THE KADISON-SINGER PROBLEM

MARCIN BOWNIK

ABSTRACT. We give a self-contained presentation of results related to the Kadison-Singer
problem, which was recently solved by Marcus, Spielman, and Srivastava [35]. This problem
connects with an unusually large number of research areas including: operator algebras
(pure states), set theory (ultrafilters), operator theory (paving), random matrix theory,
linear and multilinear algebra, algebraic combinatorics (real stable polynomials), algebraic
curves, frame theory, harmonic analysis (Fourier frames), and functional analysis.

1. INTRODUCTION

The goal of this paper is to give a self-contained presentation of mathematics involved
in Kadison-Singer problem [33]. This problem was shown to be equivalent to a large num-
ber of problems such as: Anderson paving conjecture [3, 4, 5], Bourgain—Tzafriri restricted
invertibility conjecture [10, 11, 12], Akemann—Anderson projection paving conjecture [1],
Feichtinger conjecture [15, 16, 26], R. conjecture [21], and Weaver conjecture [45]. The
breakthrough solution of the Weaver conjecture [45] by Marcus, Spielman, and Srivastava
[35] has validated all of these conjectures.

While a lot has been written about Kadison-Singer problem before it was solved [12, 15,
16, 17, 18, 19, 21] and after its solution [23, 36, 41, 42, 43, 44|, we believe that there is still
a space and an interest for yet another presentation which would present consequences of
the solution of Kadison-Singer problem in an optimized form. We have aimed at presenting
the material in a modular form as a sequence of implications which are largely independent
of each other. This paper is the result of the author’s attempts at achieving this goal. It
is based on a series of lectures on the subject given by the author at University of Oregon,
University of Gdansk, Institute of Mathematics of Polish Academy of Sciences, and Tel Aviv
University. The author is grateful for the interest and hospitality of these institutions.

The general outline of the paper can be described by the following diagram:

(KS) < (PB) < (PS) < (PR) < (PP%) <= (KSP)=(KS, )<= (MSS)«<=(MCP)

¢ 4
(PPs) < (KS3°) (FEI) = (R.) = (BT)

Date: May 17, 2018.

The author is grateful for useful conversations on the Kadison-Singer problem with Bernhard Bodmann,
Jean Bourgain, Pete Casazza, Bill Johnson, Adam Marcus, Gideon Schechtman, Darrin Speegle, and partic-
ipants of the AIM workshop “Beyond Kadison-Singer: paving and consequences” in December 2014 and the
MSRI workshop “Hot Topics: Kadison-Singer, Interlacing Polynomials, and Beyond” in March 2015. The
author was partially supported by NSF grant DMS-1265711 and by a grant from the Simons Foundation
#426295.

1



The above symbols represent abbreviations used throughout the paper. The most impor-
tant are: the original Kadison-Singer problem (K.S), Weaver’s conjecture (KS,), Marcus-
Spielman-Srivastava solution (MSS), and its mixed characteristic polynomial formulation
(MCP). In this paper we will prove all of the above implications including the proof of the
core statement (MCP).

1.1. Notes. The existing literature discussing the solution of the Kadison-Singer problem is
quite varied. It gives a deeper appreciation for the many areas of mathematics this problem
has touched. Tao [42] has written a beautiful exposition containing a simplified proof of the
solution. Tanbay [41] has given a nice entertaining historical perspective on the Kadison-
Singer problem. Matheron [36] gives a long and exhaustive exposition (in French), primarily
from the viewpoint of operator algebras. Valette [44] has written a Bourbaki exposition (in
French). Casazza, who has worked and popularized the Kadison-Singer problem, has written
a joint paper with Tremain [23] discussing consequences of the solution. Timotin [43] gives
another presentation of the proof of the Kadison-Singer problem. Harvey [30] gives a gentle
introduction aimed at readers without much background in functional analysis or operator
theory. Finally, the book by Stevens [39] contains a relatively elementary and self-contained
account of the Kadison-Singer problem and its proof.

2. FrRoM KADISON-SINGER PROBLEM TO WEAVER’S CONJECTURE

2.1. Kadison-Singer Problem. We start with the Kadison-Singer problem [33], now a
theorem, which was originally formulated in 1959.

Definition 2.1. Let D C B(¢*(N)) be the algebra of diagonal matrices. A state s : D — C
is a positive bounded linear functional (A > 0 = s(A) > 0) such that s(I) = 1. A state
is pure if it is not a convex combination of other states.

Theorem (KS). Let s : D — C be a pure state. Then, there exists a unique state § :
B((*(N)) — C that extends s.

The original formulation of Kadison-Singer problem involves the concept of a maximal
abelian self-adjoint (MASA) subalgebra A of B(H), where H is an infinite-dimensional sep-
arable Hilbert space. Kadison and Singer [33] have shown that every MASA A decomposes
into discrete and continuous parts. More precisely, there exists an orthogonal decomposition
H =Hy® H. with P denoting the orthogonal projection of H onto H4 such that:

o Ay ={PA|y, : A e A} is a discrete MASA, i.e., A, is the commutant of the set of
its minimal projections,
o A. = {(I— P)Aly, : A € A} is a continuous MASA, i.e., A. contains no minimal
projections.
An example of a continuous MASA A, are multiplication operators on L?[0, 1] by functions
in L>°[0,1]. Kadison and Singer have shown that as long as H. # {0}, there exists a pure
state on A, which has non-unique state extensions on B(#). They have hinted [33, §5] that
the same might hold in general though they were careful to state this in a form of a question,
rather than a conjecture.

Problem (Kadison-Singer). Let H be an infinite-dimensional separable Hilbert space and let
A be a discrete mazimal abelian self-adjoint subalgebra (MASA) of B(H). Does every pure

state on A extend to a unique pure state on B(H)?
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One can show that every discrete MASA A is unitarily equivalent with the diagonal
matrix algebra D in Theorem (KS). That is, there exists a unitary U : H — ¢*(N) such
that A = U*DU. Hence, Theorem (K S) gives an affirmative answer to the Kadison-Singer
problem.

Clearly, the diagonal matrix algebra D is isometrically isomorphic with ¢*°(N). That is,
x € *°(N) corresponds to diagonal operator diag(x) with sequence x on the main diagonal.
Pure states on *°(N) can be described in terms of the ultrafilters.

Definition 2.2. Let F be a collection of non-empty subsets of N. We say that F is a filter
if:

(1) ifFl,...,FnEf,nZ 1, then Flﬂan GF,

(ii) if F € Fand F C G CN, then G € F.
We say that U/ is an ultrafilter, if it is a maximal filter with respect to the inclusion partial
order. Equivalently,

(iii) for any A C N, either A €U or N\ A € U.
Given an ultrafliter U, we can define the concept of a limit of a bounded sequence on N.

Definition 2.3. Fix an ultrafilter Y. Let z = (z;)jen € (*(N). For any subset A C N,
define
Ca=A{z;:je A} cC.
We define
limr =2y < {xo} = Cy.
=0 = fooh = )

It is easy to see that the above limit is always well-defined. The intersection of any finite
family of compact sets C'4, A € U is non-empty. Hence, the entire intersection is non-empty
as well. Moreover, it consists of exactly one point. On the contrary, if it contained two
points xg # T, then we would consider the set

A= {] eN: |ZEj — .I‘0| < |l’0 — .f0|/2}
Then by the ultrafilter property (iii), we have two possibilities. Either A € U, which forces

Ty outside the intersection (1), Ca, or N\ A € U, which forces ¥, outside. Either way, the
above intersection must be a singleton.

Lemma 2.1. There is one-to-one correspondence between pure state on the algebra D of
diagonal matrices and ultrafilters on N. More precisely, each pure state s on D = (*°(N) is
of the form

(2.1) s(diag(z)) = liLr{nx for all x € (*°(N)
for some unique ultrafilter U.

Proof. Suppose that s is a pure state on (*(N). For A C N, let P4 be the orthogonal
projection of ¢*(N) onto span{e; : j € A}, where {¢;};en is a standard o.n. basis of £?(N).
Define

U={ACN:s(Py) =1}
We claim that I/ is an ultrafilter. This can be shown in two ways. The Cech-Stone com-

pactification of N is a maximal compact Hausdorff space SN, which contains N as a dense
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subset. By the universal property of SN, the space ¢>°(N) is isometrically isomorphic with
C(pN). By the Riesz representation theorem, positive functionals on C'(SN) are identified
with positive regular Borel measures. Hence, s corresponds to a probabilistic measure on
BN. In addition, since s is pure, this measure must be a point measure on SN. In particular,
s is commutative. Hence, s(P4) = s(P4)?, which implies that s(P4) € {0,1}. Likewise,

(2.2) $(Pang) = s(Pa)s(Pg) for any A, B C N,

which implies that U/ is an ultrafilter.

