij−1

(
k

i

)
(−1)i = (−1)j

k∑
i=0

ij−1

(
k

i

)
(−1)i = 0.

Thus,
k∑

i=1

ci

⎡⎣ k∑
j=1

(−ih)j

j!
f (j)(x)

⎤⎦ = hf ′(x) +O(hk+1).

Therefore, we yield

f ′(x) =
1

h

k∑
i=1

ci [f(x− ih)− f(x)] +O(hk)

as desired.

We can also express the backward difference quotient in a more usual form.
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Corollary 2.3. Let k be a positive integer and f ∈ Ck+1. Then

f ′(x) =
1

h

k∑
i=0

di · f(x− ih) +O(hk)

where

d0 = 1 +
1

2
+ · · ·+ 1

k
, and

di =
(−1)i

i

(
k

i

)
, for i = 1, . . . , k.

Proof. It’s easy to see that di = ci (defined as in Theorem 2.1) for i ̸= 0. In the case when
i = 0, we have

d0 = −
k∑

i=1

di

=

k∑
i=1

(−1)i−1

i

(
k

i

)

=

∫ 1

0

k∑
i=1

(
k

i

)
(−x)i−1dx

=

∫ 1

0

1− (1− x)k

x
dx

=

∫ 1

0
1 + (1− x) + · · ·+ (1− x)k−1dx

=

[
x− (1− x)

2
− (1− x)2

3
− · · · − (1− x)k

k

]x=1

x=0

= 1 +
1

2
+ · · ·+ 1

k
.

2.2 High-order filtered finite difference schemes

The Hamilton-Jacobi equation (1.1) does not have smooth or even Lipschitz solutions, due
to a gradient singularity near the boundary where xi = 0. Indeed, in the special case that
f = 1 the viscosity solution is u = n(x1 · · ·xn)1/n. Following [5] we first perform a singularity
factorization before solving the Hamilton-Jacobi equation. In particular, let u be the viscosity
solution of (1.1) and define

w(x) =
u(x)

n (x1 · · ·xn)1/n
. (2.2)

It is possible to show [5] that w is Lipschitz continuous and satisfies

[w]1;[0,1]n ≤
√
n[f1/n]1;[0,1]n . (2.3)
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We can also show that w is the unique bounded viscosity solution of the Hamilton-Jacobi
equation

n∏
i=1

(w + nxiwxi) = f on (0, 1]n. (2.4)

Although it appears that (2.4) does not have a boundary condition, it is in fact encoded into
the Hamilton-Jacobi equation, since w(0)n = f(0). See [5] for more details on the above two
statements. The idea from [5], which we borrow here, is to solve (2.4) numerically and then
undo the transformation (2.2) to obtain a numerical approximation of u. The work in [5]
explored first order finite difference schemes for (2.4) and proved optimal convergence rates of
O(

√
h). We extend these ideas here to higher order filtered schemes.

In light of Corollary 2.3 we define for u : [0, 1]n → R the kth-order backward difference
quotient to be

∇k,−
i u(x) =

1

h

k∑
j=0

dju(x− jhei). (2.5)

Here, h > 0 is the grid resolution, and as a convention we take u(x) = 0 whenever x ̸∈ [0, 1]n.
The boundary value is irrelevant and does not enter into the scheme. By Corollary 2.3 we
have that

∇k,−
i u(x) = uxi(x) +O(hk)

whenever u ∈ Ck+1.
We define the first order upwind scheme approximating the left-hand side of (2.4) to be

F1 (x,w) =

⎧⎪⎨⎪⎩
n∏

i=1

(
w(x) + nxi∇1,−

i w(x)
)
, if ∀i, w(x) + nxi∇1,−

i w(x) ≥ 0

−∞, otherwise.
(2.6)

The first order scheme from [5] corresponds to solving

F1(x,w) = f(x) in [0, 1]nh,

where Ωh := Ω ∩ hZn for any Ω ⊆ Rn. This scheme has a unique solution, and is monotone,
stable, and convergent to the viscosity solution. Furthermore, this scheme can be solved with
a (linear time) fast sweeping algorithm visiting each grid point exactly once. For more details
on this scheme, we refer the reader to [5].

