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Abstract

We present a two-stage variational approach for segmenting 3D bone CT data that per-
forms robustly with respect to thin cartilage interfaces. In the first stage, we minimize a
flux-augmented Chan-Vese model that accurately segments well-separated regions. In the
second stage, we apply a new phase-field fracture inspired model that reliably eliminates spu-
rious bridges across thin cartilage interfaces, resulting in an accurate segmentation topology,
from which each bone object can be identified. Its mathematical formulation is based on
the phase-field approach to variational fracture, which naturally blends with the variational
aproach to segmentation. We successfully test and validate our methodology for the segmen-
tation of 3D femur and vertebra bones, which feature thin cartilage regions in the hip joint,
the intervertebral disks, and synovial joints of the spinous processes. The major strength
of the new methodology is its potential for full automation and seamless integration with
downstream predictive bone simulation in a common finite element framework.
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1. Introduction

In the future, physicians will utilize patient-specific predictive simulations based on di-
agnostic imaging data to better treat individual patients. For many clinically relevant sce-
narios, physiology-based modeling and simulation methods exist today (see, e.g., [1, 2, 3, 4,
5, 6, 7, 8]). A major roadblock, however, is the intricate process of transferring diagnostic
imaging information into explicit geometric models of patient-specific physiological systems.
A fundamental component of this process is segmentation, that is, assigning a label to every
voxel in a 3D image that belongs to a target physiological object [9]. Robust, accurate and
fully automated segmentation of 3D imaging data, however, still consitutes one of the grand
challenges in medical image analysis, despite significant research efforts over the last decades
[9, 10, 11]. The segmentation methodologies most widely used in applications usually em-
phasize accuracy and robustness at the cost of automation. As a consequence, segmentation
procedures in clinical practice and biomedical research still largely rely on the supervision
and manual intervention of segmentation experts.

In the context of physiology-based modeling and simulation, using a variational approach
to segmentation is particularly attractive, as both approaches can be based on a common
variational framework, including the same numerical discretization method, to find solutions
to the underlying partial differential equations. Variational segmentation methods are based
on finding the minimizing function of an energy-type functional whose contour represents
the boundaries of segmented objects to be identified [12]. Suitable energy functionals can
flexibly incorporate edge based local information, region based global information or any
other a-priori knowledge about the target segmentation region. Parametric active contour
models [13, 14, 15] initialize a parametric contour surface and energy minimization moves the
parametric representation towards the boundaries of the segmentation region. Geometric
deformable models [16, 17] develop a segmentation by evolving implicit contour functions
that are independent of any parametrization. Level set methods [18, 19] form the basic
numerical framework for the solution of these models.

The presence of thin interfaces between different objects in practical medical image rep-
resentations, usually coupled with limited resolution and fuzzy color information, is a major
challenge for segmentation methodologies. In this paper, we consider this problem in the
form of bone objects to be segmented from 3D CT scans that are separated by thin cartilage
interfaces. An important example is the segmentation of the femur, which requires detecting
the thin cartilage layer at the hip joint to establish a clean separation from the pelvis. Prior
work on this problem has mostly focused on non-variational segmentation methods. For the
femur bone, several authors have worked on improving thresholding techniques based on
tensor-based filters [20, 21] or 3D correlation between bone objects [22]. Another approach
is to integrate a-priori geometric information, for example the close similarity of the femoral
head with a perfect sphere [23, 24]. Significant attention has also been devoted to statistical
shape models that separate the femur and pelvis by determining the significant mode of
variations from sets of training data [25, 26, 27].

In this article, we focus on developing a variational methodology for the segmentation of
3D bone CT data. Our goal is a methodology that is accurate, performs robustly with respect
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to thin cartilage interfaces and can be seamlessly integrated with downstream predictive
bone modeling and simulation methods in a common finite element framework. At the
same time, our methodology should be able to operate independently from critical input or
manual intervention of a computational analyst.

Our basic idea is to devise a two-stage segmentation procedure that leverages recent de-
velopments in variational image segmentation of bone structures with geometric deformable
models. In the first stage, we use a flux-augmented two-phase Chan-Vese model [28, 29] to
find a contour function that reliably segments the well-separated parts of all bone objects in
the image. In the second stage, we devise a new phase-field fracture inspired method that
reliably eliminates all spurious contact bridges across thin cartilage interfaces, resulting in
an accurate segmentation topology, where the segmentation region of each individual bone
object can be easily identified. The underlying conceptual idea for the new method is based
on engineering intuition, establishing an analogy between fracture mechanics and the seg-
mentation problem of eliminating thin spurious contacts. For its mathematical formulation,
we generalize the phase-field approach to variational fracture based on the minimization of
an energy functional [30, 31], which naturally fits to the minimization of the flux-augmented
Chan-Vese functional in the first stage.

Our article is structured as follows: In Section 2, we present a detailed derivation of our
two-stage variational segmentation methodology and its implementation in the context of
voxel finite elements. In Section 3, we demonstrate accuracy, robustness and potential for
full automation of the new segmentation methodology for the femur-pelvis problem and the
separation of an individual vertebra from a vertebral column. In particular, we present an
in-depth validation study for a 22-sample series of clinical 3D femur CT data obtained at the
Academic Health Center of the University of Minnesota. We close our article by discussing
strengths and weaknesses of our new methodology.

2. Theoretical background and methods

In this section, we introduce our approach to variational segmentation of bone CT data
with thin cartilage interfaces. Our discussion follows the structure of the approach, which
consists of two basic parts. In the first subsection, we review the derivation of an energy
functional whose minimizer extracts bone geometry from imaging data. Its contour solution
reliably separates bone and surrounding tissue, but small spurious contacts remain in the
fine interface region between separate bone objects. In the second and third subsections,
we motivate and derive in detail an additional phase-field fracture inspired functional whose
minimizer is able to reliaby detect and eliminate all contact regions from the contour solution.
The fourth subsection provides a concise summary of all technical aspects.

2.1. A flur-augmented Chan-Vese functional for bone/tissue separation

We are given a 3D voxel (or a 2D pixel) representation of an image over a domain €2, such
that its local intensity is given as I(x) :  — [0, 1]. We will assume in the following that we
can always generate approximations to the piecewise constant image I that have sufficient
smoothness for the operations we need to perform on I. The first step of our methodology is
based on an implicit geometric deformable model, which we briefly describe in the following.
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2.1.1. The Chan-Vese energy functional

Implicit geometric deformable models are typically based on simplified Mumford-Shah
invariants [32, 33] that enable a robust numerical treatment. One of the most successful is
the Chan-Vese active contour model without edges [28]. It assumes that we can identify two
regions ;(C) and Q(C') with approximatively piecewise constant intensities, separated by
a deformable curve C. This assumption gives rise to the following two fitting terms:

F](C) +F2(C) = |I—cl|2dx—|— |I—02|2dl' (1)
Ql Q2

where ¢; and ¢y are defined as the average of the image intensity 7 in ;(C) and Q5(C),
respectively. The curve C' that minimizes the functional (1) represents the boundary of the
object to be identified.

