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Abstract. We give a self-contained presentation of results related to the Kadison-Singer
problem, which was recently solved by Marcus, Spielman, and Srivastava [35]. This problem
connects with an unusually large number of research areas including: operator algebras
(pure states), set theory (ultrafilters), operator theory (paving), random matrix theory,
linear and multilinear algebra, algebraic combinatorics (real stable polynomials), algebraic
curves, frame theory, harmonic analysis (Fourier frames), and functional analysis.

1. Introduction

The goal of this paper is to give a self-contained presentation of mathematics involved
in Kadison-Singer problem [33]. This problem was shown to be equivalent to a large num-
ber of problems such as: Anderson paving conjecture [3, 4, 5], Bourgain–Tzafriri restricted
invertibility conjecture [10, 11, 12], Akemann–Anderson projection paving conjecture [1],
Feichtinger conjecture [15, 16, 26], Rε conjecture [21], and Weaver conjecture [45]. The
breakthrough solution of the Weaver conjecture [45] by Marcus, Spielman, and Srivastava
[35] has validated all of these conjectures.

While a lot has been written about Kadison-Singer problem before it was solved [12, 15,
16, 17, 18, 19, 21] and after its solution [23, 36, 41, 42, 43, 44], we believe that there is still
a space and an interest for yet another presentation which would present consequences of
the solution of Kadison-Singer problem in an optimized form. We have aimed at presenting
the material in a modular form as a sequence of implications which are largely independent
of each other. This paper is the result of the author’s attempts at achieving this goal. It
is based on a series of lectures on the subject given by the author at University of Oregon,
University of Gdańsk, Institute of Mathematics of Polish Academy of Sciences, and Tel Aviv
University. The author is grateful for the interest and hospitality of these institutions.
The general outline of the paper can be described by the following diagram:

(KS) ⇐ (PB) ⇐ (PS) ⇐ (PR) ⇐ (PP 1

2

) ⇐ (KS∞
r )⇐ (KSr)⇐(MSS)⇐(MCP )

⇓ ⇓
(PPδ) ⇐ (KS∞

2 ) (FEI) ⇒ (Rε) ⇒ (BT )
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The author is grateful for useful conversations on the Kadison-Singer problem with Bernhard Bodmann,

Jean Bourgain, Pete Casazza, Bill Johnson, Adam Marcus, Gideon Schechtman, Darrin Speegle, and partic-
ipants of the AIM workshop “Beyond Kadison-Singer: paving and consequences” in December 2014 and the
MSRI workshop “Hot Topics: Kadison-Singer, Interlacing Polynomials, and Beyond” in March 2015. The
author was partially supported by NSF grant DMS-1265711 and by a grant from the Simons Foundation
#426295.
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The above symbols represent abbreviations used throughout the paper. The most impor-
tant are: the original Kadison-Singer problem (KS), Weaver’s conjecture (KSr), Marcus-
Spielman-Srivastava solution (MSS), and its mixed characteristic polynomial formulation
(MCP ). In this paper we will prove all of the above implications including the proof of the
core statement (MCP ).

1.1. Notes. The existing literature discussing the solution of the Kadison-Singer problem is
quite varied. It gives a deeper appreciation for the many areas of mathematics this problem
has touched. Tao [42] has written a beautiful exposition containing a simplified proof of the
solution. Tanbay [41] has given a nice entertaining historical perspective on the Kadison-
Singer problem. Matheron [36] gives a long and exhaustive exposition (in French), primarily
from the viewpoint of operator algebras. Valette [44] has written a Bourbaki exposition (in
French). Casazza, who has worked and popularized the Kadison-Singer problem, has written
a joint paper with Tremain [23] discussing consequences of the solution. Timotin [43] gives
another presentation of the proof of the Kadison-Singer problem. Harvey [30] gives a gentle
introduction aimed at readers without much background in functional analysis or operator
theory. Finally, the book by Stevens [39] contains a relatively elementary and self-contained
account of the Kadison-Singer problem and its proof.

2. From Kadison-Singer Problem to Weaver’s conjecture

2.1. Kadison-Singer Problem. We start with the Kadison-Singer problem [33], now a
theorem, which was originally formulated in 1959.

Definition 2.1. Let D ⊂ B(`2(N)) be the algebra of diagonal matrices. A state s : D → C

is a positive bounded linear functional (A ≥ 0 =⇒ s(A) ≥ 0) such that s(I) = 1. A state
is pure if it is not a convex combination of other states.

Theorem (KS). Let s : D → C be a pure state. Then, there exists a unique state s̃ :
B(`2(N)) → C that extends s.

The original formulation of Kadison-Singer problem involves the concept of a maximal
abelian self-adjoint (MASA) subalgebra A of B(H), where H is an infinite-dimensional sep-
arable Hilbert space. Kadison and Singer [33] have shown that every MASA A decomposes
into discrete and continuous parts. More precisely, there exists an orthogonal decomposition
H = Hd ⊕Hc with P denoting the orthogonal projection of H onto Hd such that:

• Ad = {PA|Hd
: A ∈ A} is a discrete MASA, i.e., Ad is the commutant of the set of

its minimal projections,
• Ac = {(I − P )A|Hc

: A ∈ A} is a continuous MASA, i.e., Ac contains no minimal
projections.

An example of a continuous MASA Ac are multiplication operators on L2[0, 1] by functions
in L∞[0, 1]. Kadison and Singer have shown that as long as Hc 6= {0}, there exists a pure
state on A, which has non-unique state extensions on B(H). They have hinted [33, §5] that
the same might hold in general though they were careful to state this in a form of a question,
rather than a conjecture.

Problem (Kadison-Singer). Let H be an infinite-dimensional separable Hilbert space and let
A be a discrete maximal abelian self-adjoint subalgebra (MASA) of B(H). Does every pure
state on A extend to a unique pure state on B(H)?
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One can show that every discrete MASA A is unitarily equivalent with the diagonal
matrix algebra D in Theorem (KS). That is, there exists a unitary U : H → `2(N) such
that A = U∗DU . Hence, Theorem (KS) gives an affirmative answer to the Kadison-Singer
problem.

Clearly, the diagonal matrix algebra D is isometrically isomorphic with `∞(N). That is,
x ∈ `∞(N) corresponds to diagonal operator diag(x) with sequence x on the main diagonal.
Pure states on `∞(N) can be described in terms of the ultrafilters.

Definition 2.2. Let F be a collection of non-empty subsets of N. We say that F is a filter
if:

(i) if F1, . . . , Fn ∈ F , n ≥ 1, then F1 ∩ . . . ∩ Fn ∈ F ,
(ii) if F ∈ F and F ⊂ G ⊂ N, then G ∈ F .

We say that U is an ultrafilter, if it is a maximal filter with respect to the inclusion partial
order. Equivalently,

(iii) for any A ⊂ N, either A ∈ U or N \ A ∈ U .
Given an ultrafliter U , we can define the concept of a limit of a bounded sequence on N.

Definition 2.3. Fix an ultrafilter U . Let x = (xj)j∈N ∈ `∞(N). For any subset A ⊂ N,
define

CA = {xj : j ∈ A} ⊂ C.

We define
lim
U

x = x0 ⇐⇒ {x0} =
⋂

A∈U
CA.

It is easy to see that the above limit is always well-defined. The intersection of any finite
family of compact sets CA, A ∈ U is non-empty. Hence, the entire intersection is non-empty
as well. Moreover, it consists of exactly one point. On the contrary, if it contained two
points x0 6= x̃0, then we would consider the set

A = {j ∈ N : |xj − x0| < |x0 − x̃0|/2}.
Then by the ultrafilter property (iii), we have two possibilities. Either A ∈ U , which forces
x̃0 outside the intersection

⋂

A∈U CA, or N \A ∈ U , which forces x̃0 outside. Either way, the
above intersection must be a singleton.

Lemma 2.1. There is one-to-one correspondence between pure state on the algebra D of
diagonal matrices and ultrafilters on N. More precisely, each pure state s on D ∼= `∞(N) is
of the form

(2.1) s(diag(x)) = lim
U

x for all x ∈ `∞(N)

for some unique ultrafilter U .
Proof. Suppose that s is a pure state on `∞(N). For A ⊂ N, let PA be the orthogonal
projection of `2(N) onto span{ej : j ∈ A}, where {ej}j∈N is a standard o.n. basis of `2(N).
Define

U = {A ⊂ N : s(PA) = 1}.
We claim that U is an ultrafilter. This can be shown in two ways. The Čech-Stone com-
pactification of N is a maximal compact Hausdorff space βN, which contains N as a dense
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subset. By the universal property of βN, the space `∞(N) is isometrically isomorphic with
C(βN). By the Riesz representation theorem, positive functionals on C(βN) are identified
with positive regular Borel measures. Hence, s corresponds to a probabilistic measure on
βN. In addition, since s is pure, this measure must be a point measure on βN. In particular,
s is commutative. Hence, s(PA) = s(PA)

2, which implies that s(PA) ∈ {0, 1}. Likewise,
(2.2) s(PA∩B) = s(PA)s(PB) for any A,B ⊂ N,

which implies that U is an ultrafilter.
This can also be seen by a direct argument as follows. Since PA and I − PA = PN\A are

both positive, we have 0 ≤ s(PA) ≤ s(I) = 1. Suppose that s(PA) = θ for some 0 < θ < 1.
Then, we can write s = θs1+(1−θ)s2, where s1(T ) =

1
θ
s(PAT ) and s2(T ) =

1
1−θ

s((I−PA)T )
for T ∈ D. It is easy to show that s1 and s2 are states on D, which contradicts that s is a
pure state. Consequently, s(PA) ∈ {0, 1}. By the positivity of s, it is clear that (2.2) holds
if either s(PA) = 0 or s(PB) = 1. Now, if s(PA) = s(PB) = 1, then

s(PN\(A∩B)) = s(P(N\A)∪(N\B)) ≤ s(PN\A) + s(PN\B) = 0,

This shows (2.2), which again implies that U is an ultrafilter.
Every x ∈ `∞(N) can be approximated in norm by simple functions, i.e., finite linear

combinations of indicator functions 1Ai
for disjoint subsets Ai ⊂ N, i = 1, . . . , n. By

definition

s(diag(1Ai
)) = s(PAi

) = lim
U

1Ai
=

{

1 Ai ∈ U ,
0 otherwise.

Thus, (2.1) holds for indicator functions and by the density argument for all x ∈ `∞(N). This
implies that two distinct pure states must correspond to distinct ultrafilters, which shows
one-to-one correspondence. �

2.2. Paving conjectures. To crack Theorem (KS) Anderson has proposed the concept of
paving. We will adopt the following definition.

