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ABSTRACT

We introduce a sequential Bayesian binary hypothesis testing
problem under social learning, termed selfish learning, where
agents work to maximize their individual rewards. In par-
ticular, each agent receives a private signal and is aware of
decisions made by earlier-acting agents. Beside inferring the
underlying hypothesis, agents also decide whether to stop and
declare, or pass the inference to the next agent. The employer
rewards only correct responses and the reward per worker de-
creases with the number of employees used for decision mak-
ing. We characterize decision regions of agents in the infi-
nite and finite horizon. In particular, we show that the deci-
sion boundaries in the infinite horizon are the solutions to a
Markov Decision Process with discounted costs, and can be
solved using value iteration. In the finite horizon, we show
that team performance is enhanced upon appropriate incen-
tivization when compared to sequential social learning.

Index Terms— social learning, selfish agents, MDP, in-
centive mechanism, time-constrained decision making

1. INTRODUCTION

Multi-agent systems in decision making tasks often benefit
from reinforcing private information about the underlying hy-
pothesis with public information from other agents in them.
Sequential social learning is one such multi-agent system
wherein a set of workers, in some predetermined order, per-
form local inference regarding the underlying hypothesis
using a private signal, their individual beliefs, and the de-
cisions made by earlier-acting agents. The last-acting agent
declares the collective decision after taking into consideration
the decisions made by earlier-acting agents.

Propagating local inferences provides additional informa-
tion regarding the underlying problem thereby increasing the
accuracy of inference. Thus, it is typically beneficial to use
the social learning framework with rational human workers.

Such social learning systems have been extensively stud-
ied [1-3]. Also referred to as observational learning, the no-
tions of “herding” and conformism have in particular been
explored in detail in the social learning construct [4-6]. Ben-
efits of including side information beside local decisions have
been considered in the context of information cascades [7].
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Sequential social learning has also been generalized to so-
cial networks where agents learn from neighbors in [8]. This
model has also been explored in fair generality in [9]. In ad-
dition, the social learning setup has also been studied under
probability reweighting [10], quantized priors [11], and dis-
tributed detection with sensor fusion [12].

Social learning has been explored for quickest change de-
tection through a POMDP formulation in [13]. Notwithstand-
ing [13], prior work has predominantly focused on static sys-
tems with a set of agents acting in a predetermined order.

Expected utility theory [14, 15] argues that rational agents
behave in a manner that maximizes their expected utility. In
the social learning setting, this translates to workers making
decisions that maximize their individual reward. Thus, if the
employer pays a non-increasing reward per worker as a func-
tion of the number of employees used in decision making, the
employees are incentivized to stop early when they are confi-
dent of their decisions. We call this behavior selfish learning.
In this work, we consider independent private observations
with additive Gaussian noise and characterize the optimal de-
cision regions for each selfish worker.

In the infinite horizon (i.e., infinite set of workers),
we show that the conditional expected rewards constitute
a Markov decision process (MDP) with discounted costs.
Solving the Bellman equations using value iteration on a
quantized state space, we show that optimal decision bound-
aries can be approximated through pre-employment training.

In the finite horizon (i.e., finite number of employees), we
show that for appropriate incentivization, the selfish learning
achieves higher accuracy and lesser time for detection when
compared to sequential social learning.

2. PROBLEM DEFINITION

Consider sequential binary hypothesis testing using a set of
workers. The n-th worker receives a private signal Y,,, de-
pending on the true hypothesis H* € {0, 1}, and decisions of
the earlier-acting n — 1 workers (termed public signals).

We first introduce the notations. Let Py, [-] = P[[|H* = h],
e™ = {xy,...,2,}, [n] = {1,...,n}, and f,(-) be the
probability density function of private signal, given H* = h.

Consider the task of detecting presence of a signal, in the
presence of additive Gaussian noise. Let the prior probability
be pg = P[H* =0]. Then, the private signal of worker n
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Fig. 1. Selfish learning model. Each worker has the choice to
stop and declare an answer based on private & public signals.

is Y, = H* + Z,, where Z, ~ N(0,1). The results can
be extended to arbitrary noise variance by the scaling signals.
Worker n infers the hypothesis as H, e {0,1}.