The unknown curve C' can be represented as the zero isocontour of a deformable contour
function ¢(x). Adding a length penalty term and using the properties of the Heaviside
function H, the functional (1) can be rewritten in terms of ¢ into the following Chan-Vese
energy functional:

Fov(er,es,0) = /Q IVH(@)| + MH (@) —c1)*+ (1= H(9))(I — )’} d2 (2)
Jo H(¢) T dS2 o (1= H(¢)) I dS

with ¢ = “+——-——

JoH@yda ' 2T (1= H(e)) d2

where A > 0 is a weighting coefficient. The corresponding Euler-Lagrange equation for ¢
yields the following strong form gradient descent partial differential equation:

‘Z—f = |v¢|{v~ (%) —A{(I—cl)z—(I—CQ)Q}} (3)

For the evolution of the contour function ¢ in (3), its curvature represented as

Fuzv-(%), (4)

plays a key role. This term leads to Hamilton-Jacobi type equations, which is usually solved
by upwind finite difference schemes [34] .

2.1.2. Allen-Cahn mean curvature flow and a local flux augmentation
The Allen-Cahn energy functional and its corresponding partial differential equation
[35, 36, 37] are expressed as follows:

Fac(u) = /Q <%\Vu\2 + W(u)) dQ (5)
% = Au — W' (u) (6)
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If we choose a double-well potential W (§) = 1&%(1 — £)?, the phase-field contour solution
u is either zero or one, separated by a diffuse interface region, where the solution rapidly
changes between zero and one. The parameter € controls the characteristic length-scale of
the diffuse interface region. The unknown curve C' that defines the segmentation region is
now represented as the isocontour u = 0.5.

Phase-field formulations based on the Allen-Cahn equation share many key features
with deformable active contour models, based on the analogy between mean curvature flow
expressed in terms of a contour gradient as in (4) and its regularization in terms of the
Allen-Cahn equation. EVANS, SONER and SOUGANIDIS showed that in the limit as € goes
to zero, the Allen-Cahn formulation yields motion by mean curvature of the interface that
separates the zero and one regions of the solution [38].

MERRIMAN, BENCE and OSHER [39] were among the first to represent the motion of
mean curvature with the help of the Allen-Cahn phase-field formulation (5). Hence, the
curvature term (4) in the Chan-Vese energy functional (3) can be replaced by the compu-
tationally more tractable terms of the Allen-Cahn energy functional (5). The result is a
diffuse two-phase Chan-Vese model described by the following energy functional [40]:

Fe(uenea) = [ SIVuP+ W)+ M = af + (1w (T —cfhe (7

We emphasize that the phase-field formulation (7) leads to a variational form that can be
robustly solved with finite element methods [41]. Its variation with respect to u gives the
following strong form gradient descent partial differential equation:

% =EAu— W' (u) = 2Mu(l — ¢1)? + (u— 1)(I — c)*} (8)

The functional (7) represents a global measure of the characteristics of the segmentation
region. Segmentation regions in bone CT scans, however, often have non-negligible image
intensity boundaries, where the intensity gradient vector field is pointing inwards. To lever-
age this observation for image segmentation, CALDER, TAHMASEBI and MANSOURI [29]
suggested a flux augmentation to (7) that incorporates a local measure of region boundaries
in the image. This flux term reads:

Ffluz := —%VI -n ds 9)

where integration is perfomed over the isocontour u = 0.5 representing the segmentation
curve C. The vector n is the unit inward normal to C' and the vector VI is the gradient of
the image intensity function. Adding the flux augmentation (9) to the functional (7), the
final energy functional for bone/tissue separation follows as:

2
€
Fhus(Us c1,02) 1= /Q§]VUIZ+W(u)+

MR — ) + (1= w)(I — )2} dO) — uyfw ‘nds  (10)
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(b)

Figure 1: Two slices taken from a stack of CT images of the femur-pelvis configuration: (a) well sepa-
rated regions (square and ellipse: strong cortical shell in contrast with interior cancellous region) (b) poor
separation across thin cartilage region (square).

Id§2 1—wu)IdQ

with ¢ = fQu— and ¢y = fﬂ(—u)

JoudQ Jo (1 —u) dO
where 1 > 0 is a weighting coefficient. The corresponding gradient descent equation reads:
% = Au— W' (u) = 2Mu(l — ¢1)* + (u — 1)(I — ¢2)*} — pAI (11)

2.1.8. Discretization based on voxel finite elements

A salient feature of the formulation (10) and (11) is that it can be transferred into
a variational format suitable for discretization with standard finite elements [41]. In the
context of image analysis, voxel finite element methods [42, 43, 44] that associate each 3D
voxel with one linear hexahedral element are particularly suitable, since their approximation
power directly corresponds to the available image resolution. In addition, the discrete image
representation directly provides the finite element mesh, so that voxel finite element methods
do not require additional meshing procedures.

Multiplying the gradient descent equation (11) with a test function v, integrating over
the image domain {2 and applying integration by parts to all terms that involve the Laplace
operator results in the following variational formulation: Find u, C H'(€) such that

(%,vh) + 2 (Vuh,VUh> + (W’(uh),vh>+
+ 2>\(uh {(I —c1)*+ (I —c)?Y, Uh> - 2)\(([ - 02)2,vh>+
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(a) (b)

Figure 2: Diffuse Chan-Vese model (7) without flux augmentation: contour function plotted in red at u = 0.5
for the two slices of the 2D model problem.

+ a(AI, vh) —0, VYu,C HY(Q) (12)

where we assume that functions ¢;(u) and cy(u) are known at any given point in time.
The first and second derivatives in the term Al are evaluated by standard finite difference
stencils on the center points of the structured voxel grid.

The variational form (12) is then discretized in time with a first order semi-implicit finite
difference scheme [45] that reads: Find u;, C H'(Q) such that

1
"y (uZH —uj, vh> + € (Vuﬁ“, Vvh) + (W’(uﬁ), Uh>+
+ 2)\<u2+1 {(I =P+ (I —cB)?y, vh> - 2)\<([ — cB)?, Uh>—|—
+ a(AI,vh> —0, VYu,CHYQ) (13)
where linear and nonlinear expressions are evaluated implicitly and explicitly, respectively.