This can also be seen by a direct argument as follows. Since P4 and I — Py = Py 4 are
both positive, we have 0 < s(P4) < s(I) = 1. Suppose that s(P4) = 0 for some 0 < 0 < 1.
Then, we can write s = @s1 4 (1—0)s,, where s1(T) = $5(PsT) and s5(T) = 1155((I— P4)T)
for T € D. It is easy to show that s; and sy are states on D, which contradicts that s is a
pure state. Consequently, s(P4) € {0,1}. By the positivity of s, it is clear that (2.2) holds

if either s(P4) =0 or s(Pg) = 1. Now, if s(P4) = s(Pg) = 1, then
s(Pwang)) = s(Pwaump) < s(Fwna) + s(Pans) =0,
This shows (2.2), which again implies that U/ is an ultrafilter.

Every z € (*(N) can be approximated in norm by simple functions, i.e., finite linear
combinations of indicator functions 14, for disjoint subsets A, C N, ¢« = 1,...,n. By
definition
1 A el,

0 otherwise.

S<diag<1A¢)) = S(PAi) = hLI{n 14, = {

Thus, (2.1) holds for indicator functions and by the density argument for all x € ¢>°(N). This
implies that two distinct pure states must correspond to distinct ultrafilters, which shows
one-to-one correspondence. 0

2.2. Paving conjectures. To crack Theorem (KS) Anderson has proposed the concept of
paving. We will adopt the following definition.

Definition 2.4. Let T € B(¢*(I)), where I is at most countable. We say that 7" has (r,¢)-
paving if there exists a partition {Ay,..., A, } of I such that

(2.3) [Py, TPy, <el|T)] forj=1,...,r

Here, for A C I, let P4 be the orthogonal projection of ¢*(I) onto span{e; : i € A}, where
{ei}icr is a standard o.n. basis of ¢*(I).

The following result states the paving conjecture for bounded operators with zero diagonal.

Theorem (PB). For every e > 0, there exists r = r(e) such that every T € B(¢*(I)) with
zero diagonal can be (r,e)-paved.

We are now ready to establish the first implication in our scheme.
Lemma 2.2. (PB) = (KJS).

Proof. Let E : B(¢*(N)) — D be the non-commutative conditional expectation which erases
all off-diagonal entries. That is, for any T € B(¢*(N)), let E(T) be the diagonal operator
which has the same diagonal entries as 7. Let s be any pure state on D. It is easy to show
that 5(T) = s(E(T)), T € B({*(N)), defines a state extending s. Hence, the difficult part is

showing the uniqueness.
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Let 5: B((*(N)) — C be any state extending s. Since
S(T) = 5(T — E(T)) + s(E(T)),
it suffices to show that
(2.4) 5(T)=0  forall T € B(f*(N)) with E(T) = 0.

By (PB) for any € > 0 we can find Ay,..., A, such that (2.3) holds. By the ultrafilter
property, there exists jo € [r] := {1,...,r} such that

s(Pa;) = 65, for j € [r].

One can easily verify that
(T, Ty) == 35(NWT3) T, Ty € B(*(N)),

defines a semidefinite inner product on B(¢*(N)). In particular, by the Cauchy-Schwarz
inequality we have

5(MT3)1* < 3(TVTY)3(TLT3).
Thus, for any j # jo and R € B(¢*(N)) we have

0= §(RPy,) = §(Pa,R).

We conclude that

Z (TPa,) = 3(TP, ) = 5(Pa, TPa, ).

Thus, [3(T)] < |[Pa;, TPa,,|| S el|T||. Since € > 0 is arbitrary, this shows (2.4). O

Paving conjectures can be formulated for smaller classes of operators than bounded (PB)
such as: self-adjoint operators (PS), reflections (PR), and projections (PP%).

Theorem (PS). For every e > 0, there exists r = r(e) such that every self-adjoint operator
S on (*(I) with zero diagonal can be (r,€)-paved.

Theorem (PR). For every e > 0, there exists 1 = r() such that every reflection R on ¢*(I),

i.e., R=R* and R* =1, with zero diagonal can be (r,&)-paved.

Theorem (PP%). For every € > 0, there exists r = r(g) such that every projection P on

(*(I), i.e., P = P* and P*> = P, with all diagonal entries equal to § can be (r, =)-paved.
While the implication (PS) = (PB) is trivial, we need to show the converse implication.

At the same time we shall keep track how the paving parameters (r, ) are affected by these

implications.

Lemma 2.3. (PS) holds for (r,e) = (PB) holds for (r?,2¢).

Proof. Take any T € B(¢*(I)) with E(T) = 0. We decompose it as sum of self-adjoint and
skew-adjoint operators

T+Tr T7-T
—; 7S2: .

By the paving property (PB) for S; and iSs = (iS3)* we can find partitions {Ay,..., A, }
and {By, ..., B,} such that

HPAZ‘QBJ‘SlPAZ‘ﬂBjH S HPAZSlPAZ

T=25+5, where S| =

I <ellTll 45 el
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Since the same estimate holds for S, we have

[ Pasns, T Pans; || < |[Pains; S1Pans; || + [|Pains; S2Pans; || < 2¢||T] 4,5 € [r].
Hence, the partition {A; N B;}; jep vields (r?, 2e) paving of T O
Lemma 2.4. (PR) holds for (r,e) = (PS) holds for (r,¢).

Proof. Take any S = S* € B(¢*(I)) with E(S) = 0. Without loss of generality assume that
|S]| = 1. Consider an operator R on ¢*(I) & ¢*(I) given by

S I-52
V- S '
A direct calculation shows that B> = I, R = R*, and E(R) = 0. That is, R is a reflection

on (*(IUTI'), where I' is a copy of the index set I. By (PR) there exists a partition of U I’
which yields (r,e) paving of R. Restricting this partition to I yields (r,e) paving of S. [

Lemma 2.5. (PPy) holds for (r, H2) = (PR) holds for (r%¢).

Proof. Take any reflection R € B(¢*(I)) with E(R) = 0. Define @ = (I + R)/2. Then, Q is
a projection Q = Q* = Q* with E(Q) = 1I Suppose that for some A C I we have

1+e¢

|[PAQPA|| < B := 5

Since () is positive this can be phrased in terms of the partial order < on self-adjoint operators
0 < PaQPs < BPy.

Since R = 2@) — I we obtain

(2.5) —Py < PyRPy < (28— 1)Py = €Pjy.

We repeat the same for a projection @1 = (I — R)/2. Assuming that for some B C I we
have

1+¢
|PpQ1Ps|| < B := 5
yields

Taking C'= AN B and combining (2.5) and (2.6) yields
(27) —€PC:—€P0PBP0§PcRP0§€P0PAPC:€P0.

Hence, ||PcRPc|| < €. By the paving property (P_Pl) we can find partitions {A;,..., A}

and {By, ..., B,} which produce (r, =)-paving of Q and @, resp. By (2.7) their common
refinement partition {C; ; = A; N B;}; jep vields (r?, e)-paving of R. O
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2.3. Weaver’s conjecture. Next, we will show that paving conjectures follow from Weaver’s
K S, conjecture, which was verified by Marcus, Spielman, and Srivastava [35]. We state it
in a general infinite dimensional form (/K S2°) and later deduce it from its finite dimensional
counterpart (KS,). We start with the standard definition in frame theory.

Definition 2.5. A family of vectors {u;};c; in a Hilbert space H is called a frame for H if
there are constants 0 < A < B < oo (called lower and upper frame bounds, respectively) so
that
(2.8) Allul> <> u,u)[” < Blluf*  for all u € H.

icl
If we only have the right hand inequality in (2.8), we call {u;};c; a Bessel sequence with

Bessel bound B. If A = B, {u;}ics is called a tight frame and if A = B = 1, it is called a
Parseval frame.