In addition, each worker can choose to stop and declare
when they are confident of their inference. Let S, = 1if
worker n chooses to stop and declare, 0 otherwise. Let this
stopping time be given by the random variable V.

We consider an employer who rewards quicker, accurate
decisions by paying more if the system uses fewer workers to
infer, and if the decision is correct. Thus, if the final decision
is taken by the n-th worker, then, the reward for worker i is

Ri = gn1 {N:n,Hn:H*,ign}. (1

We will assume that g,, is non-increasing with n.

Here we assume that workers are selfish and seek to max-
imize their expected reward conditional on the private and
public signals, i.e., worker n decides

(ﬁn, S’H) = arg max E [gNl {H’N = H*HI:I("), 5'(")} ,
(H,S)
X . . . )
where H” = H"~DUH and S = S~V US. The selfish
learning system is depicted in Fig. 1.

3. DECISION BOUNDARIES

Given the set of public signals, each worker makes the deci-
sion according to the strength of the private signal. For addi-
tive Gaussian noise model the decision regions are defined by
private signal thresholds, determined by the public signals.

When the private signal is strong, the worker stops and de-
clares, and continues otherwise. Thus, decision boundaries of
the n-th worker are as shown in Fig. 2, where «,, 3, 7, are
obtained according to the public signals. Thus, the decision
of the n-th worker upon receiving Y, is

Hn =1 {YVL > ’Yn}a and S’n =1 {Y;I ¢ (anaﬂn)}- (3)

Let the posterior probability for the n-th worker of the
hypothesis being 0 given the public signals be ¢y, i.e.,

g =P [H - 0’H<"—1> — pn=1) G- _ o] ()

Fig. 2. Decision boundaries of n-th worker, given public sig-
nals. The worker stops only if the private signals are strong.

For ease, whenever eviAdent from context, we will use H (™) , H n
to depict the events { H(™) = h(™M} {H, = h,}. Then, from
Bayes’ rule, the posterior evolves as follows:
P [Hy| D]
qn+1 _ dn n
L=gnr1 1—aup, {ﬁn‘[f[(nfl)}

®)

Threshold ~,, is used to infer the hypothesis accurately
and is not affected by the reward. Further, as we have a social
learning system incentivized to be correct, worker n uses the
posterior probability ¢, to compute the maximum a posteriori

(MAP) estimate. Thus 7, = 3 + log (1 ztzn)‘

The stopping thresholds are defined by the private signal
Y,, = y, for which the expected reward obtained upon declar-
ing matches that obtained upon passing.

First, let us compute the expected reward if worker n stops
and declares 1, i.e., ¥, > 7,. Then, from independence of
private signals and Bayes rule, expected reward is given by

Er(n_1)7ynv
(=)

E|Ry = guP [ = 1| A0,

(=)
" qnfO(yn) + (]- - Qn)fl(yn) .
(6)

Similarly, when worker n stops and declares ﬁn =0,

ﬁ(n71)5yﬂ,7
(=)

We now compute expected reward when the worker
passes. Assume that y,, € [y, Sy, ie., H, = 1,5, = 0.
Then, expected reward is

HDY,,
( N >n >

qnfO (yn)

B "nfolyn) + (1 = qn) f1(yn)”

Ry

=g

E | Ry — G,Eo {RN|I:I(”), N> n}

4 (1= G)Es [RN|H(”), N> n} ,

where H,, = 1 {y € (Y, Bn)}, and ﬁgn = - ﬁ’gzn;



Setting the expected rewards upon passing and that upon
stopping equal at Y,, € {ay, 8.}, we get

_ . o+
E, [RN|H<n>,N > n}
Ap = Yn — IOg N )
g(n) —Eq {RN|H(”),N > n}
@)
_ . R
1%[RNuﬂMJV>74
Bn =Yn + IOg N s
ﬂM—EJRMHWLN>4
(®)

where, z7 = max{0,z}. Eqns. (7) and (8) relate the incen-
tives to decision boundaries. We now consider infinite and
finite horizons of the problem.