2.1.4. A representative benchmark problem in 2D

We take a step back and consider two simple 2D model problems shown in Fig. 1. They
consist of two slices from a CT scan of the femur and pelvis, exhibiting typical features
of bone CT scans. The “coarse-scale” bone objects can be easily distinguihed from the
surrounding soft tissue due to the bright cortical shell region near the bone boundaries and
the light gray textured cancellous part in the bone interior regions. In Fig. la, the 2D femur
and pelvis regions are well separated. In Fig. 1b, however, the two bone regions are only
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Figure 3: Diffuse Chan-Vese model (10) with flux augmentation: contour function plotted at u = 0.5 for the
second slice of the 2D model problem. A spurious bridge between femur and pelvis remains (circle).

separated by a thin “fine-scale” sliver of cartilage in the hip joint whose thickness is resolved
by just a few pixels.

We now use the two slices to demonstrate the performance of image segmentation based
on the functionals discussed above. Each image has a resolution of 140 x 140 pixels. The
weak form of each variational problem is discretized by two triangular finite elements per
pixel and the finite difference time discretization is solved until the steady state is reached.
Figure 2 illustrates the results obtained with the basic two-phase Chan-Vese model (7) by
plotting the segmentation contour v = 0.5 in red over the image. We observe that this
model works well for the slice where the two bone sections are well separated (see Fig. 2a).
For the slice with the thin cartilage separation, however, it fails to resolve the two sections,
integrating the femur and pelvis regions (see Fig. 2b).

Figure 3 illustrates the result obtained with the flux-augmented diffuse two-phase Chan-
Vese model (10) for the second poorly resolved slice. We observe that the flux-augmented
model is able to separate the two bone regions well. In particular, it detects the thin cartilage
region, since it incorporates local information based on the flux augmentation (9). However,
small bridges between the femur and pelvis sections still remain. They can be easily detected
visually and removed manually by a computational analyst, but preclude this method from
being applied autonomously.

2.2. The variational approach to brittle fracture and its phase-field approximation

Before deriving our new approach to resolve the issue of fine-scale contacts in the cartilage
region, we briefly review the variational formulation of the phase-field model for quasi-
static fracture. We largely follow the presentation given in SCHILLINGER, BORDEN and
STOLARSKI [46] and the references therein.
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Figure 4: The concept of phase-field fracture (pictures from [49], courtesy of Michael Borden).

2.2.1. Variational description of fracture

We consider an arbitrary body Q C R? (with d € {1;2;3}) with external boundary 952
and internal displacement discontinuity I', as illustrated in Fig. 4a. The symmetric strain
tensor is given as:

€= % (Vu+ Vu') (14)

where u(z,t) denotes the displacement at each material point z. The elastic energy stored
in the bulk of the solid per unit volume is described by the energy density function

Yole) = gh tr(e) +pee e (15)

where A\, and pu. are the Lamé constants of elasticity. The evolving internal discontinuity
boundary I'(t) represents a set of discrete cracks. Following Griffith [47] and Irwin [48], the
work required to create a unit area of fracture surface is equal to the critical energy release
rate G.. The total internal potential of the body is given by the functional:

Fpot(e,T) = /Q Po(e) dQ + /F G dl (16)

The first term represents the energy stored in the bulk of the elastic solid, and the second
term represents the work necessary to create the current fracture topology I'(¢). Following
FRANCFORT and MARIGO [30], the variational approach to fracture predicts the nucleation,
propagation and interaction of cracks by finding a global minimizer of (16) for a given load.

2.2.2. Phase-field approximation of the fracture surface and energy degradation
To solve this variational problem numerically, BOURDIN, FRANCFORT and MARIGO [31]
introduced a volumetric approximation to the surface integral:

/aﬂz/@%m (17)
T Q
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This approximation uses a smooth scalar-valued phase-field, ¢ € [0; 1], to represent the crack.
It has a value of one away from the crack and a value of zero at the crack (see Fig. 4b). The
phase-field approximation introduces a second-order crack density function:
Ve = — [(e = 1) + 413 |Vc|?] (18)

4l
whose characteristic interface width is controlled by the length-scale parameter .

In the next step, we multiplying the reference energy density function (15) associated
with the undamaged elastic solid with the phase-field:

U(e, c) = [(1=K) &+ k] Yo(e) (19)

From a physical point of view, the phase-field locally penalizes the capability of the material
to carry stress across cracks. The model parameter x < 1 introduced by AMBROSIO and
TORTORELLI [50] prevents the full degradation of the stored energy by maintaining a small
artificial tensile energy density iy at the fully-broken state ¢ = 0.

2.2.3. Variational formulation

The variational form of the phase-field fracture problem can be derived from an incremen-
tal variational principle that balances the rate of different energy terms. In the quasi-static
case considered here, we have the rate of the stored energy, the rate of dissipated energy due
to the work done by fracture, and the rate of the energy due to the work of external forces.
Their balance leads to the following rate of energy functional

Sint + ].:frac - 7)ext =0 (20)

The rate of the stored energy can be computed from the stored energy function (19) as

) d [ -
é’intza/wdﬁz/a:édQ+/2(1—/€)1j}occ‘dQ (21)

where the stress tensor can be computed from (19) as
o= 0:4(€)o = [(1 — k) + k] (N (tr(e)) T+ 2u€) (22)

The second term of (21) contains the reference energy density function 1y and describes the
local intensity of the deformation. This term can be interpreted as an energetic force that
drives the crack evolution [51]. An intuitive, simple and effective idea to incorporate the
irreversibility of the crack topology is to introduce a local history field:

H(z,t) = max vo(e(z, 5)) (23)

s€[0;t]

It records the maximum positive reference energy density that has occurred during quasi-
static loading at a specific location z up to the current (pseudo-)time instant t. Replacing
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1o by H in (21) guarantees that the corresponding energy is dissipated from the system and
cannot be returned.

The rate of the dissipated energy due to work done by fracture follows with the phase-field
approximation of the fracture topology (17) as

'F'.frac = %/gc’)/c dQ = 2g_l(:(c - 1) ¢ dQ -+ /QQCZOVC (VC) dQ (24)
0

The rate of energy due to the work done by external forces is simply
Pezt:/b-ud9+/t-udaﬂ (25)

where b and t denote body forces and boundary tractions, respectively.