Theorem (KSX°). Let I be at most countable index set and let H be a separable Hilbert
space. Let {u;};e;r C H be a Bessel sequence with bound 1,

(2.9) S [wu)? <1 forall|lull =1 and  |lwl* <6 for alli.
el

Then for any positive integer r, there exists a partition {Iy,...,I,} of I such that each

{u;}ier,, k=1,...,r, is a Bessel sequence with the following bound
1 2
(2.10) Z |(u, w)|* < <W + \/5) for all ||u]| = 1.

i€ly,
Next we show how (KS:°) implies projection paving.
Lemma 2.6. (KS*) = (PP1).

Proof. Let Q be an arbitrary projection on 2(I) with E(Q) = %I. Define vectors u; = Qe;,

i € I, where {e;}ics is a standard o.n. basis of £2(I). Then, Q is represented by the Gram
matrix of {u;}er

1
Q = ((Qe:, Qej))ijer = ((wiyu))iger  and  [juil]” = 5 =4
The Gram matrix () = TT* is a composition of the analysis operator
T:H — (*(I) where Tu = ((u,u;))ie;  for u € H,
with the synthesis operator
T %) = H where Ta:Zaiui for a = (a;)ier € C*(I).
i€l
The frame operator is a composition of these operators, but in a reverse order
S:H-H  S=TT=> udu,
iel
where u; ® u; : H — H is a rank one positive operator given by

(u; @ u;)(u) = (u,u;)u;  for u € H.
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By (KS2), for any r € N, there exists a partition {/1,..., I} such that

}E:?Li@§1h

1€y,

_ ( L, )2 1,3
=\Ftw) St

The second equality is the consequence of the fact the norms of Gram and frame operator
are the same |[TT*|| = ||T*T||. Thus, Q can be (r, 1t)-paved for r = 36/¢2. O

|| Pr, QP || = ||({ws, uj))ijer|| =

Marcus, Spielman, and Srivastava [35] have shown the following version of Weaver’s con-
jecture. The key feature of (KS,) is independence of Bessel bound on a number of vectors
m and a dimension d.

Theorem (KS,). Let {u;}iepm C C* be a Parseval frame

(2.11) Z (u,u)? =1 for all |Jul| =1 and llwil|> <6 for all 4.
i=1
Then for any positive integer r, there exists a partition {Iy,..., 1.} of [m] such that each
2

{u;}ier,, k=1,...,r, is a Bessel sequence with bound (% + \/5) , i.e., (2.10) holds.

To deduce Theorem (K S2°) from (K S,) we will use the following fact, which is sometimes
referred to as a pinball principle. Its proof is essentially a combination of diagonal argument
with pigeonhole principle.

Lemma 2.7. Fiz a natural number r and assume for every natural number n, we have a
partition {I*}7_, of [n]. Then there are natural numbers {n, < ny < ---} so that if j € I.”
for some i € [r], then j € I' for all k > j. For anyi € [r] define I; = {j : j € I”}. Then,
(1) {I;}i_, is a partition of N.
(i) If I; = {j1 < jo < ---}, then for every natural number k we have
(s das - duy C L™

Instead of giving a separate proof of Lemma 2.7, we include its justification in the proof
of Lemma 2.8.
Lemma 2.8. (KS,) = (KSX>).

Proof. First, observe that the Parseval frame assumption (2.11) can be weakened by the
Bessel condition. Indeed, suppose that {u;}cjm is merely a Bessel sequence with bound 1
and ||u;||?> < 6. Define d x d matrix T as

=1

Since T is positive semidefinite, we can find vectors {u;}™, ., m’ > m, such that

T = Z u; & Uy and [w;||> < & for i > m + 1.
i=m+1
Indeed, it suffices to choose vectors u; to be appropriately scaled eigenvectors of T. Conse-

quently, {u;}ieim) becomes a Parseval frame for C? and by (K'S,) we can find a partition
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{I1,..., 1.} of [m'] such that corresponding subsets {u;};cs, have required Bessel bounds.
Restricting these partition to [m/| yields the same conclusion for {u;}icr,npm, K =1,...,7.
Now suppose {u; }ic; is an infinite Bessel sequence in a Hilbert space H as in (2.9). Since
I is countable, we may assume [ = N. For any n € N we can apply (KS,) to the initial
sequence {u;}icp). Hence, for each n € N we have a partition {I7,...,I"} of [n], which
yields required Bessel bounds. To show the existence of a global partition of {Iy,..., .} of
N satisfying (2.10), it suffices to apply Lemma 2.7. This boils down to repeated applications
of pigeonhole principle. The first vector u; must land infinitely many times to one of the
slots I, for some j; = 1,...,7. Let N; C N be the collection of such n. Then, we repeat the
same argument to the second vector uy for partitions of [n], where n € N;. Again, we can
find a slot I3, where the second vector us lands for infinitely many n € No C N;. Repeating
this process yields a nested sequence of infinite subsets Ny D Ny D ... and indices j1, jo, . . .
in [r] such that the initial vectors uy,...,u,,, m € N, all land to the same respective slots
Ir,.... I forall n € N, This yields a global partition of N by I, = {i € N : j; = k},
k € [r]. Thus, (2.10) holds when ) replaced by I N[m]. Letting m — oo shows the required
Bessel bound (2.10). O

An interesting special case of Weaver’s conjecture (K.S,) happens when r = 2.

Theorem (KS3°). Let I be at most countable index set and let H be a separable Hilbert
space. Let {u;}ier C H be a Parseval frame and ||u;||* < & for all i. Then, there erists a
partition {I1, Iy} of I such that each {u;}icr,, k = 1,2 is a frame with bounds

(2.12) S - 0(Vo) < 3l )P < S +ONE) o alul] =1

Lemma 2.9. (KS°) = (KS%).
Proof. (K S,) for r = 2 yields partition {I;, 5} such that

1
> [, u)? < §+\/%+5 for [|ul| =1, k=1,2.
i€l

Subtracting the equality (2.11) yields the lower bound in (2.12). O

Remark 2.1. Note that the bound (2.12) produces something non-trivial only for 0 < § <
(2 + \/5)_2 ~ 0.0857864. Casazza, Marcus, Speegle, and the author [13] have shown the
improved bound in (KS,). For 0 < § < %, the bound (2.12) holds where O(V/9) is replaced
by /26(1 —25). Therefore, by a variant of Lemma 2.6 we have the following variant of
paving for projections.
Theorem (PPj). Let 0 < § < 1/4. Every projection P on (*(I), i.e., P = P* and P*> = P,
with all diagonal entries < & can be (2,3 + /26(1 — 26))-paved.
2.4. Notes. Another well-known equivalent of the Kadison-Singer problem, which we didn’t
discuss here, is a relative Dixmier property studied by Berman, Halpern, Kaftal, and Weiss
7, 27, 28, 29]. Every bounded operator T € B(¢*(I)) satisfies

E(T) € conv{UTU* : U is a diagonal unitary on ¢*(I)}.

The connection of the Kadison-Singer problem with paving was investigated by Anderson

and Akemann [1, 3, 4, 5]. A streamlined presentation of paving implications presented here
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has been shown by Casazza, Edidin, Kalra, and Paulsen [18]. A pinball principle, Lemma
2.7, was shown in [16].
For each of the classes of matrices/operators considered above, such as:

(B) bounded matrices with zero diagonal,
(S) self-adjoint matrices with zero diagonal,
(P%) projections with £ on diagonal,

we can ask for the smallest r € N such that all matrices in this class have (r, €)-paving for
some ¢ < 1. By keeping track of the values in Lemma 2.6, we have shown (12,¢) paving
for (P% ) and thus (122, ¢) paving for (S) for some ¢ < 1. This was recently improved by
Ravichandran [38] who has shown (4, ) paving for (P% ) and thus (16, ) paving for (S5). It is
known that (2, ) paving does not work for (P%), see [20]. Does (3, ¢) paving work for (P%)?
Likewise, we can ask for largest ¢ such that (2,¢) paving works for all projections with ¢ on
diagonal. Paving property can be formulated for other operator norms and matrices with zero
diagonal. However, paving remains an open problem for operator /¥ norms, p # 2, though

Schechtman [40] has recently shown paving for the Schatten C), class norm for 2 < p < oo
extending earlier results of Berman, Halpern, Kaftal, and Weiss [§].

