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Abstract— The large dynamic deflections of continuum
robots, soft robots, and slender elastic objects can be accurately
modeled with classical rod theories in nonlinear elasticity. In
this paper, we propose a real-time computational approach for
solving the partial differential equations of a dynamic Kirchhoff
rod. Our approach is based on implicit time discretization
of the Kirchhoff equations and subsequent solution of the
resulting continuous spatial boundary value problem at each
time step. This modular approach can exhibit low numerical
damping, handle arbitrarily large time steps, and provide an
accurate, high-order representation of the rod shape in steady-
state. We experimentally validated the method by capturing
footage of a dynamic rod with a high speed camera and
comparing this experimental data with simulations using the
proposed approach. Soft-real-time performance is achieved, and
the relationship between time step and real-time performance
is explored in a plot.

I. INTRODUCTION

Slender elastic objects exhibiting large deflections are be-
coming increasingly prevalent in robotics, e.g. in the study of
soft [1] and continuum [2] robots, robots with flexible links,
and in the interaction with objects such as ropes, sutures,
needles, and catheters [3]. Flexible robot dynamics have
been researched for decades with applications to spacecraft
arms, energy-saving lightweight robots, and collaborative
robots [4]. While tractable solutions can often be found with
Euler-Bernoulli beam theory, this relies on the assumption
of small deflections. In applications with large deflections,
such as those listed above, classical rod theories in nonlinear
elasticity (Kirchhoff and Cosserat) are needed, and these are
orders of magnitude more efficient than full 3D elasticity
when using a finite-element method [5].

Some desirable characteristics of a modeling and compu-
tational approach for the dynamics of slender elastic objects
undergoing large deflections are as follows:

o Numerical consistency with the continuous theory
¢ Real-time computation for simulation and control

o Good scalability with respect to spatial resolution

o Stability under large time steps

o High order of accuracy in steady-state / static cases
o Low numerical damping

Our purpose in this paper is to present and validate a
computational method for elastic rod dynamics that satisfies
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Fig. 1.

An impulse point force is applied near the base of a cantilevered
rod, resulting in a variety of vibration modes. The scenario is simulated
using our proposed method and visualized with Blender.

the above criteria. Our proposed approach directly solves the
nonlinear, hyperbolic, partial-differential equations (PDE) for
3D, large-deflection Kirchhoff rods using implicit discretiza-
tion of time derivatives and numerical integration in the
spatial dimension.

A. Related Work and Contributions

The continuous equations of motion for spatial rods were
discovered in prior centuries [6], but the challenge to for-
mulate and numerically solve discrete systems of equations
consistent with the continuous physics has been the subject of
recent works. Methods for simulating rod deformation range
from non-physical techniques that achieve an aesthetic goal
to accurate mechanics-based models [7]. In this work, we are
concerned with the latter but also with computational speed
and the other characteristics outlined previously.

Accurate models can be based on finite element methods
[3], [8], finite differences [9]-[11], and differential alge-
braic equation solvers [12]. The most popular rod dynamics
implementations first discretize the rod geometry in the
spatial dimension and then derive equations of motion defin-
ing the accelerations of the generalized coordinates, which
are typically integrated numerically with an explicit time-
marching method. Obtaining the solution involves enforcing
inextensibility and unshearability constraints (via minimal
coordinates [13], [14], projection [15], or Lagrange multipli-
ers with post-stabilization [16]), or explicitly modeling the
stiff dynamics of shear and extension [11], [17] (equivalent
to enforcement via a penalty method [3], [18]). Many explicit
methods exhibit good computational efficiency and can run in
real time. However, they require work-intensive derivations
dependent on particular choices of model effects/assumptions



and spatial discretization, which has a cost in terms of imple-
mentation effort and modularity. For instance, [15] mentions
the use of a higher-order spatial discretization as future work,
and this would involve re-deriving the equations of motion.
Furthermore, for all methods using explicit time integration,
the maximum time step is limited by the Courant-Friedrichs-
Lewy stability condition, which is especially limiting if the
shear and extension are modeled or enforced via a penalty
method.