Definition 2.4. Let T ∈ B(`2(I)), where I is at most countable. We say that T has (r, ε)-
paving if there exists a partition {A1, . . . , Ar} of I such that

(2.3) ||PAj
TPAj

|| ≤ ε||T || for j = 1, . . . , r.

Here, for A ⊂ I, let PA be the orthogonal projection of `2(I) onto span{ei : i ∈ A}, where
{ei}i∈I is a standard o.n. basis of `2(I).

The following result states the paving conjecture for bounded operators with zero diagonal.

Theorem (PB). For every ε > 0, there exists r = r(ε) such that every T ∈ B(`2(I)) with
zero diagonal can be (r, ε)-paved.

We are now ready to establish the first implication in our scheme.

Lemma 2.2. (PB) =⇒ (KS).

Proof. Let E : B(`2(N)) → D be the non-commutative conditional expectation which erases
all off-diagonal entries. That is, for any T ∈ B(`2(N)), let E(T ) be the diagonal operator
which has the same diagonal entries as T . Let s be any pure state on D. It is easy to show
that s̃(T ) = s(E(T )), T ∈ B(`2(N)), defines a state extending s. Hence, the difficult part is
showing the uniqueness.
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Let s̃ : B(`2(N)) → C be any state extending s. Since

s̃(T ) = s̃(T − E(T )) + s(E(T )),

it suffices to show that

(2.4) s̃(T ) = 0 for all T ∈ B(`2(N)) with E(T ) = 0.

By (PB) for any ε > 0 we can find A1, . . . , Ar such that (2.3) holds. By the ultrafilter
property, there exists j0 ∈ [r] := {1, . . . , r} such that

s(PAj
) = δj,j0 for j ∈ [r].

One can easily verify that

〈T1, T2〉 := s̃(T1T
∗
2 ) T1, T2 ∈ B(`2(N)),

defines a semidefinite inner product on B(`2(N)). In particular, by the Cauchy-Schwarz
inequality we have

|s̃(T1T
∗
2 )|2 ≤ s̃(T1T

∗
1 )s̃(T2T

∗
2 ).

Thus, for any j 6= j0 and R ∈ B(`2(N)) we have

0 = s̃(RPAj
) = s̃(PAj

R).

We conclude that

s̃(T ) =
r∑

j=1

s̃(TPAj
) = s̃(TPAj0

) = s̃(PAj0
TPAj0

).

Thus, |s̃(T )| ≤ ||PAj0
TPAj0

|| ≤ ε||T ||. Since ε > 0 is arbitrary, this shows (2.4). �

Paving conjectures can be formulated for smaller classes of operators than bounded (PB)
such as: self-adjoint operators (PS), reflections (PR), and projections (PP 1

2

).

Theorem (PS). For every ε > 0, there exists r = r(ε) such that every self-adjoint operator
S on `2(I) with zero diagonal can be (r, ε)-paved.

Theorem (PR). For every ε > 0, there exists r = r(ε) such that every reflection R on `2(I),
i.e., R = R∗ and R2 = I, with zero diagonal can be (r, ε)-paved.

Theorem (PP 1

2

). For every ε > 0, there exists r = r(ε) such that every projection P on

`2(I), i.e., P = P ∗ and P 2 = P , with all diagonal entries equal to 1
2
can be (r, 1+ε

2
)-paved.

While the implication (PS) =⇒ (PB) is trivial, we need to show the converse implication.
At the same time we shall keep track how the paving parameters (r, ε) are affected by these
implications.

Lemma 2.3. (PS) holds for (r, ε) =⇒ (PB) holds for (r2, 2ε).

Proof. Take any T ∈ B(`2(I)) with E(T ) = 0. We decompose it as sum of self-adjoint and
skew-adjoint operators

T = S1 + S2 where S1 =
T + T ∗

2
, S2 =

T − T ∗

2
.

By the paving property (PB) for S1 and iS2 = (iS2)
∗ we can find partitions {A1, . . . , Ar}

and {B1, . . . , Br} such that

||PAi∩Bj
S1PAi∩Bj

|| ≤ ||PAi
S1PAi

|| ≤ ε||S1|| ≤ ε||T || i, j ∈ [r].
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Since the same estimate holds for S2 we have

||PAi∩Bj
TPAi∩Bj

|| ≤ ||PAi∩Bj
S1PAi∩Bj

||+ ||PAi∩Bj
S2PAi∩Bj

|| ≤ 2ε||T || i, j ∈ [r].

Hence, the partition {Ai ∩ Bj}i,j∈[r] yields (r2, 2ε) paving of T . �

Lemma 2.4. (PR) holds for (r, ε) =⇒ (PS) holds for (r, ε).

Proof. Take any S = S∗ ∈ B(`2(I)) with E(S) = 0. Without loss of generality assume that
||S|| = 1. Consider an operator R on `2(I)⊕ `2(I) given by

[
S

√
I− S2√

I− S2 −S

]

.

A direct calculation shows that R2 = I, R = R∗, and E(R) = 0. That is, R is a reflection
on `2(I ∪ I ′), where I ′ is a copy of the index set I. By (PR) there exists a partition of I ∪ I ′

which yields (r, ε) paving of R. Restricting this partition to I yields (r, ε) paving of S. �

Lemma 2.5. (PP 1

2

) holds for (r, 1+ε
2
) =⇒ (PR) holds for (r2, ε).

Proof. Take any reflection R ∈ B(`2(I)) with E(R) = 0. Define Q = (I + R)/2. Then, Q is
a projection Q = Q∗ = Q2 with E(Q) = 1

2
I. Suppose that for some A ⊂ I we have

||PAQPA|| ≤ β :=
1 + ε

2
.

SinceQ is positive this can be phrased in terms of the partial order≤ on self-adjoint operators

0 ≤ PAQPA ≤ βPA.

Since R = 2Q− I we obtain

(2.5) −PA ≤ PARPA ≤ (2β − 1)PA = εPA.

We repeat the same for a projection Q1 = (I − R)/2. Assuming that for some B ⊂ I we
have

||PBQ1PB|| ≤ β :=
1 + ε

2
,

yields

(2.6) −PB ≤ PB(−R)PB ≤ (2β − 1)PB = εPB.

Taking C = A ∩ B and combining (2.5) and (2.6) yields

(2.7) −εPC = −εPCPBPC ≤ PCRPC ≤ εPCPAPC = εPC .

Hence, ||PCRPC || ≤ ε. By the paving property (PP 1

2

), we can find partitions {A1, . . . , Ar}
and {B1, . . . , Br} which produce (r, 1+ε

2
)-paving of Q and Q1, resp. By (2.7) their common

refinement partition {Ci,j = Ai ∩ Bj}i,j∈[r] yields (r2, ε)-paving of R. �
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2.3. Weaver’s conjecture. Next, we will show that paving conjectures follow fromWeaver’s
KSr conjecture, which was verified by Marcus, Spielman, and Srivastava [35]. We state it
in a general infinite dimensional form (KS∞

r ) and later deduce it from its finite dimensional
counterpart (KSr). We start with the standard definition in frame theory.

Definition 2.5. A family of vectors {ui}i∈I in a Hilbert space H is called a frame for H if
there are constants 0 < A ≤ B < ∞ (called lower and upper frame bounds, respectively) so
that

(2.8) A‖u‖2 ≤
∑

i∈I
|〈u, ui〉|2 ≤ B‖u‖2 for all u ∈ H.

If we only have the right hand inequality in (2.8), we call {ui}i∈I a Bessel sequence with
Bessel bound B. If A = B, {ui}i∈I is called a tight frame and if A = B = 1, it is called a
Parseval frame.

Theorem (KS∞
r ). Let I be at most countable index set and let H be a separable Hilbert

space. Let {ui}i∈I ⊂ H be a Bessel sequence with bound 1,

(2.9)
∑

i∈I
|〈u, ui〉|2 ≤ 1 for all ||u|| = 1 and ‖ui‖2 ≤ δ for all i.

Then for any positive integer r, there exists a partition {I1, . . . , Ir} of I such that each
{ui}i∈Ik , k = 1, . . . , r, is a Bessel sequence with the following bound

(2.10)
∑

i∈Ik

|〈u, ui〉|2 ≤
(

1√
r
+
√
δ

)2

for all ||u|| = 1.