With the argument that the balance (20) must hold for arbitrary @ and ¢, we can separate
the rate of energy functional into a phase-field part and an elasticity part. Identifying & and
¢ as test functions w and ¢, we can write the weak form of the phase-field fracture problem:
Find ¢ € H'(Q) and u € H*(Q) such that

/(wﬁ)chg+/413vcqu9=/qdﬂ Vge H'(Q)  (26)
Q c @ “

/U:V'wdQ:/b-wdQ—i—/t-deQ Vwe H(Q) (27)
Q Q

2.3. A phase-field fracture inspired functional for eliminating fine-scale contacts

Our central idea to automatically detect and remove fine-scale contacts due to thin car-
tilage regions from an existing contour function follows from engineering intuition. For a
physical body, a simple way to separate contacts that are much smaller than the character-
istic length scale of the body is to apply some forcing, which will break any contact bridges
immediately due to their small size. To transfer this idea to the image segmentation problem
at hand, it needs to be formulated as a mathematical model alongside an appropriate nu-
merical discretization method. In our context, a phase-field fracture based approach offers
significant advantages over other computational fracture methodologies. The phase-field
fracture formulation can handle complex crack patterns in three dimensions, where most
other computational fracture models have severe difficulties. In addition, it is intimately
related to the variational approach to image segmentation, so that the two can be naturally
combined. Both formulations share the concept of a diffuse phase-field solution controlled
by a length-scale parameter that represents complex geometric features implicitly. In fact,
their origin can be traced back to the same Mumford-Shah functional [32].

2.3.1. A simplified phase-field fracture formulation based on a Laplace problem

We return to the image domain €2 and the associated image intensity function /. Instead
of the displacement vector function u of the previous section, we consider a scalar function
h, defined over ). If one prefers to work with a physical analogy in mind, the function h
could be interpreted as a temperature distribution.
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Following Section 2.1, we can assume that we know the contour solution u that minimizes
the flux-augmented Chan-Vese functional (10). The isocontour u = 0.5 represents the
boundaries of the correct segmentation regions, except for small spurious bridges in thin
cartilage regions between individual bone objects. This contour function can therefore be
used to define an indicator function a(u) as follows:

a(u) = (28)

1.0, if u>0.5
0.0, if u<0.5
which distinguishes the segmentation region o = 1 from the rest of the domain €.
In analogy to the strain energy density function (15), we define the following energy
density associated with the function h:

o (Vh) = 5 a(u) (Vh)° (29)

Adding the indicator function « enables us to extend the problem definition to the complete
domain € in a fictitious domain sense [43]. We can naturally restrict the problem definition
to the segmentation region again, when we discretize the weak form.

In analogy to the variational description of fracture (16) and its phase-field approximation
(17), we define an equivalent potential energy functional for the modified scalar problem:

Fpot(Vh,¢) = /ﬂ o (Vh,c) d2+ /Q G. e dQ) (30)

where we use the same crack density function (18) as in the previous subsection. We keep
the material parameter G, > 0 to tune the weighting between the bulk term and surface
term. In (30), we penalize the energy density function by the phase-field ¢, following the
concept of energy degradation (19):

B0 (Vh,¢) = [(1— k) 2 + ] %a(wf (31)

where the parameter k < 1 again prevents full degradation. It is important to note that in
contrast to the functionals discussed in Section 2.1, the minimizers of the potential energy
functional (30) is constrained by appropriate Dirichlet boundary conditions for h.

2.3.2. Variational formulation and discretization with vozxel finite elements

Following the concepts stated in Section 2.2.3, we can now derive the weak form of the
modified coupled phase-field fracture problem: Find ¢ € H'(Q) and h € H'(Q2) such that

/(410%_—’{)%“) chQ+/4l§Vc-quQ—/qdﬂa Ve HI(Q)  (32)
Q c Q@ “

/[(1—/{)02+n]th-deQ:O, Vw € {H'(Q),w|yg, =0}  (33)
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where we leave the definition of the Dirichlet boundary dQp in (33) unspecified for the
moment. In analogy to (23), we replace the reference energy density function vy in (32) by
a history field:

H(z,t) = max o(Vh(x,s)) (34)

s€[0;t]

to dissipate fracture energy and prevent crack healing during quasi-static loading.

We can then discretize the variational problem (32) and (33) with voxel finite elements,
using one hexahedral finite element per voxel. Since the part of the domain where the
indicator function is zero is not of interest, all voxel elements with o(u) = 0 in the center are
removed from the discretization. We note that there exist other suitable voxel based schemes
to discretize (32) and (33), such as the higher-order voxel finite cell method [44, 52, 53].

The remaining voxel finite elements form a modified discretization that covers all voxels
associated with the segmented region, approximating the smooth contour solution u of the
flux-augmented Chan-Vese functional. Based on this approximation, we define Q as the
domain covered by the voxel finite element discretization, enclosed by the set of boundary
facets OS2, which can be split into a Neumann part dQy and a Dirichlet part dQp. The

discretized weak form of the coupled phase-field problem then reads: Find ¢, € H'(2) and

hy, € H*(Q2) such that
4l (1 — k) 2 1/
( (T M+ 1) ch, qh> + <410 Ven, th) - <1,qh> =0 Vg, H(Q) (35)
([(1 — &) u? + K] Vhy, th) =0  VuC {Hl(Q),w\aﬁD = o} (36)

When we go back to continuous functions ¢ and h again, take into account that (35) and
(36) hold for arbitrary g, and wj, and apply integration by parts, we find the strong form of
the modified phase-field fracture problem on €:

(%H—l—l)c—kéﬂ%Ac:l on Q

Ve-n=0 on 99

[(1—k)*+ K] AL =0 on Q (37)
h=gyg on QQD

Vh-n=0 on GQN

\

The first two equations in (37) represent the partial differential equation for the evolution
of the phase-field and its zero-flux boundary condition, respectively. We observe that the
phase-field evolution is driven by the history field. If H = 0, the phase-field solution is one
everwhere. If H > 0, the phase-field solution ¢(z) needs to have non-zero second derivatives
to satisfy the partial differential equation. A large local value of the history field forces the
phase-field solution to have large local gradients, forming a diffuse crack whose width is
controlled by the length-scale parameter Iy [49].
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The third equation in (37) is a scalar Laplace equation with a variable phase-field co-
efficient. It is complemented by zero-flux conditions at the Neumann boundary o0y and
non-zero Dirichlet conditions at the Dirichlet boundary 9Qp. The gradient Vi of the Laplace
solution determines the local intensity of the history function H according to (29) and (34).
With appropriate Dirichlet boundary conditions, the gradient field VA will naturally spike
at the small contact bridges between different bone objects, since they are geometrically
much finer than the bone objects themselves. This will initiate fracture at exactly those
locations, removing the spurious contact bridges from the segmentation region.

Major advantages of the Laplace based formulation (37) with respect to the elasticity
based phase-field fracture formulation shown in Section 2.2 is its smaller set of parameters as
well as its reduced computational cost, since only two scalar functions need to be discretized
instead of a scalar and a vector function.