Our work in this paper does not follow the common pattern
of spatial discretization followed by explicit time integration
but is instead inspired by a relatively unexplored method
suggested by [19] for modeling the planar motion of fly-
fishing lines, and subsequently developed further by Lan and
Lee in [20], [21] for planar compliant mechanisms. Starting
with the continuous PDE, we discretize any time derivatives
using a chosen implicit differentiation formula. This creates
a continuous ordinary boundary value problem in the spatial
dimension that can be solved to obtain the rod state at each
time step. This implicit temporal-discretization approach
provides consistency, stability under large time steps, and the
potential for high-order accuracy, scalability, and efficiency
through our proposed use of standard numerical integra-
tion routines and a stable variant of the shooting method.
Any shear and extension behavior (including inextensibility)
is automatically satisfied by the spatial integration of the
strains. Current efforts using this type of approach have been
limited to planar dynamics, and computation of solutions at
interactive rates has not been demonstrated. We extend the
basic approach to the 3D spatial case, explore the application
of higher-order numerical schemes in both the space and time
dimensions, and demonstrate real-time performance. In addi-
tion, we fill a gap in the experimental literature by including a
highly dynamic experiment with multiple modes of vibration.
A principle advantage of this method is that only simple
changes are required to explore various model assumptions
(neglecting shear, viscosity, etc.), external force terms such
as tendon actuation [22], and discretization schemes in space
or time, in contrast to methods which symbolically solve for
acceleration terms. We believe that this modularity is worth
the slight increase in run time, especially given the potential
for greater accuracy by using high-order schemes.

II. PARTIAL DIFFERENTIAL EQUATIONS

The rod is approximated as a one-dimensional continuum
so that the state variables are parameterized by arclength
along the rod centerline s and by the time t. We rely on
Equations (23, 25-27) in [22] as the initial statement of the
PDE. These equations are consistent with the derivation in
chapter eight of Antman’s classic text [6], but the notation
differs in that the position is expressed as p instead of 7,
the velocity is expressed as q instead of p, and we introduce
the rotation matrix R to express internal loads in the global
frame whereas Antman’s formulation is entirely in the local

TABLE 1

DEFINITIONS
Variable | Units Definition
s m Reference arclength - a dimension of the PDE
t s Time - a dimension of the PDE
p m Position in Cartesian coordinates
R none Rotation matrix for the material orientation;
the third column aligns with the rod tangent
h none Quaternion for the material orientation
n N Internal force expressed in the global frame
m Nm Internal moment expressed in the global frame
f N/m Distributed force in the global frame
l Nm/m | Distributed moment in the global frame
v none Rate of change of position with respect
to arclength in the local frame
u 1/m Curvature in the local frame
q m/s Velocity in the local frame
w 1/s Angular velocity in the local frame
A m? Cross-sectional area
P kg/m3 | Material density
J m* Second mass moments of inertia
u* 1/m Local curvature when m = u; = 0.
For a straight rod u* = 0.
K Nm? Stiffness matrix for bending and twisting;
Elyy 0 0
K = 0 Elyy 0
0 0 Gl
E Pa Young’s modulus
G Pa Shear modulus
I m* Cross-sectional area moment of inertia
B Nm?/s | Damping matrix for bending and twisting
C kg/m? | Square law drag coefficient matrix
g m/s? Gravitational acceleration vector
es3 none Unit vector; e3 = [0 0 1}T
« none Coefficient of the BDF-a method

coordinate frame. The dynamics of an elastic rod are

p,=Rv, p,=Rq

Rs = Ra, Rt = R(:\J

ns = pAR(wq+q,) — f )

ms = 0(RpJw) —p,n —1

q, = v —Uq + v

Wwe = U — UW.
The symbols are described in Table I, and a subscript denotes
a partial derivative with respect to the subscript. The “hat”
operator - forms a skew-symmetric matrix from a vector,
for example

0 —Ws3 W2
&\J = w3 0 —W1
—W w1 0

It is reasonable to assume an inextensible and unshearable
rod so that v = e3 and v; = 0 (i.e. use Kirchhoff’s
rod theory rather than the Cosserat brothers’ more general
theory). The differential equations in (1) do not provide
a unique solution; an appropriate material constitutive law
must relate m to u. We use a linear elastic law with Kelvin-
Voigt type viscous damping as described in [23], that is

m = R[K(u —u") + Buy]. (2)

We expand the distributed force term f to explicitly consider



terms for weight and square-law-drag air resistance so that
f=-RCq®|q|+pAg + f,

where the Hadamard product ® performs
element-wise multiplication so that q © |q| =
[a3sen(q1) gisen(e) afsen(as)]’. F  contains
forces not explicitly considered such as contact. f and [ are
zero for the simulations and experiments but are kept in the
development for generality.