We define the kth-order upwind finite difference scheme approximating the left-hand side
of (2.4) by

Fk (x,w) =

n∏
i=1

(
w(x) + nxi∇k,−

i w(x)
)
. (2.7)

The kth-order upwind finite difference scheme is then given by

Fk(x,w) = f(x) in [0, 1]nh. (2.8)

We note that this scheme is not monotone and may not have a unique solution. We can
construct a solution with a fast sweeping method, as we did with the first order scheme, but
there is no guarantee that the scheme will be stable or convergent to the viscosity solution. In
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Section 3 we present results of simulations suggesting that the second order scheme is stable
and convergent, but higher order schemes are unstable.

The kth-order filtered upwind finite difference approximation of the left-hand side of (2.4)
is given by

Gk (x,w) =

{
Fk(x,w), if |Fk(x,w)− F1(x,w)| ≤

√
h and x ∈ [kh, 1]n,

F1(x,w), otherwise.
(2.9)

The kth-order filtered upwind finite difference scheme is then given by

Gk(x,w) = f(x) in [0, 1]nh. (2.10)

The idea behind the filtering is that when the solution is smooth we should have |Fk−F1| ≤ Ch
and so the higher order scheme is selected. In regions where the solution is not smooth, the
filtered scheme falls back on the monotone and stable first order scheme. The key property of
filtered schemes is that any solution wh of (2.10) also satisfies

f(x)−
√
h ≤ F1(x,wh) ≤ f(x) +

√
h in [0, 1]nh. (2.11)

By approximately solving the first order scheme, the solutions of the filtered schemes inherit
the stability and convergence properties of the first-order scheme. We note that solutions of
(2.10) may not be unique, since the scheme is not monotone. We compute the solution as
follows: At each grid point we solve both of the schemes F1 = f and Fk = f for wh(x), taking
the largest root when there are multiple solutions. We then take the solution of Fk = f and
check if the first property in (2.9) is satisfied. If so, we choose this solution for wh(x), otherwise
we select the solution of F1 = f . We analyze stability and convergence in the next section.

2.3 Stability and convergence

We prove here stability and convergence of the filtered schemes given in (2.10).

Theorem 2.4. Assume that f ≥ 0 and let wh be a solution of (2.10). Then we have

0 ≤ wh ≤
(
max
[0,1]n

f +
√
h

)1/n

in [0, 1]nh. (2.12)

Proof. At the minimum of wh, we have xi∇1,−
i wh(x) ≤ 0. Since wh + nxi∇1,−

i wh(x) ≥ 0 for
all i = 1, 2, . . . , n, it follows that

minwh ≥ −nxi∇1,−
i wh(x) ≥ 0.

This establishes a lower bound of wh.
To determine an upper bound of wh, we note that the filtered scheme satisfies

0 ≤ F1(x,wh) ≤ f(x) +
√
h.

At the maximum of wh, we have xi∇1,−
i wh(x) ≥ 0. Since 0 ≤ wh(x), it follows that

(maxwh)
n ≤

n∏
i=1

(
w(x) + nxi∇k,−

i w(x)
)
≤ f(x) +

√
h ≤ max f +

√
h.
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Thus maxwh ≤ (max f +
√
h)1/n. This establishes an upper boundary of wh. Therefore,

0 ≤ wh ≤
(
max
[0,1]n

f +
√
h

)1/n

in [0, 1]nh,

and the stability follows.

Given the stability result in Theorem 2.4, it is now a standard application of the Barles-
Souganidis framework [1] to prove convergence of the filtered scheme (2.10) to the viscosity
solution of (2.4). In fact, the proof of convergence of the filtered schemes is very similar to the
results in [5]. Let us mention, however, that these convergence results do not establish any
convergence rate. The best provable convergence rate for the filtered scheme is still O(

√
h). In

practice, we do often see far better convergence rates for the filtered schemes, and we present
simulations investigating convergence rates in Section 3.

3 Numerical simulations

We run simulations on both backward difference schemes and filtered schemes of orders 1, 2,
3, 5, 8, and 13 with two probability density functions f1 and f2 that were introduced before
in [5]. The function f1 is defined as follows:

f1(x) =
1

4(k + 1)2

2∏
i=1

⎛⎝ 2∑
j=1

sin(kxj)
2 + 2k + 2kxi sin(2kxi)

⎞⎠ ,

where k > 0. In the simulations, we set k = 20. The solution of (1.1) in this case is known to
be

u1(x) =
1

k + 1

√
x1x2

(
sin(kx1)

2 + sin(kx2)
2 + 2k

)
.