3. PROOF OF WEAVER’S CONJECTURE

Weaver’s conjecture is a consequence of the following probabilistic result due to Marcus,
Spielman, and Srivastava [35]. The special case was shown by Casazza, Marcus, Speegle,
and the author [13].

Theorem (MSS). Let € > 0. Suppose that vy,...,v, are jointly independent random
vectors in C?, which take finitely many values and satisfy

(3.1) ZE [vivf] =1 and  E[||v;]]?] <€ foralli.
i=1
Then,
(3.2) P ( D i < (14 \/E)2> > 0.
i=1

In the special case when vy, ..., v, take at most two values and € < 1/4, we have

IP’( §1+2\/E\/1—e>>o.

Lemma 3.1. (MSS) = (KS,).

m

E VU]

=1

Proof. Assume {u;};ejm C C* satisfies (2.11). For any r € N, let vy, ..., v, be independent
random vectors in (C4)®" = C" such that each vector v; takes r values

0 :

: 0
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each with probability % Then,

m D iy uiu; L,
ZE[UW:]: = = L4,
=1 D i Uy L,
and
E [||vz||2] = r|ju||* < € :=r0.

Hence, we can apply (MSS) to deduce (3.1). Choose an outcome for which the bound in
(3.2) happens. For this outcome define

I, = {i € [m] : v; is non-zero in k™ entry?}, for k=1,...,r
Thus, the block diagonal matrix

*
m r Ziéll uiui

=1 a
i r Zieh u;u;

has norm bounded by (1 + 1/€)?. This implies that each block has norm

Zuu < %(1+\/%)2 = (%+J§)2.

Since a rank one operator u; ® u; on C? is represented by the d x d matrix u;u}, we obtain
(KS,). O

3.1. Mixed characteristic polynomial. The main result of this section involves the con-
cept of a mixed characteristic polynomial (MCP).

Definition 3.1. Let Aq,..., A,, be d x d matrices. The mixed characteristic polynomial is
defined as for z € C by

m

plAr, . Anl(z) = (H(1 - azi)) det (ZI + f; ZZAZ-)

=1

z1=...=2m=0

By determinant expansion one can show that det (ZI + 30 zZ-AZ) is a polynomial in

Clz, 21, .., 2m) of degree < d. Hence, ulAy,...,Ay](2) is a polynomial in C[z] of degree
< d. These polynomials satisfy a number of interesting properties if Ay, ..., A,, are positive
definite.

Theorem (MCP). Let € > 0. Suppose Ay, ..., A, are d x d positive semidefinite matrices
satisfying
(3.3) Z A =1 and Tr(A;) <e foralli.

Then, all roots of the mized characteristic polynomial u[Ay, ..., Ay] are real and the largest

root is at most (1 + /€)%
11



It remains to accomplish two major tasks: prove the implication (MCP) = (MSS)
and then show (MCP). Before doing this we need to show a few basic properties of p.

Lemma 3.2. For a fized z € C, the mixed characteristic polynomial mapping
p: Mywa(C) X ... X Myyy(C) = C
1s multi-affine and symmetric. That is, v affine in each variable and its value is the same
for any permutation of its arguments Ay, ..., Ap,,.
Proof. First we shall prove that for any d x d matrix B, a function
f: Maxa(C) = C, f(A)) = (1—0,,)det(B+ z1A1)]|,=0 for Ay € Myxq(C)
is affine. Indeed, if B is invertible, then by Jacobi’s formula
f(Ay) = det(B) — det(B)d., det(I + 21 B~ A})|.,—0 = det(B)(1 — tr(B~'4)).

Since invertible matrices are dense in the set of all matrices, by continuity we deduce the
general case. Thus, for any choice of matrices A,,..., A,,, a mapping

(ded((c)’ Cm_l) =) (Al, 29y Zm) — (1 — 821) det (ZI + Z ZZAZ)

i=1
is affine in the A; variable and a polynomial of degree < d in zs, ..., z,, variables. Applying
linear operators, such as partial differential operators with constant coefficients (1 — 9.,),
i = 2,...,m, preserves this property. Consequently, the mapping A; — u[Aq,..., An](2)
is affine. The fact the p is symmetric is immediate from the definition. Hence, p is multi-

21=0

affine. O
Lemma 3.3. If Ay,..., A, are rank one d x d matrices, then the mized characteristic
polynomial is a characteristic polynomial of the sum A= A1+ ...+ A,

(3.4) WAy, ... Apl(z) = det(2I — A) z e C.

Proof. Any rank one matrix is of the from uv* for some u,v € C% By the Sylvester deter-
minant identity det(I + tuv*) = 1 4 tv*u for any ¢t € C. Hence, for any d x d matrix B the
mapping

Cot— det(B + tuv*) = by + blt, bo, b, € (C,
is affine. If B is invertible, then this follows by factoring out B, which reduces to the case
B = 1. Since invertible matrices are dense in the set of all matrices, by continuity we deduce
the general case. This implies that for fixed z € C, the polynomial

p(z1,. .., 2m) = det (zI+ZziA,~) =b+ Z iy - Qi 2y - - 2

i=1 1<i1 <...<ij<m

is affine multilinear in 21, ..., z,,. Hence, we can recover values of p by the following formula
p(tl, e ,tm) = (H(l + tiazi))p<21, Ce ,Zm)
i1 z21=...=2m=0
Taking t; = ... =1, = —1 yields
plAy, .. Anl(2) = p(—1,...,—1) = det(zI — A).
O



Lemma 3.4. Let Xy,...,X,, be d X d jointly independent random matrices, which take
finitely many values. Then,

(3.5) E X, ..., Xn](2)] = pE[Xi],....E[X.]l(z) 2€C.

In addition, if random matrices X;, i = 1,...,m, are rank one, then

(3.6) det (zI - ZX)] =pE[X1],...,E[X.]](z) ze€C.

Proof. By Lemma 3.2 for any matrices By, ..., B, and A, ..., A,, and coefficients pq, ..., p,
satisfying " p; = 1, we have

[szBuAQ,... } sz BZ,A27...,A ].
Then the joint independence of Xi,..., X,, ylelds (3.5). Combining (3.5) with Lemma 3.3
yields (3.6). O

3.2. Real stable polynomials. The proof of (MCP) = (MSS) relies on the concept
of a real stable polynomial.

Definition 3.2. Let C; = {z € C : Im(z) > 0} be the upper half plane. We say that a
polynomial p € Clz,...,2,] is stable if p(z1,...,2y,) # 0 for every (z1,...,2,) € C7'. A
polynomial is called real stable if it is stable and all of its coefficients are real.

Note that a univariate polynomial is real stable if and only if all its roots are real. We will
show a few basic properties of real stable polynomials.

Lemma 3.5. If Ay,..., A,, are positive semidefinite hermitian d X d matrices, then

p(z, 215+ Zm det(zI+Zzz Z)GCZ 21y ey Zm)]

18 a real stable polynomial.

Proof. 1f inputs z, z1, ..., 2z, are real, then the values p(z, z1, ..., z,,) are also real, since a
determinant of a hermitian matrix is real. Hence, p € R[z, 21,...,2,]. On the contrary
suppose that p(z, 21, ..., 2z,) = 0 for some (2, z1, ..., z,) € C7* That is,

(zI - Z ziAi)v =0 for some 0 # v € C"™1,
i—1

Hence,
0=1Im < (zI + Z ziAZ)v, v> = Im(2)||v||* + Z Im(z;)(Aw,v) > Im(2)||v|]* > 0,
i=1 =1
which is a contradiction. O]

Lemma 3.6. Suppose that p € R|zy, ..., 2] is stable.
e (restriction) for fized t € R, polynomial p(t,za,...,2m) € Rlza,..., 2zy] is stable
unless it is identically zero.

e (differentiation) if t € R, then (1 + t0,,)p is real stable.
13



Proof. By Hurwitz’s theorem, if a sequence of non-vanishing holomorphic functions { f,, }nen
on an open connected domain €2 C C™ converges uniformly on compact sets, then its limit
f is either non-vanishing or f = 0. Let Q = C7'. Define

fa(z1, ooy 2me1) =Dt +1/n, 21,00 Zm1) for (z1,...,2m-1) € 2, neN.

Letting n — oo, Hurwitz’s theorem implies the restriction property.