For very slender rods, the dynamics are dominated by
the mass distribution along the length, and the cross-section
rotational inertia matrix J has a negligible effect on the
dynamic behavior [24], thus we can let O;(RpJw) = O.
Methods based on discrete differential geometry [15] also
typically neglect cross sectional rotational inertia.

Finally, using (2) as the constitutive law, the partial deriva-
tives with respect to arc length are

ps = Res

R, = Ru

n, = pAR (&q +q,) + RCq©|q| — pAg — f

us=u’ — K '[uK(u—u*) +eR'n 3)
+ R"l + uBu, + Buy]

g, = —uq + ey

Ws = U — UW.

A. Quaternions

Numerically integrating the equation for R along the rod
length can produce a “rotation” matrix that is not perfectly
orthonormal due to truncation error. In many cases this effect
can reasonably be ignored, but for completeness we introduce
a quaternion representation of the rod orientation using the
element ordering h = hy + hoi + h3j + hak. The differential
equation for R, is replaced by

0 —u; —us -—us| |h1

. o 1 Uq 0 us —U2 h2
hs - Fl(h’u) D) U2 —Usz 0 Uy h3
us (V%) —U1 0 h,4

The other equations relying on the rotation matrix are left
unchanged; the matrix is found by

R =Fy(h) =
o [ —h3—h3  hahs —hahy hoha+ hsh
I+ T hohs + hahy —h% — hi hshy — hoh
h™h | hohy — hahy  hahg+hohy  —h2 — h2

Note that in constructing the rotation matrix, the quaternion
magnitude is not required to be unity, and the differential
equation for hg is correct regardless of the magnitude of
h. Additionally, this formulation requires no square root or
norm operations.

B. Semi-discretization in Time

The system in (3) would be an ODE in s except for the
presence of time derivatives u¢, g,, and us: on the right-
hand side. An ODE can be obtained by discretizing these
derivatives in the time variable. We denote the time index
with a left superscript, e.g. for a general state variable y,
y(ti,s) = Wy(s). Any general backward finite difference
for a first derivative can be written in the form

Dy, =co Dy + Z [Ck =Ry + dy, (iik)yt:|
k=1

=g Dy 4+ Dy,
The only term in ()y, corresponding to time ¢; is co (Vy.
(DY is defined to encapsulate all terms relying on the prior
history of the rod.

The time-discretized equation for u is obtained by setting
u = co Du+OU and ugy = c¢g Duy+DU,, which yields
Dy =u — K HOGK(Du — u*) + DRI

+e; ORIy 4 (i)ﬁB(CO D + (i)U)
+ B(co Du, + DU
This can be solved so that ug is not on the right-hand side:
Oy =(K + coB) Y Ku! — [VaK(Du — u*)
+ORTI + e RTIp + OuB(co Du + (i)U)
+ BYU,]}.
The other equations require no special effort to discretize,
so that the time-discretized ODEs in s are
ps = ReS
hs = Fl (h, ’LL)
ns = pAR (&q + coq + Q) + RCq © |q| — pAg —
us = (K + ¢oB) '{Ku’ — [uK(u—u*) + R"l
+e3R"n+uB(cou + U) + BU,J}
g, = —uq + ey
ws =cou + U — uw
R = Fy(h),

“)
where the superscript (i) has been omitted. This discretiza-
tion encompasses many choices of schemes such as back-
ward Euler, the backward differentiation formulas of order
one through six, or the trapezoidal method.

