Chapter 1

Continuous frames and the
Kadison-Singer problem

Marcin Bownik

Abstract In this paper we survey a recent progress on continuous frames
inspired by the solution of the Kadison-Singer problem [26] by Marcus, Spiel-
man, and Srivastava [29]. We present an extension of Lyapunov’s theorem for
discrete frames due to Akemann and Weaver [2] and a similar extension for
continuous frames by the author [10]. We also outline a solution of the dis-
cretization problem, which was originally posed by Ali, Antoine, and Gazeau
[4], and recently solved by Freeman and Speegle [22].
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1.1 From pure states to coherent states

The solution of the Kadison-Singer problem by Marcus, Spielman, and Sri-
vastava [29] has had a great impact on several areas of analysis. This is due
to the fact that the Kadison-Singer problem [26] was known to be equiv-
alent to several well-known problems such as Anderson paving conjecture
[1, 5], Bourgain—Tzafriri restricted invertibility conjecture [8], Feichtinger’s
conjecture [12], Weaver’s conjecture [34]. We refer to the survey [13] and the
papers [9, 11, 14] discussing the solution of the Kadison-Singer problem and
its various ramifications.

The original formulation of the Kadison-Singer problem [26] asks whether
a pure state on a maximal abelian self-adjoint algebra (MASA) has a unique
extension to the whole algebra of bounded operators B(H) on a separable
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Hilbert space H. In more concrete terms, let D C B(¢?(N)) be the algebra of
diagonal operators. A state s : D — C is a positive bounded linear functional
(A>0 = s(A) > 0) such that s(I) = 1. A state is pure if it is not a convex
combination of other states. The Kadison-Singer problem asks whether every
pure state on D has a unique extension to a state on B(¢?(N)).

In mathematical physics literature, there exists another meaning for a
state, that is a coherent state. An authoritative treatment of coherent states
and its various generalizations can be found in the book of Ali, Antoine, and
Gazeau [4]. Among several properties satisfied by canonical coherent states [4,
Chapter 1], they constitute an overcomplete family of vectors in the Hilbert
space for the harmonic oscillator. In particular, coherent states satisfy an
integral resolution of the identity, which naturally leads to the notion of a
continuous frame. This is a generalization of the usual (discrete) frame, which
was proposed independently by Ali, Antoine, and Gazeau [3] and by Kaiser
[27], see also [4, 21, 24].

Definition 1. Let H be a separable Hilbert spaces and let (X, 1) be a mea-
sure space. A family of vectors {¢;}iex is a continuous frame over X for H
if:
(i) for each f € H, the function X 3¢ — (f, ¢;) € C is measurable, and
(ii) there are constants 0 < A < B < o0, called frame bounds, such that

AlfI[2 < /X (f o) Pdu(t) < BIIfIP  forall feH.  (L1)

When A = B, the frame is called tight, and when A = B = 1, it is a
continuous Parseval frame. More generally, if only the upper bound holds in

(1.1), that is even if A = 0, we say that {¢; }+cx is a continuous Bessel family
with bound B.

Despite the fact that the notions of a pure state and a coherent state appear
to be unrelated, the solution of Kadison-Singer problem has brought these
two concepts much closer together. This is due to the discretization problem,
which was proposed and popularized by Ali, Antoine, and Gazeau [4, Chapter
17]. Is it possible to obtain a discrete frame by sampling a continuous frame?
Implicitly, some additional hypothesis is needed on continuous frame such us
boundedness

llge|? <N  forallte X. (1.2)

A partial answer to the discretization problem was given by Fornasier and
Rauhut, see [21, Remarks 4 and 5]. This was done by constructing Banach
spaces associated to continuous frames using the coorbit space theory devel-
oped by Feichtinger and Grochenig [18, 19]. In [21, Theorem 5] they provide a
general method to derive Banach frames and atomic decompositions for these
Banach spaces by sampling the continuous frame. This yields the solution of
the discretization problem for localized continuous frames satisfying certain
integrability condition.
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A complete answer to the discretization problem was given by Freeman and
Speegle [22]. Their method uses in an essential way the solution of Weaver’s
conjecture, which was shown in the landmark paper of Marcus, Spielman,
and Srivastava [29]. In turn, Weaver [34] has shown earlier that his conjec-
ture is equivalent to the Kadison-Singer problem. Hence, the solution of the
Kadison-Singer problem about pure states has paved the way for solving the
discretization problem in the area of coherent states.

The solution of the discretization problem by Freeman and Speegle [22]
relies on a sampling theorem for scalable frames. Scalable frames have been
introduced by Kutyniok, Okoudjou, Philipp, and Tuley [28]. A scalable frame
{di}ier is a collection of vectors in H for which there exists a sequence of
scalars {a;}ics such that {a;¢;}icr is a (Parseval) frame for H. The concept
of scalable frame is closely related to weighted frames. It is not hard to show
that every continuous frame can be sampled to obtain a scalable frame. A
much more difficult part is proving a sampling theorem for scalable frames.
This result relies heavily on the solution of Weaver’s conjecture [34].

In addition, we will also present Lyapunov’s theorem for continuous frames
which was recently shown by the author [10]. Every continuous frame defines a
positive operator-valued measure (POVM) on X, see [30]. To any measurable
subset F C X, we assign a partial frame operator Sy g given by

Se.ef = /E<fa Or)Prdp(t) for f € H.

These are also known in the literature as localization operators, see e.g.
[15, 16] for specific settings. If the measure space X is non-atomic, then
the closure of the range of such POVM is convex. This is a variant of the
classical Lyapunov’s theorem which states that the range of a non-atomic
vector-valued measure with values in R™ is a convex and compact subset of
R™.

Akemann and Weaver [2] have recently shown Lyapunov-type theorem
for discrete frames. This result was also made possible by the solution of
the Kadison-Singer problem. In fact, it can be considered as a significant
strengthening of Weaver’s conjecture [34]. In contrast to Lyapunov-type the-
orem of Akemann and Weaver, Lyapunov’s theorem for continuous frames
on non-atomic measure spaces does not rely on the solution of the Kadison-
Singer problem.

