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ABSTRACT

This work explores sequential Bayesian binary hypothesis

testing in the social learning setup under expertise diversity.

We consider a two-agent (say advisor-learner) sequential bi-

nary hypothesis test where the learner infers the hypothesis

based on the decision of the advisor, a prior private signal,

and individual belief. In addition, the agents have varying

expertise, in terms of the noise variance in the private signal.

Under such a setting, we first investigate the behavior of

optimal agent beliefs and observe that the nature of optimal

agents could be inverted depending on expertise levels. We

also discuss suboptimality of the Prelec reweighting function

under diverse expertise. Next, we consider an advisor selec-

tion problem wherein the belief of the learner is fixed and the

advisor is to be chosen for a given prior. We characterize the

decision region for choosing such an advisor and argue that a

learner with beliefs varying from the true prior often ends up

selecting a suboptimal advisor.

Index Terms— social learning, sequential binary hypoth-

esis test, cumulative prospect theory

1. INTRODUCTION

Team decision making typically involves individual decisions

that are influenced by the private observations and the opin-

ions of the rest of the team. The social learning setting is

one such context where decisions of individual agents are in-

fluenced by preceding agents in the team [1–3]. Individual

agents are selfish and aim to minimize their perceived Bayes

risk, according to beliefs as reinforced by earlier decisions. In

particular, a team of two agents can be treated as an advisor

followed by a learner.

Social learning, also referred to as observational learning,

has been widely studied and we provide a non-exhaustive list-

ing of some of the relevant works. Aspects of conformism

and “herding” were studied in [4–6]. The concept of herding

is further highlighted to be a consequence of boundedly infor-

mative private signals in [7]. Further convergence properties

of actions taken under social learning were explored under

imperfect information in [8].

This work was supported in part by the National Science Foundation

under grant CCF-1717530.

Rhim and Goyal [3] studied a sequential binary hypothe-

sis test in the social learning framework, termed social teach-

ing, and characterized optimal beliefs of agents that mini-

mize the Bayes risk of the last-acting agent. In two and three

agent contexts, they showed, counterintuitively, that it is opti-

mal for agents to use beliefs that do not match the true prior.

Specifically, the optimal advisor in the social learning context

is one who is open-minded, i.e., overweights the belief for

small prior, and underweights when it is large. On the other

hand, the corresponding optimal learner is one who is closed-

minded and behaves in the opposite way to the advisor.

Human actions are typically affected by individual per-

ceptions of the underlying context. Cumulative prospect the-

ory [9] seeks to provide a psychological understanding of hu-

man behaviors under risk. It introduces the notion of prob-

ability reweighting functions to explain irrational human be-

haviors. Among reweighting functions, the Prelec reweight-

ing function [10] satisfies a majority of the axiomatic behav-

ior of the prospect theory. Interestingly, the Prelec function

spans a class of open- and closed-minded beliefs and hence

one might expect it to emerge as the information-theoretically

optimal choice under social learning. However, we will dis-

cuss that it does not capture all behavioral patterns for the

optimal beliefs of agents.

In particular, we consider observation models with differ-

ent noise variances, which translates to varying agent exper-

tise. The expertise of the advisor and learner affect the nature

of optimal beliefs of the agents. Specifically, when the learner

has more expertise than the advisor, the Prelec function does

not capture the behavior of optimal beliefs. We also identify

interesting properties of the optimal beliefs.

We are ultimately interested in the Bayes risk of the

learner, and thus it is important that the learner uses the cor-

rect set of advisors for the task. To this end, we also consider

team selection for such sequential hypothesis testing, and

characterize the criterion for advisor selection.

2. PROBLEM DESCRIPTION

Consider a two-agent sequential decision making problem.

The underlying hypothesis, H ∈ {0, 1}, is a binary signal

with prior P [H = 0] = p0, and P [H = 1] = 1− p0. Quanti-

ties of the first agent (advisor) are denoted by subscript 1, and
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those of the second agent (learner) by subscript 2. Each agent

perceives p0 differently as qn, n = 1, 2, called belief.

Each agent receives the private signal Yn = H + Zn,

where Zn is an independent additive Gaussian noise with zero

mean and variance σ2
n. Let N (y;µ, σ2) be the Gaussian prob-

ability density with mean µ and variance σ2 at y. Then the

received signal probability densities for H = h are

f(yn|h) = fYn|H(yn|h) = N (yn;h, σ
2
n).