We note that the solution u1 is smooth on (0, 1]2.
The function f2 is defined as follows:

f2(x) =
1

(C + 2)2
(w2(x) + 2(1 + C)x(2)) (w2(x) + 2x(1)) .

where x(i) = xπx(i) for a permutation πx such that x(1) ≤ x(2), and

w2(x) = Cmax{x1, x2}+ x1 + x2.

We set C = 10 in the simulations. The solution in this case is known to be

u2(x) = 2
√
x1x2w2(x).

The function f2 is Lipschitz and the solution u2 has a gradient discontinuity. This is
common in Hamilton-Jacobi equations due to crossing characteristics.

Given these f1 and f2, we gather the errors from their numerical solutions compared to
the known solutions for each order of each scheme in different mesh sizes h. These errors
are measured in both the L1 norm and the L∞ norm as numerical evidence of the rate of
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Figure 1: Errors in the L1 norm from order 1, 2, 3 schemes when f = f1
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Figure 2: Errors in the L1 norm from order 5, 8, 13 schemes when f = f1
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Figure 3: Errors in the L∞ norm from order 1, 2, 3 schemes when f = f1
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Figure 4: Errors in the L∞ norm from order 5, 8, 13 schemes when f = f1
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Figure 5: Errors in the L1 norm from order 1, 2, 3 schemes when f = f2
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Figure 6: Errors in the L1 norm from order 5, 8, 13 schemes when f = f2
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Figure 7: Errors in the L∞ norm from order 1, 2, 3 schemes when f = f2
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Mesh size h 1st order 2nd order 3rd order 5th order 8th order 13th order
3.33× 10−2 95.06% 54.31% 45.00% 44.81% 22.69% 4.88%
6.67× 10−3 98.75% 81.09% 81.61% 75.41% 33.95% 7.59%
1.59× 10−3 99.69% 97.69% 97.42% 85.61% 37.92% 8.78%
3.92× 10−5 99.92% 99.84% 98.57% 87.29% 39.15% 8.97%
9.78× 10−6 99.98% 99.96% 97.82% 87.03% 39.43% 9.00%

Table 1: Fraction of grid points for which the kth order scheme being used in the filtered
schemes.

convergence. The results from the simulations are shown in Figure 1 - Figure 8. Note that
here we use “S” to denote “backward difference scheme” and “FS” to denote “filtered scheme”.

The results from the simulations suggest that the unfiltered 2nd order backward difference
scheme is convergent with a second order rate. On the other hand, the backward difference
schemes of order higher than two appear to be unstable. In fact, the errors for the unfiltered
schemes for order k = 5, 8, 13 are so large they are not shown in the figures.

Observing the errors from filtered schemes in both the L1 norm and the L∞ norm, we
see that the 2nd order filtered scheme also tends to give better accuracy than the 1st order
one, but other higher order filtered schemes only give comparable accuracies to the 1st order
scheme. A further investigation shows that high order filtered schemes rely most of the time
on the first order scheme in solving (1.1). This explains why higher order filtered schemes do
not produce better accuracy than lower order ones. To give a better idea, we show the fraction
of grid points for which the kth order scheme is being used for various mesh sizes and orders
when setting f = f1 in Table 1. Since setting f = f2 gives a similar result, we omit showing
the same table of data in this case. This explains why filtering is not successful for higher
order schemes. It would be interesting to determine why this is happening and whether it can
be improved by using different schemes or a different type of filtering.

4 Explicit formulas for difference quotients

Our proof of the backward difference formulas in Section 2.1 can be extended to more general
difference quotients. We present these results in this section. The first part will present results
regarding the coefficients of finite difference quotients for f ′. The second part will be devoted
for generalizing the coefficients of finite difference quotients for f (n) where n is any positive
integer. Although we expect some of these coefficients to have appeared in the literature
before, we include this section for completeness of the paper. Additionally, we hope to provide
different approaches for proving the formulas that may be simpler and more direct.

4.1 Other finite differences for f ′(x)

We begin by introducing the notation for an extension of binomial coefficient.