The paper is organized as follows. In Section 1.2 we present Lyapunov’s
theorem for continuous frames. In Section 1.3 we explain Lyapunov’s theorem
of Akemann and Weaver. In Section 1.4 we outline the proof of a sampling
theorem for scalable frames which is then used in showing a sampling theorem
for continuous frames. Finally, in Section 1.5 we present examples illustrating
discretization of continuous frames.
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1.2 Lyapunov’s theorem for continuous frames

In this section we present the proof of Lyapunov’s theorem for continuous
frames due to the author [10]. We start with a preliminary result about
continuous frames which is a consequence of the fact that we work with
separable Hilbert spaces. The lower frame bound assumption is not essential
and all of our results in this section hold for continuous Bessel families.

Proposition 1. Suppose that {¢:}ex is a continuous Bessel family in a
separable Hilbert space H. Then:

(i) the support {t € X : ¢+ # 0} is a o-finite subset of X,
(ii) o : X — H is a.e. uniform limit of a sequence of countably-valued
measurable functions.

Proof. Let {e;}icr be an orthonormal basis of H, where the index set I is at
most countable. For any n € N and ¢ € I, by Chebyshev’s inequality (1.1)
yields

p{t € X : |{es, ¢¢)|* > 1/n}) < Bn < oo.

Hence, the set

{teX ¢ #0} =] (J{t € X [(ei ) > 1/n}

i€l neN

is a countable union of sets of finite measure. This shows (i).

Since H is separable, by the Pettis Measurability Theorem [17, Theorem
I1.2], the weak measurability in Definition 1(i) is equivalent to (Bochner)
strong measurability on o-finite measure spaces X. That is, ¢t +— ¢; is a
pointwise a.e. limit of a sequence of simple measurable functions. Moreover,
by [17, Corollary I1.3], every measurable function ¢ : X — H is a.e. uniform
limit of a sequence of countably-valued measurable functions. Although this
result was stated in [17] for finite measure spaces, it also holds for o-finite
measure spaces. Since the support of {¢; }1cx is o-finite, we deduce (ii).

It is convenient to define a concept of weighted frame operator as follows.
This is a special case of a continuous frame multiplier introduced by Balazs,
Bayer, and Rahimi [7]; for a discrete analogue, see [6].

Definition 2. Suppose that {¢;}:cx is a continuous Bessel family. For any
measurable function 7 : X — [0, 1], define a weighted frame operator

S moxf = /XT(t)<fa be)Pedp(t) feH.

Observe that



1 Continuous frames and the Kadison-Singer problem 5
[ 1t vr@onkau = [ rols ool
X X
< [ 14400 Pdute) < BIlFIP
X

Hence, {4/7(t)¢: }+cx is a continuous Bessel family with the same bound as
{#t}+ex and a weighted frame operator is merely the usual frame operator
associated to {1/7(t)¢+ }rex. Using Proposition 1 we will deduce the following
approximation result for continuous frames.

Lemma 1. Let (X, u) be a measure space and let H be a separable Hilbert
space. Suppose that {¢;}iex is a continuous Bessel family in H. Then for
every € > 0, there exists a continuous Bessel family {{}iex, which takes
only countably many values, such that:

(i) there exists a partition {X,}nen of X into measurable sets and a se-
quence {tntnen C X, such that t,, € X,, and

Ve = ¢r,, forae te X, neN, (1.3)

(i) for any measurable function 7 : X — [0,1] we have

I1Sy7e.x — Symu.xll <e (1.4)

Proof. By Proposition 1(i) we can assume that (X, p) is o-finite and ¢; # 0
for all t € X. Then the measure space X can be decomposed into its atomic
X+ and non-atomic X\ X,; parts. Since X is o-finite, it has at most countably
many atoms. Since every measurable mapping is constant a.e. on atoms, we
can take ¢, = ¢, for all t € X, and the conclusions (i) and (ii) hold on
X4t Therefore, without loss of generality can assume that p is a non-atomic
measure.
Define measurable sets Yy = {t € X : ||¢¢]| < 1} and

YVo={teX:2" " <|l¢y]| <2}, n=>1

Then, for any ¢ > 0, we can find a partition {Y}, m}men of each Y,, such
that p(Ysm) < 1 for all m € N. By Proposition 1(ii) applied to each family
{&¢}iev, ., we can find a countably-valued measurable function {¢}cy, .

such that
€

[ — &¢|| < gt forae t€ Y, (1.5)
Since {Y5,,m }neny,men is a partition of X, we obtain a global countably-valued
function {t;}rex satisfying (1.5). Thus, we can partition X into countable
family of measurable sets {Xj}ren such that {¢;}iex is constant on each
X}. Moreover,we can also require that { X} }ren is a refinement of a partition
{Yn,m}nENg,m€N~
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For a fixed k € N, take n and m such that X, C Y}, ,,,. Choose t;, € X;,
for which (1.5) holds. Define a countably-valued function {t¢}+cx by

Ut = ¢y, for t € X, k € N.

Thus, the conclusion (i) follows by the construction.
Now fix n € Ny and m € N, and take any t € Y, ,,, outside the exceptional
set in (1.5). Let k& € N be such that t € X. By (1.5),

W = @ell = 180 = é1ll < 1160, = Pl + Il = 62l < 2oy

Thus,
€
[ — ¢4]| < Anom for a.e. t € Yy m. (1.6)

Take any f € H with ||f|| = 1. Then, for a.e. t € Y}, 1,

(o) |2 = 1(F, D) P = (s e —¢t>||<fa¢t + ¢

< e — dell([ell + lléel) < —= (2" +e+27) < =

onom’

- 47’L 277L

Integrating over Y, ,,, and summing over n € Ny and m € N yields

/||f,1/1t —|(f, de)] |du ZZQan Ym) < 6e.

n=0m=1

Using the fact that S 74 x is self-adjoint, we have

|\Sﬁ¢,x S\meH— sup \<(S\f¢,x wa, el

[1fll=1
~ sup / ()P — [, ) P)dpa(t)| < 6.
[Ifll=11J/X

Since € > 0 is arbitrary, this completes the proof.

Remark 1. Suppose {1 }+c x is a continuous frame which takes only countably
many values as in Lemma 1. Then for practical purposes, such a frame can
be treated as a discrete frame. Indeed, there exists a partition {X, }nen of
X and a sequence {t, }nen such that (1.3) holds. Since {9 }+cx is Bessel, we
have pu(X,,) < oo for all n such that ¢, # 0. Define vectors

On = V(X)) b1, n € N.