2.3.3. A staggered solution algorithm

For the solution of the coupled system (35) and (36), we adjust the staggered solution
algorithm based on operator splits [51, 54]. The idea is to consider the phase-field and
Laplace parts independently, which leads to two well-defined sub-problems, and incremen-
tally increase the Dirichlet boundary conditions from 0 to their full value g over pseudo-time
t. In our case, we solve the phase-field part first to update the phase-field solution ¢ and then
solve the Laplace part that updates the Laplace solution h. Finally, we update the history
field H that records the maximum reference energy density at each quadrature point. The
algorithm is summarized in the following box:

The field variables h} and ¢}, and the history field H" are known at the current time ¢".
Update incremental prescribed Dirichlet boundary values ¢"*! to the new time ¢"*1.

1. Update phase-field variable ¢, (phase-field part):
Solve linear system K;c; = F that evolves from (35) at frozen hj,.

2. Update field variable hy, (Laplace part):
Solve linear system K{; c; = F!" using (36) at frozen phase-field c,.

3. Update history field:
Determine maximum reference energy density during loading history

Hn+1(hz+1) _ { 'L/}O(h2+1) if 1/10(112+1) > H"

H" otherwise

Update time variable ¢"*! to t" and proceed to next step by restarting this procedure.

2.3.4. Choosing appropriate Dirichlet constraints

The success of our phase-field fracture inspired method critically depends on the appro-
priate choice of Dirichlet boundary constraints on the Laplace solution A. We assume that
we know how many different bone objects we would like to segment from a given CT scan
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and that we can identify a non-zero number of voxel facets on the boundary of each indi-
vidual bone object. Based on this information, we can impose the following set of Dirichlet
boundary conditions:

h=1 on dQp,
h=2 on 0Qp, (38)

h=n on 8@,37”

where 99 p,i denotes the boundary surface that consists of the known voxel boundary facets
of the i*" bone object.

During the quasi-static loading procedure, we incrementally increase the boundary values
at each Dirichlet boundary. Due to the zero-flux conditions at the remainder of the boundary,
the solution A in the region of the i** bone object will tend towards the constant value i.
Before fractures occur, the instantaneous Laplace solution h in each bone region is only
disturbed where small bridges between bone regions exist. This initiates sharp gradients in
the solution A that drive the fracturing of fine-scale contacts. Once all bridges have been
fully broken, we multiply the Laplace solution h with the phase-field solution ¢ such that h
is set to zero in the fully fractured contact regions. The resulting plateau function c(z) - h(zx)
consists of clear plateau regions with constant value i that indicate the i*" bone object. A
simple overlay of the plateau function onto the original image I yields the final segmentation
region for each individual bone object in the CT scan.

2.4. The complete methodology: overview and implementation

Our approach for segmenting CT bone objects in the presence of thin cartilage regions
consists of two core components: (a) a model for bone/tissue separation based on a flux-
augmented Chan-Vese functional, developed in Section 2.1; and (b) a model for automatic
detection and removal of spurious fine-scale bridges based on a phase-field fracture inspired
method, developed in Section 2.3. To improve robustness and automation of our approach,
we apply the following simple voxel-wise manipulations in addition to the two core compo-
nents. Before running the flux-augmented Chan-Vese model, we rescale the original image
intensities to the zero-one range and set all tissue related information by a simple threshold
to zero. Thresholding works well for this task, as the Hounsfield units (HU) of a CT scan
yield a pronounced contrast between soft tissue such as blood muscles and hard tissue bone.
After solving the flux-augmented Chan-Vese functional, we use voxel connectivity informa-
tion to identify the biggest connected network of voxels covered by the nonzero solution field
and remove any small regions unconnected to the main object. After obtaining the plateau
function ¢(x) - h(z), we remove all voids within the bone interior by applying a dilation
filter, a flood filling algorithm and an erosion filter. This ensures that the segmentation
masks fully cover each bone object. We emphasize that these voxel-wise manipulations rep-
resent very common morphological operations in image processing, for which reliable and
fully automatic algorithms are available (see, e.g., [55]). We summarize the corresponding
algorithmic tasks in the following box:
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(a) Normalised thresholded image. (b) Phase-field contour solution.

Figure 5: First component: bone/tissue separation based on a flux-augmented Chan-Vese model.

Input: Original CT imaging data, consisting of voxelized HU data.

1.

Rescale the image intensity of the original CT data to the range [0, 1] and perform
global thresholding to set soft tissue information in the image domain to zero.

. Find an implicit contour function u as the minimizer of the flux-augmented Chan-

Vese functional (10), using voxel finite elements in space and first order semi-
implicit finite differences in time. Use voxel connectivity to identify the biggest
connected network of voxels covered by the nonzero solution and remove any small
regions unconnected to the main object. [also refer to (12), (13)]

Remove all voxel finite elements in the region where u < 0.5 [also refer to (28)].
Identify suitable voxel facets to impose Dirichlet boundary values for the Laplace
solution h at the boundary of each bone object. [also refer to (38)]

. Find the coupled solution {c, h} as the minimizer of the potential energy functional

(30) under the Dirichlet constraints for h, using voxel finite elements and the
staggered algorithm. [also refer to (35), (36), (38)]

. Use the plateau function c¢(x) - h(z) on the voxel mesh to generate segmentation

masks for each bone object. Apply a standard dilation filter, a standard filling
algorithm and a standard erosion filter to fill potential voids in the bone interior.
Overlay the original CT data and the mask voxel-wise. Multiply the CT intensity
with the one-zero mask of the desired bone object to obtain its segmentation,
including the original HU data.

Output: Segmentation region, consisting of the HU voxel data of a bone object.
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Figure 6: Second component: removal of spurious bridges in the cartilage region by the phase-field fracture
inspired Laplace model.

The numerical treatment of the flux-augmented Chan-Vese and phase-field fracture in-
spired models largely relies on voxel finite element discretizations. Our implementation is
based on the open source platform FEniCS*. As FEniCS does not feature quadrilateral and
hexahedral elements yet, we discretize each pixel in 2D by two triangular elements and each
voxel in 3D by five tetrahedral elements.

We illustrate the effect of each step of our methodology with the representative 2D
problem shown in Fig. 1b that features a thin sliver of cartilage between the femur and
pelvis. Figure 5 illustrates the first component of our methodology, that is, the result of

IFEniCS, an open-source finite element based software suite for solving partial differential equations;
https://fenicsproject.org/

18



1080

: 2
< ~—~
= 2 -7
5 5
g La 352
% E
5 ]
0 -12
(a) Segmentation masks for femur and pelvis. (b) Femur segmentation region with HU data.