Next we show how (KS∞
r ) implies projection paving.

Lemma 2.6. (KS∞
r ) =⇒ (PP 1

2

).

Proof. Let Q be an arbitrary projection on `2(I) with E(Q) = 1
2
I. Define vectors ui = Qei,

i ∈ I, where {ei}i∈I is a standard o.n. basis of `2(I). Then, Q is represented by the Gram
matrix of {ui}i∈I

Q = (〈Qei, Qej〉)i,j∈I = (〈ui, uj〉)i,j∈I and ||ui||2 =
1

2
= δ.

The Gram matrix Q = TT ∗ is a composition of the analysis operator

T : H → `2(I) where Tu = (〈u, ui〉)i∈I for u ∈ H,

with the synthesis operator

T ∗ : `2(I) → H where Ta =
∑

i∈I
aiui for a = (ai)i∈I ∈ `2(I).

The frame operator is a composition of these operators, but in a reverse order

S : H → H S = T ∗T =
∑

i∈I
ui ⊗ ui,

where ui ⊗ ui : H → H is a rank one positive operator given by

(ui ⊗ ui)(u) = 〈u, ui〉ui for u ∈ H.
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By (KS∞
r ), for any r ∈ N, there exists a partition {I1, . . . , Ir} such that

||PIkQPIk || = ||(〈ui, uj〉)i,j∈Ik || =
∥
∥
∥
∥

∑

i∈Ik

ui ⊗ ui

∥
∥
∥
∥
≤
(

1√
r
+

1√
2

)2

<
1

2
+

3√
r
.

The second equality is the consequence of the fact the norms of Gram and frame operator
are the same ||TT ∗|| = ||T ∗T ||. Thus, Q can be (r, 1+ε

2
)-paved for r = 36/ε2. �

Marcus, Spielman, and Srivastava [35] have shown the following version of Weaver’s con-
jecture. The key feature of (KSr) is independence of Bessel bound on a number of vectors
m and a dimension d.

Theorem (KSr). Let {ui}i∈[m] ⊂ C
d be a Parseval frame

(2.11)
m∑

i=1

|〈u, ui〉|2 = 1 for all ||u|| = 1 and ‖ui‖2 ≤ δ for all i.

Then for any positive integer r, there exists a partition {I1, . . . , Ir} of [m] such that each

{ui}i∈Ik , k = 1, . . . , r, is a Bessel sequence with bound
(

1√
r
+
√
δ
)2

, i.e., (2.10) holds.

To deduce Theorem (KS∞
r ) from (KSr) we will use the following fact, which is sometimes

referred to as a pinball principle. Its proof is essentially a combination of diagonal argument
with pigeonhole principle.

Lemma 2.7. Fix a natural number r and assume for every natural number n, we have a
partition {Ini }ri=1 of [n]. Then there are natural numbers {n1 < n2 < · · · } so that if j ∈ I

nj

i

for some i ∈ [r], then j ∈ Ink

i for all k ≥ j. For any i ∈ [r] define Ii = {j : j ∈ I
nj

i }. Then,
(i) {Ii}ri=1 is a partition of N.
(ii) If Ii = {j1 < j2 < · · · }, then for every natural number k we have

{j1, j2, . . . , jk} ⊂ I
njk

i .

Instead of giving a separate proof of Lemma 2.7, we include its justification in the proof
of Lemma 2.8.

Lemma 2.8. (KSr) =⇒ (KS∞
r ).

Proof. First, observe that the Parseval frame assumption (2.11) can be weakened by the
Bessel condition. Indeed, suppose that {ui}i∈[m] is merely a Bessel sequence with bound 1
and ||ui||2 ≤ δ. Define d× d matrix T as

T = I−
m∑

i=1

ui ⊗ ui.

Since T is positive semidefinite, we can find vectors {ui}m′

i=m+1, m
′ > m, such that

T =
m′

∑

i=m+1

ui ⊗ ui and ||ui||2 ≤ δ for i ≥ m+ 1.

Indeed, it suffices to choose vectors ui to be appropriately scaled eigenvectors of T . Conse-
quently, {ui}i∈[m′] becomes a Parseval frame for C

d and by (KSr) we can find a partition
8



{I1, . . . , Ir} of [m′] such that corresponding subsets {ui}i∈Ik have required Bessel bounds.
Restricting these partition to [m] yields the same conclusion for {ui}i∈Ik∩[m], k = 1, . . . , r.

Now suppose {ui}i∈I is an infinite Bessel sequence in a Hilbert space H as in (2.9). Since
I is countable, we may assume I = N. For any n ∈ N we can apply (KSr) to the initial
sequence {ui}i∈[n]. Hence, for each n ∈ N we have a partition {In1 , . . . , Inr } of [n], which
yields required Bessel bounds. To show the existence of a global partition of {I1, . . . , Ir} of
N satisfying (2.10), it suffices to apply Lemma 2.7. This boils down to repeated applications
of pigeonhole principle. The first vector u1 must land infinitely many times to one of the
slots Inj1 for some j1 = 1, . . . , r. Let N1 ⊂ N be the collection of such n. Then, we repeat the
same argument to the second vector u2 for partitions of [n], where n ∈ N1. Again, we can
find a slot Inj2 , where the second vector u2 lands for infinitely many n ∈ N2 ⊂ N1. Repeating
this process yields a nested sequence of infinite subsets N1 ⊃ N2 ⊃ . . . and indices j1, j2, . . .
in [r] such that the initial vectors u1, . . . , um, m ∈ N, all land to the same respective slots
Inj1 , . . . , I

n
jm for all n ∈ Nm. This yields a global partition of N by Ik = {i ∈ N : ji = k},

k ∈ [r]. Thus, (2.10) holds when Ik replaced by Ik∩ [m]. Letting m → ∞ shows the required
Bessel bound (2.10). �

An interesting special case of Weaver’s conjecture (KSr) happens when r = 2.

Theorem (KS∞
2 ). Let I be at most countable index set and let H be a separable Hilbert

space. Let {ui}i∈I ⊂ H be a Parseval frame and ‖ui‖2 ≤ δ for all i. Then, there exists a
partition {I1, I2} of I such that each {ui}i∈Ik , k = 1, 2 is a frame with bounds

(2.12)
1

2
−O(

√
δ) ≤

∑

i∈Ik

|〈u, ui〉|2 ≤
1

2
+O(

√
δ) for all ||u|| = 1.

Lemma 2.9. (KS∞
r ) =⇒ (KS∞

2 ).

Proof. (KSr) for r = 2 yields partition {I1, I2} such that
∑

i∈Ik

|〈u, ui〉|2 ≤
1

2
+
√
2δ + δ for ||u|| = 1, k = 1, 2.

Subtracting the equality (2.11) yields the lower bound in (2.12). �

Remark 2.1. Note that the bound (2.12) produces something non-trivial only for 0 < δ <
(2 +

√
2)−2 ≈ 0.0857864. Casazza, Marcus, Speegle, and the author [13] have shown the

improved bound in (KS2). For 0 < δ < 1
4
, the bound (2.12) holds where O(

√
δ) is replaced

by
√

2δ(1− 2δ). Therefore, by a variant of Lemma 2.6 we have the following variant of
paving for projections.

Theorem (PPδ). Let 0 < δ < 1/4. Every projection P on `2(I), i.e., P = P ∗ and P 2 = P ,

with all diagonal entries ≤ δ can be (2, 1
2
+
√

2δ(1− 2δ))-paved.

2.4. Notes. Another well-known equivalent of the Kadison-Singer problem, which we didn’t
discuss here, is a relative Dixmier property studied by Berman, Halpern, Kaftal, and Weiss
[7, 27, 28, 29]. Every bounded operator T ∈ B(`2(I)) satisfies

E(T ) ∈ conv{UTU∗ : U is a diagonal unitary on `2(I)}.
The connection of the Kadison-Singer problem with paving was investigated by Anderson
and Akemann [1, 3, 4, 5]. A streamlined presentation of paving implications presented here

9



has been shown by Casazza, Edidin, Kalra, and Paulsen [18]. A pinball principle, Lemma
2.7, was shown in [16].

For each of the classes of matrices/operators considered above, such as:

(B) bounded matrices with zero diagonal,
(S) self-adjoint matrices with zero diagonal,

(P 1

2

) projections with 1
2
on diagonal,

we can ask for the smallest r ∈ N such that all matrices in this class have (r, ε)-paving for
some ε < 1. By keeping track of the values in Lemma 2.6, we have shown (12, ε) paving
for (P 1

2

) and thus (122, ε) paving for (S) for some ε < 1. This was recently improved by

Ravichandran [38] who has shown (4, ε) paving for (P 1

2

) and thus (16, ε) paving for (S). It is

known that (2, ε) paving does not work for (P 1

2

), see [20]. Does (3, ε) paving work for (P 1

2

)?

Likewise, we can ask for largest δ such that (2, ε) paving works for all projections with δ on
diagonal. Paving property can be formulated for other operator norms and matrices with zero
diagonal. However, paving remains an open problem for operator `p norms, p 6= 2, though
Schechtman [40] has recently shown paving for the Schatten Cp class norm for 2 < p < ∞
extending earlier results of Berman, Halpern, Kaftal, and Weiss [8].