Then, for all f € H,

[ Pt

Z/ o) Pdu) = SN (1)

neN neN
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Hence, {q?),b}neN is a discrete frame and its frame operator coincides with that
of a continuous frame {1 }+c x. This observation will be used in a subsequent
theorem and also in Section 1.4.

Theorem 1. Let (X, 1) be a non-atomic measure space. Suppose that {d; }re x
is a continuous Bessel family in H. For any measurable function 7 : X —
[0,1], consider a weighted frame operator

Syrox] = / ) be)edp(t) feH.

Then, for any € > 0, there exists a measurable set £ C X such that

Proof. Let {t:}+tex be a continuous Bessel family as in Lemma 1. Thus,
there exists a partition {X,}nen of X into measurable sets and a sequence
{tn}nen C X, such that ¢,, € X,, and (1.3) holds. Since {9 }+cx is Bessel, we
have p(X,) < oo for all n such that ¢; # 0. By Remark 1 the continuous
frame {1 }+ex is equivalent to a discrete frame

{¢n =V M(Xn)(btn}nel\]-

More precisely, for any measurable function 7 : X — [0, 1], the frame operator
S /7y, x of a continuous Bessel family {\/7()1;}+cx coincides with the frame
operator of a discrete Bessel sequence

{VTnobt, tnen where 7,, = /X 7(t)du(t). (1.9)

n

Indeed, for all f € H,

[ a0 Pt Z/ )1, ) Pda(t)

nel (1.10)
= ZTnKﬂ ¢, )° = Z [{fs /Tudre, )P

neN neN

Since p is non-atomic, we can find subsets F,, C X,, be such that u(E,) =
Tpn. Define E = E,,. Then, a simple calculation shows that

neN

Indeed, by (1.10)

Symox i 1) = mllfd0) 2= 30 / (F b Pdp(t) = (Sy.if. f).

neN neN
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Hence, by (1.4) and (1.11)

11868 — S o, x |l < |Ss,5 — Sy, Bl + IS /79, x = Syme.x|l < 26
Since € > 0 is arbitrary, this shows (1.8).

Theorem 1 implies the Lyapunov theorem for continuous frames. Theorem
2 is in a spirit of Uhl’s theorem [33], which gives sufficient conditions for the
convexity of the closure of the range of a non-atomic vector-valued measure,
see also [17, Theorem IX.10]. Note that the positive operator valued measure
(POVM), which is given by E +— Sy4 g, does not have to be of bounded
variation. Hence, Theorem 2 can not be deduced from Uhl’s theorem.

Theorem 2. Let (X, 1) be a non-atomic measure space. Suppose that {ps e x
is a continuous Bessel family in H. Let S be the set of all partial frame op-

erators
S={S4g: E CX is measurable} (1.12)

Then, the operator norm closure S C B(H) is conver.
Proof. Note that set
T ={S jz4,x : T is any measurable X — [0,1]}

is a convex subset of B(H). Hence, its operator norm closure 7 is also convex.
If 7 = 1p is a characteristic function on E C X, then S 74 x = Sy g. Hence,

S C T. By Theorem 1 their closures are the same S = 7.

Theorem 2 can be extended to POVMs given by measurable mappings
with values in positive compact operators.

Definition 3. Let K (H) be the space of positive compact operators on
a separable Hilbert space H. Let (X, u) be a measure space. We say that
T ={Ti}tex : X = K4 (H) is compact operator-valued Bessel family if:

(i) for each f,g € H, the function X > t — (T} f, g) € C is measurable, and
(ii) there exists a constant B > 0 such that

[ @wsn <BIfP oranfen.
b'e
For ¢ € H, let ¢ ® ¢ denote a rank one operator given by

(0@¢)(f) =(f,9)¢p  for feH.

Observe that if {¢:}+ex is a continuous Bessel family, then Ty = ¢; ® ¢; is an
example of compact operator-valued Bessel family. This corresponds to rank
1 operator-valued mappings. Since finite rank operators are a dense subset
of K (H) with respect to the operator nom, the space K () is separable.
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It turns out that Theorem 2 also holds in a more general setting. The proof
is an adaption of the above arguments and can be found in [10].

Theorem 3. Suppose that {T}}icx is a compact operator-valued Bessel fam-
ily over a non-atomic measure space (X, p). Define a positive operator-valued
measure ¥ on X by

&(F) = /ETtdﬂ(t) for measurable E C X. (1.13)

Then, the closure of the range of @ is convez.

However, there is a definite limitation how far one can extend Lyapunov’s
theorem in this direction. For example, the assumption that the Bessel family
{T;}+ex in Theorem 3 is compact-valued is necessary, see [10].

1.3 Discrete frames and approximate Lyapunov’s
theorem

Akemann and Weaver [2] have shown an interesting generalization of Weaver’s
K S, Conjecture [34] in the form of approximate Lyapunov theorem. This was
made possible thanks to the breakthrough solution of the Kadison-Singer
problem [13, 26] by Marcus, Spielman, and Srivastava [29].

Hence, if {¢; }icr in H is a frame (or more generally Bessel sequence), then
its frame operator is given

S:Z@@@n

i€l

In particular, if ¢ € H = C%, then ¢ ® ¢ is represented by d x d matrix ¢¢*,
where ¢ is treated as a column vector and ¢* is its adjoint, a row vector.

The main result of [29] takes the following form. The special case was
shown by Casazza, Marcus, Speegle, and the author [11].

Theorem 4. Let € > 0. Suppose that vy, ...,v,, are jointly independent ran-
dom wvectors in C?, which take finitely many values and satisfy

m

Y Eliwf]=1  and  E[|vll’] <€ for alli. (1.14)

i=1
m

*

IP’( E V;;
i=1

In the special case when vy, ..., vy, take at most two values and € < 1/2, we
have

Then,

<(1+ \/E)2> > 0. (1.15)
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m
IP( Z vy
i=1

Theorem 4 implies Weaver’s K .S,. conjecture. We state it in a form formu-
lated by Akemann and Weaver [2, Lemma 2.1].

§1+2\@\/1—e) > 0.

