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In molecular-replacement (MR) searches, spaces of motions are explored for

determining the appropriate placement of rigid-body models of macromolecules

in crystallographic asymmetric units. The properties of the space of non-

redundant motions in an MR search, called a ‘motion space’, are the subject of

this series of papers. This paper, the fourth in the series, builds on the others by

showing that when the space group of a macromolecular crystal can be

decomposed into a product of two space subgroups that share only the lattice

translation group, the decomposition of the group provides different decom-

positions of the corresponding motion spaces. Then an MR search can be

implemented by trading off between regions of the translation and rotation

subspaces. The results of this paper constrain the allowable shapes and sizes of

these subspaces. Special choices result when the space group is decomposed into

a product of a normal Bieberbach subgroup and a symmorphic subgroup (which

is a common occurrence in the space groups encountered in protein crystal-

lography). Examples of Sohncke space groups are used to illustrate the general

theory in the three-dimensional case (which is the relevant case for MR), but the

general theory in this paper applies to any dimension.

1. Introduction

Molecular replacement (MR) is a computational method to

phase macromolecular crystals that was introduced more than

half a century ago (Rossmann & Blow, 1962). The output of

MR is a set of candidate rigid-body motion parameters to

describe how a protein (or other macromolecule) may be

positioned and oriented in a crystal, based on information

from its diffraction pattern.

This paper is concerned with characterizing the space of

non-redundant rigid-body motions in which an MR search can

take place, and is the fourth paper in a series. In the first paper

of this series (Chirikjian, 2011), it was shown that this ‘motion

space’, when endowed with an appropriate composition

operator, forms an algebraic structure called a quasigroup,

and that this set of motions over which MR searches are

performed corresponds to a coset space of the group of proper

rigid-body motions by a Sohncke space group. In the second

paper of the series (Chirikjian & Yan, 2012), the geometric

properties of these spaces were investigated. The third paper

of this series (Chirikjian, Sajjadi et al., 2015) examined the

subgroup structure of the Sohncke space groups in which

proteins crystallize and assessed the frequency of occurrence

of these groups in the Protein Data Bank (PDB) (Berman et

al., 2002).

The results presented in this fourth paper also build on the

previous recent paper (Chirikjian, Ratnayake et al., 2015),
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where it was shown that most Sohncke space groups in which

proteins crystallize can be decomposed as a semi-direct

product of a Bieberbach subgroup (i.e. one that acts on

Euclidean space without fixed points) and a subgroup of the

point group.

In order to formulate the problem to be solved in this paper,

some notation is first required. Here we summarize notation

consistent with those previous works. Let X ¼ R
n,

n-dimensional Euclidean space and let x 2 X .1 The inputs to

MR computations are then: (i) the electron-density function of

a known rigid macromolecule (or fragment thereof) called the

reference molecule; and (ii) the diffraction pattern of the

protein crystal under investigation, which includes informa-

tion about the symmetry group of the crystal, �, which is a

discrete subgroup of G¼: SEðnÞ, the (connected) Lie group of

proper motions of rigid bodies in n-dimensional Euclidean

space. The discrete group � includes all information about the

symmetry and geometry of the unit cell and asymmetric unit.

The group operation for G and � is denoted as ‘�’, and their

action on Euclidean space is denoted as ‘�’.
The electron-density function �XðxÞ takes a positive value

on the reference molecule and a zero value away from it. This

density can be thought of as defining a rigid body, B � X , as

follows:2

B ¼ fx 2 Xj�XðxÞ> 0g:
The goal of MR is then to find the g 2 G such that the square

of the magnitude of the Fourier transform of

��\Xðx; gÞ ¼: P
�2�

�X ½ð� � gÞ�1 � x�

matches the diffraction pattern. Because the summation is

over � 2 �, there is no need to search over all of G, but rather

only over the right coset space �\G, or equivalently, a

fundamental domain F�\G � G consisting of one element of G

for each right coset �g 2 �\G. This paper describes methods

of evaluating integrals over �\G that use measures on various

fundamental domains.

As described in the first two papers in this series, several

different functions of the form f : F�\G�!R�0 arise in MR,

the most well known of which is the Patterson correlation

function and variants thereof. The particular goal of this paper

is to describe different representations of the fundamental

domain F�\G � G of the coset space �\G. In particular, we use

decompositions of the form � ¼ K�N (where N is a normal

subgroup of � and K is a subgroup of � consisting of pure

rotations) to quantify the tradeoff in searching over transla-

tions and rotations in MR searches.