4. LEARNING IN THE INFINITE HORIZON

We now study infinite horizon selfish learning. We prove
the reduction to a discounted cost Markov Decision Process
(MDP). This results in a dynamic programming formulation
which can be solved to obtain optimal decision boundaries.
Let the expected reward under an incentive profile { g, }nen
and prior p, conditional on the true hypothesis H* = h be
Ri(g,p) = E[Ry|H* = h;g,p]. Let .

o = %’, for all
n' > n. Then, from (7) and (8),

- qq+
Ry (g<n>,q§f+>1)
Qp = Tn — IOg N 0) s (9)
1-R0<gqun+g
- =44 +
RO (g(n)v q'§11+)1)
Bn = Yn + log ~ ) 3 (10)
1—R1@mp%ﬁg

where qfffgl is the posterior given H,, = h, for h € {0,1}.

That is, the optimal decision boundaries for worker n depend
on the conditional expected rewards of the first worker, if the

(h)

problem had a prior of ¢, /; and an incentive profile of g™,

Consider g, = p"~*, for some p € (3,1). Then, =
P9m. From (9) and (10) optimal stopping boundaries are only
a function of posteriors for a fixed p.

We suppress the payoff structure now for convenience.
Let u, = (an,Bn)T € R? be the optimal decision bound-
aries. The conditional expected reward for h € {0, 1}, start-
ing from a posterior ¢, satisfies

Ra(an) = C® (gn, un) + pPu [V € (en, )] R (a7
+ p]P)h D/n S (’Yna /Bn)] Rh (qs.:,)_l) ’ (11)
where C(") : [0, 1] x R? — [0, 1], is defined as

<

Pl [Yn Z Bn]

Lifh=0
Jifh=1.

For each h € {0,1}, let J)(q) = Ru(q). Further, for
any ¢,q' € [0,1], and u = (a, B)7, let

. o Po[Y E(a,y)

o PMYE(mVH,IH%?—fﬁﬁzaiﬁ’

Pog)={PBo[Y € (v,8)] . if 1 = r pyecsy -
PO[Y¢(Q7B)} ,lfq/:QZ)

where ¢ is a proxy state corresponding to stopping. We fix
the reward of this state as 0. Analogously define Pq(’lq), (u).
Then, R, are solutions to the Bellman equations

h _ h h
IO (p) = max OV (p,w) 4+ pE,_por,y [P (@) (12)
Let T")(.) be the operator from (12), such that J) =
T (J(M)). We suppress hypothesis &, owing to symmetry.

Theorem 1. Operator T is a contraction under || - || oo nOrm.

The proof follows similar to standard proofs of contrac-
tion of cost operator in reinforcement learning using mono-
tonicty and discounted increase of the 7'(-) operator. From
Banach’s fixed point theorem [16], we get the following.

Corollary 2. There exists a unique solution J* to J = T(J).
Thus value iteration can be used to determine J*.
Lemma 3. For any Jo, ifjnH = T(jn),for allm > 0, then

p
L—p
The result follows from Thm. 1 and Cor. 2. However, J is
a function on [0, 1] and so it is expensive to store and update
the value iterations. It is also computationally expensive to
compute 7'(.J) as it requires solving (9) and (10) in R2.

Note that J") (p) < 1 for all p, and is continuous in p.
Hence we can approximate the conditional cost by quantizing
the state-action space. We quantize the space of priors, [0, 1],
into K levels, Px = {p1,...,px}. Similarly, quantize the
action space as Uy = {uV), ... ,u(K/)}, where u(¥ € R2.

Let the fixed point for the reduced version of the problem
be JU1) | state-transition probability be ]5(1(};), (u) where the
states and actions are appropriately replacea by their quan-
tized equivalents, and the corresponding operator be 7(%:").