Figure 7: Segmentation result.

thresholding and the contour result of the flux-augmented Chan-Vese model (steps 1 and 2).
Figure 6 shows the voxel finite element discretization of the domain modified €, including
Dirichlet contraints, and the final result of the coupled phase-field and Laplace solution fields
(steps 3 and 4). Figure 7 illustrates the segmentation results in terms of the segmentation
masks and the femur segmentation region with HU data (steps 5 and 6). We observe that
the phase-field fracture inspired model successfully detects and removes the spurious contact
in the cartilage region, leading to two well-defined and accurate segmentation masks for the
femur and the pelvis.

3. Results and discussion

In this section, we assess the performance of the variational segmentation methodology
presented above, with a particular focus on the phase-field fracture inspired part. In the
first subsection, we consider clinical 3D CT data of a series of femur that was obtained at
the Academic Health Center of the University of Minnesota. We use different global and
local overlap metrics to validate femur segmentations obtained with our two-stage variational
approach against corresponding manual segmentations approved by an expert radiologist. In
the second subsection, we demonstrate the generality of our two-stage segmentation method
by segmenting 3D CT data of part of a vertebral column. In the third subsection, we discuss
strengths and weaknesses of our two-stage variational segmentation method, with particular
emphasis on accuracy, robustness and potential for full automation.

3.1. Femur segmentation: separation from pelvis

Segmenting the femur (thigh bone) from 3D CT data is an important task in clinical
practice and biomedical research, for example to visually assess bone quality and multi-scale
fractures or as a basis for running physiology-based finite element simulations. The main
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Figure 8: Anatomy of femur and pelvis joint.

challenge is the reliable and accurate separation of the femur from neighboring bones, in
particular from the pelvic bone. The femoral head meets the pelvis at the acetabulum,
forming the hip joint. Their surfaces are separated by a thin layer of slippery tissue called
articular cartilage. Figure 8 illustrates the anatomical femur/pelvis configuration and the
location of the articular cartilage.

3.1.1. Clinical CT data set from the University of Minnesota AHC

We obtain sets of clinical 3D CT imaging data of eleven patients from the Academic
Health Center (AHC) of the University of Minnesota that were taken during regular clinical
practice in the musculoskeletal and neuroradiology division. This results in twenty-two
different femur bones (left and right bone of each patient) as input for our segmentation
methodology. The data sets consist of quantitative CT scans in the form of DICOM files
that provide the HU for a specific layer and pixel spacing. Ten data sets were obtained with
a Siemens SOMATOM Definition Edge (Germany): 120 or 140 kVp, 300 or 350 mAs, 0.75
mm slice thickness; one data set was obtained with a clinical Siemens SOMATOM Sensation
64 CT (Germany): 140kVp, 350mAs, 0.75 mm slice thickness. For each CT data set, we crop
the region of interest (ROI) that contains the femur and pelvis bone from the whole-body
scan. Figure 9a illustrates the ROI taken from a the whole-body CT scans for one of the
femurs with ROI pixel dimensions as 140 x 140 x 80. The pixel spacing is 0.703125 x 0.703125
mm within each horizontal slice and slice thickness as 2.5 mm. We observe that in clinical
CT scans such as the one shown in Fig. 9a, the articular cartilage region is usually resolved
only by a few voxels, which makes detection and bone separation difficult.
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Figure 9: One of the femura of the clinical CT data set from the University of Minnesota AHC: (a) Cropped
ROI(thin cartilage region between pelvis and femur is highlighted by red arrows); (b) 3D voxel representation
(with light filter for better visualization).

3.1.2. Automated variational segmentation

In the next step, we run our two-stage variational segmentation approach for each data
set, where we follow the methodology described in Section 2.4. In step 1, we normalize
the ROI image to the zero-one range and subsequently apply a threshold of 0.05 to detect
and level tissue regions to zero. In step 2, we find the contour function v by numerically
minimizing the flux-augemented Chan-Vese functional. The choice of parameters plays a
key role for the success of our methodology. To make the set of choices for this example
transferrable to other examples, we non-dimensionalize all data sets such that each slice of
the ROI covers a unit square. We generate a voxel finite element mesh in space, covering the
complete resampled ROI, and solve the semi-implicit finite difference scheme with a time
step of At = 0.1, until the difference between the current and previous solution falls below
1071% in the 2-norm. The length-scale parameter € of the Allen-Cahn part that controls the
characteristic width of the diffuse boundary contour corresponds to the voxel finite element
size, which is 0.005 in the resampled ROI. We empirically tested different values for A and
1 while keeping e constant. Our conclusion is that the optimal ratio between A and p lies
in the range of 0.5 and 2. For this example, we chose A = p = 20. The resulting contour
function is illustrated for one femur sample in Fig. 10. We observe that the flux-augmented
Chan-Vese model provides an excellent representation of well-separated bone boundaries,
but is not able to fully separate the femur in the cartilage region, where contact bridges
between femur and pelvis remain.
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Figure 10: Femur example: contour function of the flux-augmented Chan-Vese model, featuring spurious
contacts between femur and pelvis in the thin cartilage region.

In step 3, we remove all voxel finite elements that are completely outside the contour
u < 0.5. In this example, both individual bone objects touch the ROI boundary, where
appropriate Dirichlet constraints for the Laplace solution A can be easily applied. For the
femur, we set h = 1 on all voxel facets that touch the bottom plane of the ROI. For the
pelvis, we set h=2 on all voxel facets that touch the top plane of the ROI. Figure 11a plots
all remaining voxel finite elements, with a zoom on elements with facets on the top plane.

In step 4, we find the phase-field fracture function ¢ coupled to the Laplace function
h by numerically minimizing the simplified potential energy functional via the staggered
algorithm on the voxel finite element mesh. The length-scale parameter for the phase-
field ¢ is the same as the length-scale parameter in the diffuse Chan-Vese model, such that
lo = ¢ = 0.005. For numerical stability, we choose x = 10~*. Our numerical experiments
with the staggered algorithm show that the solution is very robust with respect to the
number of iterations. For the example data set shown in Figs. 9 to 11, we can find a
suitable fracture topology with as few as three iterations to reliably eliminate all fine-scale
contacts. For our examples, we apply a conservative number of ten iterations to compute
the fracture topology, making the computational cost of the phase-field fracture inspired
model comparable to the flux-augmented Chan-Vese model. We note that this is in marked
contrast to the mechanical fracture formulation, where hundreds or thousands of iterations
in the staggered algorithm are usually necessary to arrive at a solution accuracy of the
fracture topology that is appropriate for physical interpretation. The resulting phase-field
and Laplace solutions are plotted in Figs. 11b and 11c, respectively.

22



S

FOSSEE

Phase field ¢

a8
=

(a) Voxel finite element mesh.

(b) Phase-field solution c.