The Patterson correlations discussed in the first two papers

in this series are examples of functions on F�\G. In the context

of integration, x3 therefore explains what it means for two

descriptions of the motion space F�\G to be equivalent. In

particular, a measure-theoretic sense of equivalence (as

opposed to a topological sense) is defined, which is the most

relevant for MR applications. xx4 and 5 provide a mathema-

tical apparatus for interconverting between equivalent

descriptions of a motion space via fibered integrals. x6
provides specific examples of these decompositions for some

of the space groups in which proteins most frequently crys-

tallize.

The notation and terminology used in this paper are

summarized in a glossary at the end of this paper. Any

terminology not explicitly defined here can be found in the

many excellent books on the topic of space groups that have

been published over the years including: Boisen & Gibbs

(1990), Burns & Glazer (2013), Engel (1986), Evarestov &

Smirnov (1993), Iversen (1990), Janssen (1973), Miller (1972),

Senechal (1990). Up-to-date expositions of space groups,

including the relationships between space groups, can be

found in Hahn (2002), Wondratschek & Müller (2008) and

Müller (2013).

2. Motivation

Current MR searches are initiated using a single copy of a

known candidate molecule which is placed in a unit cell at a

priori unknown candidate poses (positions and orientations).

The full search space associated with this approach is then the

Cartesian product of the unit cell and the full rotation group,

each of which is a three-dimensional space. There are some

advantages to taking this approach. In particular, the unit cell

is the natural periodic object for use in FFT (fast Fourier

transform) algorithms, and when there is only one copy of the

candidate molecule per unit cell, the translational dependence

of the pose appears as a phase factor in Fourier space which

vanishes in the Patterson function. This allows a natural

decomposition of a six-dimensional search into a search first

over rotations, followed by one over translations (wherein a

more realistic model of the unit cell including all symmetry

mates is constructed). While this has been the standard

approach to MR for more than half a century, this series of

papers is motivated by a modified view in which the full six-

dimensional space is handled from the beginning with a model

unit cell consisting of all symmetry mates of the candidate

molecule rather than a single isolated one.

A consequence of including all symmetry mates in the unit

cell is that the search can no longer be decomposed into two

sequential three-dimensional searches. However, there are

three main reasons for pursuing this approach. First, as

described in previous papers in this series, the total size of this

search space is smaller by a factor of ½� : T� than the product

of the full unit cell and full rotation group, and such factors can

be substantial (e.g. 8, 12, or 24 in some cases). Practically, this

means that translations can be drawn from only an asymmetric

unit rather than the full unit cell. Second, and more impor-

tantly, the signal-to-noise ratio will in general be better than in

separate searches over orientation and translation because the

higher-dimensional models treat all ‘cross talk’ between all

bodies in the unit cell as signal rather than treating cross terms
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one of relevance in MR.
2 The body B may in fact consist of a union of individual bodies which as a
collection populate the crystallographic asymmetric unit F�\X , but only B as a
whole under the action of � and a specific g 2 G replicates an ideal infinite
crystal.
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as noise. (This strategy is a starting point for a full 6N-

dimensional search when there are N molecules in each

asymmetric unit.) Third, and most importantly, with a model

unit cell that includes all symmetry mates it is possible to a

priori assess which poses lead to collisions between symmetry

mates. As a consequence, vast regions of the six-dimensional

search space need not be searched because they correspond to

nonphysical collisions between candidate molecules.

We have made progress in the paradigm of full-dimensional

search in our previous paper (Chirikjian & Shiffman, 2016) by

illustrating in the planar case how much of the unit cell is

covered by ‘collision zones’ corresponding to candidate two-

dimensional molecular models being in collision. We found in

the planar case that the collision zones can be characterized as

Minkowski sums of symmetry mates of candidate molecules.

(The three-dimensional case also involves Minkowski sums,

but the details are somewhat involved and are outside of the

scope of the present paper.) Whereas proteins are irregular

shapes, for the purpose of obtaining conservative estimates of

the collision zones, it is possible to replace the original protein

shape with an appropriately chosen ellipsoid and use the

results in Yan & Chirikjian (2015) to compute these

Minkowski sums either exactly or approximately. Ellipsoids

are convenient objects to use because it is very easy to assess

when a point lies inside or outside of an ellipsoid, and there-

fore searches that exclude sampling inside of ellipsoidal

underestimates of collision zones can efficiently skip sampling

there.