To perform value iteration, choose an initial cost vector
J{EM € RE  and iteratively apply jt(fl’h) = TUGR) (IR
UM Fi-
T

n

Hjn_J*”oo < ||j1_j0||oo- (13)

using (9), and (10). Let the converged estimate be .J.
nally, approximate .J(*) by choosing sufficiently large K, K’
and interpolating the estimate j:(FK’h).

Such a reduction to Bellman equations indicates that by
training workers prior to employment, we can obtain optimal
performance of selfish workers under geometric payoff in the
infinite horizon [16]. In particular, owing to limited computa-
tional resources, humans tend to perceive quantized estimates
of prior and posterior probabilities [17]. Thus, it suffices to
estimate the approximate versions from the value iteration.

Further guarantees on convergence and the feasibility of
training with humans are beyond the scope of this paper.



5. LEARNING UNDER FINITE HORIZON

We now consider finite horizon selfish learning where the em-
ployer can use a maximum of M workers. Thus, the incentive
is now equivalently given by a vector g € RM.

The system always declares a final decision. Thus, ap; =
v = B, for any sequence of prior decisions H (M1,

We study the relationship between incentives, accuracy,
and stopping time. Let 3,, = —a,, = oo, if N < n. Then,

M M
P[Hy = H*| =po ) Eo[@(an)l+F0 Y Ex [Q(8. 1),

n=1

where pgp = 1 — pg and ®(z) = 1 — Q(z). Similarly,

P [N = n] = poEo [(b(an) + Q(ﬁn)]
+ PoE1 [®(an — 1) + Q(Bn — 1)].

Finally, expected cost to employer is E [Cost] = E [Ngy].
Theorem 4. For any M > 2, if g, = 1 for all n € [M], then

P [ﬁN - H} > P [HM - H} cand E[N] < M. (14)

The proof follows from the observation that a worker
stops if and only if the probability of success exceeds that
from passing. Further, for the Gaussian model there is a
non-zero probability of stopping before M.

Thus, by including the stopping option, we get quicker
and more accurate detection compared to social learning.

5.1. Two Worker System

Consider a system with two workers, M = 2. Here, worker
1 can stop and declare, or pass to worker 2, who behaves as a
MAP decoder, using the posterior probability.

(n
Now, o) = {1 = 4 = 1+t (243 ). orny
2
Hi=he {0, 1}. Here, according to (5),

¢’ p Q) - QM) )

1—¢"  (1=po) (Qzn — 1) = Q1 — 1))’

where g = a1, 21 = (1. Further, v, = %—i—log (
a1, 31 are obtained from (7) and (8).

The cost-accuracy tradeoff for various priors is shown in
Fig. 3. Note that the inference error decreases with increasing
budget, and that the expected cost is strictly less than 2.

We now compare selfish learning with sequential social
learning, for various incentives. Let g; = 1. When g5 is low,
the first worker benefits more from stopping and declaring
and so declares more often which results in lesser accuracy.

As g increases, the first worker gains more from pass-
ing weak signals to the second worker and hence accuracy
improves and is maximized for go = 1 (cost also increases).
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Fig. 3. Accuracy-cost tradeoff for various priors. For a given
prior, accuracy can be improved by allocating larger budgets.
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Fig. 4. Comparison of sequential and selfish learning for
varying payments.

The performance of the selfish learner for various cost
profiles, as compared with sequential learning is shown in
Fig. 4. As expected, for any go > % selfish learning per-
forms better than using just one worker.

Further, there exists 6 < 1 such that for g, € [0, 1], selfish
learning outperforms social learning with 2 workers. Thus,
through an appropriate choice of incentive, the employer can

leverage worker greed to improve accuracy.

6. CONCLUSION

In this work we introduce selfish learning that considers the
sequential social learning with agents who aim to maximize
individual expected reward. We characterize decision regions
for each agent under an additive Gaussian noise model.

In the infinite horizon we prove a novel reduction to an
MDP with discounted costs. Through value iteration on a
quantized state-action space, we approximate the decision re-
gions. In the finite horizon, we showed that appropriate in-
centivization reduces the expected cost and time for decision
making, and achieves better accuracy than social learning.
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