Automatically Repairing Network Control Planes
Using an Abstract Representation

Aaron Gember-Jacobson
Colgate University
agemberjacobson@colgate.edu

Ratul Mahajan
Intentionet
ratul @ratul.org

ABSTRACT

The forwarding behavior of computer networks is governed
by the configuration of distributed routing protocols and ac-
cess filters—collectively known as the network control plane.
Unfortunately, control plane configurations are often buggy,
causing networks to violate important policies: e.g., specific
traffic classes (defined in terms of source and destination
endpoints) should always be able to reach their destination,
or always traverse a waypoint. Manually repairing these con-
figurations is daunting because of their inter-twined nature
across routers, traffic classes, and policies.

Inspired by recent work in automatic program repair, we
introduce CPR, a system that automatically computes correct,
minimal repairs for network control planes. CPR casts config-
uration repair as a MaxSMT problem whose constraints are
based on a digraph-based representation of a control plane’s
semantics. Crucially, this representation must capture the
dependencies between traffic classes arising from the cross-
traffic-class nature of control plane constructs. The MaxSMT
formulation must account for these dependencies whilst also
accounting for all policies and preferring repairs that min-
imize the size (e.g., number of lines) of the configuration
changes. Using configurations from 96 data center networks,
we show that CPR produces repairs in less than a minute for
98% of the networks, and these repairs requiring changing
the same or fewer lines of configuration than hand-written
repairs in 79% of cases.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

SOSP ’17, Shanghai, China

©2017 ACM. 978-1-4503-5085-3/17/10...$15.00

DOLI: 10.1145/3132747.3132753

Aditya Akella

University of Wisconsin-Madison
akella@cs.wisc.edu

Honggiang Harry Liu
Microsoft Research
harliu @microsoft.com

CCS CONCEPTS

*Networks — Network management;

1 INTRODUCTION

Computer networks often rely on distributed routing proto-
cols to determine how data is forwarded through the network.
Each router in the network runs one or more routing protocols
to exchange information with its neighbors and compute the
best (e.g., least cost) paths to various destinations. These
routing protocol instances, along with access filters and inter-
protocol communication mechanisms, collectively form a
network’s control plane.

The control plane must be carefully configured by network
operators to satisfy various policies: e.g., specific classes
of traffic (i.e, that between particular source and destina-
tion hosts) should always reach its destination, or always
be blocked. Policies must hold even when links or routers
fail. This task is difficult due to the low-level nature of the
abstraction exposed by router configuration languages, the
diversity of policies a network must satisfy (e.g., blocking
some traffic classes while allowing others), and the desire
for policy compliance under arbitrary link or router failures.
Consequently, router configurations are highly prone to bugs
that lead to outages [50, 34].

Over the last decade the research community has devel-
oped many tools to verify a network’s policy compliance.
Some tools [26, 27, 28, 35, 43] analyze a snapshot of the
network’s forwarding state to check whether the network con-
forms to all policies in its current state. Other tools take the
network’s router configurations as input [7, 16, 17, 18, 20]
and analyze the control plane’s behavior for policy compli-
ance under various failure scenarios. However, both classes
of tools stop at finding policy violations, and do not help
operators repair the buggy configurations.

Researchers have only recently begun to develop tools that
automatically repair broken data [25] and control planes [47],

1

but they focus on software-defined networks (SDNs). Cur-
rently, no tools are capable of repairing distributed control
planes, which continue to be used in the majority of networks.

Repairing non-compliant distributed control plane configu-
rations can be extremely challenging. One source of difficulty
is the intertwined nature of configurations, across routers,
policies, and traffic classes. A repair may involve changes to
multiple routers (e.g., modifying the costs of multiple links to
ensure that traffic favors or disfavors certain paths); a repair
that fixes one policy violation may trigger another violation
for the same traffic class (e.g., blocking traffic from traversing
a link will also reduce its degree of fault tolerance); and a
repair that leads to policy compliance for one traffic class
may violate policies for another traffic class (e.g., removing
a routing protocol adjacency to prevent a traffic class from
using a link will prevent other traffic classes from using the
link too). Another source of difficulty is that not all valid re-
pairs are equally desirable. Depending on the context, a more
desirable repair is one that minimizes the number of routers
or the number of total lines that need to be updated. Today,
operators must manually reason about all such dependencies
and factors when determining the repair strategy.

The same challenges arise when a network operator wants
to change the policies a network satisfies or incrementally
grow or shrink the network. For example, to add new routers
or end-hosts to the network, an operator must manually deter-
mine how to “repair” the network’s configurations to ensure
the new hosts are reachable.

We develop CPR (for Control Plane Repair), the first tool
to automatically repair distributed control plane configura-
tions. It takes as input a network’s existing configurations and
desired security and availability policies (i.e., a specification)
and outputs configuration patches. After applying the patches,
the network is guaranteed to compute policy-compliant paths
for all traffic classes under arbitrary failures.

As a starting point, CPR uses ARC, an Abstract Repre-
sentation for Control planes [20], which compactly captures
the result of interactions amongst routers using a collection
of digraphs, with one digraph per traffic class. However, be-
cause it was developed with a focus on verification—where
the central question is to check if the network satisfies a given
policy for a given traffic class—ARC and its underlying algo-
rithms do not capture interactions between traffic classes, nor
do they provide a way to convert ARC back into (minimal)
routing configurations.

CPR uses several techniques to address these limitations
and achieve its goal of correct, minimal repairs. First, we
extend ARC to Hierarchical ARC (HARC) which captures
dependencies between traffic classes. Unlike ARC, HARC
has multiple types of digraphs and, instead of being indepen-
dent, digraphs are related based on configuration constructs

that impact multiple traffic classes. Second, to capture de-
pendencies between policies, we encode policy compliance
using SMT (satisfiability modulo theories) constraints. These
constraints encode the semantics of the graphs that form a
network’s HARC, and the solution yields which edges must
be added or removed from the graphs to satisfy all policies
for all traffic classes. Third, to compute minimal repairs, we
add soft constraints to our SMT encoding, thus turning it
into a MaxSMT problem. These constraints lead the solver
to prefer minimal repairs among all valid repairs. Finally,
we develop methods to scale our MaxSMT formulation to
large networks and convert the resulting (policy-compliant)
HARC:S to router configurations.

We have implemented CPR in Java and made our code
publicly available [1]. Our experiments using configuration
snapshots from 96 data center networks, each with a median
of 8 routers and 1K policies, show that CPR computes repairs
in less than a minute for 98% of the networks, and these
repairs require the same or fewer configuration changes than
hand-written repairs in 79% of the cases. Consequently,
CPR significantly advances the state of the art in network
management.

2 BACKGROUND AND CHALLENGES

In this section, we provide an overview of the control planes
in typical data center and local area networks. We then dis-
cuss the challenges in automatically repairing control planes
to conform to a set of policies.

2.1 Network Control Planes

A network’s control plane computes the paths taken by traf-
fic to reach its destination. Every router in a network runs
distributed control logic that performs these computations
and produces a set of forwarding rules that the router uses
to forward traffic along the appropriate path. The control
logic includes implementations of many different protocols
(e.g., RIP [36], OSPF [38], BGP [41]), each of which uses
different algorithms to exchange route advertisements with
neighboring routers and compute paths.

A configuration file written by a network operator or au-
tomatic generator [8, 44] in a vendor-specific configuration
language (e.g., Cisco 10S [2]) instructs the router which
protocol(s) it should use, what destinations it should adver-
tise to its neighbor(s), how it should select between multiple
possible paths (e.g., link costs), etc. Figure 1 shows an ex-
ample configuration. The configuration is broken into blocks
of statements, i.e., stanzas, that are related to a particular
protocol, physical interface, etc.

Every instance of a routing protocol configured on a router
(e.g., lines 11-15 in Figure 1) is called a routing process. A
routing process only exchanges route advertisements with

hostname C

interface Ethernet0/1
description Link-to-A
ip address 10.0.2.3/24

interface Ethernet0/2
description Link-to-B
ip address 10.0.3.3/24

interface Ethernet0/3
description Subnet-T
ip address 10.20.0.0/16

router ospf 10

- - 7. I SR SR

—-
- =

redistribute connected

-
w N

passive interface Ethernet0/1

-
'S

passive interface Ethernet0/3
network 10.0.0.0/16

—
w

Figure 1: Example router configuration

processes of the same type running on neighboring routers
it is authorized to speak with (according to the configura-
tion). A pair of routing processes on neighboring devices
form a routing adjacency. A router may also internally share
computed paths between its processes, even if they are run-
ning different protocols, if the configuration enables route
redistribution between them.