3. Proof of Weaver’s conjecture

Weaver’s conjecture is a consequence of the following probabilistic result due to Marcus,
Spielman, and Srivastava [35]. The special case was shown by Casazza, Marcus, Speegle,
and the author [13].

Theorem (MSS). Let ε > 0. Suppose that v1, . . . , vm are jointly independent random
vectors in C

d, which take finitely many values and satisfy

(3.1)
m∑

i=1

E [viv
∗
i ] = I and E

[
‖vi‖2

]
≤ ε for all i.

Then,

(3.2) P

(∥
∥
∥
∥
∥

m∑

i=1

viv
∗
i

∥
∥
∥
∥
∥
≤ (1 +

√
ε)2

)

> 0.

In the special case when v1, . . . , vm take at most two values and ε < 1/4, we have

P

(∥
∥
∥
∥
∥

m∑

i=1

viv
∗
i

∥
∥
∥
∥
∥
≤ 1 + 2

√
ε
√
1− ε

)

> 0.

Lemma 3.1. (MSS) =⇒ (KSr).

Proof. Assume {ui}i∈[m] ⊂ C
d satisfies (2.11). For any r ∈ N, let v1, . . . , vm be independent

random vectors in (Cd)⊕r = C
rd such that each vector vi takes r values







√
rui

0
...
0






, . . . ,







0
...
0√
rui






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each with probability 1
r
. Then,

m∑

i=1

E [viv
∗
i ] =





∑m
i=1 uiu

∗
i

. . .
∑m

i=1 uiu
∗
i



 =





Id
. . .

Id



 = Idr,

and

E
[
||vi||2

]
= r||ui||2 ≤ ε := rδ.

Hence, we can apply (MSS) to deduce (3.1). Choose an outcome for which the bound in
(3.2) happens. For this outcome define

Ik = {i ∈ [m] : vi is non-zero in kth entry}, for k = 1, . . . , r.

Thus, the block diagonal matrix

m∑

i=1

viv
∗
i =






r
∑

i∈I1 uiu
∗
i

. . .
r
∑

i∈Ir uiu
∗
i






has norm bounded by (1 +
√
ε)2. This implies that each block has norm

∥
∥
∥
∥

∑

i∈Ik

uiu
∗
i

∥
∥
∥
∥
≤ 1

r
(1 +

√
rδ)2 =

(
1√
r
+
√
δ

)2

.

Since a rank one operator ui ⊗ ui on C
d is represented by the d× d matrix uiu

∗
i , we obtain

(KSr). �

3.1. Mixed characteristic polynomial. The main result of this section involves the con-
cept of a mixed characteristic polynomial (MCP).

Definition 3.1. Let A1, . . . , Am be d× d matrices. The mixed characteristic polynomial is
defined as for z ∈ C by

µ[A1, . . . , Am](z) =

( m∏

i=1

(1− ∂zi)

)

det

(

zI+
m∑

i=1

ziAi

)∣
∣
∣
∣
z1=...=zm=0

.

By determinant expansion one can show that det

(

zI +
∑m

i=1 ziAi

)

is a polynomial in

C[z, z1, . . . , zm] of degree ≤ d. Hence, µ[A1, . . . , Am](z) is a polynomial in C[z] of degree
≤ d. These polynomials satisfy a number of interesting properties if A1, . . . , Am are positive
definite.

Theorem (MCP ). Let ε > 0. Suppose A1, . . . , Am are d× d positive semidefinite matrices
satisfying

(3.3)
m∑

i=1

Ai = I and Tr(Ai) ≤ ε for all i.

Then, all roots of the mixed characteristic polynomial µ[A1, . . . , Am] are real and the largest
root is at most (1 +

√
ε)2.

11



It remains to accomplish two major tasks: prove the implication (MCP ) =⇒ (MSS)
and then show (MCP ). Before doing this we need to show a few basic properties of µ.

Lemma 3.2. For a fixed z ∈ C, the mixed characteristic polynomial mapping

µ : Md×d(C)× . . .×Md×d(C) → C

is multi-affine and symmetric. That is, µ affine in each variable and its value is the same
for any permutation of its arguments A1, . . . , Am.

Proof. First we shall prove that for any d× d matrix B, a function

f : Md×d(C) → C, f(A1) = (1− ∂z1) det(B + z1A1)|z1=0 for A1 ∈ Md×d(C)

is affine. Indeed, if B is invertible, then by Jacobi’s formula

f(A1) = det(B)− det(B)∂z1 det(I+ z1B
−1A1)|z1=0 = det(B)(1− tr(B−1A1)).

Since invertible matrices are dense in the set of all matrices, by continuity we deduce the
general case. Thus, for any choice of matrices A2, . . . , Am, a mapping

(Md×d(C),C
m−1) 3 (A1, z2, . . . , zm) 7→ (1− ∂z1) det

(

zI+
m∑

i=1

ziAi

)∣
∣
∣
∣
z1=0

is affine in the A1 variable and a polynomial of degree ≤ d in z2, . . . , zm variables. Applying
linear operators, such as partial differential operators with constant coefficients (1 − ∂zi),
i = 2, . . . ,m, preserves this property. Consequently, the mapping A1 7→ µ[A1, . . . , Am](z)
is affine. The fact the µ is symmetric is immediate from the definition. Hence, µ is multi-
affine. �

Lemma 3.3. If A1, . . . , Am are rank one d × d matrices, then the mixed characteristic
polynomial is a characteristic polynomial of the sum A = A1 + . . .+ Am,

(3.4) µ[A1, . . . , Am](z) = det(zI− A) z ∈ C.

Proof. Any rank one matrix is of the from uv∗ for some u, v ∈ C
d. By the Sylvester deter-

minant identity det(I + tuv∗) = 1 + tv∗u for any t ∈ C. Hence, for any d× d matrix B the
mapping

C 3 t 7→ det(B + tuv∗) = b0 + b1t, b0, b1 ∈ C,

is affine. If B is invertible, then this follows by factoring out B, which reduces to the case
B = I. Since invertible matrices are dense in the set of all matrices, by continuity we deduce
the general case. This implies that for fixed z ∈ C, the polynomial

p(z1, . . . , zm) := det

(

zI+
m∑

i=1

ziAi

)

= b+
∑

1≤i1<...<ij≤m

ai1 . . . aijzi1 . . . zij

is affine multilinear in z1, . . . , zm. Hence, we can recover values of p by the following formula

p(t1, . . . , tm) =

( m∏

i=1

(1 + ti∂zi)

)

p(z1, . . . , zm)

∣
∣
∣
∣
z1=...=zm=0

.

Taking t1 = . . . = tm = −1 yields

µ[A1, . . . , Am](z) = p(−1, . . . ,−1) = det(zI− A).

�
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Lemma 3.4. Let X1, . . . , Xm be d × d jointly independent random matrices, which take
finitely many values. Then,

(3.5) E [µ[X1, . . . , Xm](z)] = µ[E [X1] , . . . ,E [Xm]](z) z ∈ C.

In addition, if random matrices Xi, i = 1, . . . ,m, are rank one, then

(3.6) E

[

det

(

zI−
m∑

i=1

Xi

)]

= µ[E [X1] , . . . ,E [Xm]](z) z ∈ C.

Proof. By Lemma 3.2 for any matrices B1, . . . , Bn and A2, . . . , Am and coefficients p1, . . . , pn
satisfying

∑n
i=1 pi = 1, we have

µ

[ n∑

i=1

piBi, A2, . . . , Am

]

(z) =
n∑

i=1

piµ[Bi, A2, . . . , Am].

Then the joint independence of X1, . . . , Xm yields (3.5). Combining (3.5) with Lemma 3.3
yields (3.6). �

3.2. Real stable polynomials. The proof of (MCP ) =⇒ (MSS) relies on the concept
of a real stable polynomial.

Definition 3.2. Let C+ = {z ∈ C : Im(z) > 0} be the upper half plane. We say that a
polynomial p ∈ C[z1, . . . , zm] is stable if p(z1, . . . , zm) 6= 0 for every (z1, . . . , zm) ∈ C

m
+ . A

polynomial is called real stable if it is stable and all of its coefficients are real.

Note that a univariate polynomial is real stable if and only if all its roots are real. We will
show a few basic properties of real stable polynomials.

Lemma 3.5. If A1, . . . , Am are positive semidefinite hermitian d× d matrices, then

p(z, z1, . . . , zm) = det

(

zI+
m∑

i=1

ziAi

)

∈ C[z, z1, . . . , zm]

is a real stable polynomial.

Proof. If inputs z, z1, . . . , zm are real, then the values p(z, z1, . . . , zm) are also real, since a
determinant of a hermitian matrix is real. Hence, p ∈ R[z, z1, . . . , zm]. On the contrary
suppose that p(z, z1, . . . , zm) = 0 for some (z, z1, . . . , zm) ∈ C

m+1
+ . That is,

(

zI+
m∑

i=1

ziAi

)

v = 0 for some 0 6= v ∈ C
m+1.

Hence,

0 = Im

〈(

zI+
m∑

i=1

ziAi

)

v, v

〉

= Im(z)||v||2 +
m∑

i=1

Im(zi)〈Aiv, v〉 ≥ Im(z)||v||2 > 0,

which is a contradiction. �

Lemma 3.6. Suppose that p ∈ R[z1, . . . , zm] is stable.

• (restriction) for fixed t ∈ R, polynomial p(t, z2, . . . , zm) ∈ R[z2, . . . , zm] is stable
unless it is identically zero.