1658

=
= ~
5 =)
2 z
g I Z 1077
= =]
ER E
Qo =
& o}
I G W 498
1 =
=]
=]
=
-82

(c) Laplace solution h. (d) Segmented femur with HU data.

Figure 11: Femur example: automated removal of contacts with the phase-field fracture inspired method
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In step 5, we first generate the plateau function ¢(z) - h(z) on the voxel mesh. For each
bone object, we then apply a dilation filter, a flood filling algorithm and an erosion filter
to fill all interior holes. The result is a segmentation mask for each bone object. In step 6,
we first create a segmentation mask for the femur by writing out all voxels where h = 1.
Overlaying and multiplying the mask with the original CT data yields the final segmentation
of the HU data in the femur region. Figure 11d shows the final femur segmentation region
with HU values.

3.1.3. Validation by global overlap metrics

To gain a better understanding of its accuracy, we validate the results obtained with our
two-stage variational approach against corresponding femur segmentations that we know are
of highest quality. Our gold standard are segmentation masks that were obtained manually
from the same CT data sets and assessed for highest quality by Dr. Takashi Takahashi,
an expert radiologist. For our validation, we overlay the pairs of segmented femur regions
obtained manually and by the two-stage variational approach and classify each pair of voxels
into four standard cardinalities. The correctly segmented bone voxels are true positive (TP).
Non-bone voxels that are recognized as bone voxels by the two-stage variational approach
are false positive (FP). Bone voxels that are missed by the two-stage variational approach are
termed false negative (FN). Finally, non-bone voxels that are correctly segmented are true
negative (TN). To assess the quality of the results of our variational appraoch, we consider
three different overlap based statistical metrics: the Dice similarity coefficient (DSC), the
sensitivity or true positive rate (TPR), and the specificity or true negative rate (TNR) [56].
The metrics are tabulated for all the datasets in Table 1.

The DSC, also called overlap index, measures the spatial overlap between two segmen-

tations, in our case the manual segmentation A and the variational segmentation B, and is
defined as:

2(AN B)

DSC(A.B) = =1

(39)

where N denotes the intersection. The best possible case is DSC = 1, which corresponds to

a perfect overlap. In terms of the cardinalities defined above, the DSC can be defined as:
2TP

DSC = 4
. 2TP+ FP+ FN (40)

In the context of segmentation, a DSC value greater than 0.8 is widely considered to be
a good overlap between the results of a segmentation method and the ground truth [57].
We observe in Table 1 that all DSC values are significantly larger than 0.8, with average
and standard deviation at (0.9339 + 0.0287), which indicates an excellent agreement of the
results obtained with our two-stage methodology and the optimal segmentation result.
The sensitivity or TPR measures the proportion of hits (TP) to the total number of
bone voxels in the ground truth, that is, the manual segmentation: TPR = TP/(TP+ FN).
Similarly, the specificity or TNR measures the portion of negative voxels (background)
in the ground truth segmentation that are also identified as negative by the automatic
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Table 1: Validation metrics for all data sets (L stands for left, R for right femur)

Data set Dice coefficient Sensitivity Specificity

1L 0.9445 0.9988 0.9843
1R 0.945 0.9996 0.9846
2L 0.9649 0.9979 0.993
2R 0.9631 0.9778 0.997
3L 0.9738 0.9872 0.9946
3R 0.9704 0.9712 0.9964
4L 0.8893 0.9655 0.9851
4R 0.9086 0.9976 0.9862
5L 0.9142 0.9912 0.98

SR 0.9155 0.9892 0.9831
6L 0.903 0.9954 0.9731
6R 0.8815 0.9906 0.9863
7L 0.9129 0.9928 0.9809
7R 0.916 0.9769 0.983
8L 0.9037 0.9732 0.9794
S8R 0.9119 0.9871 0.9839
9L 0.9695 0.9713 0.9975
9R 0.9715 0.9771 0.9973
10L 0.9584 0.9608 0.9954
10R 0.959 0.9886 0.9928
11L 0.9402 0.9929 0.9921
11R 0.9297 0.999 0.9897

segmentation, that is, TNR = TN/(TN + FP). We highlight that stand-alone values of
TPR and TNR do not provide meaningful indications of the quality of the segmentation
results with respect to the ground truth. The sensitivity can be equal to 1 for a very poor
segmentation result, when the segmented region completely covers the ground truth data,
but also contains many false positive hits. Similarly, the specificity can be equal to 1 for
a very poor segmentation, when not a single voxel of the object could be detected. Hence,
both metrics need to be checked simultaneously for a meaningful assessment of segmentation
quality. We observe in Table 1 that for each data set, both the sensitivity and the specificity
are far above 0.9 simultaneously, with an average and standard deviation of (0.9339+0.0287)
and (0.9855 + 0.0115), respectively. We can conclude that all metrics consistently indicate
that our two-stage segmentation methodology is able to provide results that are in excellent
agreement with the optimal manually obtained segmentation region.

3.1.4. Validation by local HU averages at characteristic surface positions

The overlap metrics presented in Table 1 provide a measure of global similarity between
the segmentation region obtained with the two-stage variational approach and manual seg-
mentation. However, they do not provide any information on the local similarity in the
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femur region that is affected by the phase-field fracture inspired method and therefore of
particular interest in our context. Moreover, proper segmentation and represenatation of
HU values in local cartilage regions such as the femoral head are significant from the clinical
perspective for the diagnosis of a number of bone diseases.

Therefore, we validate the local quality of HU representation at the bone surface with
the following strategy. In the first step, an experienced radiologist (in our case Dr. Takashi
Takahashi) measures, with the help of OsiriX?, the average HU value locally at two charac-
teristic positions on the bone surface. He obtains a corresponding set of HU measurements
from all segmented femur regions obtained manually and with the two-stage variational ap-
proach. For the femoral head, the average HU value was measured in an identical spherical
ROI with a radius of 10 pixels centered at the fovea capitis, a small concave depression
within the femoral head. Similarly, average HU values are obtained for a spherical ROI with
a radius of 2 pixels centered at the femoral neck. Both locations in one slice are shown by
circles in Fig. 9a.

To assess the local similarity of the average HU measurements, we compute the normal-
ized root mean square deviation (NRMSD) between the measured HU values in the two
ROIs for the series of segmented femur samples:

n = T 2
NRMSD =, [ Y (HUvers _nHUma“") / HU an i (41)

i=1

where we normalize with the mean of the reference manual segmentation. For the femoral
neck, the resulting NRMSD is 2.64%. For the femoral head, the resulting NRMSD is as
low as 0.99%. We observe that the deviation between the variational segmentation regions
and the reference is very small and at an extent that is far away from having an impact on
clinically relevant HU based observations. Our local error analysis thus confirms that the
variational segmentation approach captures local features in terms of HU averages in the
bone with excellent accuracy. In particular, this also holds for bone regions of the femural
head that are in contact with the articular cartilage region, where we have applied the
phase-field fracture inspired separation.