In addition, the learner acquires the decision of the advisor

Ĥ1, and makes a decision Ĥ2 based on (Ĥ1, Y2).
The advisor and the learner both are selfish and aim to

minimize individual Bayes risk with costs c(Ĥ,H). We re-

strict to the case where the cost is 0 for correct decisions and

let c01 = c(0, 1), c10 = c(1, 0). Then, the Bayes risk for the

nth agent is given by

Rn = c10p0pĤn|H
(1|0) + c01(1− p0)pĤn|H

(0|1). (1)

Thus each agent performs the likelihood ratio test, but the

learner assumes that the advisor has the same beliefs as her,

as she is unaware of the advisor’s belief q1. Therefore in this

social learning scenario, the decision made by the advisor re-

inforces the decision of the learner by appropriately strength-

ening the posterior probability of the underlying hypothesis.

The advisor follows the likelihood ratio test,

L(y1) ,
f(y1|1)

f(y1|0)

Ĥ1=1

≷
Ĥ1=0

c10q1
c01(1− q1)

,

and from [3], the learner decides according to

L(y2) ,
f(y2|1)

f(y2|0)

Ĥ2=1

≷
Ĥ2=0

c10q2
c01(1− q2)

pĤ1|H
(ĥ1|0)[2]

pĤ1|H
(ĥ1|1)[2]

,

where the subscript [2] of probabilities indicates probability

distribution ‘seen by the learner’, i.e., the probability com-

puted as if the advisor also has q2 as belief.

We formally introduce the Prelec reweighting function.

Definition 1 ( [10]). For α, β > 0, the Prelec reweighting

function w : [0, 1] 7→ [0, 1] is w(p) = exp(−β(− log p)α).

A more generic form, termed composite Prelec weight-

ing function has been defined in [11]. Notice that 1) w(p)
is strictly increasing; 2) has a unique fixed point w(p) = p
at p∗ = exp(− exp(log β/(1 − α))); and 3) spans a class of

open-minded beliefs when α < 1, i.e., overweights (under-

weights) small (high) probability, and vice versa when α > 1.

3. DIVERSE EXPERTISE LEVELS

Consider the two-agent team with observational noise vari-

ances σ2
1 , σ

2
2 . Note that smaller noise variance implies the

agent is more likely to infer correctly and so has more exper-

tise.

Recall the decision threshold for the Gaussian binary hy-

pothesis test with prior p, and variance σ2 is given by

λ(p, σ2) ,
1

2
+ σ2 log

(

c10p

c01(1− p)

)

.

Then, because the advisor thinks the prior is q1, the decision

threshold for the advisor is given by λ1 = λ(q1, σ
2
1). But,

the learner presumes that the advisor decides according to the

threshold λ1,[2] = λ(q2, σ
2
2).

Let P I
e,1, P

II
e,1, and P I

e,1,[2], P
II
e,1,[2], be the true Type-I and

Type-II error probabilities of the advisor and those as per-

ceived by the learner, respectively. Further, let P Ih
e,2, P

IIh
e,2 be

the error probabilities of the learner upon observing Ĥ1 = h.

Let the learner’s posterior upon observing Ĥ1 = h be

qh2 , and let the corresponding decision threshold be λh
2 =

λ(qh2 , σ
2
2). The posterior probabilities satisfy

q02
1− q02

=
q2

1− q2

1− P I
e,1,[2]

P II
e,1,[2]

,
q12

1− q12
=

q2
1− q2

P I
e,1,[2]

1− P II
e,1,[2]

.

The optimal beliefs of advisor and learner q∗1 , q
∗
2 that min-

imize R2, are obtained by solving dR2

dq1
= dR2

dq2
= 0. From [3],

the optimal belief of the advisor satisfies

q∗1
1− q∗1

=
p0

1− p0

P I1
e,2 − P I0

e,2

P II0
e,2 − P II1

e,2

. (2)

From (2), we observe some properties of q∗1 , q
∗
2 .

Theorem 2. For any σ2
1 and σ2

2 , q∗1 and q∗2 satisfy:

1. q∗1 ≤ p0 if and only if q∗2 ≥ c01
c01+c10

, with equality for

q∗2 = c01
c01+c10

.