Definition 4.1. Let r be a real number and k be a positive integer. Define(
r

0

)
= 1 and

(
r

k

)
=

r · (r − 1) · · · (r − (k − 1))

k!
.
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We found that Lemma 2.2 can be used for computing the k−order forward difference
quotients as well. Compared to backward differences, these quotients simply have opposite
signs as stated in Theorem 4.1 and Corollary 4.3.

Theorem 4.2 (Forward Difference). Let k be a positive integer. Then

f ′(x) =
1

h

k∑
i=1

ci [f(x+ ih)− f(x)] +O(hk),

where

ci =
(−1)i−1

i

(
k

i

)
,

for i = 1, 2, . . . , n.

Corollary 4.3. Let k be a positive integer. Then

f ′(x) =
1

h

k∑
i=0

di · f(x+ ih) +O(hk),

where
d0 = −1− 1

2
− · · · − 1

k
, and

di =
(−1)i−1

i

(
k

i

)
,

for i = 1, 2, . . . , n.

The proofs for both of the above theorem and corollary will be omitted as they can be
proceeded in the same way as the proofs for Theorem 2.1 and Corollary 2.3, respectively.

Another finite difference quotient that is often implemented is centered difference quotient.
With Lemma 2.2, we can also generalize centered difference quotients as shown in Theorem
4.1.

Theorem 4.4 (Centered Difference). Let m and n be a positive integers. Then

f ′(x) =
1

h

n∑
i=−m

ci [f(x+ ih)− f(x)] +O(hn+m),

where c0 = 0, and

ci = (−1)i−1

(
n+m
i+m

)
i
(
n+m
m

) ,
for i = −m,−m+ 1, . . . ,−1, 1, . . . , n.
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Proof. By using a Taylor series expansion, we obtain

n∑
i=−m

ci

⎡⎣n+m∑
j=1

(ih)j

j!
f (j)(x)

⎤⎦+O(hn+m+1) =
n∑

i=−m

ci [f(x+ ih)− f(x)] . (4.1)

We claim that c0 = 0 and

ci = (−1)i−1

(
n+m
i+m

)
i
(
n+m
m

) ,
for i ̸= 0, reduce the left hand side of equation (4.1) to hf ′(x) +O(hk+1).
Rearranging the left hand side of equation (4.1), we deduce

n∑
i=−m

ci

⎡⎣n+m∑
j=1

(ih)j

j!
f (j)(x)

⎤⎦+O(hn+m+1) =

k∑
j=1

hj

j!
f (j)(x)

[
n∑

i=−m

ci · ij
]
+O(hn+m+1).

By binomial expansion,

n∑
i=−m

ci · i =
1(

n+m
m

) [ n∑
i=−m

(
n+m

i+m

)
(−1)i−1 +

(
n+m

m

)]

=
1(

n+m
m

) [n+m∑
i=0

(
n+m

i

)
(−1)i +

(
n+m

m

)]
= 1.

By Lemma 2.2, for j = 2, . . . , n+m,

n∑
i=−m

ci · ij =
1(

n+m
m

) [ n∑
i=−m

ij−1

(
n+m

i+m

)
(−1)i−1

]

=
1(

n+m
m

) [n+m∑
i=0

(i−m)j−1

(
n+m

i

)
(−1)i

]
= 0.

Thus,
n∑

i=−m

ci

⎡⎣n+m∑
j=1

(ih)j

j!
f (j)(x)

⎤⎦+O(hn+m+1) = hf ′(x) +O(hn+m+1),

and the desired result follows.

The next finite difference quotient that will be introduced in Theorem 4.1 uses arithmetic
progression differences in computing f ′(x). Essential lemmas for proving its coefficients are
given below.

Lemma 4.5. For any given real number r and positive integer p,

p∑
i=0

(
−r

i

)(
r + p

p− i

)
= 1.
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Proof. Writing

(x+ 1)p = (x+ 1)−r(x+ 1)(r+p) =

[ ∞∑
i=0

(
−r

i

)
xi

]⎡⎣ ∞∑
j=0

(
r + p

j

)
xj

⎤⎦ ,

one can compare the coefficient of xp on both sides of the equation and yield

1 =

p∑
i=0

(
−r

i

)(
r + p

p− i

)
.