Herein lies one of the main motivations for the current

paper. As observed in Yan & Chirikjian (2015), when two

ellipsoids are close to being spherical, their Minkowski sum is

almost ellipsoidal regardless of their orientations, and it is

possible to construct ellipsoids that are both contained in the

true Minkowski sum and that contain it. In the extreme case

when the macromolecular candidates are spherical (as is the

case for crystals of some kinds of viral particles), the

Minkowski sums are simply spheres. Therefore, when viewing

the search space �\G as being equivalent to �\X � SOð3Þ, we
can simply search first over �\X for positions that do not lead

to collision because of the spherical symmetry, and then do

rotation searches over rotations with high-fidelity models

having first fixed candidate translations. (This would be doing

things in opposite order to how MR usually works.) In

contrast, at the other extreme when the candidate molecules

in MR are either very prolate or oblate, their Minkowski sums

can only be approximated well as ellipsoids at orientations

that are close to the identity rotation. Therefore, recognizing

that the full search space �\G can not only be described as

�\X � SOð3Þ, but also as T\X � P\SOð3Þ, where P is the point

group, allows for a more restricted search over rotations with

the tradeoff of a larger search over translations. [Fundamental

domains for the quotient P\SOð3Þ were illustrated in

Chirikjian & Yan (2012).] The more restricted search over

rotations is favorable in justifying the approximation of

Minkowski sums of ellipsoids as ellipsoids, which in turn is

favorable for rapid exploration of the collision-free part of the

full six-dimensional MR search space by ‘jumping over’

regions known to correspond to symmetry mates being in

collision.

In the long run, the goal is to extend the formulation in this

paper to the case of full 6N-dimensional searches in which

there are N bodies per asymmetric unit. While that is chal-

lenging, there are some near-term problems of intermediate

difficulty for which the methodology presented here is also

applicable. In particular, for proteins consisting of two large

rigid units (body 1 and body 2) connected by a long flexible

region consisting of substantial material, it is sometimes the

case that current MR approaches partially solve the problem

by accurately placing body 1, but failing to place body 2. In this

context, the available free space for body 2 to translate (for

each candidate orientation) is the complement of the union of

two kinds of ‘collision zones’. The first is the Minkowski sum

of body 2 with each symmetry-related copy of body 1. The

second is the collision zone generated from the three-

dimensional generalization of the procedure in Chirikjian &

Shiffman (2016) which performs a calculation based on the

Minkowski sum of body 2 with its own symmetry mates. As

with the case of a single body per asymmetric unit, large

amounts of the six-dimensional roto-translation space for

body 2 are eliminated from consideration by characterizing

the space of all possible collisions in this two-body scenario.

This paper formalizes the various ways that the space �\G

can be decomposed. In short, there is a conservation law of

sorts in which a tradeoff exists in choosing the volume of the

translational and rotational parts of the search space. This

tradeoff depends on the structure of the Sohncke space group

describing the symmetry of a macromolecular crystal, and the

fact that such groups are subgroups of the Special Euclidean

group. The decompositions of the roto-translation space

derived in this paper directly apply when there is one body per

asymmetric unit, and also apply when there are two bodies per

asymmetric unit, but with the position and orientation of one

of the bodies predetermined.

3. Measure-equivalent fundamental domains

3.1. General fundamental domains

A discrete subgroup � of a Lie group G acts on G in a

‘properly discontinuous’ way, so that the orbit space of the left

action, �\G, is always a manifold. Discrete groups such as

space groups acting on Euclidean space, and finite symmetry

groups of the Platonic solids acting on spheres typically do not

result in quotients that are manifolds. But they do act in a way

that is ‘nice enough’. This is reflected in the concept of a

properly discontinuous action on a smooth Riemannian

manifold Y, e.g. Euclidean space X or Euclidean motion group

G. What this means is that given any compact (closed and

bounded) set S in the manifold Y, there are only a finite

number of elements � in the discrete group � such that

ð� � SÞ \ S is nonempty. All of the actions of discrete groups

on continuous spaces of interest in MR have this property. The

consequence of the existence of a discrete group � acting

properly discontinuously on a smooth manifold Y is that one

research papers

Acta Cryst. (2017). A73, 387–402 Gregory S. Chirikjian et al. 	 Mathematical aspects of molecular replacement. IV 389
electronic reprint



can find ‘fundamental domains’ F�\Y having the property that

their images under the actions of the elements of � have

closures that cover Y and interiors that do not overlap. To be

precise, we give two equivalent descriptions of fundamental

domains in the following lemma:

Lemma 3.1. Let � be a discrete group acting properly

discontinuously on a manifold Y and suppose that Y has a

Riemannian metric whose volume measure d� is invariant

under the � action. Let E � Y be a measurable set. Then the

following two conditions are equivalent:

(i)

� Y \
[
�2�

� � E

 !
¼ 0; ð1Þ

in combination with

� � � E \ �0 � Eð Þ ¼ 0 8 � 6¼ �0; ð2Þ
(ii) For every non-negative measurable function

’ : Y ! R�0,R
Y

’ðyÞ d�ðyÞ ¼ R
E

P
�2�

’ð� � yÞ d�ðyÞ: ð3Þ

Proof. First suppose that equations (1)–(2) hold. Then the

integral over Y can be divided into integrals over each � � E

and added asR
Y

’ðyÞ d�ðyÞ ¼ P
�2�

R
��E

’ðyÞ d�ðyÞ

¼ P
�2�

R
E

’ð��1 � yÞ d�ðyÞ

¼ R
E

P
�2�

’ð� � yÞ d�ðyÞ:

Now suppose that, contrary to equation (2), there exist � 6¼ �0

with

0<� � � E \ �0 � Eð Þ ¼ �ðE \ ��1�0 � EÞ:
Let �00 ¼ ��1�0 6¼ e and choose a measurable set

A 
 E \ �00 � E with 0<�ðAÞ<1, and let ’ ¼ �A. ThenR
E

P
�2�

’ð� � yÞ d�ðyÞ ¼ P
�2�

R
��1�E

’ d�

� �ðA \ EÞ þ �ðA \ �00 � EÞ
¼ 2�ðAÞ>�ðAÞ ¼ R

Y

’ d�:

Next suppose that �ðY\Y0Þ> 0, where Y0 ¼:
S

�2� � � E, and

consider the function ’ ¼ �Y\Y0
. Then the right side of equa-

tion (3) equals 0 while
R

Y ’ d� ¼ �ðY\Y0Þ> 0. Thus in both

cases, there exists ’ for which equation (3) does not hold. &

If E is a closed set, equation (1) becomes

Y ¼
[
�2�

� � E;

since
S

�2� � � E is a closed set, so its complement is an open

set of measure 0 and hence empty. Note that equations (1) and

(2) do not depend on the choice of Riemannian metric on Y.

Definition 3.2. A fundamental domain for the discrete group

� acting properly discontinuously on Y is defined to be any

measurable set E that satisfies equations (1) and (2), or

equivalently equation (3). Fundamental domains for �\Y are

denoted F�\Y .
3 An exact fundamental domain is a funda-

mental domain, which we denote as F 0
�\Y, containing exactly

one point in each� orbit, i.e. Y is the disjoint union of the sets

� � F 0
�\Y , for � 2 �.

For example, choosing a Riemannian metric on Y invariant

under the � action, we can take as a fundamental domain for

�\Y the closed Voronoi cell

FVor
�\Y ¼: fy 2 Y : distðy; y0Þ � distðy; � � y0Þ 8 � 2 �g; ð4Þ

for any y0 2 Y such that � � y0 6¼ y0 8� 2 �\feg.

Corollary 3.3. Let F�\Y be a fundamental domain for a finite

group � acting on a manifold Y with �-invariant volume

measure d�. If f : Y ! R�0 is a measurable function with the

symmetry f ð� � yÞ ¼ f ðyÞ for all � 2 �, thenR
Y

f ðyÞ d�ðyÞ ¼ j�j R
F�\Y

f ðyÞ d�ðyÞ: ð5Þ

Proof. By equation (3) and the invariance of f,R
Y

f ðyÞ d�ðyÞ ¼ P
�2�

R
F�\Y

f ðyÞ d�ðyÞ

¼ j�j R
Y

f ðyÞ d�ðyÞ:

&

As an example, suppose that G is a Lie group with left-

invariant measure � and � is a discrete subgroup of G. Then

the orbits of the left action of � are the right cosets f�gg and
for an integrable function ’ on G, we have by equation (3)R

G

’ d� ¼ P
�2�

R
F�\G

’ð� � gÞ d�ðgÞ:

Throughout this paper we use the following application of

Lemma 3.1:

Theorem 3.4. Let F�\Y be a fundamental domain for a

discrete group � acting properly discontinuously on a

Riemannian manifold Y with a �-invariant volume element
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d�. Then a measurable set E � Y is a fundamental domain for

�\Y if and only if R
F�\Y

f d� ¼ R
E

f d� ð6Þ

for all non-negative measurable functions f : Y ! R�0

invariant under the � action.

Proof. Suppose E is a fundamental domain and let

f : Y ! R�0 such that f ð� � yÞ ¼ f ðyÞ for all � 2 �. By equa-

tion (3) applied to E with ’ ¼ �F�\Y
f , we haveR

F�\Y

f d�¼ R
Y

’ d� ¼ R
E

P
�2�

’ð� � yÞ d�ðyÞ

¼ P
�2�

R
E\��1�F�\Y

f d� ¼ R
E

f d�;

where the last equality is by equations (1)–(2).

To show the converse, we suppose that E satisfies equation

(6). Let ’ : Y ! R�0 be an arbitrary non-negative measurable

function and define

f ðyÞ ¼: P
�2�

’ð� � yÞ:

Then, by equation (6),R
E

P
�2�

’ð� � yÞ d�ðyÞ ¼ R
E

f d� ¼ R
F�\Y

f d�

¼ P
�2�

R
F�\Y

’ð� � yÞ d�ðyÞ

¼ P
�2�

R
��1�F�\Y

’ d� ¼ R
Y

’ d�;

and thus by Lemma 3.1 E is a fundamental domain. &

3.2. Measure equivalence

The symbol ‘ffi’ is used in several different ways in the first

two papers in the series (and in mathematics more generally).