3.2. Vertebra segmentation: separation from spine

Clinical diagnosis and therapy of spine related diseases require knowledge of stress and
strains in particular vertebra regions. An important task in clinical practice and biomedical
applications is therefore to extract a segmentation of an individual vertebra from 3D CT data
of the spine. The main challenge is the reliable separation of the target vertebra bone from
the neighboring upper and lower vertebrae. Neighboring vertebral bodies do not touch each
other directly, but are separated by an intervertebral disk that form a thin intervertebral
fibrocartilage layer. In addition, some of the spinous processes of neighboring vertebrae form

20siriX, a medical image processing application for navigation and visualization of multimodality and
multidimensional images; www.osirix-viewer.com
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Figure 12: Anatomy of the vertebral column (spine).

synovial joints that consist of thin fibrous capsules of cartilage material. Figure 12 illustrates
part of the vertebral column and the location of the intevertebral disks and fibrous capsules.
In clinical CT scans such as the one shown in Fig. 7, these cartilage regions are usually
resolved only by a few voxels, which makes detection and bone separation difficult.

Figure 13: Vertebra example: cropped ROI, illustrating the complex structure of the target region.
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(a) Normalized thresholded CT data. (b) Phase-field contour solution.

Figure 14: Vertebra example: contour function of the flux-augmented Chan-Vese model, featuring contacts
between neighboring vertebrae.

3.2.1. Test data from the OsiriX DICOM image library

We download the test data set “OBELIX” from the OsiriX DICOM image library that is
available online on the OsiriX webpage®. It consists of a whole body contrast CTA acquired
on a 16 detector CT scanner in a normal study, providing quantitative CT scans in the form
of a series of DICOM files. From the original whole body 3D data, we crop the region of
interest shown in Fig. 13 that contains the target vertebra in the center and most of the
neighboring upper and lower vertebrae. The ROI voxel dimensions are 180 x 180 x 91. The
pixel spacing is 0.7422 x 0.7422 mm within each horizontal slice and the distance between
slices in axial direction is 1.0 mm.

3.2.2. Automated variational segmentation

We then apply our two-stage variational approach to segment the center vertebra from
the ROI. We again strictly follow the methodology described in Section 2.4. We note that
all parameters involved in our methodology are the same as in the femur study described
above in Section 3.1.2. After rescaling the original HU values to [0, 1] and applying a low-
level threshold to level tissue information to zero (see Fig. 14a), we generate a voxel finite
element mesh and find the minimizer of the flux-augmented Chan-Vese model, illustrated in
Fig. 14b. For better visibility of the bone structures, the outside region where the contour
field is zero is not plotted.

3http:/ /www.osirix-viewer.com/resources/dicom-image-library/ on January 18, 2017
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We then use the phase-field fracture inspired method to eliminate all remaining con-
nections of the center vertebra with its upper and lower neighbors. To this end, we first
remove all voxel finite elements from the discretization that are completely outside the con-
tour u < 0.5. The Dirichlet constraints on the Laplace solution h are applied as follows:
At the middle plane of the ROI, we set h = 2, since we know that this plane lies com-
pletely within the target center vertebra. The lower and upper vertebrae touch the lower
and upper boundaries of the voxel finite element discretization, where we apply h = 1 and
h = 3, respectively. We then find the minimizer {c, h} of the potential energy functional
under the applied Dirichlet constraints via the staggered algorithm that is again run with
ten iterations.

Figure 15a illustrates the phase-field solution ¢ that represents the fracture topology in
the critical cartilage regions. Figure 15b plots the final plateau solution ¢(x) - h(x), which
is constant in each vertebra region according to our choice of Dirichlet constraints. Figures
15¢ and 15d show the segmentation mask and the final segmentation region with HU data
for the targeted center vertebra.

3.8. Discussion of strengths and opportunities

Even the most advanced segmentation approaches today typically compromise on at least
one of the fundamental properties of accuracy, robustness and automation. An important
goal of this research has therefore been to develop a variational segmentation methodology
for complex 3D bone CT data that is accurate, robust and operates autonomously at the
same time. A particular focus has been on improving the performance of existing variational
methods in the presence of thin cartilage regions at practical image resolutions.

With respect to accuracy, we could show for a series of twenty-two clinically obtained
femora that our two-stage segmentation methodology consistently provided excellent seg-
mentation regions that were almost identical to segmentation regions obtained manually by
an expert radiologist. The accuracy of our methodology largely relies on the flux-augmented
Chan-Vese model employed in the first stage, which is responsible for identifying the bulk
of the segmentation region. The Chan-Vese model has been fine-tuned over the last two
decades and has been shown to yield excellent segmentation results in a variety of situations
(see for example [29] and the references therein). We note that in our methodology, it could
be easily exchanged by any other variational segmentation model, if desired.

With respect to robustness, the segmentation results presented in this paper showed that
our two-stage methodology is algorithmically robust, in particular with respect to the choice
of the computational parameters involved. Our approach is also computationally efficient
and, for instance, could be operated on regular desktop computers that are readily available
in hospitals or medical practices.

With respect to automation, our two-stage methodology constitutes a significant advance
with respect to existing variational segmentation methods. On the one hand, we could show
that if the flux-augmented Chan-Vese model is applied alone, the presence of thin cartilage
interfaces at practical image resolutions lead to segmentation regions that feature spurious
contacts between different individual bone objects. These bridges can be detected visually
and removed manually by a computational analyst, but preclude autonomous operation. On
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Figure 15: Vertebra example: automated removal of contacts with the phase-field fracture inspired method.

the other hand, we could show for several challenging 3D segmentation problems, including
twenty-two femora and a vertebra, that the phase-field fracture inspired second stage of our
methodology reliably removes all spurious contacts. We showed that our approach provides
accurate segmentation topologies, from which segmentation regions of any bone object in
the CT data can be easily extracted without further manual effort.

From a variational viewpoint, both stages of our methodology are based on the min-
imization of functionals which lead to variational problems that are closely related. In
particular, the variational structure of both stages allows a discretization with the standard
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finite element method. Both stages share the concept of a diffuse phase-field solution con-
trolled by a length-scale parameter that represents complex geometric features implicitly.
The solutions in both stages must be obtained separately, but can be computed on the
same voxel finite element mesh. In the future, we plan to exploit and extend this property
for seamlessly connecting variational segmentation procedures with downstream predictive
bone simulation in a common finite element framework and on the same finite element mesh.
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