• (differentiation) if t ∈ R, then (1 + t∂z1)p is real stable.
13



Proof. By Hurwitz’s theorem, if a sequence of non-vanishing holomorphic functions {fn}n∈N
on an open connected domain Ω ⊂ C

m converges uniformly on compact sets, then its limit
f is either non-vanishing or f ≡ 0. Let Ω = C

m−1
+ . Define

fn(z1, . . . , zm−1) = p(t+ i/n, z1, . . . , zm−1) for (z1, . . . , zm−1) ∈ Ω, n ∈ N.

Letting n → ∞, Hurwitz’s theorem implies the restriction property.
To show differentiation property we can assume that t 6= 0. Fix z2, . . . , zm ∈ Ω. By

definition q(z) = p(z, z2, . . . , zm) ∈ C[z] is stable. Hence, we can write q(z) = c
∏d

i=1(z−wi)
for some roots w1, . . . , wd ∈ C \ C+. Then,

q(z) + tq′(z) = c

d∏

i=1

(z − wi)

(

1 +
d∑

i=1

t

z − wi

)

.

Take any z ∈ C+. Since Im(wi) ≤ 0, we have z − wi ∈ C+, and hence Im(1/(z − wi)) < 0

for all i = 1, . . . , d. Hence,
∑d

i=1
t

z−wi
has non-zero imaginary part. This implies that

q(z) + tq′(z) 6= 0 for any z ∈ C+. Since z2, . . . , zm ∈ Ω is arbitrary, (1 + t∂z1)p is stable. �

As a corollary of Lemma 3.5 and 3.6 we have:

Corollary 3.7. If A1, . . . , Am are positive semidefinite hermitian d × d matrices, then the
mixed characteristic polynomial µ[A1, . . . , Am] is real, stable, and monic of degree d.

The following elementary lemma plays a key role in our arguments. Recall that for any
p ∈ R[z], p is stable ⇐⇒ p has all real roots. Let maxroot(p) be the largest root of p.

Lemma 3.8. Let p, q ∈ R[z] be stable monic polynomials of the same degree. Suppose that
every convex combination (1− t)p + tq, 0 ≤ t ≤ 1, is also stable. Then for any 0 ≤ t0 ≤ 1,
maxroot(((1− t0)p+ t0q) lies between maxroot(p) and maxroot(q).

Proof. Without loss of generality we can assume maxroot(p) ≤ maxroot(q) and 0 < t0 < 1.
Our goal is to show that

mp := maxroot(p) ≤ maxroot(((1− t0)p+ t0q) ≤ maxroot(q) =: mq.

For x > mq, both p(x) and q(x) are positive, and hence ((1− t0)p+ t0q)(x) > 0. This shows
the second inequality.
We shall prove the first inequality by contradiction. Suppose that (1 − t0)p + t0q has no

roots [mp,mq]. This implies that (1− t0)p+ t0q > 0 for all x ≥ mp. In particular, q(mp) > 0.
Hence, q must have at least 2 roots (counting multiplicity) to the right of mp. Let D be an

open disk in C centered at mp+mq

2
and radius mq−mp

2
. We claim that

((1− t)p+ tq)(z) 6= 0 for all z ∈ ∂D and t0 ≤ t ≤ 1.

Indeed, since (1 − t)p + tq is stable, this is easily verified at z = mp and z = mq. By
compactness

inf
(z,t)∈∂D×[t0,1]

|((1− t)p+ tq)(z)| > 0.

By Rouche’s theorem, polynomials (1− t)p+ tq have the same number of zeros in D for all
t0 ≤ t ≤ 1. This is a contradiction with the hypothesis that (1 − t0)p + t0q has no roots in
D, but q has at least 2 roots in D. �
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Lemma 3.8 can be generalized to control other roots, such as second largest, third largest,
etc. This leads to a concept of an interlacing family of polynomials, which plays a funda-
mental role in the arguments of Marcus-Spielman-Srivastava [34, 35].

3.3. Interlacing family of polynomials. We shall not give the formal definition of this
concept. Instead, following Tao [42] we will use the following lemma.

Lemma 3.9. Let p1, . . . , pn ∈ R[z] be stable monic polynomials of the same degree. Suppose
that every convex combination

n∑

i=1

tipi, where

n∑

i=1

ti = 1, ti ≥ 0

is a stable polynomial. Then, for any such convex combination there exists 1 ≤ i0 ≤ n such
that

(3.7) maxroot(pi0) ≤ maxroot

( n∑

i=1

tipi

)

.

Proof. Using Lemma 3.8 we can easily show (3.7) by induction on the number of polynomials
p1, . . . , pn. �

Lemma 3.10. Let X be a random rank one positive semidefinite d×d matrix. Let A1, . . . , Am

be d× d deterministic positive semidefinite matrices. Then with positive probability we have

(3.8) maxroot(µ[X,A1, . . . , Am]) ≤ maxroot(µ[E [X] , A1, . . . , Am]).

Proof. Suppose that X takes values B1, . . . , Bn. Define polynomials pi = µ[Bi, A1, . . . , Am],
i = 1, . . . ,m. By Corollary 3.7 these are real, stable, and monic polynomials of degree
d. Moreover, any convex combination

∑n
i=1 tipi is also stable. Indeed, consider a random

variable Y taking values B1, . . . , Bn with probabilities t1, . . . , tn, resp. By Lemma 3.4 and
Corollary 3.7

n∑

i=1

tipi = E [µ[Y,A1, . . . , Am]] = µ[E [Y ] , A1, . . . , Am]

is a real stable polynomial. Hence, Lemma 3.9 yields (3.8). �

Iterating Lemma 3.10 gives the required control on roots of mixed characteristic polyno-
mials. This is an essence of the method of interlacing family of polynomials.

Lemma 3.11. Suppose that X1, . . . , Xm are jointly independent random rank one positive
semidefinite d× d matrices which take finitely many values. Then with positive probability

(3.9) maxroot(µ[X1, . . . Xm]) ≤ maxroot(µ[E [X1] , . . . ,E [Xm]]).

Proof. By Lemma 3.10 a random matrix X1 takes some value A1 (with positive probability)
such that

maxroot(µ[E [X1] , . . . ,E [Xm]]) ≥ maxroot(µ[A1,E [X2] , . . . ,E [Xm]]).

By the independence assumption, if we condition the probability space to the event X1 = A1,
then random variables X2, . . . , Xm have the same joint distribution. Again by Lemma 3.10,
X2 takes some value A2 (with positive probability) such that

maxroot(µ[A1,E [X2] , . . . ,E [Xm]]) ≥ maxroot(µ[A1, A2,E [X3] , . . . ,E [Xm]]).
15



Conditioning on the event X1 = A1 and X2 = A2, and repeating this argument for remaining
random variables yields (3.9). �

Finally, we can complete the proof of the main implication.

Lemma 3.12. (MCP ) =⇒ (MSS).

Proof. Take random vectors v1, . . . , vm as in Theorem (MSS). Define rank one positive
semidefinite random matrices Xi = viv

∗
i , i = 1, . . . ,m. The assumption (3.1) translates into

the assumption (3.3) for Ai = E [Xi]. Since Xi are hermitian, by Lemma 3.3
∥
∥
∥
∥
∥

m∑

i=1

viv
∗
i

∥
∥
∥
∥
∥
=

∥
∥
∥
∥
∥

m∑

i=1

Xi

∥
∥
∥
∥
∥
= maxroot

(

det

(

zI−
m∑

i=1

Xi

))

= maxroot(µ[X1, . . . Xm]).

By Lemma 3.11, the bound on maxroot(µ[A1, . . . Am]) in the conclusion of Theorem (MCP )
yields the same bound on ‖∑m

i=1 viv
∗
i ‖ with positive probability. �

3.4. Multivariate barrier argument. The proof of Theorem (MCP ) hinges on a multi-
variate barrier argument.

Definition 3.3. Let p ∈ R[z1, . . . , zm]. We say that x = (x1, . . . , xm) ∈ R
m is above the

roots of p if
p(x+ t) > 0 for all t ∈ [0,∞)m.

A barrier function of p in direction of zi, i = 1, . . . ,m, is defined for such x as

Φi
p(x) = ∂zi log p(x) =

∂zip(x)

p(x)
.

We need the following result about zeros of real stable polynomials in two variables, which
is illustrated in Figure 1.

Lemma 3.13. Let p ∈ R[z, w] be a stable polynomial. Then for all but finitely many x ∈ R,
a polynomial p(x, w) ∈ R[w] has all real roots and constant degree d ∈ N. Let y1(x) ≤ . . . ≤
yd(x) be its roots counting multiplicity. Then, for each i ∈ [d], x 7→ yi(x) is non-increasing.

Proof. We can write p(z, w) =
∑d

i=0 w
iqi(z), where each qi ∈ R[z]. By Lemma 3.6 for fixed

x ∈ R, a polynomial p(x, w) ∈ R[w] has all real roots. Its degree equals d if and only if
qd(x) 6= 0. The fundamental theorem of algebra implies the existence of roots y1(x) ≤ . . . ≤
yd(x). It remains to show that x 7→ yi(x) is non-increasing, where i ∈ [d].
We claim that for every real root p(x, y) = 0, (x, y) ∈ R

2, we have

(3.10) ∂zp(x, y) ≤ 0 and ∂wp(x, y) ≤ 0.