Lemma 2. Let {u;};c(m in C? be a Parseval frame
Zuiu;‘ =1 and lluil* <& for all i. (1.16)
i=1

Let € N and t1,...,t. > 0 satisfy 271;:1 ty = 1. Then, there exists a
partition {I1,...,I.} of [m] such that each {u;}icr,., k=1,...,7, is a Bessel
sequence with the bounds

< t(1+Vro)2. (1.17)

i€ly,

Proof. Assume {u;};cjm) in C? satisfies (1.16). For any r € N, let vy,..., v,
be independent random vectors in (C%)®" = C"¥ such that each vector v;
takes r values

(73 0
0

()2 )T
0 U;

with probabilities ¢q, ..., t,, respectively. Then,
m S uul I,
ZE[WU;]: = = Ly,
=t Dliny wivy I,
and
Ef[il "] = r||uil|* < € := ré.

Hence, (1.14) holds and Theorem 4 yields (1.15). Choose an outcome for
which the bound in (1.15) happens. For this outcome define

I, = {i € [m] : v; is non-zero in k' entry}, fork=1,...,r

Thus, the block diagonal matrix

1 ok
t Dicr, Uit

m
E VU] =
i=1

1 ok
i >icr, With]
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has norm bounded by (1 + y/€)2. This implies that each block has norm
bounded as in (1.17).

The following result shows that Lemma 2 also holds in infinite dimensional
setting.

Theorem 5. Let I be at most countable index set. Let {¢;}ier be a Parseval
frame in a separable Hilbert space H,

Y oiwdi=1 and |Gil> <5 foralli. (1.18)

i€l

Let v € N and ty,...,t, > 0 satisfy >p_,tx = 1. Then, there exists a
partition {I,...,I.} of I such that

> 6@

i€y,

<t (1+Vro)®2  forallk=1,...,r (1.19)

Proof. First, observe that the Parseval frame assumption (1.16) can be weak-
ened by the Bessel condition. Indeed, suppose that {u; };c[n] is merely a Bessel
sequence with bound 1 and ||u;||?> < d. Define d x d matrix T" as

i=1

Since T is positive semidefinite, we can find vectors {ui};im+1; m’ > m, such
that

m/
T = Z u; @ U, and Hu1-||2§5fori2m+1.
i=m-+1

Indeed, it suffices to choose vectors u; to be appropriately scaled eigenvectors
of T'. Consequently, {; };c[m/ becomes a Parseval frame for C? and by Lemma

2 we can find a partition {I;,...,I.} of [m/] such that corresponding subsets
{u; }ier, have required Bessel bounds. Restricting this partition to [m] yields
the same conclusion for {u;}icr,apm), k=1,...,7.

Now suppose {¢; }icr is a Parseval frame in an infinite dimensional Hilbert
space H as in (1.18). Since H is separable, I is countable, and we may assume
I = N. For any n € N we can apply Lemma 2 to the initial sequence {¢; }ic[n]-
Hence, for each n € N we have a partition {I7,..., I} of [n], which yields
the required bound (1.19). To show the existence of a global partition of
{I,..., I} of N satisfying (1.19), it suffices to apply the pinball principle
[12, Proposition 2.1]. This boils down to repeated applications of pigeonhole
principle. The first vector ¢; must land infinitely many times to one of the
slots I for some j; = 1,...,7. Let N1 C N be the collection of all such n.
Then, we repeat the same argument to the second vector ¢, for partitions
of [n], where n € N;. Again, we can find a slot T s where the second vector
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ug lands for infinitely many n € Ny C N;. Repeating this process yields
a nested sequence of infinite subsets Ny D Ny D ... and indices ji, jo,. .-
in [r] such that the initial vectors ¢1,...,dm,, m € N, all land to the same
respective slots I7,..., I for all n € Np,. Define a global partition of N

by I = {i € N: j; = k}, k € [r]. Thus, (1.19) holds when I} replaced by
I, N [m]. Letting m — oo shows the required Bessel bound (1.19).

As a corollary we obtain an infinite dimensional variant of [2, Corollary
2.2].

Corollary 1. Under the same hypotheses as Theorem 5, there ezists a par-

tition {Ix }rep of I such that

D 6@ ¢ — til

i€ly

’ <2Vré 476 forallk=1,...,r (1.20)

Proof. Theorem 5 yields

D" 6 @ ¢i < tr(1+ Vrd) T = ty, + 14(2V/r6 + o)L (1.21)

i€l

Summing the above over all k' # k yields

I-Y 0i@di= Y ¢i®di <Y tw(l+Vrd)T=(1—t)(1+Vrd)L

icly i€\I, k' £k

Hence,

D i @¢i > (1= (1—t)(1+Vrd))L = (b — (1— ) (2Vrd + 1)1 (1.22)

i€l
Combining (1.21) and (1.22) yields (1.20).

The next step is the following lemma due to Akemann and Weaver [2,
Lemma 2.3] which relaxes the assumption of Parseval frame by Bessel se-
quence.

Lemma 3. There exists a universal constant C > 0 such that the following
holds. Suppose {¢;}icr is a Bessel family with bound 1 in a separable Hilbert
space H, which consists of vectors of norms ||¢;||? < e, where ¢ > 0. Let S be
its frame operator. Then for any 0 <t < 1, there exists a subset Iy C I such
that

Z@‘@%—tSH < Cel/4,

i€lp

Proof. Let S =3 ,.; ¢; ® ¢; be the frame operator of {¢;}ic;. Assume mo-
mentarily that {¢;};er is a Parseval frame. Applying Corollary 1 for r = 2,
t1 =t and to = 1 — ¢t yields a subset I’ C I such that
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Z@@@tIH < 2V2¢ + 2¢ = O(Ve). (1.23)

el

Here and in what follows we use big O notation since we do not aim at
controlling concrete constants.

