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ABSTRACT

We introduce a sequential Bayesian binary hypothesis testing

problem under social learning, termed selfish learning, where

agents work to maximize their individual rewards. In par-

ticular, each agent receives a private signal and is aware of

decisions made by earlier-acting agents. Beside inferring the

underlying hypothesis, agents also decide whether to stop and

declare, or pass the inference to the next agent. The employer

rewards only correct responses and the reward per worker de-

creases with the number of employees used for decision mak-

ing. We characterize decision regions of agents in the infi-

nite and finite horizon. In particular, we show that the deci-

sion boundaries in the infinite horizon are the solutions to a

Markov Decision Process with discounted costs, and can be

solved using value iteration. In the finite horizon, we show

that team performance is enhanced upon appropriate incen-

tivization when compared to sequential social learning.

Index Terms— social learning, selfish agents, MDP, in-

centive mechanism, time-constrained decision making

1. INTRODUCTION

Multi-agent systems in decision making tasks often benefit

from reinforcing private information about the underlying hy-

pothesis with public information from other agents in them.

Sequential social learning is one such multi-agent system

wherein a set of workers, in some predetermined order, per-

form local inference regarding the underlying hypothesis

using a private signal, their individual beliefs, and the de-

cisions made by earlier-acting agents. The last-acting agent

declares the collective decision after taking into consideration

the decisions made by earlier-acting agents.

Propagating local inferences provides additional informa-

tion regarding the underlying problem thereby increasing the

accuracy of inference. Thus, it is typically beneficial to use

the social learning framework with rational human workers.

Such social learning systems have been extensively stud-

ied [1–3]. Also referred to as observational learning, the no-

tions of “herding” and conformism have in particular been

explored in detail in the social learning construct [4–6]. Ben-

efits of including side information beside local decisions have

been considered in the context of information cascades [7].
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Sequential social learning has also been generalized to so-

cial networks where agents learn from neighbors in [8]. This

model has also been explored in fair generality in [9]. In ad-

dition, the social learning setup has also been studied under

probability reweighting [10], quantized priors [11], and dis-

tributed detection with sensor fusion [12].

Social learning has been explored for quickest change de-

tection through a POMDP formulation in [13]. Notwithstand-

ing [13], prior work has predominantly focused on static sys-

tems with a set of agents acting in a predetermined order.

Expected utility theory [14,15] argues that rational agents

behave in a manner that maximizes their expected utility. In

the social learning setting, this translates to workers making

decisions that maximize their individual reward. Thus, if the

employer pays a non-increasing reward per worker as a func-

tion of the number of employees used in decision making, the

employees are incentivized to stop early when they are confi-

dent of their decisions. We call this behavior selfish learning.

In this work, we consider independent private observations

with additive Gaussian noise and characterize the optimal de-

cision regions for each selfish worker.

In the infinite horizon (i.e., infinite set of workers),

we show that the conditional expected rewards constitute

a Markov decision process (MDP) with discounted costs.

Solving the Bellman equations using value iteration on a

quantized state space, we show that optimal decision bound-

aries can be approximated through pre-employment training.

In the finite horizon (i.e., finite number of employees), we

show that for appropriate incentivization, the selfish learning

achieves higher accuracy and lesser time for detection when

compared to sequential social learning.

2. PROBLEM DEFINITION

Consider sequential binary hypothesis testing using a set of

workers. The n-th worker receives a private signal Yn, de-

pending on the true hypothesis H∗ ∈ {0, 1}, and decisions of

the earlier-acting n− 1 workers (termed public signals).

We first introduce the notations. Let Ph [·] = P [·|H∗ = h],
x(n) = {x1, . . . , xn}, [n] = {1, . . . , n}, and fh(·) be the

probability density function of private signal, given H∗ = h.

Consider the task of detecting presence of a signal, in the

presence of additive Gaussian noise. Let the prior probability

be p0 = P [H∗ = 0]. Then, the private signal of worker n
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where, x+ = max{0, x}. Eqns. (7) and (8) relate the incen-

tives to decision boundaries. We now consider infinite and

finite horizons of the problem.