Routers are also equipped with mechanisms to filter (i.e.,
block) specific traffic. An access control list (ACL) is com-
posed of a set of permit and deny statements that explicitly
permit or deny certain classes of traffic (i.e., traffic between
particular sources and destinations). This filtering is applied
when traffic enters or exits a specific physical interface on
the router. Filtering can also happen during the path compu-
tation phase: a route filter can prevent a routing process from
advertising a path or destination to another routing process.1

2.2 Challenges in Automated Repair

Repairing control plane configurations to satisfy a set of
reachability-related policies introduces three challenges; two
of these pertain to preventing undesirable side-effects and the
third pertains to optimality or, equivalently, minimality, of
the repair. We illustrate these challenges using the example
control plane shown in Figure 2a.

#1: Multiple policies. Assume the control plane must satisfy

four different policies:
EPI: Under all possible failures, traffic from S to U is always

blocked;

EP2: Under all possible failures, traffic from S to T always
traverses a firewall;

EP3: Scanreach T as long as there is at most one link failure;

1In some contexts, e.g., within an OSPF area, route filters only prevent a
route from being used on the router containing the route filter, rather than
filtering advertisements to other routers.

(a) Physical network and original control plane: Blue circles
are routers, red squares are subnets, and green rectangles are
firewalls. Orange rectangles are OSPF processes and red no-
entry symbols are ACLs blocking traffic destined for U. Solid
blue lines are physical links and dashed orange lines are routing
adjacencies. Router C’s configuration is shown in Figure 1.

(d) Add static route to A with lower preference than OSPF
Figure 2: An example control plane and repair attempts

EP4: In the absence of failures, traffic from R to T uses the
path A —» B — C.

Currently, the control plane satisfies three of the four poli-
cies: EPI because the only path for S to reach U is A — B,
which includes an ACL blocking traffic destined for U; EP2
because the only path for S toreach T is A —» B — C, which
includes a firewall; and EP4 because the only path for R to
reach T is A — B — C. The control plane violates EP3, be-
cause failure of the A—B or B—C links renders T unreachable.

According to Menger’s Theorem [4], the maximum num-
ber of edge-disjoint paths between two vertices (e.g., S and T)
equals the number of edges whose removal separates those
vertices. Thus, to satisfy EP3, the network must contain at
least two edge-disjoint paths between S and T. A simple
repair is to create a routing adjacency between the OSPF
processes on routers A and C (Figure 2b). In particular, we
remove line 13 from router C’s configuration (Figure 1). This
will allow the OSPF process on router A to use the path

A — C or the path A — B — C to reach T, thereby ensuring
S can still reach T even if a link fails.

In the absence of failures, OSPF will prefer the newly
available shorter path A — C. Because this path does not
contain a firewall, our repair now causes a violation of EP2.
To satisfy both EP2 and EP3, we must add a firewall on the
A-C link.” This illustrates our first challenge: repairing a
control plane to simultaneously satisfy multiple policies.

#2: Cross-traffic-class effects. By default, OSPF (and BGP)
routing adjacencies apply to all traffic classes—i.e., all pairs
of source and destination subnets. Consequently, adding the
routing adjacency between A and C impacts not only the
traffic from S to T, but also traffic from R to T and from
S to U. The newly available path to T (A — C) will be
used for traffic originating from both S and R; this violates
EP4. Furthermore, If the A—B link fails, the OSPF process
on router A can now compute an alternative path to reach
U: A - C — B. This path does not contain any ACLs
blocking traffic destined for U, so EPI is violated. Thus,
the second challenge we must address is: accounting for
cross-traffic-class effects.

#3: Complexity of configuration changes. We can avoid vi-
olating EP4 by changing router A’s configuration to increase
the cost of the link to C, and we can avoid violating EP/ by
adding an ACL on router B’s second interface that blocks
traffic destined for U (Figure 2¢). We have now modified
the configurations of all three routers, with one line removed
from C and one line added to each of A and B, as well as
added a firewall. This raises the question: is there a simpler
repair?

We initially increased the number of edge-disjoint paths
between S and T by creating an OSPF routing adjacency
between router’s A and C (Figure 2b). However, we can
achieve the same effect by configuring a static route on A that
directs traffic for T to router C (Figure 2d); this eliminates
the configuration change on C in favor of a configuration
change on A. Because the static route only applies to traffic
destined for T, traffic destined for U can only traverse the
originally available path A — B; this eliminates the need to
add an ACL on B. Finally, to ensure the static route does not
take precedence over a path computed by OSPF and violate
EP4, we increase the administrative distance (i.e., cost) of
the static route so the path computed by OSPF is preferred.
In total, this alternative repair only requires adding two lines
of configuration to router A, plus a firewall on the A—C link.
This illustrates the third challenge we must address: ensuring
that the repair is minimal. Minimality may be measured
along several different dimensions, e.g., number of routers
changed, number of lines changed, etc.

2We assume the network uses virtual network functions and tunnels [49] to
allow waypoints to be added along arbitrary links.

3 CONTROL PLANE REPAIR (CPR)

The goal of CPR is to automatically repair a set of router
configurations such that a network satisfies a collection of
reachability-related policies under arbitrary link failures. CPR
takes as input existing router configurations and a set of
operator-defined policies and produces configuration patches
to correct errors and account for policy changes. Crucially,
CPR avoids cross-policy and cross-traffic class effects and
computes minimal repairs.

Instead of directly manipulating configuration syntax, as is
frequently done in program synthesis and repair [29, 32, 46],
CPR uses an abstract representation of the control plane’s se-
mantics. We do this because router configuration languages
are low-level [11] and the configuration of an individual
router has limited bearing on the end-to-end treatment of the
traffic. These factors make the space of possible changes in-
tractable. We could constrain the search space by considering
only changes to the configurations of routers and protocols
included in counter-examples produced by control plane veri-
fiers [16, 18, 20]; or we could limit repairs to removing and
replicating existing lines of configuration [32, 46]. However,
the search space is still large, and worse, viable repairs may
not exist in these constrained spaces.

Several encodings of control plane semantics have been
developed recently [7, 8, 16, 18, 20]. We extend our previ-
ously developed abstract representation for control planes
(ARC) [20], which abstracts away the low-level details of
individual routing protocols and messages, and concisely cap-
tures protocols’ eventual impact on the network’s forwarding
behavior under arbitrary failures.

With our semantic-based approach, repairs in CPR boil
down to: (1) converting the input configurations to their
semantic encoding; (2) repairing the encoding to satisfy all
operator-defined policies; and (3) translating the repaired
encoding into router configurations. The next three sections
describe how we accomplish each task.

4 MODELING CONTROL PLANE
SEMANTICS

Because ARC [20] was designed to verify network prop-
erties of individual traffic classes, it abstracts away details
about how the network handles related traffic classes—e.g.,
those with a common destination. This makes it difficult
to use ARC to compute repairs without cross-traffic-class
interference and to ensure the repairs can be realized using
the destination-based primitives available in routers.

In this section, we first provide an overview of ARC and
discuss in more detail its limitations with respect to control
plane repair. Then we describe a new hierarchical abstract

P P

ot o ot

B s,)

(a) ETG for S~T traffic class (b) ETG for S~ U traffic class
Figure 3: ETGs for the example control plane in Fig-
ure 2a: Orange circles are process vertices (I=incoming,
O=outgoing); red ovals are SRC and DST vertices; green
rectangles are firewalls. Orange (light) lines are inter-
device edges; red (dark) lines are intra-device edges.

ot ol ot

representation for control planes (HARC) that tracks im-
portant information about the network’s handling of related
traffic classes and is amenable to automatic repair.