In general, we use functional calculus to reduce the problem to the above
case. That is, we define a projection P = 1[\/;1](5), which “ignores” a non-
invertible part of S. Let K be the range of P. Define an operator B by
B := S~1/2P. This operator is well-defined since S is invertible on the range
of P. Since /eP < SP < P, we have

P<B<elVip (1.24)

Define a family of vectors {1;}ie; by ¥; = Bé;, i € I. Since P and S/?
commute,

D iy = B(Zqﬁi ® ¢,»>B =BSB=S"'?pPSS~'?pP=P.

iel iel
By (1.24),
10l < €12 Peil|* < Ve

Thus, we can apply (1.23) to deduce the existence of a subset I’ C I such
that

Z%@w tPH = O(e'/%). (1.25)
iel’

We claim that
> 6i® i —tSH = O(e'/%). (1.26)
iel’

Indeed, let D =}, ¢ ® ¢;. Then,

1P 15)Pl = |52 (v wvi - 1p )5
el (1.27)
<|Swew —tPH — 0/,

iel’

Since
0<D<S and 0<SI—P) < e,

we have for any v € K+ and v € H,
|(Du, v)| < (D?u, DY?v)| < ||D2ul[[[v]| < (Su, w)||v]| < Vel[ull[[o]]-

Thus,
IDA = P)|| = [|(I-P)DI|| < Ve
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Since PS(I— P) = (I— P)SP =0, by (1.27) the norm || D —tS|| is less than

< |[P(D = tS)P|| +2[(I - P)(D —tS)P| + ||(I— P)(D — tS)(I— P
<O(*)+2|(T= P)DP| + [T = P)DI— P)| + [|(I— P)S(I - P)|
= O(Y*) + O(e/?) = O('/%).

This proves the claim and completes the proof of the lemma.

We are now ready to prove an infinite dimensional formulation of approxi-
mate Lyapunov theorem for discrete frames due to Akemann and Weaver [2,
Theorem 2.4].

Theorem 6. There exists a universal constant Cy > 0 such that the following
holds. Suppose {¢;}icr is a Bessel family with bound 1 in a separable Hilbert
space H, which consists of vectors of norms ||¢;||> < €, where ¢ > 0. Suppose
that 0 < t; <1 for alli € I. Then, there exists a subset Iy C I such that

D hi®bi—Y i@

i€ly el

< Cpel/s. (1.28)

Proof. We proceed exactly as in the proof of [2, Theorem 2.4]. That is, we
take n = |e~1/8] and we partition I into subsets

Ik:{ielz(k—l)/n<t¢§k‘/n}, k=1,...,n.

Then, we apply (1.26) for each family {¢;}icr, for t = k/n to find subsets
I, C I, such that

Z¢z®¢i*%2¢i®¢i = O(e'/%).

iGII/C i€y,

Taking Iy = Jy_, I}, we have

D hi®ei— Y tidi @i

i€y el
<> (Z@@@—iZ@@@)H Z k/n—t @@qu
k=1 “iel}, i€l k=
=SS DXL T SET-T RRCIIC
k=1"qer; i€l

< nO(e*) + O(eY/®) = O(eY/®).

This proves Theorem 6.

As a corollary we obtain a discrete analogue of Theorem 2.
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Corollary 2. Suppose {¢;}icr is a Bessel family with bound 1 in a separable
Hilbert space H, which consists of vectors of norms ||¢;||? < e, where ¢ > 0.
Let S be the set of all partial frame operators

S:{Z@@(zﬁizl’cf}.

iel’

Then S is an approzimately convex subset of B(H). More precisely, for every
T in the convex hull of S, there exists S € S such that ||S — T|| < Coel/8.

The assumption that {¢;};cr has a Bessel bound 1 is not essential. Indeed,
a scaling of Corollary 2 for Bessel sequences with an arbitrary bound B yields
the estimate (1.29). Finally, we can combine Theorem 2 and Corollary 2 to
obtain Lyapunov’s theorem for continuous frames on general measure spaces.
This is due to the fact that every measure space decomposes into its atomic
and non-atomic components and a continuous frame on an atomic measure
space coincides with a discrete frame.

Corollary 3. Suppose that {¢:}rex is a continuous Bessel family in H with
bound B on any measure space (X, ). Let S be the set of all partial frame
operators as in (1.12). Define

g0 = sup{u(E)||¢¢||* : E is an atom in X and t € E}.

If X is non-atomic, then we take eg = 0. Then, S is an approximately convex
subset of B(H). More precisely, for every T in the convex hull of S and for
every € > €, there exists S € S such that

IS —T|| < CoB™/81/8, (1.29)

1.4 Scalable frames and discretization problem

In this section we present the solution of the discretization problem due to
Freeman and Speegle [22]. The key result in the proof is a sampling theorem
for scalable frames. The proof is a technical and brute force application of the
following result on frame partitions, see [22, Theorem 1.7] and [31, Lemma
2]. Our aim is outline the essential parts of this argument.

Theorem 7. There exists constants Ag, By > 0 such the following holds.
FEvery tight frame of vectors in the unit ball of a separable Hilbert space H
with frame constant > 1 can be partitioned into a collection of frames of H
each with lower and upper frame bounds Ay and By.

Following [31, 32], we will need two lemmas in the proof of Theorem 7.
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Lemma 4. Let I be at most countable index set and let H be a separable
Hilbert space. Let {¢;}icr be a frame with bounds A and B,

AT<DY ¢;®¢;<BI  and  |¢:|> <3 for alli. (1.30)
iel
If A > 0§, then there exists a partition of I into subsets I; and Iy such that
fork=1,2,

1-54/6/A 1+54/6/A

— AT < ; ; < ————BI. 1.31
5 <D ¢i®bi<— (1.31)
i€ly

Proof. It {¢;}icr is a Parseval frame and 6 < 1, then by Theorem 5 for

t; = to = 1/2, we have a partition so that for k = 1,2,

2
S 6006 < (1+;/%) I < 1+25\/in
1€l

Since

I*Z@@@:Z@@(ﬁm

i€l 1€y

we obtain two-sided estimate (1.31) in the special case A = B = 1.

If {¢;}ier is a general frame, then let S be its frame operator. Note that
AI < S < BI and hence B~'T < S~1 < A~'I. Hence, {S‘l/qui}iel is a
Parseval frame and

1571263 1> < A7 |l < 6/A.
Hence, we can apply the Parseval frame case of (1.31) and
Y STV 5 =57 ( D ¢i® @) S
1€l 1€},
to deduce (1.31).

Lemma 5. Let 0 < 6 < 1/100. Define sequences {A;}32, and {B;}52, in-
ductively by

1—-5/6/A;
Ap=DBy =1, Aj1 = Ajf/jv Bji1

_B 1+ 54//B;

= B, 5 .