To show differentiation property we can assume that ¢t # 0. Fix z9,...,2z, € Q. By
definition q(z) = p(2, 2a, . . ., zm) € C|z] is stable. Hence, we can write ¢(2) = ¢ [],(z — w;)
for some roots wy,...,wy € C\ Cy. Then,

q(2) + td'(z _cH z—w; (sz—w)

Take any z € C,. Since Im(w;) < 0, We have z — w; € C,, and hence Im(1/(z —w;)) < 0
for all « = 1,...,d. Hence, Zl 1Z e has non-zero imaginary part. This implies that
q(z) +td'(2) #0 for any z € C,. Since 2,..., 2, € Q is arbitrary, (1 4 t0,,)p is stable. O

As a corollary of Lemma 3.5 and 3.6 we have:

Corollary 3.7. If Ay,..., A, are positive semidefinite hermitian d x d matrices, then the
mized characteristic polynomial p[Ay, ..., Ap] is real, stable, and monic of degree d.

The following elementary lemma plays a key role in our arguments. Recall that for any
p € R[z], p is stable <= p has all real roots. Let maxroot(p) be the largest root of p.

Lemma 3.8. Let p,q € R[z] be stable monic polynomials of the same degree. Suppose that
every convex combination (1 —t)p+tq, 0 <t <1, is also stable. Then for any 0 <ty <1,
maxroot(((1 — to)p + toq) lies between maxroot(p) and maxroot(q).

Proof. Without loss of generality we can assume maxroot(p) < maxroot(q) and 0 < tg < 1.
Our goal is to show that

m,, := maxroot(p) < maxroot(((1 — t)p + toq) < maxroot(q) =: m,.

For x > m,, both p(z) and ¢(x) are positive, and hence ((1 —to)p + toq)(z) > 0. This shows
the second inequality.

We shall prove the first inequality by contradiction. Suppose that (1 — tg)p + tog has no
roots [m,, my|. This implies that (1 —t¢)p+tog > 0 for all x > m,,. In particular, ¢(m,) > 0.
Hence, ¢ must have at least 2 roots (counting multiplicity) to the right of m,. Let D be an
open disk in C centered at m and radius ™ m” . We claim that

(1=t)p+tq)(z) #0 for allzeaD and top <t < 1.

Indeed, since (1 — ¢)p + tq is stable, this is easily verified at z = m, and z = m,. By
compactness

inf 1t t > 0.
o o (= P+ ta)(2)]
By Rouche’s theorem, polynomials (1 — ¢)p + tq have the same number of zeros in D for all
to <t < 1. This is a contradiction with the hypothesis that (1 — tq)p + tog has no roots in
D, but ¢ has at least 2 roots in D. O
14



Lemma 3.8 can be generalized to control other roots, such as second largest, third largest,
etc. This leads to a concept of an interlacing family of polynomials, which plays a funda-
mental role in the arguments of Marcus-Spielman-Srivastava [34, 35].

3.3. Interlacing family of polynomials. We shall not give the formal definition of this
concept. Instead, following Tao [42] we will use the following lemma.

Lemma 3.9. Let py,...,p, € R[z] be stable monic polynomials of the same degree. Suppose
that every conver combination

zn:tip,-, where zn:t,- =1,t>0
i=1

i=1
1s a stable polynomial. Then, for any such convexr combination there exists 1 < ig < n such
that

(3.7) maxroot(p;,) < maxroot (Z tipi>.

=1

Proof. Using Lemma 3.8 we can easily show (3.7) by induction on the number of polynomials

P15 Pn- ]
Lemma 3.10. Let X be a random rank one positive semidefinite dxd matriz. Let Ay, ..., A,
be d x d deterministic positive semidefinite matrices. Then with positive probability we have
(3.8) maxroot(u[X, Ay, ..., Ay]) < maxroot(u[E [X], A1, ..., An)).

Proof. Suppose that X takes values By, ..., B,. Define polynomials p; = u[B;, A, ..., Anl,
t = 1,...,m. By Corollary 3.7 these are real stable, and monic polynomials of degree
d. Moreover, any convex combination » . t;p; is also stable. Indeed, consider a random
variable Y taking values By, ..., B, with probabilities ty,...,%,, resp. By Lemma 3.4 and
Corollary 3.7

thpl— ulY, Ar, . AR = plE[Y], Ay, Al

is a real stable polynomlal. Hence, Lemma 3.9 yields (3.8). O

Iterating Lemma 3.10 gives the required control on roots of mixed characteristic polyno-
mials. This is an essence of the method of interlacing family of polynomials.

Lemma 3.11. Suppose that X1, ..., X,, are jointly independent random rank one positive
semidefinite d X d matrices which take finitely many values. Then with positive probability
(3.9) maxroot(u[ Xy, ... X,,]) < maxroot(u[E [Xq],...,E [X,]]).

Proof. By Lemma 3.10 a random matrix X; takes some value A; (with positive probability)
such that

maxroot(u[E [X;],...,E[X,,]]) > maxroot(u[A;, E [Xs], ..., E [X,]]).
By the independence assumption, if we condition the probability space to the event X; = Aq,
then random variables Xo, ..., X}, have the same joint distribution. Again by Lemma 3.10,

X, takes some value Ay (with positive probability) such that

maxroot(u[Ar, E [Xs], ..., E[X,]]) > 1rglaxroot(u[Al, Ay E[X;5], ... E[X,]]).



Conditioning on the event X; = A; and X, = As, and repeating this argument for remaining
random variables yields (3.9). O

Finally, we can complete the proof of the main implication.

Lemma 3.12. (MCP) = (MSS).

Proof. Take random vectors vy, ..., v, as in Theorem (MSS). Define rank one positive
semidefinite random matrices X; = v;0f, i = 1,...,m. The assumption (3.1) translates into
the assumption (3.3) for A; = E [X;]. Since X; are hermitian, by Lemma 3.3

S

Z X;|| = maxroot (det (ZI - ZXZ)) = maxroot(u[ X1, ... X))
i=1 i=1 i=1

By Lemma 3.11, the bound on maxroot(u[A, ... A.,]) in the conclusion of Theorem (MCP)
yields the same bound on ||} ", v;vf|| with positive probability. O

m

3.4. Multivariate barrier argument. The proof of Theorem (M CP) hinges on a multi-
variate barrier argument.

Definition 3.3. Let p € Rzy,...,2,]. We say that x = (x1,...,2,,) € R™ is above the
roots of p if
plx+1t) >0 for all t € [0, 00)™.

A barrier function of p in direction of z;, 1 = 1,...,m, is defined for such = as
- 9..p()
¢ (x) =0, logp(xr) = ——=.
i) (@) = =02

We need the following result about zeros of real stable polynomials in two variables, which
is illustrated in Figure 1.

Lemma 3.13. Let p € R[z,w] be a stable polynomial. Then for all but finitely many x € R,
a polynomial p(z,w) € Rlw] has all real roots and constant degree d € N. Let yy(x) < ... <
ya(x) be its roots counting multiplicity. Then, for each i € [d], x — y;(z) is non-increasing.

Proof. We can write p(z,w) = Z?:o w'q;(z), where each ¢; € R[z]. By Lemma 3.6 for fixed
x € R, a polynomial p(x,w) € Rw] has all real roots. Its degree equals d if and only if
qa(x) # 0. The fundamental theorem of algebra implies the existence of roots y;(x) < ... <
ya(x). Tt remains to show that z — y;(x) is non-increasing, where i € [d].

We claim that for every real root p(x,y) =0, (z,y) € R?, we have

(3.10) O.p(x,y) <0  and  Oyp(x,y) <O0.

On the contrary, suppose that o = J,p(x,y) > 0. By the implicit function theorem for
holomorphic functions [25, Theorem 1.7.6], there exists complex neighborhoods U,,U, C C
of x and y, resp., and a holomorphic function & : U, — U, such that

{(z,w) e Uy x Uy : p(z,w) =0} = {(2,h(2)) : 2 € Uy}
Taking z = x +¢i and h(z) = y+ h'(x)ei = y+ aci for small € > 0 produces a root of p with
positive imaginary parts, which contradicts stability of p. By symmetry we deduce (3.10).
To finish the proof, it is convenient to use a basic fact about algebraic curves

{(z,y) € R*: p(z,y) = 0}.
16
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FiGURE 1. Examples of zero sets of real stable polynomials on the plane.