4.1 Abstract Representation for Control
Planes (ARC)

Our previously developed abstract representation for control
planes (ARC) [20] models a network’s forwarding behavior
under arbitrary failures using a collection of directed graphs
called extended topology graphs (ETG). There is one ETG
per traffic class which models the behavior of the network’s
routing protocols, and the interactions among them, for the
traffic class. Vertices correspond to routing processes; there
is one incoming (I) and one outgoing (O) vertex per process.
Directed edges represent the possible flow of data traffic en-
abled by the exchange of route advertisements between the
connected processes. For example, Figure 3a shows the ETG
for the S~T traffic class for the control plane in Figure 2a:
there are two vertices for the OSPF process on each router
(e.g., A; and Ap) and edges representing the routing adjacen-
cies (e.g., Ao — Bp) and intra-device communication (e.g.,
AI hd Ao)

The algorithm for constructing an ETG from a network’s
control plane configurations is summarized in Algorithm 1.
By construction ETGs are pathset-equivalent: i.e., an ETG
contains a particular path between the source and destination
endpoints iff that path is used in the real network under some
combination of failures (including no failures) [20]. For some
networks, ETGs can also model the exact path used by the
real network under specific failures—a property known as
path-equivalence [20]. To achieve this, edge weights are set
such that, after removing all edges corresponding to failed
links, the shortest path through the ETG is the exact path
taken in the real network. For example, the inter-device edge

weights in Figure 3a match the OSPF link costs in Figure 2a.

Such modeling is only possible for networks that use routing
protocols, route redistribution, and ACLs in restricted ways.

Algorithm 1: Process for constructing an ETG for traffic
class tc from control plane configurations

1 foreach RoutingProcess proc do

2 Add vertices procy and procq

3 Add edge proc; — procg // Intra-dev
4 if proc blocks routes to tc.dst then

5 continue

6 foreach RoutingProcess proc’ on proc.device do

7 if proc’ redistributes routes from proc

8 A proc’ does not block routes to tc.dst then

9 Add edge proc’; — procg // Intra-dev
10 foreach Interface intf used by proc do

1 if 3 phy link intf — intf’

12 A J RoutingProcess proc’ uses intf’

13 A proc’ does not block routes to tc.dst then
14 Add edge procy — proc’y // Inter-dev
15 if intf.acl blocks tc V intf’.acl blocks tc then
16 Remove edge procg — proc’;

17 foreach Device dev do
18 if 3 phy link tc.src — dev then

19 foreach RoutingProcess proc on dev do

20 Add edge SRC — procg // Source

21 if 3 phy link dev — tc.dst then

2 foreach RoutingProcess proc on dev do

23 Add edge proc; — DST ~ // Destination
Policy class ETG characteristic
PCI: Traffic from SRC to DST SRC and DST are in separate
is always blocked components

PC2: Traffic from SRC to DST
always traverses a waypoint

After removing edges with
waypoints, SRC and DST are
in separate components
PC3: SRC can always reach DST Max-flow from SRC to DST in
when there are < k link failures a unit-weight ETG is > k
PC4: Traffic from SRC to DST Shortest path from SRC to
uses path P in the absence of DsTis P
failures
Table 1: Class of policy and the characteristics an ETG
must possess to ensure compliance with it

Using ARC to verify a control plane is policy-compliant
(under arbitrary failures) boils down to checking simple char-
acteristics of the constituent ETGs. Table 1 lists a few com-
mon classes of reachability-related policies along with the
characteristics an ETG must possess to ensure the policy
holds for the corresponding traffic class.® For example, sup-
pose we want to check whether the control plane depicted
in Figure 2a satisfies EP3 (S can reach T as long as there
is at most one link failure). As discussed in §2.2, we can
verify this policy by computing the max-flow of a unit-weight

30ther characteristics can be used to verify other classes of policies [21].

® -4

ot ol ot of ol ot

@D @

(a) Repaired ETG for S~~T (b) Implicit impact of change
for S~T to ETG for R~T
Figure 4: Repaired ETGs for the example control plane
in Figure 2a

version of the ETG for S~»T. We observe the max-flow of
the ETG is one (dashed path in Figure 3a), so the policy is
violated.

Computing a repair with ARC entails adding, removing,
and adjusting the weights of edges in ETGs to obtain the
desired (quantity of) paths between the SRC and DST vertices
in each ETG.* For example, we can add the edge Ao — (i to
the ETG for S~+T (dashed line in Figure 4a) to satisfy EP3.

4.2 Limitations of ARC

Using a separate ETG for each traffic class works well for
verification, because individual policies can be verified in
isolation. However, for network repair we must consider the
fact that distributed routing protocols compute paths on a
per-destination (not per-traffic-class) basis. Consequently, a
single configuration may impact multiple traffic classes. For
example, we showed in §2.2 that adding a static route to T
on router A causes all traffic destined for T to be sent to the
specified next hop (C), irrespective of the traffic’s source (S
or R). This configuration change effectively adds the edge
Ap — (i to the ETGs for both S~+T and R~T (dashed lines
in Figure 4), even though we only intended to add the edge
to the ETG for S~T (Figure 4a) to fix the violation of EP3.

Although ARC includes (or excludes) the same edge in
multiple ETGs when a control plane construct impacts mul-
tiple traffic classes (Algorithm 1), ARC does not explicitly
encode the fact that multiple ETGs contain the same edge due
to a single control plane construct. For example, the ETGs
for both S~»T and S~U (Figure 3a and 3b, respectively) for
the control plane in Figure 2a include the edges Bo — Cy and
Co — By, because the OSPF routing adjacency established in
C’s configuration (lines 11-15 in Figure 1) and B’s configura-
tion (not shown) applies to all traffic classes. However, the
ETGs are completely disjoint, with no indication that they
contain a common edge derived from a single construct (the
routing adjacency).

Thus, when repairing ETGs of an ARC, a problematic
situation may arise: a common edge derived from a single

control plane construct that applies to multiple traffic classes
can be removed from one ETG without removing the edge
from all other ETGs that contain it. Similarly, an edge can be
added to one ETG without adding it to others. This results in
an ARC whose modeled behavior cannot be implemented in
practice.

4.3 Hierarchical ARC (HARC)

Based on the observations above, we extend ARC to track
common edges across ETGs due to specific control plane
constructs. We refer to this abstraction as hierarchical ARC
(HARC). HARC maintains the core building block of ARC—
an ETG—but creates multiple types of ETGs to track com-
mon edges resulting from control plane constructs impacting
traffic classes at different granularities.

Since control plane constructs apply to a specific traffic
class (e.g., an ACL), a specific destination (e.g., a static
route or route filter), or all traffic classes (e.g., an OSPF or
BGP routing adjacency), we construct three different types
of ETGs: traffic class ETGs (tcETGs), destination ETGs
(dETGsS), and an all-traffic-classes ETG (aETG). tcETGs are
synonymous with the ETGs included in the original ARC,
and model the network’s forwarding behavior under arbitrary
failures for a specific traffic class. dETGs model the net-
work’s forwarding behavior for a specific destination subnet
(and all possible source subnets); dETGs take into account
static routes and route filters, which apply to specific des-
tinations, but dETGs ignore ACLs, which apply to specific
source-destination pairs. Finally, the aETG models the for-
warding behavior resulting from OSPF and BGP routing
adjacencies.

Due to the control plane constructs modeled in each type
of ETG, there exists a “hierarchy” among the ETGs. Edges
that exist in tcETGs must exist in dETGs, because traditional
control planes employ destination-based routing—i.e., no
control plane construct can enable reachability for only a
single traffic class.’ Similarly, edges that exist in dETGs
must either exist in the aETG (because routing adjacencies
apply to all destinations) or be associated with static routes.

This hierarchy enables us to constrain the space of potential
HARC repairs to those that can be realized using available
control plane constructs (§5). Additionally, the hierarchy
implicitly encodes which type of control plane construct
causes each edge to be present (or absent) in an ETG, which
is required to translate HARC modifications to configuration
changes (§6). For example, if an edge is present in a dETG
but not the aETG, we know the edge must be associated with
a static route, because the dETG accounts for static routes but
the aETG does not. Similarly, if an edge is absent in a tcETG

4An ETG may also be repaired by adding and removing vertices, but, for
simplicity of exposition, we restrict the problem to modifying edges.

5Programmable (e.g., OpenFlow) switches and some traditional routers
support source-based routing, but such features are beyond our scope.

but not the corresponding dETG, we know the edge must be
excluded due to an ACL, because the tcETG accounts for
ACLs but the dETG does not.

S MINIMALLY REPAIRING HARC

Given a network’s HARC, computing a repair entails adding,
removing, and adjusting the weights of edges in ETGs® to
obtain the desired (quantity of) paths between the SRC and
DsT vertices in each tcETG.

One way to modify ETGs is to using polynomial-time
graph algorithms similar to those used in ARC [20]. For
example, to repair a tcETG to satisfy PC1, we can compute
the tcETG’s min-cut and remove all edges in the min-cut.
Similarly, for PC2, we can temporarily remove all waypoint
vertices, compute the min-cut, and either add waypoints on or
remove all edges in the min-cut. For PC3, we can construct
a tcETG containing all possible edges, compute the max-
flow on a unit-weight version of this tcETG, and, for k paths
in the max-flow, add the edges in the paths to the original
tcETG (and dETG). Lastly, for PC4, we can solve the inverse
shortest paths problem [10].