On the contrary, suppose that α = ∂wp(x, y) > 0. By the implicit function theorem for
holomorphic functions [25, Theorem I.7.6], there exists complex neighborhoods Ux, Uy ⊂ C

of x and y, resp., and a holomorphic function h : Ux → Uy such that

{(z, w) ∈ Ux × Uy : p(z, w) = 0} = {(z, h(z)) : z ∈ Ux}.
Taking z = x+ εi and h(z) ≈ y+h′(x)εi = y+αεi for small ε > 0 produces a root of p with
positive imaginary parts, which contradicts stability of p. By symmetry we deduce (3.10).

To finish the proof, it is convenient to use a basic fact about algebraic curves

{(x, y) ∈ R
2 : p(x, y) = 0}.
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p(z) = c
∏d

j=1(z − yj), where yj ∈ R, and

Φp(x) =

(
p′

p

)

(x) =
d∑

j=1

1

x− yj
.

By a direct calculation

(−1)k(Φp)
(k)(x) = k!

d∑

j=1

1

(x− yj)k+1
.

Since x is above the roots of p, we have x > max(yj) and all of the above terms are positive.
The above argument also covers trivially the case k = 0.
It remains to deal with the case i 6= j and k ≥ 1. By Lemma 3.6 and symmetry, we can

assume that m = 2, i = 1, and j = 2. Suppose that x = (x1, x2) is above the roots of a
stable polynomial p ∈ R[z1, z2]. Since

(−1)k∂k
z2
Φ1

p(x) = (−1)k∂k
z2
∂z1 log p(x) = ∂z1((−1)k∂k

z2
log p)(x)

it suffices to show that x1 7→ (−1)k∂k
z2
log p(x1, x2) is non-decreasing.

By Lemma 3.13 we can write

p(x1, x2) = c(x1)
d∏

i=1

(x2 − yi(x1)).

Hence,

x1 7→ (−1)k∂k
z2
log p(x1, x2) = −(k − 1)!

d∑

i=1

1

(x2 − yi(x1))k
.

Since x is above the roots of p, we have x2 > max(yi(x1)) and by Lemma 3.13, the above
function is non-decreasing. �

The following lemma provides the crucial control of the barrier function of (1 − ∂zj)q in
terms of the barrier function of q.

Lemma 3.15. Let q ∈ R[z1, . . . , zm] be stable. Suppose that x ∈ R
m lies above the roots of

q and

(3.11) Φj
q(x) ≤ 1− 1

δ
for some j ∈ [m] and δ > 0.

Then, x+ δej lies above the roots of (1− ∂zj)q and

(3.12) Φi
(1−∂zj )q

(x+ δej) ≤ Φi
q(x) for all i ∈ [m].

Proof. Take any y ∈ R
m above x, that is, yi ≥ xi for all i ∈ [m]. By Lemma 3.14 (mono-

tonicity), we have Φj
q(y) ≤ Φj

q(x) < 1. Hence,

(3.13) (1− ∂zj)q(y) = q(y)(1− Φj
q(y)) > 0.

In particular, x+ δej is above the roots of (1− ∂zj)q. By (3.13)

log((1− ∂zj)q)(y) = log q(y) + log(1− Φj
q)(y).
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Applying ∂zi , i ∈ [m], shows

Φi
(1−∂zj )q

(y) = Φi
q(y)−

∂ziΦ
j
q(y)

1− Φj
q(y)

.

Since

∂ziΦ
j
q(y) = ∂zi∂zj log q(y) = ∂zj∂zi log q(y) = ∂zjΦ

i
q(y),

the required bound (3.12) is equivalent with the inequality

(3.14)
∂zjΦ

i
q(x+ δej)

1− Φj
q(x+ δej)

= Φi
q(x+ δej)− Φi

(1−∂zj )q
(x+ δej) ≥ Φi

q(x+ δej)− Φi
q(x).

By Lemma 3.14 (convexity) and (monotonicity), we have

Φi
q(x+ δej)− Φi

q(x) ≤ δ∂zjΦ
i
q(x+ δej) ≤ 0.

Hence, (3.14) is implied by multiplying the inequality

(3.15)
1

1− Φj
q(x+ δej)

≤ δ

by ∂zjΦ
i
q(x+ δej). Finally, (3.15) holds true as a consequence of Lemma 3.14 (monotonicity)

and (3.11)

Φj
q(x+ δej) ≤ Φj

q(x) ≤ 1− 1

δ
.

This shows (3.14) and consequently (3.12). �

Applying inductively Lemma 3.15 yields the crucial corollary.

Corollary 3.16. Let q ∈ R[z1, . . . , zm] be stable. Suppose that x ∈ R
m lies above the roots

of q and for some δ > 0 we have

Φj
q(x) ≤ 1− 1

δ
for all j ∈ [m].

Then, x+ (δ, . . . , δ) lies above the roots of
∏m

i=1(1− ∂zi)q.

Proof. For k = 0, . . . ,m, define

yk = x+ δ

k∑

i=1

ei, qk =
k∏

i=1

(1− ∂zi)q.

Then, using Lemma 3.15, we show inductively that yk ∈ R
m lies above the roots of qk for all

k ∈ [m]. �

Finally, we are ready to give the proof of (MCP ).

Proof of Theorem (MCP ). Define

(3.16) p(z1, . . . , zm) = det

( m∑

i=1

ziAi

)

∈ R[z1, . . . , zm]
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By Lemmas 3.5 and 3.6, p is a real stable polynomial. By Jacobi’s formula for any j ∈ [m],

∂zjp(x1, . . . , xm) = ∂t det

( m∑

i=1

xiAi + tAj

)∣
∣
∣
∣
t=0

= det

( m∑

i=1

xiAi

)

tr

(( m∑

i=1

xiAi

)−1

Aj

)

.

Hence, by (3.3)

Φj
p(t, . . . , t) = tr(t−1Aj) ≤

ε

t
for t > 0.

Moreover, x = (t, . . . , t) lies above the roots of p for any t > 0. Take any t, δ > 0 such that

(3.17)
ε

t
+

1

δ
≤ 1.

By Corollary 3.16, (t+ δ, . . . , t+ δ) lies above the roots of
∏m

i=1(1− ∂zi)p. Since

m∏

i=1

(1− ∂zi)p(z, . . . , z) = µ[A1, . . . , Am](z) for any z ∈ C,

the largest root of µ[A1, . . . , Am] is ≤ t + δ. Minimizing t + δ under the constraint (3.17)
yields t =

√
ε + ε and δ = 1 +

√
ε. Hence, the largest root of µ[A1, . . . , Am] is bounded by

(1 + ε)2. �

3.5. Notes. The strategy of the proofs of (MSS) and (MCP ) follows the original proof
of Marcus, Spielman, and Srivastava [35] with strong influence by Tao’s blog article [42].
The main difference is in the proof of Lemma 3.14. Tao uses more elementary properties of
real stable polynomials in the form of Lemma 3.13, whereas the original proof uses Helton-
Vinnikov’s theorem [9, 31]. This result states that every real stable polynomial in two
variables of degree d has a determinantal representation p(x, y) = ± det(xA + yB + C) for
some d× d positive semidefinite matrices A,B and a symmetric matrix C.
The proof of the special case of Theorem (MSS), for random variables taking at most

two values, is more technical and it can be found in [13]. It relies on a variant of The-
orem (MCP ) for matrices A1, . . . , Am of rank ≤ 2. This corresponds to a determinantal
polynomial (3.16) which is quadratic with respect to each variable z1, . . . , zm. Amazingly,
such deceptively simple polynomial encodes all the information about roots of the mixed
characteristic polynomial µ[A1, . . . , Am], which is needed for showing (MCP ).

4. Applications of Weaver’s conjecture

In this section we show applications of the solution of Kadison-Singer problem which
are outside of the main sequence of implications (KS) ⇐ . . . ⇐ (MCP ). Our main goal
is to show quantitative bounds in Feichtinger’s conjecture. To achieve this we need some
background about Naimark’s dilation theorem.
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4.1. Naimark’s complements of frame partitions. We start with well-known Naimark’s
dilation theorem.

Lemma 4.1. Let {ui}i∈I be a Parseval frame in a Hilbert space H. Then there exists a
larger Hilbert space K ⊃ H and an o.n. basis {ei}i∈I ⊂ K such that

ui = Pei for all i ∈ I, where P is an orthogonal projection of K onto H.

Conversely, if P is a projection of K onto a closed subspace H, then {Pei}i∈I is a Parseval
frame in H.

Proof. Consider the analysis T : H → `2(I) as in Lemma 2.6. Since {ui}i∈I is a Parseval
frame, T is an isometry of H onto T (H) ⊂ `2(I). Let Q be the orthogonal projection of `2(I)
onto T (H). Let {ei}i∈I be the standard o.n. basis of `2(I). Since T is an isometry, it suffices
to show the conclusion for Parseval frame {Tui}i∈I in T (H). In turn, this is a consequence
of the following calculation. Since {Tui}i∈I is a Parseval frame

Qa =
∑

i∈I
〈a, Tui〉Tui for all a ∈ `2(I).

Thus, for any i ∈ I0,

Qei0 =
∑

i∈I
〈ei0 , Tui〉Tui =

∑

i∈I
〈ui, ui0〉Tui = T

(
∑

i∈I
〈ui0 , ui〉ui

)

= Tui0 .

�

Lemma 4.1 leads to the concept of a Naimark’s complement. This is a Parseval frame
{(I − P )ei}i∈I in K 	 H, where I is the identity on K ∼= `2(I). Recall the definition of a
Riesz sequence.