Every algebraic curve decomposes as a finite union of branches connected by some points and
a finite number of vertical lines. A branch is the graph of a smooth and monotone function
defined on an open (possibly unbounded) interval in the z-axis. Hence, a branch is the graph
of some y;(x) restricted to an appropriate open interval. Differentiating p(x,y;(x)) = 0 with
respect to x yields

0=p(,yi(x)) + uwp(z, yi(x))yi(x) = 0.
By (3.10) we have y.(z) < 0. O

Lemma 3.14. Let p € Rz, ..., 2y be stable. Let 1 < i,j < m. Then, for any k € Ny,
partial derivatives of the barrier function of p satisfy

(—l)kafjcbé(x) >0 if © € R" is above the roots of p.
In particular, t — @;(x +te;) is non-negative, non-increasing, and convex function of t > 0.

Proof. First suppose that ¢ = j. Freezing all variables except z; = z;, by Lemma 3.6
(restriction) we can assume that m = 1. Suppose that z € R is above all roots of a

stable polynomial p € R[z]. The stability of p implies that p has all real roots. Hence,
17



p(z) = cH?Zl(z —y;), where y; € R, and

By a direct calculation
1
=T
Since z is above the roots of p, we have z > max(y;) and all of the above terms are positive.
The above argument also covers trivially the case k = 0.

It remains to deal with the case i # j and k£ > 1. By Lemma 3.6 and symmetry, we can
assume that m = 2, ¢ = 1, and j = 2. Suppose that x = (x1,x9) is above the roots of a
stable polynomial p € R[zy, 25]. Since

(=1L, @, (x) = (=1)*3%,0:, log p(x) = 9., ((—1)"0%, log p) ()

z2°p

(~1H (@)D (@) = kS

j=1

it suffices to show that z1 — (—1)*9% log p(x1,22) is non-decreasing.
By Lemma 3.13 we can write

d

p(z1, 22) = c(z1) H(@ — yi(71)).

i=1

Hence,

S

1
x> (—1)%0% logp(zy, 2) = —(k— 1)1 Y ———.
; (w2 — yilz1))*
Since z is above the roots of p, we have o > max(y;(z1)) and by Lemma 3.13, the above
function is non-decreasing. O

The following lemma provides the crucial control of the barrier function of (1 — d.,)q in
terms of the barrier function of q.

Lemma 3.15. Let g € Rz, ..., 2, be stable. Suppose that x € R™ lies above the roots of
q and

(3.11) P (x) <1— % for some j € [m] and § > 0.

Then, x + de; lies above the roots of (1 — 0.,;)q and
(3.12) (I)élfaz.)q@ + bej) < () for all i € [m].
Proof. Take any y € R™ above z, that is, y; > z; for all ¢ € [m]. By Lemma 3.14 (mono-

tonicity), we have ®J(y) < ®J(x) < 1. Hence,

(3.13) (1= 0:)a(y) = a(y)(1 = ®}(y)) > 0.
In particular, = + de; is above the roots of (1 — 0,.)q. By (3.13)

J

log((1 — 0:,)q)(y) = log q(y) + log(1 — ®/)(y).
18



Applying 9,,, i € [m], shows

‘ . 0.,i(y)
(1-0.19(y) = PY(y) — ———.
o 1)

Since
0., @ (y) = 0.,0., log q(y) = 0.,0-, log q(y) = 9., P, (v),

the required bound (3.12) is equivalent with the inequality

., P (z + dej)

(3.14) 4
1 — & (z + de;)

— <I>f1(:c + dej) — (I)l('lfazj)q@ + dej) > <I>f1(:1: + dej) — @z(x).

By Lemma 3.14 (convexity) and (monotonicity), we have
<I>f1(:x + de;j) — @ (x) < 58Zj(1>f](x + de;) < 0.
Hence, (3.14) is implied by multiplying the inequality
1

(3.15) . <
1 — &)z + de;)

by 9., ®. (x4 de;). Finally, (3.15) holds true as a consequence of Lemma 3.14 (monotonicity)
and (3.11)

®) (x4 de;) < @) (x) <1 -

S

This shows (3.14) and consequently (3.12). O
Applying inductively Lemma 3.15 yields the crucial corollary.

Corollary 3.16. Let ¢ € Rz, ..., 2y be stable. Suppose that x € R™ lies above the roots
of ¢ and for some § > 0 we have

P/(z) <1-— % for all j € Im].

Then, x + (0, ...,0) lies above the roots of [[i~,(1 — 0s,)q.

Proof. For k=0,...,m, define
k

k
yk:x—i-(SZei, qk:H(l—ﬁzi)q.
i=1

=1

Then, using Lemma 3.15, we show inductively that y;, € R™ lies above the roots of ¢ for all
k € [m]. O

Finally, we are ready to give the proof of (M CP).
Proof of Theorem (MCP). Define

(3.16) p(21,- ., 2m) = det (Z%Az) €Rlzy, ..., 2m
i=1

19



By Lemmas 3.5 and 3.6, p is a real stable polynomial. By Jacobi’s formula for any j € [m],

0.,p(x1, ..., Tm) = Oy det (Z x; A + tA])

i=1

~ det (fjA) - ((f’ij)A)

®I(t,... 1) =tr(t7'A)) <

t=0

Hence, by (3.3)

for t > 0.

S e

Moreover, x = (t,...,t) lies above the roots of p for any ¢t > 0. Take any ¢, > 0 such that

(3.17)

+-<1

Sl
S| =

By Corollary 3.16, (t +,...,t + d) lies above the roots of []" (1 — 9,,)p. Since

T
m

[ =000 ... 2) = ulAr, ..., Apl(z)  for any z € C,

=1

the largest root of p[Ay,..., A, is < t+ 6. Minimizing ¢ + § under the constraint (3.17)
yields t = /e + € and § = 1 + /e. Hence, the largest root of u[Ay,..., A;] is bounded by
(1+¢)2 O

3.5. Notes. The strategy of the proofs of (MSS) and (MCP) follows the original proof
of Marcus, Spielman, and Srivastava [35] with strong influence by Tao’s blog article [42].
The main difference is in the proof of Lemma 3.14. Tao uses more elementary properties of
real stable polynomials in the form of Lemma 3.13, whereas the original proof uses Helton-
Vinnikov’s theorem [9, 31]. This result states that every real stable polynomial in two
variables of degree d has a determinantal representation p(x,y) = £det(zA + yB + C) for
some d X d positive semidefinite matrices A, B and a symmetric matrix C.

The proof of the special case of Theorem (MSS), for random variables taking at most
two values, is more technical and it can be found in [13]. It relies on a variant of The-
orem (MCP) for matrices Ay, ..., A, of rank < 2. This corresponds to a determinantal
polynomial (3.16) which is quadratic with respect to each variable zy,..., z,. Amazingly,
such deceptively simple polynomial encodes all the information about roots of the mixed
characteristic polynomial u[A;, ..., Ay,,], which is needed for showing (MCP).

4. APPLICATIONS OF WEAVER’'S CONJECTURE

In this section we show applications of the solution of Kadison-Singer problem which
are outside of the main sequence of implications (KS) < ... < (MCP). Our main goal
is to show quantitative bounds in Feichtinger’s conjecture. To achieve this we need some

background about Naimark’s dilation theorem.
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4.1. Naimark’s complements of frame partitions. We start with well-known Naimark’s
dilation theorem.

Lemma 4.1. Let {u;};,c; be a Parseval frame in a Hilbert space H. Then there exists a
larger Hilbert space KK O H and an o.n. basis {e;}ic; C K such that

u; = Pe; for all v € I, where P is an orthogonal projection of IC onto H.

Conversely, if P is a projection of K onto a closed subspace H, then {Pe;}icr is a Parseval
frame in H.

Proof. Consider the analysis 7' : H — ¢?(I) as in Lemma 2.6. Since {u;};cs is a Parseval
frame, T is an isometry of H onto T'(H) C ¢*(I). Let @ be the orthogonal projection of £2(1)
onto T(H). Let {e;}icr be the standard o.n. basis of £2(I). Since T is an isometry, it suffices
to show the conclusion for Parseval frame {T'u; }ic; in T(#H). In turn, this is a consequence
of the following calculation. Since {T'u;};es is a Parseval frame

Qu = (a,Tu)Tu;  forall a € (*(I).
iel
Thus, for any ¢ € Iy,
Qeio - Z<ei0’ TU1>TUz = Z <ui7 ui())Tui - T(Z(Uio, ’LLZ>U1) = TUiO.
i€l icl icl
O

Lemma 4.1 leads to the concept of a Naimark’s complement. This is a Parseval frame
{(I — P)e;}ier in K © H, where I is the identity on K = ¢*(I). Recall the definition of a
Riesz sequence.