Unfortunately, applying graph algorithms to the general
repair problem is non-trivial when we consider the challenges
from §2.2. For example, we can show that finding a minimal
repair that ensures PC4 holds for multiple tcETGs is NP-
Hard (omitted for brevity). Thus, we look for a more general
approach to compute suitable repairs.

Inspired by recent work in program repair [37, 14, 40, 23]
we cast ETG repair as a constraint solving problem and use
a Satisfiability Modulo Theory (SMT) solver to efficiently
search for a solution. In this section, we start with a basic en-
coding of ETG repairs using SMT to prevent cross-policy and
cross-traffic-class effects. We extend it to achieve minimality
in §5.2.

5.1 Repair as Constraint Solving

At the heart of our SMT formulation is a set of boolean vari-
ables representing the edges that may exist in each ETG. The
variable edge,, “* represents the edge from v; to v, in the
tcETG for traffic class tc; similarly the variables edge;’;;vz
and edge’; " represent the edges from v; to v, in the dETG
for destination dst and the aETG, respectively. Constraints
on the paths present in each tcETG are derived from the set of
provided policies and defined in terms of the edge variables.
A satisfying solution is an assignment of values to the edge
variables such that all tcETGs possess the requisite character-
istics, and the tcETGs, dETGs, and aETG represent a valid
HARC.

5We can only add edges for which there is a corresponding physical link or
intra-router communication channel.

// Constraints for PC1
SRC-DsT
1 —pathy,
V-V . V1—0; v -0
2 Yedge,, * :edge,; * = path,} "’
3 Vedge;! ™, pathy?” " : edge;l” “* A path
// Constraints for PC2
SRC-DST
4 —nwpathy;
5 Vedge;l ™ : edge;l ™ A —wedge”'"V2 = nwpathy.
6 Vedge,! " nwpathy? " :
edge;)”* A —wedge”'” V2 A nwpathy?” " = nwpath]}~
// Constraints for PC3, repeat for1 <k <K
7 Vedgeky!™ " : edgek;) " = edge;:
SRC—0y SRC—v
8 dedgek;, "' :edgek;,
v1—-DST
ke

V2—03

V1—U3
‘o = path,,

9 dedge : edgekfcl_DST

10 Yedgek;? ™ : vy # SRC A edgek;? ™ =
Jedgek;1™ " : edgek;i ™
1 Vedgeky! " : vy # DST A edgek,. " =
Jedgek;?™ " : edgek;?” " A Pedgek;?” " : edgek;?”
z 3 U1—v2. U1-02
12 Vinter-device edgek,, °: edgek,. ¢ =
V1—0; . (S V17,
—(edgel,l” "* v ... skip edgek, . *...V edgeK,. %)
// Constraints for PC4
13 Yeost¥1™%2 1 cost¥1 ™2 > 0
SRC _
14 scosty, - =0
15 predsRC = SRC
V-V . V1—0; v3—vs
16 Yedge;'” % : edge;. A (Pedge;”
edge,: A scost,? + cost”TV2 < scost;) + costV1TV2) =
scosty? = scostyl + cost¥1™Y2 Apred)? = vy
V11—V - edge?t ™2 V2 _
17 Vedge,! * € P:edge;. " Apred,} =v;
// Constraints for HARC
U1-v2 . V-2 v1—02
e cedge, Tt =edge, °

V102 : : . V102 V102
19 Yedge ;' " (excluding static routes): edge ;. " = edge ;,

18 Vedge

Figure 5: SMT constraints for finding repairs

Policy constraints. Figure 5 shows the constraints we use
for each of the four classes of policies listed in Table 1. In
the simplest case, PC1, we do not want any path to exist
between SRC and DST (constraint 1). The boolean variable
path,. " represents a path from v; to v, in the tcETG for tc.
Constraints 2 and 3 inductively define when a path exists.
For PC2, we do not want any paths from SRC to DST
that do not traverse a waypoint (constraint 4). The boolean
variable nwpathy!™* represents a path from v; to v, that
does not traverse a waypoint. An inter-device edge contains
a waypoint if the corresponding physical link has a way-
point on-path, and an intra-device edge contains a waypoint
if traffic is shunted through a waypoint connected to the
router as the traffic passes through the router. The boolean
variable wedge® =% denotes for all ETGs whether a partic-
ular edge contains a waypoint. For example, wedge©o =51
is true for the control plane shown in Figure 2a, because all

ETGs in the HARC (two of which are shown in Figure 3)
contain a waypoint on the edge Co — Bj. Similar to our
constraints for PCI, constraints 5 and 6 inductively define
when a path without a waypoint exists. If a network operator
is unable or unwilling to add waypoints to the network, then
we must include additional constraints that ensure all edges
without waypoints in the original setup remain in that state
(i.e., "“wedge®1™%2).

For PC3, we require a minimum number (K) of link-
disjoint paths, such that up to K — 1 physical link failures can
be tolerated. Consequently, constraints 7—12 are designed
to enumerate link-disjoint paths in the ETG. We create K
boolean variables for each edge that could exist in the tcETG
for tc: edgel;' “...edgeK;! . An edge must exist in the
tcETG if it is part of a link-disjoint path (constraint 7). Each
link-disjoint path must start at SRC and end at DST (con-
straints 8 and 9), and each ETG edge in the middle of the
path must have an ETG edge that precedes it and exactly one
ETG edge that follows it (constraints 10 and 11). Finally, con-
straint 12 states that an ETG edge (specifically an inter-device
ETG edge) that exists in one link-disjoint path cannot exist
in any other link-disjoint path. Note that a link-disjoint path
(i.e., an edge-disjoint path in the physical network topology)
does not directly correspond to an edge-disjoint path in the
tcETG, because a single router (i.e., vertex) in the physical
topology is represented by multiple vertices in the ETG. For
example, the tcETG in Figure 4a contains two link-disjoint
paths from Sto T (A — C and A — B — (), but the corre-
sponding paths in the ETG are not edge-disjoint (they share
edges SRCs — Ap and C; — DST().

For PC4, we require a path-equivalent ETG (§4.1) and
an assignment of edge weights such that the shortest path
from SRC to DST is P. Consequently, constraints 13—17 are
modeled on Dijkstra’s shortest path algorithm. The integer
variable cost”'~“2 represents the cost of the edge v; — v,
across all ETGs in the HARC. Edge costs must be the same
across all ETGs, because routing protocols such as OSPF
do not allow costs to be customized on a per-traffic-class or
per-destination basis. Constraint 13 forces the cost of edges
to be positive. The integer variable scost,, represents the
cost of the shortest path from SRC to v; in the tcETG for tc,
and the variable pred;! stores the vertex that immediately
precedes v; in the shortest path. In other words, the pred
variables encode the shortest path tree from SRC to all other
vertices. Constraints 14 and 15 define the base case for the
shortest paths: the cost from SRC to itself is 0, and the vertex
preceding SRC on the shortest path to SRC is itself.

The assignment of edge weights is governed by constraint
16. This constraint inductively defines the shortest path from
SRC to each vertex (v;). The first part of the constraint en-
sures an edge to v; (edge;” “*) exists in the tcETG and checks
that there is no other edge to v, (edge,: *) that results in

a shorter path from SRC to v,. If both of those conditions
hold, then we know the cost of the shortest path from SRC
to vy (scost,?) is the cost of the shortest path from SRC to vy
(scost,) plus the cost of the edge from v; to v, (cost¥'™?2),
and v; immediately precedes v, on the shortest path from
SrRCto vy (ie., predfé2 = v1). The SMT solver will automati-
cally iterate over combinations of edges and edge weights to
find values that satisfy this constraint. Finally, constraint 17
states that each edge in the desired path P must exist in the
tcETG, and the edges in P must be in the shortest path from
SRC to DST in the order they appear in P.