Then, there exists an absolute constant C and an integer L > 0 such that
Aj > 1009 fO?"j § L, 256 § AL+1 < 1005, BL+1 < CAL+1. (132)

Proof. If A; > 1006, then
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A; A
<AL, <L
A

Let L > 1 be the largest integer such that Ay > 1004. For j < L, let C; =
51/0/A;. Note that Cp,_; < 27179/2 for j = 0, ..., L. Hence, by telescoping

Bryi  r1+C; 1427179/
AL+1_H1_ . <C:= H 1_9-1-j/2 < o0

This proves (1.32).
Now we are ready to prove Theorem 7.

Proof. Suppose {;}icr is a tight frame with constant K > 1 such that
l|¢i]] <1 for all i € I. Hence, ¥; = K~/2¢;, i € I, is a Parseval frame such
that ||v;]|? < :=1/K.

We shall apply Lemma 4 recursively. If 100§ < 1, then we apply Lemma
4 to split it it into two frames {;}icr,, k¥ = 1,2, with bounds A; and Bj. If
1006 < Ay, then we apply Lemma 4 again to each frame {¢; };cr, ; otherwise
we stop. Let L > 0 be the stopping time from Lemma 5. We continue applying
Lemma 4 to produce a partition of {¢;};c; into 2L+ frames with bounds
Ap.1 and B 1. This corresponds to a partition of {¢;}ics into 2XF! frames
with bounds Ary1/0 and Bry;/6. By (1.32), these bounds satisfy

25§AL+1/5, BL+1/5<CAL+1/5SIOOC.

If 1006 > 1, then there is no need to apply the above procedure since
{di}ier is a tight frame with bound 1/§. Hence, it is trivially a frame with
bounds 1 and 100. Consequently, every tight frame with constant > 1 can be
partitioned into frames with bounds 1 and 100C.

By scaling we can deduce a variant of Theorem 7 for arbitrary frames.

Corollary 4. Let 0 < N < A < B < oo. Let {¢;}ic1 be a frame with
bounds A and B in a separable infinite-dimensional Hilbert space H with
norms ||¢i||*> < N for all i € I. Then, there exists a partition Iy, ..., I, of I

such that for every k =1,...,7, {¢;}icr, is a frame with bounds
B
A()N and B()NZ, (133)

where Ay and By are constants from Theorem 7.

Proof. Let S be the frame operator of {¢;};cr. Note that AT < S < BI
and hence B~'T < §~' < A~'I. Hence, {S~2¢;}ics is a Parseval frame
with norms |[S~/2¢;||> < N/A. Thus, we can apply Theorem 7 to a tight
frame {(A/N)'/2571/2¢;};c; with frame constant A/N > 1, which consists
of vectors in the unit ball of . That is, there exists a partition Iy, ..., I. of
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I such that for every k = 1,...,7, {(A/N)/2571/2¢;}ic;, is a frame with
bounds Ag and By. Therefore, for any ¢ € H,

AN

AoN||o|1? <
oN|[o* < =

1S™26117 < 37 [{(N/A)/28 2, (A/N) /25 24;)
i€l
ByN ByBN
=Y lg. 00 < == [18"20|P < = —lel|*.

i€l

Recall that {¢;}icr in H is a scalable frame if there exists a sequence of
scalars {a;};cr such that {a;¢;}icr is a Parseval frame. Using Theorem 7
Freeman and Speegle [22] have derived the following sampling theorem for
scalable frames.

Classically, a sampling process describes a procedure of choosing points
from a given set where every point is chosen at most once. In contrast, the
sampling function 7 : N — I in Theorem 8 is in general not injective.

Theorem 8. There exist universal constants Ay, By > 0 such that the fol-
lowing holds. Let {¢;}icr be a scalable frame in a separable Hilbert space H
with norms ||¢;||?> < 1 for all i € I. Then, for any 0 < € < 1, there exists
a sampling function m: N — I such that {¢ ) }nen is a frame with bounds
Ao(1 —¢) and 2By(1 +¢).

Remark 2. The role of € > 0 in the formulation of Theorem 8 is not essential.
For example, taking ¢ = 1/2 yields a frame {¢ () }nen with bounds A /2 and
3By. Here, Ay and By are the same constants as in Theorem 7. Hence, the
above formulation merely reflects the explicit dependence of frame bounds
on these constants as in [22].

Proof (finite dimensional case). It is instructive to show Theorem 8 for a
finite dimensional space H first. In this case a sampling function 7 is defined
on a finite subset of N. Choose a finite subset I’ C I such that {a;¢;}icr is
a frame with bounds 1 — /2 and 1, and a; # 0 for all ¢ € I’. Our goal is to
reduce to the case when all coefficients a; are approximately equal.

Let n = inf;ey |a;|> > 0. Let K € N be a parameter (to be determined
later). Then, we replace each element a;¢;, i« € I’, by a finite collection of

vectors
a;

VN,

ai¢
AP

¢i7 R
VN where N; = [K|a;|?/n].

N;
More precisely, let N = >, ;, N; and let s : [N] — I’ be a mapping such
that each value ¢ € I’ is taken precisely N; times. This yields a new col-
lection of vectors {qb,i(n)}ne[N] in which each vector ¢; is repeated NN, times

and a corresponding sequence {b, },e[n], Where b, = ayx(n)/+/Nin)- By our
construction, we have
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N

(1.34)

Moreover, the frame operator corresponding to {a;¢; }icp is the same as the
frame operator of {bn¢(n)}nen). We shall apply Corollary 4 to a frame

{V1/ K ¢wn) tneiny- By (1.34), ltb frame bounds are given by

n

ne[N] n€[N]
K+1 K+1

I

n€e[N]

If K € N satisfies /K < 1 — /2, then Corollary 4 yields a partition of [N]
into subsets Ii,..., I, such that each {\/n/Kd.m)tner,, K =1,...,r, is a
frame with bounds

n K+1

Ui
AL d Byl 270
0 o "KK(1—¢/2)

K

Now choose K € N large enough so that m < 14-e&. Consequently, each
collection {¢,(n) }ner,, K =1,...,7, is a frame with bounds A and By(1+¢).
Hence, the mapping 7 : I — I given by restricting x to I; is the required
sampling function.

Note that in the finite dimensional case we have obtained a better frame
upper bound and we have not used the full strength of Corollary 4. The proof
of the infinite dimensional case of Theorem 8 is quite involved and technical.
Hence, we only present its main steps.