Corollary 4.6. For any given real number r and positive integer p, the polynomial

G0(λ) =

p∑
i=0

(
−r + λ

i

)(
r + p− λ

p− i

)
= 1.

Lemma 4.7. For any given real number r and positive integer p,

define s
[0]
r (x) = xr(x+ 1)−r, and for k ≥ 1,

s[k]r (x) = x
d
[
s
[k−1]
r (x)

]
dx

.

Then for k = 1, 2, . . . , p,
Q[k]

r,p(x) = x−r · (x+ 1)r+p · s[k]r (x)

is a polynomial of degree less than p.

Proof. We will show, by mathematical induction, that for all k ≥ 1,

s[k]r (x) = g(x) · xr · (x+ 1)−(r+k),

where g(x) is a polynomial of degree less than k.
It is true for k = 1 because

s[1]r (x) = r · xr · (x+ 1)−(r+1).

Let’s assume that this is true for some positive integer l. Then we will have that

s[l+1]
r (x) = x

d
[
s
[l]
r (x)

]
dx

= x
[[
g′(x) · xr + rxr−1 · g(x)

]
· (x+ 1)−(r+l)

]
−x

[
(r + l)(x+ 1)−(r+l+1) · g(x) · xr

]
=

[[
xg′(x) + rg(x)

]
· (x+ 1)− (r + l)xg(x)

]
· xr · (x+ 1)−(r+l+1).

Since g(x) has degree less than l, it is not difficult to see that[
xg′(x) + rg(x)

]
· (x+ 1)− (r + l)xg(x)

16



has degree less than l + 1. Hence, g(x) has degree less than k for all k ≥ 1.
Therefore, for k = 1, 2, . . . , p,

Q[k]
r,p(x) = x−r(x+ 1)r+p · s[k]r (x) = (x+ 1)p−kg(x)

is a polynomial of degree less than p.

Lemma 4.8. For any given real number r and positive integer p,

p∑
i=0

(r + i)k
(
−r

i

)(
r + p

p− i

)
= 0,

for k = 1, 2, . . . , p.

Proof. Let s
[0]
r (x) = xr(x+ 1)−r, and for k ≥ 1,

s[k]r (x) = x
d
[
s
[k−1]
r (x)

]
dx

.

By letting,
Q[k]

r,p(x) = x−r · (x+ 1)r+p · s[k]r (x),

one will have that the coefficient of xp is
p∑

i=0

(r + i)k
(
−r

i

)(
r + p

p− i

)
.

By Lemma 4.7, for k = 1, 2, , . . . , p , the polynomial Q[k]
r,p(x) is of degree less than p. Therefore,

p∑
i=0

(r + i)k
(
−r

i

)(
r + p

p− i

)
= 0.

Theorem 4.9 (Arithmetic Progression Difference). Let a be a real number, d be a nonzero
real numbers, and k be a positive integer such that 0 /∈ {a1, a2, . . . , ak}, where ai = a+d(i−1).
Then

f ′(x) =
1

h

k∑
i=1

cai [f(x+ aih)− f(x)] +O(hk),

where
cai =

1

ai

(
−a1/d

i− 1

)(
ak/d

k − i

)
,

for i = 1, 2, . . . , k.

17



Proof. By using a Taylor series expansion, we obtain

k∑
i=1

cai

⎡⎣ k∑
j=1

(aih)
j

j!
f (j)(x)

⎤⎦+O(hk+1) =

k∑
i=1

cai [f(x+ aih)− f(x)] . (4.2)

We claim that
cai =

1

ai

(
−a1/d

i− 1

)(
ak/d

k − i

)
reduces the left hand side of equation (4.2) to hf ′(x) +O(hk+1).
Rearranging the left hand side of equation (4.2), we deduce

k∑
i=1

cai

⎡⎣ k∑
j=1

(aih)
j

j!
f (j)(x)

⎤⎦+O(hk+1) =
k∑

j=1

hj

j!
f (j)(x)

[
k∑

i=1

cai · a
j
i

]
+O(hk+1).

By Lemma 4.5,

k∑
i=1

cai · ai =
k∑

i=1

(
−a1/d

i− 1

)(
ak/d

k − i

)
=

k−1∑
i=0

(
−a/d

i

)(
a/d+ (k − 1)

k − i− 1

)
= 1.