Definition 4.1. A family of vectors {ui}i∈I in a Hilbert space H is a Riesz sequence if there
are constants A,B > 0 so that for all {ai} ∈ `2(I) we have

(4.1) A
∑

i∈I
|ai|2 ≤

∥
∥
∥
∥

∑

i∈I
aiui

∥
∥
∥
∥

2

≤ B
∑

i∈I
|ai|2.

We call A,B lower and upper Riesz bounds for {ui}i∈I .
Note that it suffices to verify (4.1) only for sequences {ai} with finitely many non-zero

coefficients, since a standard convergence argument yields the same bounds (4.1) for all
infinitely supported sequences {ai} ∈ `2(I). In general we do not require that frame, Bessel,
and Riesz bounds in Definitions 2.5 and 4.1 are optimal. In particular, a Bessel sequence
with bound B is automatically a Bessel sequence with bound B′ ≥ B.

Lemma 4.2. Let P : `2(I) → `2(I) be the orthogonal projection onto a closed subspace
H ⊂ `2(I). Then, for any subset J ⊂ I and δ > 0, the following are equivalent:

(i) {Pei}i∈J is a Bessel sequence with bound 1− δ,
(ii) {(I− P )ei}i∈J is a Riesz sequence with lower bound δ, where I is the identity on `2(I).

Proof. Note that for any sequence of coefficients {ai} ∈ `2(J),

(4.2)
∑

i∈J
|ai|2 =

∥
∥
∥
∥

∑

i∈J
aiPei

∥
∥
∥
∥

2

+

∥
∥
∥
∥

∑

i∈J
ai(I− P )ei

∥
∥
∥
∥

2

.
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Thus,

(4.3)

∥
∥
∥
∥

∑

i∈J
aiPei

∥
∥
∥
∥

2

≤ (1− δ)
∑

i∈J
|ai|2 ⇐⇒

∥
∥
∥
∥

∑

i∈J
ai(I− P )ei

∥
∥
∥
∥

2

≥ δ
∑

i∈J
|ai|2.

Observe that the inequality in the left hand side of (4.3) is equivalent to (i). This follows
from the well-known fact that ||T || = ||T ∗||, where T is the analysis operator

T : H → `2(I), Tφ = {〈u, Pei〉}i∈J , u ∈ H,

and its adjoint is the synthesis operator

T ∗ : `2(I) → H, T ∗({ai}i∈J) =
∑

i∈J
aiPei, {ai}i∈J ∈ `2(J).

This yields the equivalence of (i) and (ii). �

4.2. The Feichtinger conjecture. We are now ready to formulate the quantitative version
of the Feichtinger conjecture which was shown by Casazza, Marcus, Speegle, and the author
[13].

Theorem (FEI). Let I be at most countable set and let H be a separable Hilbert space.
Suppose {ui}i∈I is a Bessel sequence in H with bound 1 that consists of vectors of norms
‖ui‖2 ≥ ε, where ε > 0. Then there exists a universal constant C > 0, such that I can be
partitioned into r ≤ C/ε subsets I1, . . . , Ir, such that each subfamily {ui}i∈Ij , j = 1, . . . , r,
is a Riesz sequence.

In the proof of Theorem (FEI) we shall use the following adaptation of the Schur-Horn
theorem for Riesz sequences.

Lemma 4.3. Let S be a positive semi-defnite M ×M matrix with eigenvalues λ1 ≥ . . . ≥
λM ≥ 0. Let d1 ≥ . . . ≥ dM ≥ 0 be such that

(4.4)
M∑

i=1

di =
M∑

i=1

λi and
k∑

i=1

di ≤
k∑

i=1

λi for all 1 ≤ k ≤ M.

Then there exists a collection of vectors {vi}Mi=1 in C
M such its frame operator is S and

‖vi‖2 = di for all i = 1, . . . ,M .

Lemma 4.3 has a converse, which states that the norms of {vi}Mi=1 and eigenvalues of its
frame operator must satisfy (4.4). Since we will not need this, we simply omit the proof of
the converse result.

Proof. By the Schur-Horn theorem, there exists a hermitian matrix S̃ with eigenvalues λ1 ≥
. . . ≥ λM and diagonal d1 ≥ . . . ≥ dM . Since S and S̃ are unitarily equivalent, there exists
a unitary M × M matrix U such that S̃ = U∗SU . Define vectors vi = S1/2Uei, where ei,
i ∈ [M ], are standard basis vectors in C

M . Then,

||vi||2 = 〈S1/2Uei, S
1/2Uei〉 = 〈SUei, Uei〉 = 〈S̃ei, ei〉 = di.
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Moreover, the frame operator of {vi}Mi=1 satisfies for v ∈ C
M ,

( M∑

i=1

vi ⊗ vi

)

(v) =
M∑

i=1

(S1/2Uei)⊗ (S1/2Uei)(v) =
M∑

i=1

〈v, S1/2Uei〉S1/2Uei

= S1/2

( M∑

i=1

〈S1/2v, Uei〉Uei

)

= S1/2S1/2v = Sv.

The penultimate step follows from the fact that {Uei}Mi=1 is an o.n. basis. �

We start from the special case of Theorem (FEI) and then show its increasingly general
versions.

Lemma 4.4. Theorem (FEI) holds under the additional assumption that I is finite and
ε = 0.92. In this case, a Bessel sequence {ui}i∈I with bound 1 and ‖ui‖2 ≥ ε can be
partitioned into two Riesz sequences with lower bound 0.02.

In light of Remark 2.1, the value of 0.92 can be replaced by any number > 3/4, but we
are not after best constants here.

Proof. Assume momentarily that {ui}i∈I is a Parseval frame in a finite dimensional Hilbert
space H. By Lemma 4.1 we can imbed H into `2(I) such that ui = Pei, i ∈ I, where P
is an orthogonal projection of `2(I) onto H. Then, vectors vi = (I − P )ei, i ∈ I, form a
Parseval frame in `2(I) 	 H. Since ||ui||2 ≥ ε, we have ||vi||2 ≤ 1 − ε < δ := 0.08. By
Theorem (KS∞

2 ) we can find a subset J ⊂ I, such that both {vi}i∈J and {vi}i∈I\J are Bessel

sequences with bound 1
2
+
√
2δ+ δ = 0.98. Thus, by Lemma 4.2, both {ui}i∈J and {ui}i∈I\J

are Riesz sequences with lower bound 1− 0.98 = 0.02.
Assume now that {ui}i∈I is a Bessel sequence with bound 1 and ‖ui‖2 ≥ ε. Since I is finite,

we can assume that I = [n] and H = C
d. By increasing the dimension of the ambient space,

we claim that a Bessel sequence {ui}i∈[n] can be extended to a Parseval frame by adjoining

some collection of vectors {un+i}d+N
i=1 in C

d+N satisfying ||ui|| ≥ ε, where N is sufficiently
large.

Indeed, suppose that the frame operator of {ui}ni=1, which acts on C
d, has eigenvalues

1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0. For a fixed N , consider an operator on C
d+N ,

S̃ = Id+N − S ⊕ 0N , where 0N is the zero operator on C
N .

Then, S̃ has the following eigenvalues listed in decreasing order

(4.5) 1, . . . , 1
︸ ︷︷ ︸

N

, 1− λd, . . . , 1− λ1.

Thus, we need to show the existence of vectors {un+i}d+N
i=1 in C

d+N such that:

(i) its frame operator is S̃, and
(ii) ‖un+i‖2 = C for all i = 1, . . . , d+N for some constant C ∈ [ε, 1].

By Lemma 4.3, this is possible provided eigenvalue sequence (4.5) majorizes, in the sense of
(4.4), the sequence

(4.6) C, . . . , C
︸ ︷︷ ︸

d+N

.
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However, the majorization (4.5) is automatic for the constant sequence (4.6) provided that

(d+N)C = N +
d∑

i=1

(1− λi).

Thus, by choosing sufficiently large N , we have C ≥ ε, which shows the claim. Now, we
apply the previous argument for a Parseval frame {ui}n+d+N

i=1 . Hence, we can find a partition
into two Riesz sequences. Restricting this partition to the original sequence {ui}ni=1 yields
the same conclusion. �

Lemma 4.5. Theorem (FEI) holds under the assumption that I is finite and ||ui||2 = ε > 0
for all i. In this case, a Bessel sequence {ui}i∈I with bound 1 can be partitioned into two
Riesz sequences with bounds ε/50 and ε/0.92.

Proof. By scaling Lemma 4.4 yields the following result: any finite tight frame {wi} with
constant B and with norms ||wi||2 ≥ 0.92B can be partitioned into two Riesz sequences with
bounds B/50 and B.
Now, suppose that {ui}i∈I is a Bessel sequence with bound 1 and ‖ui‖2 = ε. By Theorem

(KSr) for each r we can find a partition {Ĩj}rj=1 of I such that each {ui}i∈Ĩj is a Bessel
sequence with bound

B =

(
1√
r
+
√
ε

)2

.

Now we choose large enough r such that

(4.7) ‖ui‖2 = ε ≥ 0.92B = 0.92

(
1√
r
+
√
ε

)2

.

A simple calculation shows that the above inequality simplifies to

2√
rε

+
1

rε
≤ 0.08

0.92
.

Hence, it suffices to choose

r ≥ 9

ε

(
0.92

0.08

)2

.