In group theory, A ffi B means that the groups ðA; �Þ and

ðB; �̂�Þ are isomorphic (with the group operations � and �̂� not

stated explicitly). And in topology, when A and B are topo-

logical spaces, A ffi B means that A and B are homeomorphic,

i.e. there is a bijection from A to B that is continuous with

continuous inverse. In order to distinguish between these two

concepts, we denote the group-theoretic notion of equivalence

as ffiI and the topological version of equivalence as ffiH. For

example,

SEðnÞ ffiH SOðnÞ � R
n;

as topological spaces, but as groups

SEðnÞ ¼ SOðnÞ�R
n 6ffiI SOðnÞ � R

n:

We use the corresponding notation f : A!
 I B to indicate that

f is a group isomorphism, and f : A!
 H B to indicate that f is a

homeomorphism. We also write f : A!
 S B to indicate that f is

a bijection (isomorphism of sets).

In what follows, a different sense of equivalence, which we

call equivalence in measure, is considered. Namely, if

� : ð�; �Þ ! ðY; �Þ is a measurable map of measure spaces,

we write � : �!
 M Y if there exist negligible sets4 N � �
andN 0 � Y such that�j�\N : �\N ! Y\N 0

is a bijection and

� ¼ ��� (i.e.
R

Y f d� ¼ R
� f �� d� for all integrable func-

tions f on Y). In this case we say that � is an equivalence in

measure. If in addition � is a bijection, we write

� : �!
 M;S Y , and we similarly write � : �!
 M;H Y if ’ is a

measure-preserving homeomorphism. We also use the short-

hand � ffiM Y , � ffiM;S Y , � ffiM;H Y when there exists a

measure equivalence, a measure-preserving bijection or a

measure-preserving homeomorphism, respectively, between�
and Y. This shorthand notation is less precise, since it does not

specify the mapping. However, we use it when the mapping is

understood by the context.

An elementary example of the concept of measure

equivalence is given by the formula for integration over SOð3Þ,R
SOð3Þ

f ðRÞ dR;

which is computed in ZXZ Euler angles as

1

8	2

Z 2	

0

Z 	

0

Z 2	

0

f ð
; �; �Þ sin � d
 d� d�

¼
Z
SOð2Þ

Z
S2

f ð
; �; �Þ duð
; �Þ 1

2	
d�;

where ð
; �; �Þ are ZXZ Euler angles of the rotation R, and

where u 2 S2 with �; 
 serving the roles of polar and azimuthal

spherical coordinates. In this interpretation duð
; �Þ =

ð1=4	Þ sin � d
 d�. Therefore, we have

SOð3Þ ffiM SOð2Þ � S2 ¼ S1 � S2;

even though SOð3Þ 6ffiH SOð2Þ � S2.

A common example is when N is a negligible set in a

measure space�, then�\N is measure equivalent to� (under

the inclusion map). In particular, if � acts isometrically

without fixed points on a Riemannian manifold Y, then the

closed Voronoi fundamental domain FVor
�\Y given by equation

(4) contains a measure-equivalent exact fundamental domain

F 0
�\Y .

Using the notation of Theorem 3.4, we define the mapping

� : F�\Y�!�\Y given by �ðyÞ ¼ �y, which induces the

measure ~�� on �\Y defined by ~��ðAÞ ¼ �ð��1ðAÞÞ. Then � is a
measure equivalence:

� : F�\Y !
 M �\Y ð7Þ
with respect to the measures � on Y, ~�� on �\Y . In other

words, if ~ff is a measurable non-negative (or integrable)

function on �\Y and f is the �-invariant function on Y given

by f ðyÞ ¼ ~ff ð�yÞ, then equation (7) is equivalent toR
F�\Y

f d� ¼ R
�\Y

~ff d ~��: ð8Þ

research papers
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Theorem 3.4 can then be restated to say that the measure ~�� on

the orbit space �\Y given by equation (7) is independent of

the choice of fundamental domain F�\Y . It follows that if F�\Y

andeFF�\Y are two fundamental domains for�\Y, then we have

a measure-equivalent map

given by associating a point in F�\Y with a point ofeFF�\Y in the

same � orbit. (This is defined for all points of F�\Y outside a

set of measure 0.) Combining equations (7) and (9), we have

F�\Y ffiM
eFF�\Y ffiM �\Y: ð10Þ

If � is a fixed-point-free action on Y, then equation (9)

becomes

where we recall that F 0
�\Y denotes an exact fundamental

domain. Bijectivity in equation (11) holds since an exact

fundamental domain contains exactly one point in each orbit.