2. p0 = q∗1 = q∗2 if and only if p0 ∈
{

0, c01
c01+c10

, 1
}

.

Thm. 2 highlights the fact that if the learner believes the

null hypothesis is more likely, then the ideal advisor un-

derweights the prior, and vice versa. Additionally, for p0
near zero (near one) the optimal advisor overweights (under-

weights) the prior. Proof is omitted due to space limitation.

In particular, let us consider two cases separately. First,

let the advisor have more expertise, i.e., σ2
1 < σ2

2 . Then the

curves for optimal beliefs and the corresponding Bayes risk

are as shown in Fig. 1. The behavior here is similar to the

case with equal expertise [3], indicating that the additional

expertise of the advisor does not alter the overall behaviors of

beliefs, as the learner is unaware of this improved expertise.

On the other hand, when the learner has more expertise,

i.e., σ2
1 > σ2

2 , we notice that the nature of curves changes, as

shown in Fig. 2. The behavior of the ideal agents indicates

that when the advisor has significantly less expertise than the

learner, the learner stays open-minded.
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Fig. 1: Optimal beliefs as compared to Prelec-weighted be-

liefs when the advisor has more expertise.
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Fig. 2: Optimal beliefs as compared to Prelec-weighted be-

liefs when the learner has more expertise.

To discuss the Prelec function in social learning, we ap-

proximate the optimal belief q∗n by the Prelec function. We

first restrict to the Prelec family whose fixed point is identical

with p∗ = c10
c01+c10

and then find best parameters (αn, βn) in

the minimax absolute error sense, i.e., pick (αn, βn) such that

min
α,β

max
p0

|q∗n(p0)− exp(−β(− log p0)
α)|,

with fixed point at p∗. Such Prelec functions (q1,Pre, q2,Pre)
result in corresponding Bayes risk R2,Pre.

The Prelec quantities are shown in dotted lines in Figs. 1

and 2. When the advisor has more expertise as in Fig. 1, while

the fit belief is not perfect, the Bayes risk does not increase by

much. Compared to the trivial beliefs p0 = q1 = q2 and its

maximal loss maxp0
(R2,tri − R2,min) ≈ 0.0039 (not shown

in Fig. 1), the best Prelec curves improve the loss ≈ 0.0009.

The optimal Prelec-weighted agents also mimic the overall

behavior of the ideal agents.

On the other hand, when the learner has more expertise

as in Fig. 2, the Prelec agents do not accurately mimic the

optimal agents. Recall that the Prelec function is always in-

creasing and has only one crossing with unit slope line in

(0, 1). Therefore, the Prelec function fails to account for all

the variations in the optimal belief. Moreover, while the loss

of Bayes risk by the Prelec fitting is ≈ 0.0187, the loss of

trivial reweighting p0 = q1 = q2 is ≈ 0.0060. This indicates

that even though the Prelec weighting functions serve as good

approximations with expert advisors, they do not model the

optimal behavior in the case of poor advisors.

In addition, q∗1 has multiple crossings with p0, i.e.,

q∗2 = c01/(c01 + c10). As expected, the ideal advisor is

open-minded for near zero and one prior probabilities. How-

ever, when the hypotheses have Bayes risk around its peak,

the ideal advisor chooses to favor the likely hypothesis. That

is, around p∗, the learner stays open-minded as the decisions

of the advisor are less accurate. To further understand the

nature of such an advisor, we characterize the crossings of

the curve with the prior. The complementary cumulative

distribution function of the standard Gaussian is denoted by

Q(x).

Theorem 3. The set of all p0 such that q∗1 = p0, q∗2 = c01
c01+c10

is given by the solutions to

ex = 1−βQ(α+x)
1−βQ(α−x) , (3)

where

x = log
(

c10p0

c01(1−p0)

)

, α = 1
2σ2

1

, β =
Q(1/2σ2

2)
Q(−1/2σ2

2)
.

We note that p∗ = c01
c01+c10

is always a solution to (3). We

are particularly interested in when it has multiple solutions.

Corollary 4. If

2β
N (α; 0, 1)

1− βQ(α)
> 1, (4)

then, (3) has at least 3 solutions in (0, 1).

Cor. 4 provides sufficient conditions on the expertise of

agents under which there exists multiple crossings of the

curves q∗1(p0) and p0. This is important as the crossings indi-

cate a change in the perceived bias by the advisor. We omits

proofs for Thm. 3 and Cor. 4 due to space limitation.