4. LEARNING IN THE INFINITE HORIZON

We now study infinite horizon selfish learning. We prove

the reduction to a discounted cost Markov Decision Process

(MDP). This results in a dynamic programming formulation

which can be solved to obtain optimal decision boundaries.

Let the expected reward under an incentive profile {gn}n∈N

and prior p, conditional on the true hypothesis H∗ = h be

Rh(g, p) = E [RN |H∗ = h; g, p]. Let g̃
(n)
n′−n = gn′

gn
, for all

n′ > n. Then, from (7) and (8),
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where q
(h)
n+1 is the posterior given Ĥn = h, for h ∈ {0, 1}.

That is, the optimal decision boundaries for worker n depend

on the conditional expected rewards of the first worker, if the

problem had a prior of q
(h)
n+1 and an incentive profile of g̃(n).

Consider gn = ρn−1, for some ρ ∈ ( 12 , 1). Then, g̃
(n)
m =

ρgm. From (9) and (10) optimal stopping boundaries are only

a function of posteriors for a fixed ρ.

We suppress the payoff structure now for convenience.

Let un = (αn, βn)
T ∈ R

2 be the optimal decision bound-

aries. The conditional expected reward for h ∈ {0, 1}, start-

ing from a posterior qn, satisfies

Rh(qn) = C(h)(qn, un) + ρPh [Yn ∈ (αn, γn)]Rh

(

q
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+ ρPh [Yn ∈ (γn, βn)]Rh

(

q
(1)
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where C(h) : [0, 1]× R
2 → [0, 1], is defined as

C(h)(qn, un) =

{

P0 [Yn ≤ αn] , if h = 0

P1 [Yn ≥ βn] , if h = 1.

For each h ∈ {0, 1}, let J(h)(q) = Rh(q). Further, for

any q, q′ ∈ [0, 1], and u = (α, β)T , let

P
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,

where φ is a proxy state corresponding to stopping. We fix

the reward of this state as 0. Analogously define P
(1)
q,q′(u).

Then, Rh are solutions to the Bellman equations

J (h)(p) = max
u∈R2

C(h)(p, u) + ρE
q∼P

(h)
p,q (u)

[

J (h)(q)
]

. (12)

Let T (h)(·) be the operator from (12), such that J (h) =
T (h)(J (h)). We suppress hypothesis h, owing to symmetry.

Theorem 1. Operator T is a contraction under ‖ · ‖∞ norm.

The proof follows similar to standard proofs of contrac-

tion of cost operator in reinforcement learning using mono-

tonicty and discounted increase of the T (·) operator. From

Banach’s fixed point theorem [16], we get the following.

Corollary 2. There exists a unique solution J∗ to J = T (J).

Thus value iteration can be used to determine J∗.

Lemma 3. For any Ĵ0, if Ĵn+1 = T (Ĵn), for all n ≥ 0, then

‖Ĵn − J∗‖∞ ≤
ρn

1− ρ
‖Ĵ1 − Ĵ0‖∞. (13)

The result follows from Thm. 1 and Cor. 2. However, J is

a function on [0, 1] and so it is expensive to store and update

the value iterations. It is also computationally expensive to

compute T (J) as it requires solving (9) and (10) in R
2.

Note that J (h)(p) ≤ 1 for all p, and is continuous in p.

Hence we can approximate the conditional cost by quantizing

the state-action space. We quantize the space of priors, [0, 1],
into K levels, PK = {p1, . . . , pK}. Similarly, quantize the

action space as UK′ = {u(1), . . . , u(K′)}, where u(i) ∈ R
2.

Let the fixed point for the reduced version of the problem

be J̃ (K,h), state-transition probability be P̃
(h)
q,q′(u) where the

states and actions are appropriately replaced by their quan-

tized equivalents, and the corresponding operator be T̃ (K,h).

To perform value iteration, choose an initial cost vector

Ĵ
(K,h)
0 ∈ R

K , and iteratively apply Ĵ
(K,h)
t+1 = T̃ (K,h)(Ĥ

(K,h)
t )

using (9), and (10). Let the converged estimate be Ĵ
(K,h)
T . Fi-

nally, approximate J (h) by choosing sufficiently large K,K ′

and interpolating the estimate Ĵ
(K,h)
T .