To implement the method in simulation, we use the BDF-
o method [25], which is O(dt?) accurate. This is described
by
Dy, =co Dy +e1 Ty +e Ty +dy (Vy,
i=co Dy + Y,
where

co = (1.5 + a)/[dt(1 + )]
1 = (=2 —2a)/[dt(1 + a)]
(0.5 4 a)/[dt(1 + )]
a/(1+ ).

C2
di
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Fig. 2. The high level simulation strategy is illustrated in a flowchart. If the
problem is well posed, it will be solved with a simple shooting method. In
the event of numerical issues, the simulation attempts a solution using the
modified simple shooting method and second-order backwards differentation
formula. Although the modified shooting method raises the computational
cost, it does not affect the final solution. Switching to BDF2 will alter the
solution by contributing more numerical damping, but the time discretization
is still O(dt?) accurate.

The variable « is a parameter that may be assigned. The
trapezoidal method is obtained for ¢ = —0.5, and the
second-order backward differentiation formula BDF2 is ob-
tained for o = 0. Using this approximation, the solution to
the ODE in s at ¢; is dependent on the solutions to previous
ODEs at times t;_1 and ¢;_s.

C. ODE Solution with the Shooting Method

When considering a specific problem, the ODE system
described by (4) is accompanied by a set of boundary
conditions. For instance, a cantilevered rod has known values
of p(t;,0) = py, R(t;,0) = Ry, and q(¢;,0) = w(t;,0) =
0. If the rod has a length L and no forces at the free end,
the distal constraints are n(t;, L) = m(t;, L) = 0.

Such BVPs can be solved by a shooting method that
iteratively guesses the unknown initial values (e.g. n(t;,0)
and wu(t;,0) for the cantilever problem) and evaluates the
boundary conditions at the other end after numerical in-
tegration. There is freedom in the choice of numerical
integration method; for the simulations herein, we will
consider and compare both Euler’s first-order method and
the classic fourth-order Runge-Kutta integration (RK4), but
the modularity of the approach makes it trivial to explore
other spatial integration schemes. The RK4 method requires
interpolation to estimate (i)Y(SJ;H)‘s) since it lies between

the grid points of previous ODE solutions. For the purposes
of this paper, we use linear interpolation, although the use
of a Hermite interpolant would be an interesting topic for
future work. Using a fourth-order method in space should
provide superior error scaling and computational efficiency,
and it will produce highly accurate steady-state solutions.

The guessed values are corrected by nonlinear optimiza-
tion. This aspect of the shooting method is implemented by
a Levenberg-Marquardt algorithm with an adaptive damping
coefficient as described in [26]. The existence of multiple
solutions to the BVP is related to the time step. An infinite
time step recovers the static ODE, which may have multiple
solutions [27] due to the geometric nonlinearities associated
with large deflection, and large time steps may share this
difficulty. However, as the time step approaches zero, the dis-
cretization approaches the continuous PDE for which there
is only one solution except at specific times where dynamic
bifurcations exist (e.g. the exact moment of buckling) and
there are multiple valid solution paths for the future time
evolution. While the issue of multiple solution branches and
dynamic bifurcations is inherent to the physics, our approach
stays on its current solution branch by keeping the time step
relatively low and using the solution at the previous time
step as the initial guess at the current time.

Often it is necessary to solve a static BVP to find the
initial conditions for the dynamic BVP. The static ODEs are

ps = Res

hs = Fi(h,u)

ns = —pAg — f

us =u’ — K '[uK(u—u*)+eéR'n+ Rl
R = Fy(h),

and of course g and w are initialized to zero.

D. Improving Convergence and Stability at Small Time Steps

Although arbitrarily large time steps are possible by using
an asymptotically-stable finite difference scheme, the IVP
is actually poorly conditioned at small time steps. Under
normal operating conditions, the rod state is continuous in
both time and space so that

lim Wy — Dy = 0.

dt—0
Thus, performing the calculation (Vu— (=D for small time
steps is a “catastrophic cancellation,” where subtracting two
nearly equal numbers causes a loss of significant digits [28].
For instance, subtracting two floating-point numbers with 16
digits of precision that are the same in the first 10 digits will
yield a resultant having only 6 digits of precision. This is an
inherent property of the implicit time-discretization, and this
effect seems to be exacerbated by the numerical integration.
While the breakdown of the time-discretized scheme is
inevitable with decreasing time steps, the simulations of
a small steel rod described later are able to run with a
time step as small as 2-5ms using just a simple shooting
method. However, we emphasize that robotics applications
are usually more concerned with real-time computations and