Definition 4.1. A family of vectors {u; };c; in a Hilbert space H is a Riesz sequence if there
are constants A, B > 0 so that for all {a;} € ¢*(I) we have

2
(4.1) A il < || an|| <BY il

el el i€l

We call A, B lower and upper Riesz bounds for {u;}icr.

Note that it suffices to verify (4.1) only for sequences {a;} with finitely many non-zero
coefficients, since a standard convergence argument yields the same bounds (4.1) for all
infinitely supported sequences {a;} € ¢*(I). In general we do not require that frame, Bessel,
and Riesz bounds in Definitions 2.5 and 4.1 are optimal. In particular, a Bessel sequence
with bound B is automatically a Bessel sequence with bound B’ > B.

Lemma 4.2. Let P : (*(I) — (*(I) be the orthogonal projection onto a closed subspace
H C (2(I). Then, for any subset J C I and & > 0, the following are equivalent:

(i) {Pe;}ics is a Bessel sequence with bound 1 — 0,
(ii) {(I— P)e;}ics is a Riesz sequence with lower bound §, where 1 is the identity on (*(I).

Proof. Note that for any sequence of coefficients {a;} € ¢*(.J),

(4.2) D ail* = || aiPe; > a;(I - P)e;

_l’_
iceJ i€ icJ

2
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Thus,

2

<1-0)) o] =

ieJ

2
>0 ail.

ieJ

(4.3)

Z CLZ‘PGZ‘

ieJ

Z CLZ(I — P)ez

ieJ

Observe that the inequality in the left hand side of (4.3) is equivalent to (i). This follows
from the well-known fact that ||T|| = ||T*||, where T is the analysis operator

T:H — (3(I), To = {(u, Pe;) }iey, u€H,

and its adjoint is the synthesis operator

T*: (1) - H,  T*({a}ies) = > aiPe, {ai}ies € C().

icJ

This yields the equivalence of (i) and (ii). O

4.2. The Feichtinger conjecture. We are now ready to formulate the quantitative version
of the Feichtinger conjecture which was shown by Casazza, Marcus, Speegle, and the author
[13].

Theorem (FEI). Let I be at most countable set and let H be a separable Hilbert space.
Suppose {u;}icr is a Bessel sequence in H with bound 1 that consists of vectors of norms
|ui||*> > e, where ¢ > 0. Then there exists a universal constant C' > 0, such that I can be
partitioned into r < C/e subsets Iy, ..., I, such that each subfamily {u;}icr,, j = 1,...,7,
15 a Riesz sequence.

In the proof of Theorem (FEI) we shall use the following adaptation of the Schur-Horn
theorem for Riesz sequences.

Lemma 4.3. Let S be a positive semi-defnite M x M matriz with eigenvalues Ay > ... >
Ay >0, Letdy > ... > dy > 0 be such that

M M k k
(4.4) Sdi=Y "N and > d; <Y N foralll <k< M.
=1 =1 =1

=1

Then there exists a collection of vectors {v;}}, in CM such its frame operator is S and
|vil|*> = d; foralli=1,..., M.

Lemma 4.3 has a converse, which states that the norms of {v;}£, and eigenvalues of its
frame operator must satisfy (4.4). Since we will not need this, we simply omit the proof of
the converse result.

Proof. By the Schur-Horn theorem, there exists a hermitian matrix S with eigenvalues \; >
... > Ay and diagonal dy > ... > dj;. Since S and S are unitarily equivalent, there exists
a unitary M x M matrix U such that S = U*SU. Define vectors v; = SY%Ue;, where ¢;,
i € [M], are standard basis vectors in CM. Then,

HUZ'HZ = <Sl/2U€Z’,Sl/2U€Z’> = <SU€¢,U€¢> = <g€i,€i> = dl
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Moreover, the frame operator of {v;}}2, satisfies for v € CM,

(sz‘ ® Uz’) (0) =) (5"2Ue;) ® (S°Ue;)(v) = Y (v,5"°Ue;)S"*Ue;

=1 =1 i=1

M
- 51/2(Z<Sl/2v, U&‘)U@i) = S25% = Su.

i=1
The penultimate step follows from the fact that {Ue;}, is an o.n. basis. O

We start from the special case of Theorem (F'ET) and then show its increasingly general
versions.

Lemma 4.4. Theorem (FEI) holds under the additional assumption that I is finite and
e = 0.92. In this case, a Bessel sequence {u;}ticr with bound 1 and ||w;||> > & can be
partitioned into two Riesz sequences with lower bound 0.02.

In light of Remark 2.1, the value of 0.92 can be replaced by any number > 3/4, but we
are not after best constants here.

Proof. Assume momentarily that {u;};c; is a Parseval frame in a finite dimensional Hilbert
space H. By Lemma 4.1 we can imbed H into ¢*(I) such that u; = Pe;, i € I, where P
is an orthogonal projection of £(I) onto H. Then, vectors v; = (I — P)e;, i € I, form a
Parseval frame in ¢*(I) © H. Since ||u;||*> > &, we have ||v;]|*> < 1 —¢ < 4§ := 0.08. By
Theorem (KS5°) we can find a subset J C I, such that both {v;};c; and {v;}iep s are Bessel
sequences with bound % +1/28 + 6 = 0.98. Thus, by Lemma 4.2, both {uitics and {u;tien s
are Riesz sequences with lower bound 1 — 0.98 = 0.02.

Assume now that {u; };es is a Bessel sequence with bound 1 and ||u;||* > €. Since I is finite,
we can assume that I = [n] and H = C%. By increasing the dimension of the ambient space,
we claim that a Bessel sequence {u;};cf, can be extended to a Parseval frame by adjoining
some collection of vectors {u,; }%N in CHV satisfying ||u;|| > €, where N is sufficiently
large.

Indeed, suppose that the frame operator of {u;}™ ;, which acts on C? has eigenvalues
1>X > X >...>)\;>0. For a fixed N, consider an operator on C¥,

I

S=I;n— 950y, where Oy is the zero operator on CV.

Then, S has the following eigenvalues listed in decreasing order
(4.5) Lo, L, T—Agy o, 1= Ay
——
N
Thus, we need to show the existence of vectors {u,; }$:" in C* such that:

(i) its frame operator is S, and
(i) ||upss]|* = C for alli =1,...,d + N for some constant C € [e, 1].

By Lemma 4.3, this is possible provided eigenvalue sequence (4.5) majorizes, in the sense of
(4.4), the sequence
(4.6) c,...,C.

d+N
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However, the majorization (4.5) is automatic for the constant sequence (4.6) provided that

d
(d+N)C =N+ (1-X\).
i=1
Thus, by choosing sufficiently large N, we have C' > ¢, which shows the claim. Now, we

apply the previous argument for a Parseval frame {ui}?jldJ“N . Hence, we can find a partition
into two Riesz sequences. Restricting this partition to the original sequence {u;}? , yields
the same conclusion. O

Lemma 4.5. Theorem (FEI) holds under the assumption that I is finite and ||u]|> = > 0
for all i. In this case, a Bessel sequence {u;};c; with bound 1 can be partitioned into two
Riesz sequences with bounds €/50 and €/0.92.

Proof. By scaling Lemma 4.4 yields the following result: any finite tight frame {w;} with
constant B and with norms ||w;||* > 0.92B can be partitioned into two Riesz sequences with
bounds B/50 and B.

Now, suppose that {u;}ies is a Bessel sequence with bound 1 and |[|u;||* = . By Theorem
(K S,) for each r we can find a partition {I}};Zl of I such that each {u;},.; is a Bessel
sequence with bound

I

B = <%+\/E)2.

Now we choose large enough r such that

1 2
(4.7) |uil|* = ¢ > 0.92B = 0.92<W + ﬁ) :

A simple calculation shows that the above inequality simplifies to
2 1 < 0.08

Jre e S 002

970922
r> === .
= 2\0.08

By Lemma 4.4, each {u;},c i, can be partitioned into two Riesz sequences with lower bound

B/50 > ¢/50 and upper bound B < £/0.92. This gives the required partition of size 2r and
completes the proof of Lemma 4.5. O

Hence, it suffices to choose

Theorem (F'ET) is now a consequence of Lemmas 2.7 and 4.5.