Other reachability policies can be accommodated using
similar constraints. For example, isolation between two traf-
fic classes (tc1 and tc2) can be encoded using the constraint
Yedge,! ™ : edge,! ** = —edge,",“*, and vice versa.
HARC constraints. In addition to the policy constraints,
we need a few constraints that ensure the resulting HARC
is well-formed (§4.3). Constraint 18 enforces the requisite
hierarchy between the tcETGs and their dETGs, while con-
straint 19 enforces the hierarchy between the dETGs and
aETG. Without these constraints, the SMT solver may pro-
duce repairs that cannot be implemented in the actual control
plane: e.g., a solution that includes the edge Ao — Ci in the
tcETG for S~»T (dashed line in Figure 4a) but excludes the
edge from the dETG for T (not shown) is invalid, because
traditional routing protocols do not allow routing adjacencies
to be enabled for only a single traffic class.

5.2 Minimizing ETG modifications

While all satisfying solutions to our SMT formulation (Fig-
ure 5) represent a HARC that is policy-compliant, the solution
computed by the solver may not result in minimal changes.
To help compute minimal repairs, we transform our SMT
problem into a MaxSMT problem. A MaxSMT problem
consists of a set of hard constraints that must be satisfied and
a set of soft constraints that should be maximally satisfied.
In CPR, the hard constraints come from our original SMT
formulation; they ensure the solution is correct. The soft con-
straints are derived from the original HARC produced from
the input configurations; they ensure the resulting HARC
is as similar as possible to the original. In this section, we
present the intuition and definition of a set of soft constraints
that seek to minimize the number of lines of configuration
changed. Similar sets of constraints can be constructed for
other objectives such as minimal number of devices changed;
we omit details for brevity.

Relating HARC modifications to configuration changes.
When constructing dETGs, we account for all control plane
constructs considered in the construction of the aETG (e.g.,
OSPF adjacencies) plus some additional constructs (e.g.,

static routes and route filters). Similarly, when construct-
ing tcETGs, we account for all control plane constructs con-
sidered in the construction of the corresponding dETG plus
some additional constructs (e.g., ACLs). If there are no addi-
tional constructs that apply to a specific destination or traffic
class, then the dETG (or tcETG) will have the same structure
as the aETG (or dETG). If the dETG (or tcETG) and aETG
(or dETG) contain different sets of edges, then for each edge
that exists in one but not the other, there must be a control
plane construct that causes the deviation.

Consequently, if we repair a dETG by adding or remov-
ing an edge without adding or removing the edge from the
aETG, then there must be a control plane construct we add
to the configuration (e.g., a static route or route filter) that
implements the modeled deviation. The same applies when
we add and remove edges to a tcETG without doing the same
in the corresponding dETG—although an edge in a tcETG
must exist in the dETG for the HARC to be valid (§4.3).
This implies that each deviation between a dETG and the
aETG, or a tcETG and its corresponding dETG, requires a
single configuration change. For example, if i edges present
in a dETG are removed from a corresponding tcETG, then
we need to add i (applications of) ACLs for the traffic class
associated with the tcETG. Similarly, if we add an edge to a
dETG without adding the edge to i of the tcETGs, then we
need to: (1) change the configurations to reflect the addition
of the edge in the dETG—e.g., remove a route filter—and (2)
make i configuration changes—e.g., add i deny statements to
an ACL—to prevent the i traffic classes from using the newly
available path.

In summary, the number of new ways in which a child ETG
deviates from its parent ETG as a result of repairs, plus the
number of new ways in which a child ETG now aligns with
its parent ETG, equals the number of configuration changes
required to implement the behavior modeled by the repaired
HARC. Since the aETG does not have a parent, any change
to the aETG is considered a new deviation or alignment.

Soft constraints. Since each new deviation or alignment be-
tween child and parent ETGs requires a configuration change,
and our goal is to minimize the number of lines of config-
uration changed, our soft constraints seek to minimize the
number of new deviations and alignments between child and
parent ETGs. Alternatively, we can cast this problem as maxi-
mizing the number of edges for which child and parent ETGs
continue to align or deviate as they do in the original HARC
constructed from the input configurations.

Each edge in the child ETG that continues to align with or
deviate from the parent provides one unit of utility, because
it avoids one configuration change. Thus, if we create a
soft constraint for every edge in a child ETG that requires
the edge to either align with or deviate from its parent, the
number of soft constraints will equal the total utility of the

Edge in original Soft constraint for the edge at each level
aETG dETG tcETG tcETG dETG aETG
v v v |edge;c. & edgegsiledgeys; < edgegyyy| edgeqy;
v v —edge;c edgegs, < edgegy| edgegy;
v v Invalid HARC
v edge;c © edgeqs, —edgegs, edgeaq;
v v |edgesc & edgegsy edgegs, —edgeqyy
v —edgesc edgegsy —edgegy;
v Invalid HARC
edgerc © edgeqsiledgeqs; < edgeqri|-edgean

Table 2: Soft constraints for finding minimal repairs

solution. Table 2 lists the precise soft constraints we use for
each possible edge in each tcETG for all combinations of
ETGs the edge currently exists in.

5.3 Scalability

While our MaxSMT formulation can identify a set of correct,
minimal HARC modifications, solving the problem for even
moderately sized networks is time consuming. For example,
computing a repair for a network with 45 routers and 120 PC3
policies (one per traffic class) requires 40 seconds (Figure 8b);
doubling the number of policies (and traffic classes) more
than quadruples the solving time. This raises an important
question: can we find correct HARC modifications faster if
we tolerate a repair that is close to, but not exactly, minimal?

To answer this question, we leverage our observation above
that doubling the number of traffic classes more than quadru-
ples the solving time. While we cannot ignore some of a
network’s traffic classes, we can formulate multiple MaxSMT
problems, each for a different subset of the network’s traffic
classes. At one extreme, we can formulate a single MaxSMT
problem that covers all traffic classes. On the other, we can
formulate a separate MaxSMT problem for each destina-
tion and solve them in parallel: e.g., one problem for R~U,
S~U, and T~~U in Figure 2a, and a separate problem for
R~T, $~T, and U~»T. In the absence of PC4 policies, the
solutions will not conflict, because routing can be customized
on a per-destination basis using route filters and static routes.
PC4 policies pose a challenge, because link costs cannot be
customized on a per-destination basis. However, conflicts can
be avoided by dividing traffic classes such that only one of the
problems involves PC4 policies and associated edge weight
computations. We cannot formulate MaxSMT problems at
finer granularity (e.g., per traffic-class), because we risk pro-
ducing a HARC that violates the hierarchy requirements—see
the end of §5.1 for an example.

In §8, we show that for real network configurations solving
a separate MaxSMT problem for each destination results in an
order of magnitude reduction in overall solving time without
any decrease in the minimality of repairs.

ETG Edge Configuration change
tcETG inter-device remove ¢c from ACL
tcETG intra-device invalid modification
dETG inter-device remove dst from route filter (if edge exists in
repaired aETG) OR add static route for dst
dETG intra-device remove dst from route filter
aETG inter-device enable routing
aETG intra-device enable route redistribution
Table 3: Translations for edge additions; the inverse

changes apply to edge removals

6 TRANSLATING HARC REPAIRS TO
CONFIGURATION CHANGES

The final step in CPR is to translate modifications made to
the HARC into actual configuration changes. We can deter-
mine how the HARC was modified by comparing the original
HARC generated from the broken configurations to the re-
paired HARC represented by the solution to our MaxSMT
problem. As discussed in §5.2, every edge we add or remove
from an ETG requires a corresponding configuration change.

Determining the type of control plane construct to add,
remove, or modify is simplified by the fact that each type of
ETG in the HARC considers a slightly broader set of control
plane constructs than its parent (§4.3). Consequently, if an
edge is added or removed from an ETG but not changed in
the parent ETG, then we need to modify one of the control
plane constructs that are considered in the construction of
the child ETG but not the parent ETG. For example, if we
remove an inter-device edge from a tcETG but not from its
corresponding dETG, then we need to change an ACL. How-
ever, if we remove an inter-device edge from a tcETG and
its associated dETG, then we need to change a static route or
route filter. Table 3 lists the type of configuration change that
needs to be made for each type of ETG and edge.

After determining the type of change that needs to be
made, we locate the precise stanza to change based on: (1)
the traffic class (tc) or destination (dst) associated with the
modified ETG, and (2) the process(es) and (for inter-device
edges) interfaces associated with the modified edge. We
then traverse the substanzas to locate the appropriate line
to modify, remove, or insert at. For example, to remove
tc from an ACL, we locate the ACL that is applied to the
edge’s source interface, and we check if the ACL contains
a deny statement for tc. If we locate a deny statement that
applies only to tc, then we remove it; otherwise, we add a
permit statement for tc at the beginning of the ACL. Sim-
ilarly, to enable routing between two processes, we locate
the router stanzas for the processes on each device, and we
add a network or neighbor stanza, for OSPF and BGP
processes respectively, that includes the interfaces associated
with the edge.