By Lemma 4.8, for j = 2, . . . , k,

k∑
i=1

cai · a
j
i =

k∑
i=1

aj−1
i

(
−a1/d

i− 1

)(
ak/d

k − i

)

= dj−1 ·
k−1∑
i=0

(a/d+ i)j−1

(
−a/d

i

)(
a/d+ (k − 1)

k − i− 1

)
= 0.

Thus,
k∑

i=1

cai

⎡⎣ k∑
j=1

(ih)j

j!
f (j)(x)

⎤⎦+O(hk+1) = hf ′(x) +O(hk+1),

and the desired result follows.

4.2 General forms of finite differences for f (n)

We extend the idea from previous results to generalize the coefficients of finite difference
quotients for f (n). In computing them, we need to solve for the inverses of the matrices
defined as in Theorem 4.14 and 4.15. Because of its generality, the results presented in this
section will also hold for all the previous results. Indeed, the first columns of these inverses
represent the coefficients of a finite difference quotient for f ′, the second columns represent
the coefficients of a finite difference quotient for f ′′, and so on. Some notations and lemmas
that are essential for proving them are given below.

Lemma 4.10. For any given real numbers r, λ, and positive integer p,

define t
[0]
λ,r(x) = xr(x+ 1)−(r−λ), and for k ≥ 1,

t
[k]
λ,r(x) = x

d
[
t
[k−1]
λ,r (x)

]
dx

.
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Then for k = 1, 2, . . . , p, the coefficient of the term xp in the polynomial

R
[k]
λ,r,p(x) = x−r · (x+ 1)(r−λ)+p · t[k]λ,r(x)

is λk.

Proof. We will show by mathematical induction that for all k ≥ 1,

t
[k]
λ,r(x) = g(x) · xr · (x+ 1)−r+λ+k,

where g(x) is a polynomial of degree k with the leading coefficient of λk.
It is true when k = 1 because

t
[1]
λ,r(x) = (λx+ r) · xr · (x+ 1)−r+λ+1.

Let’s assume that this is true for some positive integer l. Then we will have that

t
[l+1]
λ,r (x) = x

d
[
t
[l]
λ,r(x)

]
dx

= x
[[
g′(x) · xr + rxr−1 · g(x)

]
· (x+ 1)−r+λ+l

]
−x

[
[r − λ+ l] (x+ 1)−r+λ+l+1 · g(x) · xr

]
=

[[
xg′(x) + rg(x)

]
· (x+ 1)− (r − λ+ l)x · g(x)

]
· xr · (x+ 1)−r+λ+l+1.

Since the leading term of g(x) is λlxl, it follows that the leading coefficient of
[xg′(x) + rg(x)] · (x+ 1)− (r − λ+ l)x · g(x) is[

(l + r)λl − (r − λ+ l)λl
]
xl+1 = λl+1xl+1.

Hence, g(x) is a polynomial of degree k with the leading coefficient of λk for all k ≥ 1.
Therefore, for k = 1, 2, . . . , p, the coefficient of the term xp in the polynomial

R
[k]
λ,r,p(x) = x−r(x+ 1)−r+λ+p · t[k]λ,r(x)

is λk.

Lemma 4.11. Let r be a real number and p be a positive integer. Define the polynomial

Hi(λ) =

(
−r + λ

i

)(
r + p− λ

p− i

)
.

Then, for i = 1, . . . , p,

Hi(λ
∗) =

{
1 if λ∗ = r + i,

0 if λ∗ = r + j, where 0 ≤ j ≤ p and j ̸= i.
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Proof. In the case when λ = r + i, we directly compute

Hi(r + i) =

(
−r + (r + i)

i

)(
r + p− (r + i)

p− i

)
=

(
i

i

)(
p− i

p− i

)
= 1.

In other cases, we express Hi as a product of linear functions of λ and yield(
−r + λ

i

)(
r + p− λ

p− i

)
= Hi(λ)

= (−1)p−i (λ− r) · (λ− (r + 1)) · · · (λ− (r + p))

(λ− (r + i)) · i! · (p− i)!
.

From here, it is difficult to see that for i = 1, . . . , p,

Hi(λ
∗) = 0 if λ∗ = r + j, where 0 ≤ j ≤ p and j ̸= i.