Fig. 3. The experimental rod shape was quantified by obtaining binary
data based on darkness. The rightmost pixel is taken as the tip position,
specifically the top rightmost pixel when multiple rightmost pixels exist.

good long-term accuracy. Thus, an implicit method is an
appropriate choice, and the tradeoff of a minimum time step
is acceptable.

If small time step resolution of high-frequency modes
is desired, there are modifications of the shooting method
that can improve performance. The modified simple shooting
method is an excellent tool for solving badly-posed shoot-
ing problems [29]. For the simulations presented here, the
modified shooting method is used when the simple shooting
method fails to converge within five hundred iterations. If
the modified shooting method is used and makes a correction
midway through the integration, it will also be used for the
next time step. If modified shooting is used and no correction
is necessary, simple shooting will be used on the next time
step. This allows us to solve well-posed problems without
a performance penalty while still tackling slightly ill-posed
shooting problems.

From our experience, the choice of time derivative dis-
cretization affects the difficulty of the problem; for example,
it is easier to achieve convergence with BDF2 than with the
trapezoidal method, although this results in more numerical
damping. Thus, if the modified shooting method fails to
converge, it is attempted again with o = 0 for that time
step. The error handling strategy is described in Figure 2.

Although we have experimented with high precision
floating-point numbers and found the convergence to improve
slightly, we ultimately decided to use the current standard of
64-bit precision due to the adequacy of possible time steps
and the computational cost of higher precision.

III. VALIDATION

The proposed method was implemented in C++. The only
external dependency was the matrix library “eigen” [30]. We
experimentally validated the proposed model by comparing
simulation results to high-speed footage of a cantilevered rod
clamped to a table. Our simulation implements the full 3-
dimensional model described in the previous sections, but the
experimental data was taken from planar cases for simplicity.
The rod was spring steel with a 1.42mm diameter. There were

Tip Position vs. Time for Weight Release
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Fig. 4. A weight was attached to the free end of a cantilevered rod by
a string. After the weighted rod reached equilibrium, the string was cut.
This scenario was simulated, and the simulation parameters were calibrated
so that the simulation response matches the experimental response. These
calibrated values were used while validating the other impulse experiment.

two scenarios. First, a 20g weight was hung by a string at
the tip of a rod with a cantilevered length of 0.408m, and
after equilibrium was reached, the string was cut. Second, the
cantilevered length was increased to 0.517m to obtain larger
vibrations, and the rod was hit with a rigid object near its
base to excite high-frequency vibration modes. The BDF-
« coefficient was o« = —0.48 for all simulations, which is
close to the trapezoidal method and thus exhibits very little
numerical damping.

The camera was placed about three meters from the rod
with the viewing plane parallel to the rod’s plane of motion.
The camera recorded a frame every millisecond. The rod
was darker than the background so that the experimental
rod position could be easily extracted by comparing pixel
brightness values, as shown in Figure 3.

A. Weight Release

The weight release trial was used to calibrate the rod
parameters FI, p, and C. This calibration is implemented
in MATLAB using the Levenberg-Marquardt algorithm to
minimize error between experimental data and model predic-
tion. The weight release response is very nearly a decaying
sine wave, as shown in Figure 4. The calibration objective
function was evaluated by running the simulation for a set of
parameters and evaluating the characteristics of the simulated
response versus the experimental data. The magnitude of the
first peak, magnitude of the first valley, magnitude of the
final peak, and frequency are compared and combined to
form the objective function residual. MATLAB’s “findpeaks”
command can easily detect peaks in the smooth simulation
data. The experimental data has some noise, but since the
experimental response only needs to be analyzed once, this
was done manually. The calibrated values are shown in Table
II. For steel, p is typically around 7800 kg/m3. With an
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Fig. 5. An impulse was applied near the base of a cantilevered rod. The
experimental impulse response is compared to two simulations that used
the proposed method. The multimedia attachment for this paper includes a
video of this trial.

assumed Young’s modulus of 200GPa, the 1.42mm diameter
rod would have a bending stiffness EI of 0.03992 Nm?.
Thus, the calibrated values are within reason.