Proof (outline of the infinite dimensional case). Suppose {¢; }icr is a scalable
frame and {a;}ics is the corresponding sequence of coefficients such that
{a;¢i}icr is a Parseval frame in #H. Since H is infinite dimensional, we may
assume that I = N and all vectors ¢; are non-zero.

Let {ex }ren be a sequence of positive numbers (to determined later). We
shall construct a sequence of orthogonal finite dimensional spaces {Hj }ren
such that P, yHr = H, and an increasing sequence of natural numbers
{K;}ien by the following inductive procedure. Let H; = {0} be the trivial
space and K1 = 1. Assume we have already constructed subspaces H1,...,H,
and natural numbers K1,...,K,, n > 1. Then,

e define a subspace
Hpt1 = span{Pay, ¢ en,)+¢i: 1 <i < Kp} (1.35)
e choose K11 > K,, € N large enough so that

{0iPy,e..0m, . Pi}i>K,., is Bessel with bound e, 1, (1.36)
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e and repeat the above process ad infinitum.

Since {a; Py, e.. .oH, i tien is a Parseval frame in H1 @ ... ®H,, by (1.36)
for any n € N we have

{aiPHI@,,@H”qSi}fi"’l isaframein H1®... 5 H,
with bounds 1 — ¢, and 1. (1.37)

By (1.35)
b EH1D ... D Hpr foralli=1,...,K,. (1.38)

Thus, by (1.37), forany 1 <m <n €N,

{a;Pu,,e.. .am, ¢i}iK:nKm,2+1 is a frame in H,,, & ... © Hy
with bounds 1 — ¢, and 1. (1.39)

Here, we use the convention that K_; = Ky = 0.

The spaces {Hy, }ren are building blocks in constructing a sampling frame.
First we group these spaces into blocks with overlaps GB,ICV; a, Hi for appro-
priate increasing sequences {M, },en and {N, },en of integers with M; = 1
such that consecutive intervals [M,., N,] and [M, 11, N,11] have significant
overlaps, but intervals [M,., N,.] and [M; 42, N;12] are disjoint. An elaborate
argument using (1.39) shows the existence of a sampling function ., r > 1,
defined on a finite set I, with values in (K, —2, K, ] such that

{Prrs, @...0HN, P, (i) biel, 18 a frame in Hy, @ ... © Hy,
with bounds Ay and Bo(1 +¢). (1.40)

This part uses Corollary 4 in an essential way as in the proof of finite
dimensional case of Theorem 8. Moreover, for appropriate choice of a se-
quence {ej }ren, one can control the interaction between consecutive blocks

ka; ar, Hi to deduce that the vectors {¢r, () }ier, do not interfere too much
beyond these blocks. Hence, roughly speaking {¢r (i }icr, forms a frame in
@IICV;MT Hj, with bounds Ag(1—¢) and By(1+¢). The hardest and most tech-
nical part is showing the lower frame bound which necessitates sufficiently
large overlaps between consecutive intervals [M,., N,.] and [M,y1, Nyy1].

Now it remains to put these frames together by defining a global sampling
function 7 defined on a disjoint union I'oo = |,y Ir by 7(i) = m,.(i) if i € I,..
Due to overlaps the upper frame bound of {¢, ;) }ier,, bumps to 2By(1 +¢)
with the lower bound staying the same at Ag(1—¢). This completes an outline
of the proof of Theorem 8.

By scaling Theorem 8 we obtain the following corollary. The proof of
Corollary 5 mimics that of Corollary 4.
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Corollary 5. Let 0 < A < B < o0 and N > 0. Let {¢;}icr be a sequence
of wvectors in a separable infinite dimensional Hilbert space H with norms
l|¢:]> < N for all i € I. Suppose there exists scalars {a;}icr such that
{a;¢;i}tier is a frame with bounds A and B. Then, for any € > 0, there exists
a sampling function © : N = I such that {¢x(n)}nen is a frame with bounds
AgN(1 —¢) and 2BoNE (1 +¢).

Proof. Let S be the frame operator of {a;¢;}icr. Then, {a;S™'/2¢;}icr is a
Parseval frame and ||S~1/2¢;||> < N/A. Applying Theorem 8 for a scalable
frame {(A/N)Y/28=1/2¢,},c, which consists of vectors in the unit ball of A,
yields a sampling function 7 : N — I such that {(A/N)1/25’1/2¢ﬂ(n)}n€N is
a frame with bounds Ag(1 — €) and 2By(1 + €). Therefore, for any ¢ € H,

AN (1= )6 < Ao(1 — ) 4115261
<N T HN/A2S 26, (A/N)2ST 20 on) P =D [y ba(m)

neN neN

N 2ByBN(1+¢
<2B(1 +2) 5202 < 2BV EED 0

We are now ready to prove the sampling theorem for bounded continuous
frames due to Freeman and Speegle [22, Theorem 5.7].

Theorem 9. Let (X, p) be a measure space and let H be a separable Hilbert
space. Suppose that {P: }rex s a continuous frame in H with frame bounds A
and B, which is bounded by N, i.e., (1.2) holds. Then, there exists a sequence
{tntner in X, where I CN, such that {¢+, }ner is a frame with bounds AgN
and 3BON§, where Ay and By are constants from Theorem 7.

Proof. We shall prove Theorem 9 under the assumption that # is infinite
dimensional and I = N. A finite dimensional case is a simple modification of
the following argument, where I C N is finite.

By Lemma 1 and Remark 1, for every € > 0, we can find a partition
{X,}nen of X and a sequence {t,}nen in X such that

{an¢tn }nENa where a, = ﬂ(Xn) (1'41)

is a frame with frame bounds A(1—¢) and B(1+¢). In a case when a,, = oo,
we necessarily have ¢, = 0, so we can simply ignore this term. Therefore,
any continuous frame can be sampled by a scalable frame (1.41) with nearly
the same frame bounds. Note that the boundedness assumption (1.2) was not
employed so far.

Next we apply Corollary 5 to the frame (1.41) with a trivial norm bound
[|¢¢, 1> < N/(1 —¢€). Hence, there exists a sampling function 7 : N — N such

that {¢¢, ., tnen is a frame with bounds AgN and QBON]ng_rgz. Choosing

sufficiently small € > 0 shows that {t;(n)}nen is the required sampling se-
quence.
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The solution of the discretization problem by Freeman and Speegle [22]
takes the following form.