Lemma 4.12. For any given real number r and positive integer p, the polynomial

Gk(λ) =

p∑
i=0

(r + i)k
(
−r + λ

i

)(
r + p− λ

p− i

)
= λk,

for k = 1, 2, . . . , p.

Proof. In the similar fashion to the proof for Lemma 4.8, we have that, for k = 1, 2, . . . , p, the
expression

p∑
i=0

(r + i)k
(
−r + λ

i

)(
r + p− λ

p− i

)
is the coefficient of xp in the polynomial R[k]

λ,r,p(x) from the previous theorem. Hence,

p∑
i=0

(r + i)k
(
−r + λ

i

)(
r + p− λ

p− i

)
= λk.

Thus, it automatically holds when we define the polynomial

Gk(λ) =

p∑
i=0

(r + i)k
(
−r + λ

i

)(
r + p− λ

p− i

)
.

Definition 4.13. Let S = {s1, s2, . . . , sn} be a set containing real numbers. Define σ0(S) = 1
and

σk(S) =
∑

a1<a2<···<ak∈S
a1 · a2 · · · · ak,

for i = 1, 2, . . . , n.
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Lemma 4.14. For any real number a, nonzero real number d, and positive integer n such that
0 /∈ T = {a, a+ d, . . . , a+ (n− 1)d}, define A to be an n× n−matrix with

Aij = (a+ (j − 1)d)i.

Then A−1 = B, where

Bij =
(−1)i+j

a+ (i− 1)d
· σn−j(T − {a+ (i− 1)d})

dn−1(i− 1)!(n− i)!
.

Proof. We will first show that AB = In. By directly computing the product of A and B, we
deduce

(AB)ij =

n∑
k=1

Aik ·Bkj

=

n∑
k=1

(a+ (k − 1)d)i ·
[

(−1)k+j

a+ (k − 1)d
· σn−j(T − {a+ (k − 1)d})

dn−1(k − 1)!(n− k)!

]

=
n∑

k=1

(−1)k+j(a+ (k − 1)d)i−1 · σn−j(T − {a+ (k − 1)d})
dn−1(k − 1)!(n− k)!

= di−j ·
n−1∑
k=0

(−1)k+j+1(a/d+ k)i−1 · σn−j(T − {a+ kd})
dn−j(k)!(n− k − 1)!

.

We note that (AB)ij equals the coefficient of xj−1 in the polynomial di−j · Gi−1(λ), where
G(λ) is defined as in Corollary 4.6 and Lemma 4.12 (by setting r = a/d) . Thus, by Corollary
4.6 and Lemma 4.12,

(AB)ij =

{
1 if i = j,

0 if i ̸= j.

This establishes AB = In as desired.
Now we will show that BA = In. By directly computing the product of B and A, we deduce

(BA)ij =

n∑
k=1

Bik ·Akj

=

n∑
k=1

[
(−1)i+k

a+ (i− 1)d
· σn−k(T − {a+ (i− 1)d})

dn−1(i− 1)!(n− i)!

]
(a+ (j − 1)d)k

=
a+ (j − 1)d

a+ (i− 1)d

[
n∑

k=1

(−1)i+k(a+ (j − 1)d)k−1 · σn−k(T − {a+ (i− 1)d})
dn−1(i− 1)!(n− i)!

]

=
a+ (j − 1)d

a+ (i− 1)d

[
n∑

k=1

(−1)i+k(a/d+ j − 1)k−1 · σn−k(T − {a+ (i− 1)d})
dn−k(i− 1)!(n− i)!

]

=
a+ (j − 1)d

a+ (i− 1)d
·Hi(a/d+ j − 1),

where Hi is defined as in Lemma 4.11. Thus, by Lemma 4.11,

(BA)ij =

{
1 if i = j,

0 if i ̸= j.
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This establishes BA = In. Therefore, A−1 = B.