61K SJK

Policies (1000s)
K

Network

Figure 6: Policy mix in real data center networks

7 IMPLEMENTATION

Our implementation of CPR is written in Java (=10K LOC).
We use Batfish [18] to parse router configurations written in
vendor-specific languages (e.g., Cisco I0S) and modify the
ARC implementation [20] to generate HARCs based on the
parsed configurations. We use the Z3 theorem prover’s [3]
Java API to encode and solve our MaxSMT formulation.
We have made our implementation of CPR open source [1],
so that network operators and researchers can leverage it to
repair their network and expand its capabilities.

8 EVALUATION

We evaluate CPR along three dimensions: time to compute
repairs, minimality of repairs, and CPR-generated repairs
versus hand-written repairs.

We use configuration snapshots from 96 real data center
networks as well as synthetic configurations for vanilla fat-
tree topologies [5]. The real data center configurations come
from the same dataset we used in prior works [20, 22]; we
filter the dataset to only include networks that have at least
one policy change.7 The resulting set of 96 networks have
between 2 and 24 routers® (median is 8) and up to 82K traffic
classes (median is ~1K). The dataset does not include a
list of desired policies, so we infer the policies a network
satisfies in a particular snapshot using ARC’s verification
algorithms [20]. We only consider policies of type PCI and
PC3, because we do not know the location of waypoints
and cannot infer which paths an operator prefers. Figure 6
shows the mix of policies for each network; the networks
are stored by the total number of policies. The majority of
the networks have a policy for every traffic class; no traffic
class has multiple policies, because a traffic class cannot
both be always blocked (PC1) and always reachable (PC3).

7Many networks in the original dataset have only non-routing-related
changes (e.g. password changes or updates to Simple Network Management
Protocol (SNMP) settings).

8The networks also contain dozens of switches. We exclude them because
they operate at a lower layer of the network stack that ARC does not capture.

To compute repairs, we feed the inferred policies and the
configurations from the preceding snapshot into CPR.

We also generate configurations for fat-tree topologies of
varying port counts [5]. All routers run OSPF. We include
ACLs on all core switches to block or permit certain traffic
classes, such that hosts in different pods are always blocked
(PCI) or always reachable (PC3), respectively. We also
include waypoints on half of the core—aggregation links, and
block traffic on the remainder, such that hosts in different
pods always traverse a waypoint (PC2). Finally, we assign
lower costs to the links between the first core switch and
the connected aggregation switches to induce primary paths
(PC4). We break the configurations by inverting the ACLs
and assigning lower costs to the links of a different core
switch. We have publicly released the code for generating
the configurations [1].

All experiments are conducted on servers with 10-core
Intel ES 2.4GHz CPUs and 128GB of RAM. We set a time
limit of 8 hours on all experiments.

8.1 Time to Compute HARC Repairs

We first evaluate the time required to compute HARC repairs.

Real data centers. We compute HARC repairs for each of
the 96 real data center networks using both a single MaxSMT
problem that encompasses all traffic classes (maxsmt-all-
tcs) and multiple MaxSMT problems that each encompass
one destination (maxsmt-per-dst). Figure 7 shows the time
required to repair each network at each problem granularity;
we order the networks by the number of policies. We observe
that maxsmt-all-tcs takes more than an hour in 58% of the
networks, and for 30% of the networks does not even finish
in the time limit we set (8 hours). In contrast, computing
repairs separately for each group of traffic classes with the
same destination (maxsmt-per-dst), reduces the computation
time by one to two orders of magnitude. Using this approach,
repairs for 86% of the networks were computed in less than a
minute and 99% completed in less than an hour.

Several factors contribute to this substantial decrease. First,
each MaxSMT problem has fewer boolean variables and con-
straints, because it encompasses fewer traffic classes and
policies. A simpler problem is faster to solve. Second, we
can ignore destinations for which there are no policy viola-
tions, thereby reducing the number of problems we need to
solve. Finally, using multiple MaxSMT problems provides an
opportunity for parallelism: running 10 MaxSMT problems
in parallel, we can compute repairs for 98% of the networks
in less than a minute and all complete in less than an hour.
Thus, our approach for improving scalability (§5.3) offers
substantial performance improvements.

The differences in computation time across networks are
due to several factors. The time required to compute repairs

—6— maxsmt-all-tcs
maxsmt-per—dst §

0 20 40 60 80

Network

Figure 7: Time required to compute repairs for real data
center networks

using maxsmt-all-tcs is most strongly correlated with the
number of policies that need to be satisfied (Pearson cor-
relation coefficient of 0.49), because additional constraints
must be added for each policy (§5.1). There is also a weak
correlation (0.2) with network size. With maxsmt-per-dst, the
time to compute repairs is most strongly correlated with the
number of policies that are violated in the original configura-
tions (correlation coefficient of 0.34), because we only need
to formulate and solve a MaxSMT problem for destinations
for which there is at least one violated policy.

Synthetic fat-tree configurations. To better understand
which factors affect CPR’s performance, we conduct three
different experiments using our synthetic fat-tree configura-
tions.

In the first experiment, we vary the classes of policies the
network must satisfy, while keeping the network size (a 4-port
fat-tree with 20 routers) and number of policies (12) constant.
Figure 8a shows the time required to compute repairs for
each type of policy using maxsmt-all-tcs and maxsmt-per-dst;
we exclude maxsmt-per-dst results for PC4, because we can-
not formulate multiple MaxSMT problems that involve this
policy class (§5.3). We observe that always reachable (PC3)
policies are the fastest to repair while primary path (PC4)
policies are the slowest. Primary path policies are substan-
tially more complex to repair, because the possible values of
the cost variables (cost'~%2) are virtually limitless, whereas
the constraints for the other policies only involve boolean
variables. We also again observe that using maxsmt-per-dst
results in an order-of-magnitude improvement in repair times
compared to maxsmt-all-tcs.

Next, we vary the number of policies the network must
satisfy, while keeping the type of policies and network size
(a 6-port fat-tree with 45 routers) constant. Figure 8b shows
the time required to compute repairs for three of the policy
classes using maxsmt-per-dst,; we exclude PC4 for the reason
noted above. We see an exponential increase in repair times
as the number of policies increases. This stems from the fact
that each new policy adds additional boolean variables to

‘o ‘o
o | B maxsmt-all-tcs
- O maxsmt-per—dst o
-
P =N
OR== ~ =
g \ OE) —— PC1
. I:| |
- I:| i
-] ' n

PC1 PC2 PC3 PC4 0 sdo 1doo 1500

Policy class Number of policies
(a) Policy class (b) Number of policies

=
o

B

E 2

o < —o— PC1

£ o / PG2

= PC3
9_ Pl

T T T T T T
0 50 100 150 200 250
Number of routers

(c) Network size

Figure 8: Impact of different factors on the time required
to compute repairs

the problem (e.g., path;.”* for PC1, nwpath,.” " for PC2,
and edgek;!” for PC3). Each new variable doubles the
space of possible solutions (although the number of solutions
tried by the solver increases by much less due to the way it
navigates the solution space). For PC/ and PC2 the increase
tapers off as as we approach the maximum number of policies
the network can support, which is dictated by the maximum
number of hosts the fat-tree can support. This stems from
the fact that the number of allowed paths dwindles as more
traffic classes must be blocked or routed through a waypoint,
thereby giving the solver fewer viable options to explore.

Finally, we vary the size of the network, while keeping
the type and number of policies (30) constant. Figure 8c
shows the time required to compute repairs for three of the
policy classes using maxsmt-per-dst; we again exclude PC4
for the reason noted above. For PCI and PC2, we again see
an exponential increase in repair times as the network size
increases, because each new routing process and physical link
adds additional edge possibilities (edge,:”). For PC3, the
increase is more drastic, because K additional edge variables
are added to the problem for each new physical link.

8.2 Minimality of Repairs

Next, we evaluate the minimality of repairs computed by
CPR under the two different granularities of MaxSMT for-
mulations. From Figure 9, we observe that computing repairs

1(|)2 1(|)3

maxsmt-all-tcs (# lines)
10

1
|

| T | I
1 10 10° 10°

maxsmt-per—dst (# lines)

Figure 9: Number of lines of configuration changed us-
ing multiple versus a single MaxSMT problem

Figure 10: Example network that satisfies “S; — D is
always blocked” and violates “S, — D is always blocked”

using maxsmt-per-dst always results in the same number
of lines of configuration changed compared to computing
repairs over all traffic classes (maxsmt-all-tcs). Thus, in prac-
tice, solving multiple smaller MaxSMT problems to boost
performance (§5.3) does not come at a cost of reduced mini-
mality.