4. TEAM CONSTRUCTION CRITERION

Having studied the mathematical conditions for optimal

reweighting of prior probabilities, we now investigate team

selection for social learning. Naturally, a social planner who

is aware of the context p0 can pick the optimal agent pairs

to minimize Bayes risk. However, it is not clear if agents

are capable of organizing themselves into ideal teams in the

absence of contextual knowledge. Thus, we now identify the

criterion for the learner to identify the optimal advisors when

a set of advisors is given. The proof of the next theorem is

omitted due to space limitation.
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(c) Context-unaware advisor selection. The

learner chooses advisor using (6) without p0
and the Bayes risk increases as a result.

Fig. 3: Context unaware team selection.

Theorem 5. Consider two advisors with q1 < q1′ . Let λ1, λ1′

be the decision thresholds of the respective advisors. Then,

the advisor with belief q1 is the optimal choice if and only if

P1

[

Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ1
2, λ

0
2]
]

P0 [Y1 ∈ [λ1, λ1′ ], Y2 ∈ [λ1
2, λ

0
2]]

≥
c10p0

c01(1− p0)
. (5)

In other words, by rewriting (5) as a likelihood form,

L
[

Ĥ1 = Ĥ2 = 1, Ĥ1′ = Ĥ2′ = 0
]

≥
c10p0

c01(1− p0)
,

where Ĥ2′ is the decision made by the learner following the

decision of the advisor with belief q1′ .
Thus selecting an ideal advisor requires a social planner

who is aware of the context p0. Without this, the learner

selects an advisor according to his personal belief q2. That

is, the learner verifies condition (5) by replacing p0 by q2.

Such a choice of advisor might not always conform to the

optimal choice when the belief of the learner deviates signif-

icantly from the prior. To illustrate, we consider the prob-

lem of choosing between two advisors with belief q1(p0) =
q∗1(p0) and q1′(p0) = p0. Let q(p0, q2) be the belief of the

optimal advisor choice for a given pair (p0, q2). We identify

the region of correct selection by shading, S = {(p0, q2) :
q(p0, q2) = q(q2, q2)}.

First, when expertise levels are equal, the region in which

the learner picks the correct advisor is shown in Fig. 3a. We

note that the correct region is relatively small and does not in-

clude q∗2 . In particular, the learner with optimal belief chooses

the wrong advisor always, whereas a suboptimal learner with

beliefs in the shaded region picks the correct one.

On the other hand, when the learner has more expertise

than the advisor, the corresponding region is as shown in

Fig. 3b. Here we note that the learner with optimal belief

picks the correct advisor always.

Thus, we note that knowledge of the mathematically opti-

mal beliefs does not guarantee selection of the right advisor.

Further, we also observe that the diversity of expertise lev-

els may increase the feasibility of selecting the right advisor

when the learner has optimal belief.

We also explore the optimal choice of advisor for the

given optimal learner in the absence of knowledge of the

prior probability. From (2), the belief of the optimal advi-

sor, q̃1 chosen by a learner, in the absence of context (prior

probability p0) satisfies

q̃1
1− q̃1

=
p0

1− p0

P I1
e,2 − P I0

e,2

P II0
e,2 − P II1

e,2

. (6)

The learner’s behavior with belief q∗2 is as shown in Fig.

3c. We note that the advisor chosen by the learner differs from

the optimal choice. Further, it is also evident that this choice

consequently results in an increased Bayes risk. Such behav-

ior in team selection highlights the significance of context and

thus a social planner for identifying the right team.

5. CONCLUSION

We considered the problem of sequential social learning un-

der varying agent expertise and investigated the question of

optimal probability reweighting in systems with two agents—

advisor and learner.

Under specific levels of expertise, we showed that the Pr-

elec reweighting function approximates the behavior of the

optimal beliefs of the agents, however when the learner has

much more expertise, the behavior of the optimal agents is

inverted as the learner becomes open-minded about the prob-

lem. In this case, the Prelec reweighting function fails to cap-

ture all the behavioral traits of the optimal beliefs.

Finally, we considered the ability of agents to organize

themselves into optimal teams, and showed that in the ab-

sence of a social planner, the learner can get paired with the

wrong advisor when the individual belief deviates signifi-

cantly from the underlying prior value.
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