Lemma 4.15. For any positive integers m,n, and nonzero real number d, let the set T =
{−md,−(m− 1)d, . . . ,−d, d, . . . , nd} and define the (m+ n)× (m+ n)−matrix

A =
[
C D

]
where C is an (m+n)×m−matrix with Cij = [(j −m− 1)d]i and D is an (m+n)×n−matrix
with Dij = (jd)i. Then

A−1 = B =

[
C∗

D∗

]
where C∗ is an m× (n+m)−matrix with

C∗
ij = (−1)i+j+1 · σn+m−j(T − {(i−m− 1)d})

dj · (i− 1)!(n+m− i+ 1)!
,

and D∗ is an n× (n+m)−matrix with

D∗
ij = (−1)m+i+j · σn+m−j(T − {id})

dj · (m+ i)!(n− i)!
.

The proof for Lemma 4.15 is omitted since it can be proceeded in the similar way as the
proof for Lemma 4.14. The reader who is interested in proving it may set d = 1 for simplicity.
Once the case d = 1 is proven, it is not difficult to see that the result also holds in the case
d ̸= 1.

It is not practical to explicitly express matrix B. However, it is not too difficult to express
the first, the last, and the second last columns of B. We already show how to compute the
first column in the previous two sections (aka Theorem 2.1 - 4.1). In this section, we will only
show how to compute the last and the second last columns. Their proofs will be omitted due
to the fact that they are derived directly from Lemma 4.14 and Lemma 4.15.

Computing the last column of B

Theorem 4.16. Let a be a real number, d be a nonzero real number, and n be a positive
integer such that 0 /∈ {a1, a2, . . . , an}, where ai = a+ d(i− 1). Then

f (n)(x) =
1

hn

n∑
i=1

cai [f(x+ aih)− f(x)] +O(h),

where

cai =
(−1)n+i

ai
· 1

dn−1(i− 1)!(n− i)!
,

for i = 1, 2, . . . , n.

Theorem 4.17. For any positive integers m,n, and nonzero real number d, let ai = i ·d. Then

f (m+n)(x) =
1

hm+n

n∑
i=−m

cai [f(x+ aih)− f(x)] +O(h),
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where ca0 = 0, and

cai = (−1)n+i · 1

dn+m · (m+ i)!(n− i)!
,

for i = −m, . . . ,−1, 1, . . . , n.

Computing the second last column of B

Theorem 4.18. Let a be a real number, d be a nonzero real number, and n be a positive
integer such that 0 /∈ {a1, a2, . . . , an}, where ai = a+ d(i− 1). Then

f (n−1)(x) =
1

hn−1

n∑
i=1

cai [f(x+ aih)− f(x)] +O(h2),

where

cai =
(−1)n+i−1

ai
·

n
2 (a1 + an)− ai

dn−1(i− 1)!(n− i)!
,

for i = 1, 2, . . . , n.

Theorem 4.19. For any positive integers m,n, and nonzero real number d, let ai = i ·d. Then

f (m+n−1)(x) =
1

hm+n−1

n∑
i=−m

cai [f(x+ aih)− f(x)] +O(h2),

where ca0 = 0, and

cai = (−1)n+i−1 ·
n2−m2

2 − i

dn+m−2 · (m+ i)!(n− i)!
,

for i = −m, . . . ,−1, 1, . . . , n.

5 Conclusions

In this paper, we showed how to construct filtered schemes for the Hamilton-Jacobi equa-
tion continuum limit of nondominated sorting by combining high order possibly unstable
schemes with first order monotone and stable schemes. We proved that the filtered schemes
are stable and convergent for all orders. We then investigated both high-order unfiltered and
filtered schemes for the Hamilton-Jacobi equation by implementing both schemes for order
k = 1, 2, 3, 5, 8, and 13 numerically solving the equations in various mesh sizes. The errors
from their numerical solutions compared to the known solutions were measured in the L1 norm
and the L∞ norm. Our results suggest that the unfiltered schemes of order higher than 2 are
unstable while the 1st order and 2nd order unfiltered schemes remain stable. Moreover, we
see that the 2nd order unfiltered scheme shows 2nd order accuracy. Similarly to the unfiltered
schemes, we see that the 2nd order filtered scheme seems to show 2nd order accuracy. However,
it turns out that the filtered schemes of order higher than 2 only exhibit a 1st order conver-
gence rate. Upon further investigation, this appears to be due to fact that the filtering relies
too often on the 1st order scheme. Future work would include proving stability of the second
order unfiltered scheme, and investigating techniques to improve the accuracy of the higher
order filtered schemes.
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