Proof of Theorem (F'ET). Suppose {u;}es is an infinite Bessel sequence in a Hilbert space
H satisfying ||u;||> > . Without loss of generality we can assume that ||u;]|* = ¢ for all
i € 1. Indeed, {\/EHZ—?H}Z-GI is also Bessel sequence with bound 1. Applying (F'EI) for this

sequence yields the same conclusion for the original Bessel sequence {u;}ic;.

Since [ is countable, we may assume I = N. For any n € N, we apply Lemma 4.5 to
the initial sequence {u;};cn). Hence, we find a partition {I7,..., '} of {u;}icpy) into Riesz
sequences with uniform lower and upper bounds of £/50 and £/0.92, resp. To show the
existence of a global partition of {I,..., .} of {u;}ien into Riesz sequences, it suffices to

apply Lemma 2.7. This done in the same way as in the proof of Lemma 2.8. 0]
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4.3. Casazza-Tremain conjecture. A stronger variant of the Feichtinger conjecture, called
R. conjecture, was studied by Casazza and Tremain [22]. This result states that Bessel se-
quences consisting of unit norm vectors can be partitioned into almost orthogonal sequences.

Theorem (R.). Suppose that {u;}icr is a unit norm Bessel sequence with bound B in a
separable Hilbert space H. Then for any € > 0 there exists a partition {Iy,..., 1.} of I of
size v = O(B/e"), such that each {u;}icr,, j = 1,...,r, is a Riesz sequence with bounds 1 —e
and 1+ €.

In the proof of Theorem (R.) we will use the following lemma. The case when J = I is a
well-known fact, see [24, Section 3.6]. For the sake of completeness we will give the proof of
Lemma 4.6.

Lemma 4.6. Suppose {u;}icr is a Riesz basis in a Hilbert space H. Let {u};cr be its unique
biorthogonal (dual) Riesz basis, i.e.,

(ui, uj) = 6 foralli,jel.

Let J C I be any subset. Then, {u;}ics is a Riesz sequence with bounds A and B <=
{uf}ics is a Riesz sequence with bounds 1/B and 1/A.

Proof. Suppose that {u;};c; has upper Riesz bound B. This is equivalent to the Bessel
condition

(4.8) > [u,u)” < Bllul|* for all u € H.
ieJ
For any sequence {a;}ic; € (?, there exists a unique v € H such that

(, ug) = {ai 1€ J,

0 otherwise.

Since u =Y _._;a;u’, by (4.8) we have

2
Sas]| =1l 2 5 S ) = 5 S laif

ieJ ieJ ieJ

icJ

Conversely, if {uf};c; has lower Riesz bound 1/B, then (4.8) holds and {u;};c; has upper
Riesz bound B. By symmetry, {u]};c; has upper Riesz bound 1/A if and only if {u;};c; has
lower Riesz bound A, which completes the proof of the lemma. 0

Lemma 4.7. (FEI) = (R.).

Proof. In the first step we apply a scaled version of Theorem (FET) to find a partition of
{u; }ier of size O(B) into Riesz sequences with uniform lower and upper bounds. By Lemma
4.5, these bounds are 1/50 and 1/0.92, resp.

Suppose that {u; };cr, I’ C I is one of these unit-norm Riesz sequences. In the next step we
need to tighten these bounds as follows. Let {u}};c be the unique biorthogonal (dual) Riesz
basis to {u;}ie; in its closed linear span ‘H' = spanf{u; : i € I'}. By Lemma 4.6 the upper
Riesz bound of {u};cpr is 50. Applying Theorem (KS,) to both {u;}icr and {u}}icr, we
can find partitions into Riesz sequences, which reduce upper bounds to 1 +¢. A calculation
shows that this requires partitions each of size O(1/¢?). Taking common refinement of all of

these partitions produces a partition of {u;};cr of size O(B/e*). Let {u;}ic; be any element
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of of this partition. Then, both {u;};c; and {u!};c; are Riesz sequences with upper bounds
1+ ¢. Lemma 4.6 implies that {u;};c; has lower bound 1/(14¢) > 1 —e. O

4.4. Bourgain-Tzafriri conjecture. Theorem (R.) yields automatically the Bourgain—
Tzafriri restricted invertibility conjecture.

Theorem (BT). Let {e;}icr be an orthonormal basis of a separable Hilbert space H. Let
T : H — H be a bounded linear operator with norm ||T||*> < B and ||Te;|| = 1 for all
i € I, where B > 1. Then, for any ¢ > 0, there ezists a partition {I,,..., 1.} of I of size
r = O(B/e*), such that T is (1 + €)-isometry when restricted to each orthogonal subspace

H; =span{e; : 1 € I;}.
That is, for all j=1,...,7,
(4.9) A =llfIF <NTAP < @+e)lfIF  forall f € H;.
Lemma 4.8. (R.) = (BT).

Proof. Define vectors u; = Te;, i € 1. By our hypothesis {u;};c; is a unit norm Bessel
sequence with bound B. By Theorem (R.), there exists a partition {/,..., I} of I of size
r = O(B/e") such that each collection {u;}ies,, j € [r], is a Riesz sequence with bounds 1 —¢
and 1 4 . Translating this back for the property of T yields (4.9). O

A classical application of the results studied in this section involves Fourier frames. If
E C [0, 1] has positive Lebesgue measure, then the collection of functions ¢, (t) = e*™y p(t),
n € Z, is a Parseval frame for L?(E), often called a Fourier frame. Since this is an equal
norm frame, i.e., ||@,||* = |E| for all n € Z, Theorem (R.) yields the following corollary.

Corollary 4.9. There exists a universal constant ¢ > 0 such that for any € > 0 and any
subset E C [0,1] with positive measure, the corresponding Fourier frame {¢p}nez can be
decomposed as the union of r < ce | E|™! Riesz sequences with bounds 1 + €.

4.5. Notes. The proof of (FEI) and (R.) follows the approach in [13] with some minor
simplifications. One can show (FET) with less effort by deducing it from Theorem (PB)
as in [16, Proposition 3.1}, but with worse bounds on the partition size r. The bound on r
in Theorem (FEI) is asymptotically optimal as e — 0. This can be seen by considering a
union of [1/e] o.n. bases scaled by the factor y/2. A more general version of Lemma 4.3 for
frames can be found in [6, 14].

Lawton [32] and Paulsen [37] have shown that the partition subsets of Z in Corollary 4.9
can be chosen to be syndetic sets, i.e., subsets of Z with bounded gaps. The study of the
Feichtinger conjecture for Fourier frames is connected with the problem of paving for Laurent
operators. A Laurent operator L, : L*[0,1] — L?[0,1] is given by L, f = ¢f for f € L?*0,1],
where the symbol ¢ € L>[0,1]. The problem of paving for Laurent operators was studied
by Halpern, Kaftal, and Weiss [27]. It was continued by Bourgain and Tzafriri [12], who
have shown that every Fourier frame has a Riesz sequence indexed by a subset A C Z of
positive upper density at least ¢|E|. This is the consequence of their celebrated restricted
invertibility theorem [10, 11], which also holds for ¢ spaces. While the Bourgain-Tzafriri
restricted invertibility conjecture, Theorem (BT'), holds for 7 when p = 2, it is an open
problem for p # 2.

Akemann and Weaver [2| have shown an interesting generalization of (KS,) in the form

of Lyapunov’s theorem.
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Theorem (AW). Suppose {u;}icr is a Bessel family with bound 1 in a separable Hilbert
space H, which consists of vectors of norms ||u;||* < 8, where 6 > 0. Suppose that 0 < 7; < 1
for allv € I. Then, there exists a subset of indices Iy C I such that

ZU1®UZ—ZTZU1®UZ

i€lp el

(4.10) < CY8,

where C' > 0 is a universal constant.

The proof of Theorem (AW) relies solely on (KS,.), and hence we could have added another
implication to our diagram (KS,) = (AW). However, we will stop here and instead
invite the reader to explore other interesting consequences of the breakthrough solution of
the Kadison-Singer problem.
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