We then have

F 0
�\Y ffiM;S

eFF 0
�\Y ffiM;S �\Y: ð12Þ

The measure-equivalent map 
 between fundamental domains

in equations (9) and (11) can be described as cutting up the

first fundamental domain and applying� actions on the pieces

to re-assemble them inside the second fundamental domain.

4. Fundamental domains for motion spaces

The central theme of this paper is the description of various

fundamental domains F�\G for a crystallographic group �
acting on the motion group G. The description is based on the

representation of G¼: SEðnÞ as an (external) semi-direct

product G ¼ SOðnÞ�R
n so that special Euclidean transfor-

mations can be written g ¼ ðR; tÞ 2 SEðnÞ, which acts on

positions as g � x ¼ Rxþ t. The group law in G is then

g1 � g2 ¼ ðR1; t1Þ � ðR2; t2Þ ¼ ðR1R2;R1t2 þ t1Þ:
A crystallographic group � is a discrete subgroup of G that

contains a discrete translation subgroup T of rank n as its

maximal normal abelian subgroup. The group T consists of

translations by elements of a lattice L in X ¼ R
n. (We have

L ¼ T � 0; T ¼ fIg � L.) Elements � of the group �<G are of

the form

� ¼ ½R�; t� þ vðR�Þ�; ð13Þ

where t� 2 L and v�ðR�Þ is a fraction (possibly 0) of an

element of L, given uniquely modulo T by equation (13).

In the remainder of this paper, we describe different ways to

construct fundamental domains F�\G. Both these and the coset

spaces �\G can be considered motion spaces, since they are

measure equivalent, as described earlier. The following

observations provide our motivation:

(a) The functions encountered in the kinds of MR searches

described in earlier papers in this series have the symmetry

f ðgÞ ¼ f ð� � gÞ for all � 2 � and g 2 G.

(b) It is possible to construct F�\G and the asymmetric unit

F�\X in such a way that they have useful symmetries.

(c) Given a function on Euclidean space with symmetry

�ðxÞ ¼ �ðxþ tÞ where t 2 L, the integral of this function over

any unit cell FT\X produces the same outcome. In particular,R
FT\X

�ðxÞ dx ¼ R
FT\X

�ðxþ aÞ dx

for any a 2 X.

Specializing Lemma 3.1 and Theorem 3.4 to the Euclidean

motion group G, we have:

Theorem 4.1. Let H be a subgroup of a crystallographic

group �<G and let E be a measurable set in G. Then the

following are equivalent:

(i) E is a fundamental domain for H acting on G.

(ii) For every non-negative measurable function

’ : G ! R�0, R
G

’ðgÞ dg ¼ R
E

P
h2H

’ðh � gÞ dg:

(iii) If FH\G is a fundamental domain for H\G, thenR
FH\G

f dg ¼ R
E

f dg;

for every non-negative measurable function f : G ! R�0 such

that f ð� � gÞ ¼ f ðgÞ for all h 2 H; g 2 G.

As a consequence, if F 0
H\G and eFF 0

H\G are fundamental

domains for H\G, we have measure equivalences

F 0
H\G ffiM;S

eFF 0
H\G ffiM;S H\G: ð14Þ

Important cases of Theorem 4.1 and equation (14) are H ¼ �
and H ¼ T, discussed below.

4.1. The motion space T\G

As discussed in x4.2 of Chirikjian & Yan (2012), the left

action of T on G given by

t0 � g ¼ ðI; t0Þ � ðR; tÞ ¼ ðR; t0 þ tÞ
has no effect on the rotational part of g 2 G, and

T\G ffiH SOðnÞ � T\X ð15Þ
is a trivial principal SOðnÞ bundle.5 Moreover,

FT\G ffiM;H SOðnÞ � FT\X

(i.e. this equivalence is both topological and measure-

theoretic).

We can think of FT\X as the unit cell that tiles Rn under the

action of T, and
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G ¼
[
t2T

t � FT\G;

where

� FT\G \ ðt � FT\GÞ
� � ¼ 0; 8 t 2 T\feg:

Any integrable function ~ff : T\G ! R can be thought of as

being equivalent to f : G ! R together with the constraint

that f ðt � gÞ ¼ f ðgÞ for all t 2 T. Then, by equation (7),

�T\Gð~ff Þ ¼
R

T\G

~ff ðTgÞ dðTgÞ ¼ R
FT\G

f ðgÞ dg:

Since SOðnÞ � FT\X is a fundamental domain for T\G, we

conclude from Theorem 3.4 thatR
FT\G

f ðgÞ dg ¼ R
FT\X

R
SOðnÞ

f ðR; tÞ dR dt:

4.2. The motion space C\G

In the context of more general motion spaces, we consider

measurable functions f : G ¼ SEðnÞ ! R with symmetry

f ðgÞ ¼ f ð� � gÞ; 8� 2 �<G:

Writing � ¼ ½R�; t� þ vðR�Þ� 2 �, we have

f ðR; tÞ ¼ f ðR�R; � � tÞ ¼ f ½R�R; R�tþ t� þ vðR�Þ�: ð16Þ
We are interested in integrals of the formR

�\G

~ff ð�gÞ dð�gÞ ¼ R
F�\G

f ðgÞ dg

where ~ff ð�gÞ ¼: f ðgÞ. Here dg and dð�gÞ are the Haar measures

for G and �\G, respectively.

Suppose that N is a normal subgroup of �. (For example, we

can take N to be the pure translation group

T ¼ fðI; tÞ : t 2 Lg.) We then write G¼: N\G, �¼: �
N. The

group � acts on G by the rule

ðN�Þ � ðNgÞ ¼: N�g: ð17Þ
Any function ~ff : �\G ! R can be regarded as a function
~ff : N\G ! R with additional symmetries of the form

~ff ½ðN�Þ � ðNgÞ� ¼ ~ff ðNgÞ ð18Þ
whenever � 2 FN\� � �.

We show below that equation (17) gives a well defined �
action on G and there is a natural measure-preserving

homeomorphism 
 : �\G!
 H;M �\G (see Proposition 4.4). We

begin with the following general fact:

Lemma 4.2. Let N be a normal subgroup of a group K acting

on the left on a set � (for example, K is a subgroup of a group

�), and let K ¼: K
N. Then the group K acts on the orbit space

�¼: N\� by the rule

ðNkÞ � ðN!Þ ¼ Nðk � !Þ; for k 2 K; ! 2 �; ð19Þ
and we have a bijective mapping


 : K\�!
 S K\�; 

�
K � ðN!Þ� ¼ K!: ð20Þ

Proof. Equation (19) gives a well defined action since for

any n; n0 2 N,

k0 ¼ nk; !0 ¼ n0 � ! )
Nðk0 � !0Þ ¼ Nðnkn0 � !Þ ¼ Nðn00k � !Þ ¼ Nðk � !Þ;

since N is normal in K. The action is a group action since

ðNk1Þ � ½ðNk2Þ � ðN!Þ� ¼ ðNk1Þ � ðNk2 � !Þ ¼ Nðk1k2 � !Þ:
We use the notation k ¼ Nk 2 K, ! ¼ N! 2 �. The mapping


 is well defined and bijective since for any two elements

!; !0 2 !,

K! ¼ K!0 , 9k 2 Ks:t:! ¼ k � !0 ¼ k � !0

, 9n 2 Ns:t:! ¼ nk � !0 , K! ¼ K!0:

&

For example, given a group H with N / K <H, we have a

natural bijective map


 :
K

N

� �
\ N\Hð Þ!
 S K\H: ð21Þ

If, in addition, N / H and K / H, then equation (21) becomes

the ‘Third Isomorphism Theorem’ of group theory,

K

N

� �
\

H

N

� �
ffiI

H

K
:

Our main interest here is when K is a discrete group acting on

a manifold:

Lemma 4.3. Let N / K where K is a discrete group acting

properly discontinuously on a Riemannian manifold Y and let

K ¼ K
N. Suppose that K preserves the volume measure on Y

and let Y ¼ N \Y with the volume measure given by equation

(7). Then there is a measure-preserving homeomorphism


 : K\Y !
 H;M K\Y; K � y 7!K � y; ð22Þ
where y ¼ Ny 2 Y.

Proof. Let 
 : K\Y !
 S K\Y be given as in Lemma 4.2. Now

consider the maps 	; 	0 given by

N \Y ¼ Y !	 K\Y !
 K\Y

and

	0 ¼ 
 � 	 : N \Y ! K\Y:

To show the measure and topological equivalences, suppose

A � K\Y and let A0 ¼ 
ðAÞ � K\Y . Then

A is open()	�1ðAÞ ¼ 	0�1ðA0Þ is open
()A0 is open;
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which completes the proof of topological equivalence. To

show measure equivalence, we similarly have

�ðAÞ ¼ 1

jKj� 	�1ðAÞ� �
¼ 1

jKj� 	0�1ðA0Þ� � ¼ �ðA0Þ:

Therefore, 
 : K\Y !
 H;M K\Y. &

Applying Lemma 4.3 with K ¼ � and Y ¼ G or X, we

obtain:

Proposition 4.4. Suppose that N / � and write G ¼ N\G,

� ¼ N\�. Then there are measure-preserving homeo-

morphisms


G : �\G!
 H;M �\G;�g 7!�g; ð23Þ


X : �\X !
 H;M �\X;�x 7!�x; ð24Þ
where equation (7) is used to define the induced measures on

the quotient spaces.