Theorem 10. Let X be a measurable space in which every singleton is mea-
surable. Let H be a separable Hilbert space. Let ¢ : X — H be measurable.
Then, the following are equivalent:

(i) there exists a sampling sequence {t;}ic; in X, where I C N, such that
{61, }icr is a frame in H,

(i) there exists a positive, o-finite measure v on X so that ¢ is a continuous
frame in H with respect to v, which is bounded v-almost everywhere.

Proof. The implication < follows from Theorem 9. Now assume that there
exists {t; };er such that {¢, }ics is a frame in H. Since some points might be
sampled multiple times, we need to define a counting measure

I/:Z(st“

el

where d; denotes the point mass at t € X. Since singletons are measurable,
v is a measure on X and the frame operator of {¢;}+cx with respect to v is
the same as the frame operator of {¢y, }icr. Thus, {¢:}tex is a continuous
frame with respect to v, which is bounded on countable set X’ = {t; : i € I'}
and (X \ X') =0.

1.5 Examples

In the final section we show applications of the discretization theorem from
the previous section. We do not aim to show the most general results, but
instead we illustrate Theorem 9 for the well-known classes of continuous
frames. While it might look surprising at first glance, we can also apply
Theorem 9 for discrete frames.

Ezample 1 (Discrete frames). Suppose that {1, }nen is a tight frame of vec-
tors in the unit ball of a Hilbert space H with frame constant K > 0. Let
i be the measure on X = N such that u({n}) = 1/K for all n € N. Hence,
we can treat {1, }nex as a continuous Parseval frame. Then, by Theorem 9
there exists a sampling function x : N — N such that {t,,(n)}nen is a frame
with bounds Ay and 3By. Hence, we obtain a weak version of Theorem 7 on
frame partitions.

A general setting for which Theorem 9 applies involves continuous frames
obtained by square integrable group representations.

Definition 4. Let G be locally compact group and let p be the left Haar
measure on G. Let 7 : G — U(H) be its unitary representation. We say that
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7 is a square integrable representation if there exits vectors i!,..., 9" € H
and constants 0 < A < B < oo such that

A||f|\2<2/ |(f, m(g) (W) ?du(g) < B||f||>  forall feH. (1.42)

For the sake of simplicity assume that n = 1 in the above definition. Then,
a square integrable representation defines a continuous frame on (G, ) of the
form g — m(g)(v). The above definition encompasses three major examples
of continuous frames: continuous Fourier frames, continuous Gabor frames,
and continuous wavelets.

Ezample 2 (Fourier frames). Let G = R and let p be the Lebesgue measure.
Let S C R be a measurable subset of R of finite measure and let H = L?(S).
Define 7 : R — L?(9)

m(t) () =€y, teR ¥ e LX(S).

Take 1) = 15. Then, by the Plancherel theorem for any f € L%(S),

[ mas) P =

Here, we identify L?(S) with the subspace of L*(R) of functions vanishing
outside of S and f is the Fourier transform of f. Thus, 7 is a square integrable
representation and {¢; = e?""'1g}cr is a continuous Parseval frame in
L?(S). By Theorem 9 there exists a sampling sequence {t, },ez such that
{¢¢, Ynez is a frame for L?(S) with bounds Ag|S| and 3By|S|. This way we
recover the result of Nitzan, Olevskii, and Ulanovskii [31] on the sampling of
continuous Fourier frames.

727rzta:d

it — /\f )2t = ||

Theorem 11. For every set S C R of finite measure, there exists a discrete
set of frequencies A C R such that {€*™®*}ca is a frame in L?(S) with
bounds A > ¢|S| and B < C|S|, where ¢ and C' are absolute constants.

Note that Theorem 9 does not guarantee in any way that the sampling
set A = {t, : n € Z} is discrete. However, we can invoke Beurling’s density
theorem for Fourier frames [32, Lemma 10.25]. If {e2™@*},c, is a Bessel
sequence with bound C|S|, then there exists a constant K > 0 such that

#4nQ)

<408,
o =P

for every interval 2 C R with length [2| > K. It is worth adding that there
exists a continuous Fourier frame which does not admit a discretization by
any regular grid, see [23, Example 2.72].
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Ezample 3 (Gabor frames). Let G = R? and let pu be the Lebesgue measure
on G. Let # = L*(R). Define the short-time Fourier transform with window
7:R? = L?(R) by

7(t, ) () = 2™ Y(- — s), t,s € R,y € L*(R).

Then for any f,v € L?(R), we have the well-known identity

//ww&me@ﬁ:wwwﬁ (1.43)
RJR

Technically, 7 is not a unitary representation. However, translation in time
and frequency commute up to a multiplicative factor, so 7 is a projective
unitary representation. By (1.43), if |[¢[| = 1, then {7 (t,5)(¢))}¢,s)er? is a
continuous Parseval frame in L?(R). Invoking Theorem 9 shows the existence
of a sampling sequence {(¢,, $») }nen such that (non-uniformly spaced) Gabor
system {7 (¢, $n)(¥) }nen is a frame. With trivial modifications, the above
example also holds for higher dimensional Gabor frames in L%(R%).

Due to the results of Feichtinger and Janssen [20], it is not true that any
sufficiently fine lattice produces a Gabor frame for a general Gabor window
¥ € L*(R). However, by the results of Feichtinger and Grochenig [18, 19], a
sufficiently well-behaved window ¢ in Feichtinger’s algebra M1(R) induces
a Gabor frame for all sufficiently fine choices of time-frequency lattices.

Ezample 4 (Wavelet frames). Let G be the affine ax + b group, which is
a semidirect product of the translation group R by the full dilation group
R.. Then, du(a,b) = |a|~?dadb is the left Haar measure on G. Define the
continuous wavelet transform 7 : R — L?(R) by

-—b
rad)) =l () atoberue m)
a
Then, 7 is a square integrable representation of G. If 1 satisfies the admissi-

bility condition
P 2
JRCC I
r\{o} €]

then {m(a,b)(¥)}apec is a continuous Parseval frame in L?(R) known as
a continuous wavelet. Again, invoking Theorem 9 shows the existence of
a sampling sequence {(an,by)}nen corresponding to a discrete (albeit non-
uniformly spaced) wavelet frame {7 (an,bn)(¥) }nen-
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