TABLE 11
CALIBRATED PARAMETERS

Execution Speeds with Intel® Core™ i7-4790K CPU @ 4.00GHz

Parameter Euler, RK4,
N=400, dt=2e-3 | N=100, dt=2e-3

EIT (Nm?) 0.03823 0.03803

p (kg/m3) 7640 7621

C (kg/m?) 0.003507 0.003556

B. Impulse Near Base

After calibration of the model parameters using the weight
release dataset, we evaluated the model prediction versus
data taken from the impulse response experiment. The im-
pulse point force was modeled as a hat function in time with

Mge, t < 0.5d
F(t)=¢ M(2—-g&), 05d<t<d
0, t>d.

Appropriate values for the impulse’s peak magnitude and
duration were found: M = 5N and d = 0.016s. The impulse
point force is included in the simulation by performing
piecewise integration of the ODEs in space and applying the
point force at the transition. The impulse response is shown
in Figure 5. A simulation video is included with this paper
submission, and a still frame is shown in Figure 1.
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Fig. 6. We plot the real-time performance ratio versus the time step on
a log-log scale for our two simulation datasets. The real-time performance
ratio is the amount of time simulated divided by the wall-clock time spent
running the simulation. A ratio greater than or equal to one indicates soft
real-time performance, as shown by the gold-shaded region. The weight
release scenario requires significantly less effort to solve than the impulse
scenario. For the difficult impulse scenario, the simulation can run in soft
real-time with dt = 6ms. The smallest time step for the impulse simulations
is slighter larger than 1ms because of convergence issues with small time
steps.

C. Real-Time Performance

To evaluate computational speed, we ran many simulations
of both the weight release and impulse response scenarios us-
ing increasing values of dt (logarithmically spaced). Results
are shown in the log-log plots of Figure 6. The real-time
performance ratio is the amount of time simulated divided
by the wall-clock time spent running the simulation, and
the gold-shaded region indicates real-time performance. The
plot confirms that most of the simulations ran in real-time.
At higher time steps, the dependence of the run time on
the time step is nearly linear. The run time also appears
linear in the number of spatial steps, /V, because the runtime
approximately doubles when N doubles.

Not surprisingly, the impulse response case requires higher
computational times due to the increased presence of faster
dynamic modes that require more solver iterations per time
step. A time step of 2 milliseconds captured the high-
frequency dynamics very accurately, as shown in Figure 5,
but this simulation required more computation time than it



simulated, and the speed is further reduced when the solver
begins to encounter numerical ill-conditioning at smaller
time steps.

IV. DISCUSSION AND CONCLUSIONS

We have validated the proposed rod discretization in a
highly dynamic impulse scenario. The simulation behavior
is remarkably close to experimental data. It can be seen in
Figure 5, and is more evident in the multimedia attachment,
that the impulse simulation does not capture the very highest
frequency modes of the experimental rod. Even with this
unfortunate discrepancy, the comparison makes a compelling
case for the physical accuracy of this method.

It is important to consider the issue of catastrophic can-
cellation when calculating a finite difference with a small
increment. This was mainly a problem for the impulse ex-
periment, where high frequency modes played an important
role in the rod behavior, making small time steps necessary to
resolve the high-frequency behavior accurately. However, the
modified simple shooting method allowed us to accurately
and stably predict the impulse response at small time steps.

We note that the tip responses of simulations using Euler’s
method with N=400 and RK4 with N=100 (requiring the
same number of function evaluations) are visibly identical,
while RK4 ran consistently faster, perhaps because its supe-
rior error scaling resulted in faster shooting method conver-
gence. A thorough investigation of the relation between the
time step, spatial step, solver tolerance, order of accuracy,
and computational speed is left to future work. Overall, the
execution speeds of this implementation of a dynamic rod
simulation are encouraging for the prospect of model-based
control of continuum robots and manipulation of elastic rods.
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