8.3 Comparison with Hand-written Repairs

Finally, we compare repairs produced by CPR with repairs
hand-written by network operators. We extract the latter by
“diff’ing” successive configuration snapshots. Some changes
made by operators have no bearing on routing or forwarding—
e.g., updates to router login credentials or Simple Network
Management Protocol (SNMP) settings; we ignore all non-
routing and non-forwarding related differences between snap-
shots. We compare the CPR-produced and hand-written re-
pairs along three dimensions: number of traffic classes im-
pacted, number of lines of configuration changed, and time
required. For brevity, we only present results for maxsmt-per-
dst; the results for maxsmt-all-tcs are similar.

Traffic classes impacted. Figure 11a shows the fraction of
traffic classes (TCs) impacted by CPR-produced versus hand-
written repairs; each point corresponds to a single pair of
successive configuration snapshots. In 60% of the cases, less
than 5% of a network’s traffic classes are impacted by repairs.
However, hand-written repairs impact more traffic classes
than CPR-produced repairs in 53% of the total cases (and
the same number of traffic classes in the remaining 47% of

— o
0 Q-] — o]
Ow @~
'_

- o £
O T ;
0\0 =5 |
<5 | 7 2
o™ ?
©

e 2

[eV)

2 s
= IS

E 2+ 7]
% 3

g o] € _|

0 10 20 30 4o 50 i 10 107
hand-written (% of TCs) hand-written (# lines)

(a) Fraction of traffic classes (b) Lines of configuration
impacted changed

Figure 11: CPR-produced versus hand-written repairs

cases), despite both types of repairs realizing the same set
of policies. This stems from CPR’s minimality goals: CPR
avoids changing an ETG even if a change to the ETG would
have no bearing on policy compliance for the corresponding
traffic class. Consequently, CPR minimizes changes more
than necessary. For example, consider the unrepaired network
in Figure 10 that satisfies the policy “S; — D is always
blocked” but violates the policy “S, — D is always blocked.”
An operator may choose to disable the routing adjacency
between Y and Z, which impacts both traffic classes, whereas
CPR may choose to add an ACL on Z to block all incoming
traffic from S,, which only impacts the S, — D traffic class.
Both repairs require changing the same number of lines of
configuration, and both result in a policy-compliant network,
but the operator’s repair impacts twice as many traffic classes
as the CPR’s repair. This implies CPR could be more lax in
its minimality objectives, potentially allowing CPR to find
repairs faster.

Number of lines changed. Figure 11b shows the number
of lines of configuration changed in CPR-produced versus
hand-written repairs. We observe that CPR-produced repairs
require changing the same or fewer number of lines of con-
figuration in 79% of the cases. This trend partially stems
from our previous observation that CPR-produced repairs
impact fewer traffic classes than hand-written repairs. More
importantly, it indicates that CPR is able to identify simpler
repairs than human operators.

The cases where CPR-produced repairs require changing
more lines than hand-written repairs are the result of unopti-
mized ACL rules. CPR currently translates each HARC modi-
fication in isolation, without considering whether translations
could be merged—e.g., a single ACL rule could encompass
changes for multiple traffic classes. Improving CPR’s trans-
lation process, e.g., using firewall rule optimization algo-
rithms [19], is part of our planned future work.

Time to develop a repair. It is difficult to quantify how long
it takes a human to repair a network, because detecting viola-
tions, localizing the problem, and designing a fix are often
intermingled, and operators’ actions to complete these steps
are rarely logged [22]. Additionally, a substantial fraction
of the repair time is often spent on change management pro-
cesses, which involve peer reviewing repairs before they are
deployed. Consequently, we use the number of traffic classes
impacted and the number of lines of configuration changed in
a hand-written repair as proxy for the time taken for a human
to repair the network, because we expect larger repairs take
longer to write.

Interestingly, there is no correlation between the time taken
by CPR to compute a repair and the number of traffic classes
impacted or number of lines of configuration changed in a
hand-written repair: both have a Pearson correlation coef-
ficient of -0.02. Thus, CPR may be faster than humans at
computing some repairs and slower for others. A detailed
study of when CPR beats humans at computing repairs is an
interesting topic we plan to explore in future work.

9 DISCUSSION

In this section, we discuss a few of CPR’s qualitative limita-
tions and directions for future work.

Minimality versus simplicity of repairs. CPR’s objective
is to find repairs that minimize the number of changes made
to the network. This objective is driven by the fact that more
complex networks are more difficult to manage [9]. However,
a minimal repair may not always be the least complex way
to repair the network. For example, enabling route redistri-
bution requires only a single line of configuration, but route
redistribution is notorious for making networks significantly
more difficult for an operator to manage [31]. In the future,
we plan to explore how we can produce repairs that are both
minimal and easy for network operators to understand.

Protocols and features modeled by HARC. ARC, and by
extension HARC, only models the basic features of the most
common routing protocols (RIP, OSPF, and eBGP), along
with access control lists, route filters, static routes, and acyclic
route redistribution [20]. ARC does not model more ad-
vanced protocol features (e.g., OSPF areas and BGP local
preference), other common routing protocols (e.g., iBGP, IS-
IS, EIGRP, and LDP), or layer-2 protocols (e.g., spanning
tree). Consequently, CPR is restricted to repairing networks
that use the common protocols and features supported by
ARC. However, any improvements made to ARC will di-
rectly benefit CPR and allow it repair a larger range of net-
works. Moreover, as long as the semantics of ARC remain
unchanged, no changes are required to CPR to take advantage
of future improvements in ARC.

10 RELATED WORK

CPR’s vision is similar to that of Wu et al. [47] and Hojjat
et al. [25]. However, they focus on repairing control applica-
tions and forwarding rules, respectively, for software-defined
networks (SDNs), rather than configurations for distributed
control planes. Repairing distributed control planes is more
challenging, because repairs are constrained by the route
computation and selection algorithms supported by standard
protocols (e.g., OSPF computes least-cost paths using Di-
jsktra’s algorithm). Furthermore, Wu et al. base repairs on
observed traffic [47], and Hojjat et al. base repairs on the
network’s current failure state [25], so new problems may
arise if new traffic patterns emerge or the set of available links
changes. In contrast, CPR bases repairs on a specification
(i.e., policies) and considers all possible failure scenarios, so
the control plane is guaranteed to operate correctly’ until the
policies change (which may necessitate further repairs).

Several prior works [37, 14, 40, 23] have used constraint
solving to generate program repairs. DirectFix [37] is the
most similar to CPR, insofar as it represents a program as a
circuit and uses MaxSMT to identify a minimal set of circuit
connections that must be added or removed to satisfy the
target semantics. However, DirectFix’s notion of minimality
is based on syntactic similarity—which has also been em-
phasized in other work [12, 45, 42, 30]—whereas CPR is
concerned with the size of the change (in terms of number of
devices and lines of configuration). Nonetheless, we plan to
explore syntactic similarity of configuration changes in the
future, as it can make the repaired configurations easier for
network operators to understand.

In addition to constraint solving, program repair has been
conducted using abstract interpretation [33, 42], games [24],
mutation [13], and genetic algorithms [6, 32]. Several of
these approaches offer better scalability than constraint solv-
ing, and may allow for even faster computation of repairs.
In the future, we plan to explore the application of such
techniques to control plane repairs.

Synthesizing a network control plane directly from poli-
cies [48, 8, 39, 15] can avoid bugs in the first place. However,
this requires a wholesale replacement of the network’s cur-
rent control plane, which requires significant overhead and
network downtime.

11 CONCLUSION

Manually repairing distributed network control planes to con-
form to a diverse set of policies, under all failures, is a daunt-
ing task. Not only do network operators need to reason about
correctness across routers, traffic classes, and policies, they
also need to consider the complexity of the repair. Fortu-
nately, we have shown that it is possible to automatically

9Assuming the specification is complete.

generate correct, minimal control plane repairs using a care-
fully constructed encoding of the control plane’s semantics
and MaxSMT-based constraint solving. In particular, we in-
troduced a new hierarchical abstract representation for control
planes (HARC) that is well suited for network repair, and we
presented a MaxSMT formulation that encodes the requisite
characteristics a network’s HARC must and should satisfy to
obtain a repair that satisfies all policies through changes to
a minimal number of lines of configuration. Detailed eval-
uation of our system using real configurations from 96 data
center networks showed CPR produces repairs for 98% of
the networks in less than a minute, and these repairs required
the same or fewer configuration changes than hand-written
repairs in 79% of the networks.