By Lemma 4.4, each {ui}i∈Ĩj can be partitioned into two Riesz sequences with lower bound

B/50 ≥ ε/50 and upper bound B ≤ ε/0.92. This gives the required partition of size 2r and
completes the proof of Lemma 4.5. �

Theorem (FEI) is now a consequence of Lemmas 2.7 and 4.5.

Proof of Theorem (FEI). Suppose {ui}i∈I is an infinite Bessel sequence in a Hilbert space
H satisfying ||ui||2 ≥ ε. Without loss of generality we can assume that ||ui||2 = ε for all
i ∈ I. Indeed, {√ε ui

||ui||}i∈I is also Bessel sequence with bound 1. Applying (FEI) for this

sequence yields the same conclusion for the original Bessel sequence {ui}i∈I .
Since I is countable, we may assume I = N. For any n ∈ N, we apply Lemma 4.5 to

the initial sequence {ui}i∈[n]. Hence, we find a partition {In1 , . . . , Inr } of {ui}i∈[n] into Riesz
sequences with uniform lower and upper bounds of ε/50 and ε/0.92, resp. To show the
existence of a global partition of {I1, . . . , Ir} of {ui}i∈N into Riesz sequences, it suffices to
apply Lemma 2.7. This done in the same way as in the proof of Lemma 2.8. �
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4.3. Casazza-Tremain conjecture. A stronger variant of the Feichtinger conjecture, called
Rε conjecture, was studied by Casazza and Tremain [22]. This result states that Bessel se-
quences consisting of unit norm vectors can be partitioned into almost orthogonal sequences.

Theorem (Rε). Suppose that {ui}i∈I is a unit norm Bessel sequence with bound B in a
separable Hilbert space H. Then for any ε > 0 there exists a partition {I1, . . . , Ir} of I of
size r = O(B/ε4), such that each {ui}i∈Ij , j = 1, . . . , r, is a Riesz sequence with bounds 1−ε
and 1 + ε.

In the proof of Theorem (Rε) we will use the following lemma. The case when J = I is a
well-known fact, see [24, Section 3.6]. For the sake of completeness we will give the proof of
Lemma 4.6.

Lemma 4.6. Suppose {ui}i∈I is a Riesz basis in a Hilbert space H. Let {u∗
i }i∈I be its unique

biorthogonal (dual) Riesz basis, i.e.,

〈ui, u
∗
j〉 = δi,j for all i, j ∈ I.

Let J ⊂ I be any subset. Then, {ui}i∈J is a Riesz sequence with bounds A and B ⇐⇒
{u∗

i }i∈J is a Riesz sequence with bounds 1/B and 1/A.

Proof. Suppose that {ui}i∈J has upper Riesz bound B. This is equivalent to the Bessel
condition

(4.8)
∑

i∈J
|〈u, ui〉|2 ≤ B||u||2 for all u ∈ H.

For any sequence {ai}i∈J ∈ `2, there exists a unique u ∈ H such that

〈u, ui〉 =
{

ai i ∈ J,

0 otherwise.

Since u =
∑

i∈J aiu
∗
i , by (4.8) we have
∥
∥
∥
∥

∑

i∈J
aiu

∗
i

∥
∥
∥
∥

2

= ||u||2 ≥ 1

B

∑

i∈J
|〈u, ui〉|2 =

1

B

∑

i∈J
|ai|2.

Conversely, if {u∗
i }i∈J has lower Riesz bound 1/B, then (4.8) holds and {ui}i∈J has upper

Riesz bound B. By symmetry, {u∗
i }i∈J has upper Riesz bound 1/A if and only if {ui}i∈J has

lower Riesz bound A, which completes the proof of the lemma. �

Lemma 4.7. (FEI) =⇒ (Rε).

Proof. In the first step we apply a scaled version of Theorem (FEI) to find a partition of
{ui}i∈I of size O(B) into Riesz sequences with uniform lower and upper bounds. By Lemma
4.5, these bounds are 1/50 and 1/0.92, resp.
Suppose that {ui}i∈I′ , I ′ ⊂ I is one of these unit-norm Riesz sequences. In the next step we

need to tighten these bounds as follows. Let {u∗
i }i∈I′ be the unique biorthogonal (dual) Riesz

basis to {ui}i∈I′ in its closed linear span H′ = span{ui : i ∈ I ′}. By Lemma 4.6 the upper
Riesz bound of {u∗

i }i∈I′ is 50. Applying Theorem (KSr) to both {ui}i∈I′ and {u∗
i }i∈I′ , we

can find partitions into Riesz sequences, which reduce upper bounds to 1 + ε. A calculation
shows that this requires partitions each of size O(1/ε2). Taking common refinement of all of
these partitions produces a partition of {ui}i∈I of size O(B/ε4). Let {ui}i∈J be any element
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of of this partition. Then, both {ui}i∈J and {u∗
i }i∈J are Riesz sequences with upper bounds

1 + ε. Lemma 4.6 implies that {ui}i∈J has lower bound 1/(1 + ε) ≥ 1− ε. �

4.4. Bourgain-Tzafriri conjecture. Theorem (Rε) yields automatically the Bourgain–
Tzafriri restricted invertibility conjecture.

Theorem (BT ). Let {ei}i∈I be an orthonormal basis of a separable Hilbert space H. Let
T : H → H be a bounded linear operator with norm ‖T‖2 ≤ B and ‖Tei‖ = 1 for all
i ∈ I, where B > 1. Then, for any ε > 0, there exists a partition {I1, . . . , Ir} of I of size
r = O(B/ε4), such that T is (1 + ε)-isometry when restricted to each orthogonal subspace

Hj = span{ei : i ∈ Ij}.
That is, for all j = 1, . . . , r,

(4.9) (1− ε)||f ||2 ≤ ||Tf ||2 ≤ (1 + ε)||f ||2 for all f ∈ Hj.

Lemma 4.8. (Rε) =⇒ (BT ).

Proof. Define vectors ui = Tei, i ∈ I. By our hypothesis {ui}i∈I is a unit norm Bessel
sequence with bound B. By Theorem (Rε), there exists a partition {I1, . . . , Ir} of I of size
r = O(B/ε4) such that each collection {ui}i∈Ij , j ∈ [r], is a Riesz sequence with bounds 1−ε
and 1 + ε. Translating this back for the property of T yields (4.9). �

A classical application of the results studied in this section involves Fourier frames. If
E ⊂ [0, 1] has positive Lebesgue measure, then the collection of functions φn(t) = e2πintχE(t),
n ∈ Z, is a Parseval frame for L2(E), often called a Fourier frame. Since this is an equal
norm frame, i.e., ||φn||2 = |E| for all n ∈ Z, Theorem (Rε) yields the following corollary.

Corollary 4.9. There exists a universal constant c > 0 such that for any ε > 0 and any
subset E ⊂ [0, 1] with positive measure, the corresponding Fourier frame {φn}n∈Z can be
decomposed as the union of r ≤ cε−4|E|−1 Riesz sequences with bounds 1± ε.

4.5. Notes. The proof of (FEI) and (Rε) follows the approach in [13] with some minor
simplifications. One can show (FEI) with less effort by deducing it from Theorem (PB)
as in [16, Proposition 3.1], but with worse bounds on the partition size r. The bound on r
in Theorem (FEI) is asymptotically optimal as ε → 0. This can be seen by considering a
union of b1/εc o.n. bases scaled by the factor

√
ε. A more general version of Lemma 4.3 for

frames can be found in [6, 14].
Lawton [32] and Paulsen [37] have shown that the partition subsets of Z in Corollary 4.9

can be chosen to be syndetic sets, i.e., subsets of Z with bounded gaps. The study of the
Feichtinger conjecture for Fourier frames is connected with the problem of paving for Laurent
operators. A Laurent operator Lϕ : L2[0, 1] → L2[0, 1] is given by Lϕf = ϕf for f ∈ L2[0, 1],
where the symbol ϕ ∈ L∞[0, 1]. The problem of paving for Laurent operators was studied
by Halpern, Kaftal, and Weiss [27]. It was continued by Bourgain and Tzafriri [12], who
have shown that every Fourier frame has a Riesz sequence indexed by a subset Λ ⊂ Z of
positive upper density at least c|E|. This is the consequence of their celebrated restricted
invertibility theorem [10, 11], which also holds for `p spaces. While the Bourgain-Tzafriri
restricted invertibility conjecture, Theorem (BT ), holds for `p when p = 2, it is an open
problem for p 6= 2.

Akemann and Weaver [2] have shown an interesting generalization of (KSr) in the form
of Lyapunov’s theorem.
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Theorem (AW ). Suppose {ui}i∈I is a Bessel family with bound 1 in a separable Hilbert
space H, which consists of vectors of norms ‖ui‖2 ≤ δ, where δ > 0. Suppose that 0 ≤ τi ≤ 1
for all i ∈ I. Then, there exists a subset of indices I0 ⊂ I such that

(4.10)

∥
∥
∥
∥

∑

i∈I0

ui ⊗ ui −
∑

i∈I
τiui ⊗ ui

∥
∥
∥
∥
≤ Cδ1/8,

where C > 0 is a universal constant.

The proof of Theorem (AW ) relies solely on (KSr), and hence we could have added another
implication to our diagram (KSr) =⇒ (AW ). However, we will stop here and instead
invite the reader to explore other interesting consequences of the breakthrough solution of
the Kadison-Singer problem.
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