Such a reduction to Bellman equations indicates that by

training workers prior to employment, we can obtain optimal

performance of selfish workers under geometric payoff in the

infinite horizon [16]. In particular, owing to limited computa-

tional resources, humans tend to perceive quantized estimates

of prior and posterior probabilities [17]. Thus, it suffices to

estimate the approximate versions from the value iteration.

Further guarantees on convergence and the feasibility of

training with humans are beyond the scope of this paper.



5. LEARNING UNDER FINITE HORIZON

We now consider finite horizon selfish learning where the em-

ployer can use a maximum of M workers. Thus, the incentive

is now equivalently given by a vector g ∈ R
M .

The system always declares a final decision. Thus, αM =
γM = βM , for any sequence of prior decisions Ĥ(M−1).

We study the relationship between incentives, accuracy,

and stopping time. Let βn = −αn = ∞, if N < n. Then,

P

[
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]

= p0

M
∑

n=1

E0 [Φ(αn)]+p̄0

M
∑

n=1

E1 [Q(βn − 1)] ,

where p̄0 = 1− p0 and Φ(x) = 1−Q(x). Similarly,

P [N = n] = p0E0 [Φ(αn) +Q(βn)]

+ p̄0E1 [Φ(αn − 1) +Q(βn − 1)] .

Finally, expected cost to employer is E [Cost] = E [NgN ].

Theorem 4. For any M ≥ 2, if gn = 1 for all n ∈ [M ], then

P

[

ĤN = H∗

]

≥ P

[

ĤM = H∗

]

, and E [N ] < M. (14)

The proof follows from the observation that a worker

stops if and only if the probability of success exceeds that

from passing. Further, for the Gaussian model there is a

non-zero probability of stopping before M .

Thus, by including the stopping option, we get quicker

and more accurate detection compared to social learning.

5.1. Two Worker System

Consider a system with two workers, M = 2. Here, worker

1 can stop and declare, or pass to worker 2, who behaves as a

MAP decoder, using the posterior probability.

Now, α
(h)
2 = γ

(h)
2 = β

(h)
2 = 1

2 + log

(

q
(h)
2

1−q
(h)
2

)

, for any

Ĥ1 = h ∈ {0, 1}. Here, according to (5),

q
(h)
2

1− q
(h)
2

=
p0

(1− p0)

(Q(xh)−Q(γ1))

(Q(xh − 1)−Q(γ1 − 1))
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where x0 = α1, x1 = β1. Further, γ1 = 1
2 +log

(

p0

1−p0

)

, and

α1, β1 are obtained from (7) and (8).

The cost-accuracy tradeoff for various priors is shown in

Fig. 3. Note that the inference error decreases with increasing

budget, and that the expected cost is strictly less than 2.

We now compare selfish learning with sequential social

learning, for various incentives. Let g1 = 1. When g2 is low,

the first worker benefits more from stopping and declaring

and so declares more often which results in lesser accuracy.

As g2 increases, the first worker gains more from pass-

ing weak signals to the second worker and hence accuracy

improves and is maximized for g2 = 1 (cost also increases).
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Fig. 3. Accuracy-cost tradeoff for various priors. For a given

prior, accuracy can be improved by allocating larger budgets.
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Fig. 4. Comparison of sequential and selfish learning for

varying payments.

The performance of the selfish learner for various cost

profiles, as compared with sequential learning is shown in

Fig. 4. As expected, for any g2 > 1
2 , selfish learning per-

forms better than using just one worker.

Further, there exists θ < 1 such that for g2 ∈ [θ, 1], selfish

learning outperforms social learning with 2 workers. Thus,

through an appropriate choice of incentive, the employer can

leverage worker greed to improve accuracy.

6. CONCLUSION

In this work we introduce selfish learning that considers the

sequential social learning with agents who aim to maximize

individual expected reward. We characterize decision regions

for each agent under an additive Gaussian noise model.

In the infinite horizon we prove a novel reduction to an

MDP with discounted costs. Through value iteration on a

quantized state-action space, we approximate the decision re-

gions. In the finite horizon, we showed that appropriate in-

centivization reduces the expected cost and time for decision

making, and achieves better accuracy than social learning.
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