12 ACKNOWLEDGEMENTS

We thank Saw Lin for his assistance with evaluation. Thanks
also to the anonymous reviewers and our shepherd Brad Karp
for their insightful feedback. This work is supported by
National Science Foundation grant CCF-1637427.

REFERENCES

[1] https://bitbucket.org/uw-madison-networking-research/arc.

[2] Cisco IOS configuration fundamentals command reference.
http://www.cisco.com/c/en/us/td/docs/ios/fundamentals/command/
reference/cf_book.pdf.

[3] The z3 theorem prover. https://github.com/Z3Prover/z3.

[4] R. Aharoni and E. Berger. Menger’s theorem for infinite graphs. Inven-
tiones mathematicae, 2008.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In SIGCOMM, 2008.

[6] A. Arcuri. On the automation of fixing software bugs. In International
Conference on Software Engineering (ICSE), 2008.

[7] R. Beckett, A. Gupta, R. Mahajan, and D. Walker. A general approach
to network configuration verification. In SIGCOMM, 2017.

[8] R. Beckett, R. Mahajan, T. Millstein, J. Padhye, and D. Walker. Don’t
mind the gap: Bridging network-wide objectives and device-level
configurations. In SIGCOMM, 2016.

[9] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity of
network management. In Symposium on Networked Systems Design
and Implementation (NSDI), 2009.

[10] D. Burton and P. L. Toint. On an instance of the inverse shortest paths

problem. Math. Program., 53:45-61, 1992.

D. Caldwell, S. Lee, and Y. Mandelbaum. Adaptive parsing of router

configuration languages. In IEEE Internet Network Management Work-

shop (INM), 2008.

[12] L. D’Antoni, R. Samanta, and R. Singh. Qlose: Program repair with
quantiative objectives. In International Conference on Computer Aided
Verification (CAV), 2016.

[13] V. Debroy and W. E. Wong. Using mutation to automatically suggest
fixes for faulty programs. In International Conference on Software
Testing, Verification and Validation (ICST), 2010.

[14] F. Demarco, J. Xuan, D. L. Berre, and M. Monperrus. Automatic
repair of buggy if conditions and missing preconditions with SMT. In

[11

International Workshop on Constraints in Software Testing, Verification,
and Analysis (CSTVA), 2014.

[15] A.El-Hassany, P. Tsankov, L. Vanbever, and M. Vechev. Network-wide
configuration synthesis. Technical Report 1611.02537, arXiv, 2016.

[16] S.K.Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar,
and G. Varghese. Efficient network reachability analysis using a suc-
cinct control plane representation. In Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[17] N. Feamster and H. Balakrishnan. Detecting BGP configuration faults
with static analysis. In Symposium on Networked Systems Design and
Implementation (NSDI), 2005.

[18] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,
R. Mahajan, and T. Millstein. A general approach to network config-
uration analysis. In Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[19] E. W. Fulp. Optimization of network firewall policies using directed
acyclic graphs. In IEEE Internet Mgmt Conf, 2005.

[20] A.Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan. Fast
control plane analysis using an abstract representation. In SIGCOMM,
2016.

[21] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan.
Fast control plane analysis using an abstract representation. Technical
Report TR1838, University of Wisconsin-Madison, 2016.

[22] A. Gember-Jacobson, W. Wu, X. Li, A. Akella, and R. Mahajan. Man-
agement plane analytics. In Internet Measurement Conference (IMC),
2015.

[23] D. Gopinath, M. Z. Malik, and S. Khurshid. Specification-based pro-
gram repair using SAT. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS),
2011.

[24] A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs
with an application to C. In International Conference on Computer
Aided Verification (CAV), 2006.

[25] H. Hojjat, P. Riimmer, J. McClurg, P. Cerny, and N. Foster. Optimizing
horn solvers for network repair. In Formal Methods in Computer-Aided
Design (FMCAD), 2016.

[26] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte. Real time network policy checking using header space anal-
ysis. In Symposium on Networked Systems Design and Implementation
(NSDI), 2013.

[27] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In Symposium on Networked Systems
Design and Implementation (NSDI), 2012.

[28] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veri-
Flow: Verifying network-wide invariants in real time. In Symposium
on Networked Systems Design and Implementation (NSDI), 2013.

[29] E. Kneuss, M. Koukoutos, and V. Kuncak. Deductive program repair.
In Computer Aided Verification (CAV), 2015.

[30] R. Konighofer and R. Bloem. Automated error localization and correc-
tion for imperative programs. In International Conference on Formal
Methods in Computer-Aided Design (FMCAD), 2011.

[31] E Le, G. G. Xie, D. Pei, J. Wang, and H. Zhang. Shedding light on the
glue logic of the internet routing architecture. In SIGCOMM, 2008.

[32] C.Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each. In International Conference on Software Engineering (ICSE),
2012.

[33] F. Logozzo and T. Ball. Modular and verified automatic program re-
pair. In ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2012.

[34] R. Mahajan, D. Wetherall, and T. E. Anderson. Understanding BGP
misconfiguration. In SIGCOMM, 2002.

[35] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T.
King. Debugging the data plane with Anteater. In SIGCOMM, 2011.

[36] G. S. Malkin. Rip version 2. STD 56, RFC Editor, November 1998.
http://www.rfc-editor.org/rfc/rfc2453.txt.

[37] S. Mechtaev, J. Yi, and A. Roychoudhury. Directfix: Looking for
simple program repairs. In International Conference on Software Engi-
neering (ICSE), 2015.

[38] J. Moy. Ospf version 2. STD 54, RFC Editor, April 1998. http://www.
rfc-editor.org/rfc/rfc2328.txt.

[39] S. Narain, G. Levin, S. Malik, and V. Kaul. Declarative infrastruc-
ture configuration synthesis and debugging. Journal of Network and
Systems Management, 16(3):235-258, Sept. 2008.

[40] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. Semfix:
program repair via semantic analysis. In International Conference on
Software Engineering (ICSE), 2013.

[41] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4 (bgp-4).
RFC 4271, RFC Editor, January 2006. http://www.rfc-editor.org/rfc/
rfc4271.txt.

[42] R.Samanta, J. V. Deshmukh, and E. A. Emerson. Automatic generation
of local repairs for boolean programs. In Formal Methods in Computer-
Aided Design (FMCAD), 2008.

[43] R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu. Symnet: Scal-
able symbolic execution for modern networks. In SIGCOMM, 2016.

[44] Y.-W. E. Sung, X. Tie, S. H. Wong, and H. Zeng. Robotron: Top-down
network management at facebook scale. In SIGCOMM, 2016.

[45] C. von Essen and B. Jobstmann. Program repair without regret. In
International Conference on Computer Aided Verification (CAV), 2013.

[46] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically
finding patches using genetic programming. In International Confer-
ence on Software Engineering (ICSE), 2009.

[47] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo. Automated bug
removal for software-defined networks. In Symposium on Networked
Systems Design and Implementation (NSDI), 2017.

[48] Y. Yuan, R. Alur, and B. T. Loo. NetEgg: Programming network poli-
cies by examples. In Workshop on Hot Topics in Networks (HotNets),
2014.

[49] P. Zave, R. A. Ferreira, X. K. Zou, M. Morimoto, and J. Rexford.
Dynamic service chaining with dysco. In SIGCOMM, 2017.

[50] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. A survey
on network troubleshooting. Technical Report TR12-HPNG-061012,
Stanford University, June 2012.

	Introduction
	Background and Challenges
	Network Control Planes
	Challenges in Automated Repair

	Control Plane Repair (CPR)
	Modeling Control Plane Semantics
	Abstract Representation for Control Planes (ARC)
	Limitations of ARC
	Hierarchical ARC (HARC)

	Minimally Repairing HARC
	Repair as Constraint Solving
	Minimizing ETG modifications
	Scalability

	Translating HARC Repairs to Configuration Changes
	Implementation
	Evaluation
	Time to Compute HARC Repairs
	Minimality of Repairs
	Comparison with Hand-written Repairs

	Discussion
	Related Work
	Conclusion
	Acknowledgements