4.3. Fundamental domains for C\G

Suppose F 0
N\G is a fundamental domain for N\G, where

N / �. Since F 0
N\G ffiM;S N\G, it follows from equation (23) that

N\� provides a fixed-point-free group action on F 0
N\G. In fact,

we have the following:

Theorem 4.5. Suppose that N / � and let F 0
N\G be a funda-

mental domain for N\G. Then there is a fundamental domain

F 0
�\G � F 0

N\G such that each orbit of �¼: N\� acting on F 0
N\G

contains exactly one point of F 0
�\G, and equivalences

�\ðF 0
N\GÞ ffiM;S F 0

�\G ffiM;S F 0
�\ðF0

N\G
Þ: ð25Þ

Furthermore, if ½� : N�<1 (e.g. if T � N / �) and

f : F 0
N\G ! R is a measurable function that is invariant under

the � action, thenZ
F0
�\G

f ðgÞ dg ¼ 1

½� : N�
Z

F 0
N\G

f ðgÞ dg: ð26Þ

Proof. Let F 0
�\ðF 0

N\G
Þ be a fundamental domain for �\ðF 0

N\GÞ.
Since

�\ðF 0
N\GÞ ffiM;S �\G ffiM;S �\G

by equation (23), it follows that F 0
�\ðF0

N\G
Þ is also a fundamental

domain for �\G, and equation (25) then follows from equation

(7). To verify equation (26), we apply Corollary 3.3 with

Y ¼ F 0
N\G and � ¼ � to obtain

Z
F0

N\G

f ðgÞ dg ¼ j�j
Z

F0
�\ F0

N\Gð Þ
f ðgÞ dg

¼ j�j
Z

F0
�\G

f ðgÞ dg;

where the second equality follows from equation (25). Since

j�j ¼ ½� : N�, equation (26) follows. &

The action of N\� on N\G that led to equation (26) can be

thought of as constructing FN\G from copies of F�\G, as

FN\G ¼
[

�2FN\�

� � F�\G:

If F�\X � X is a fundamental domain for �\X, then

SOðnÞ � F�\X is a fundamental domain for �\G. To see this, let

g ¼ ðR; tÞ 2 G be arbitrary. Then for � ¼ ½R�; t� þ vðR�Þ�, we
have by equation (16) � � g ¼ ðR�R; � � tÞ. Since the sets

� � F�\X tile X (when � runs through �), it follows that the sets
� � ½SOðnÞ � F�\X � tile G ¼ SOðnÞ�X. Therefore, if F�\G is an

arbitrary fundamental domain for �\G, we have

In particular, if f is a measurable function on G, invariant

under the left � action, thenR
F�\G

f ðgÞ dg ¼ R
F�\X

R
SOðnÞ

f ðR; tÞ dR dt: ð28Þ

Similarly, if FT\X � X is a fundamental domain for T\X, then

SOðnÞ � FT\X is a fundamental domain for T\G (and the same

holds for the exact fundamental domain F 0
T\X � X). There-

fore, by equation (26),Z
F�\G

f ðgÞ dg ¼ 1

½� : T�
Z

FT\X

Z
SOðnÞ

f ðR; tÞ dR dt; ð29Þ

where we recall that ½� : T� ¼ jT\�j. Since
F 0

T\G ffiM;S SOðnÞ � F 0
T\X ; ð30Þ

it follows from Theorem 4.5 that

An alternative to equation (27) is given by the following:

Proposition 4.6. F 0
P\SOðnÞ � F 0

T\X is an exact fundamental

domain for �\G.

Proof. Let F ¼: F 0
P\SOðnÞ � F 0

T\X . We first show that the sets

f� � Fg�2� are disjoint. Since the � action is a group action, it

suffices to show that ð� � FÞ \ F ¼ ; for all � 6¼ e. Let

� ¼ ½R�; t� þ vðR�Þ� 6¼ ðI; 0Þ be arbitrary.

Case (1), R� 6¼ I. Since R� 2 P, by the definition of the

fundamental domain F 0
P\SOðnÞ, we have

F 0
P\SOðnÞ \ R� � F 0

P\SOðnÞ ¼ ;
and thus ð� � FÞ \ F ¼ ;.
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Case (2), R� ¼ I. Then � ¼ ðI; t�Þ, where t� 2 T\0. Since

� � ðR; tÞ ¼ ðR; tþ t�Þ and F 0
T\X \ ðt� þ F 0

T\XÞ ¼ ;, it follows

that ð� � FÞ \ F ¼ ;.
It remains to show that[

�2�
� � F ¼ G: ð32Þ

So suppose that g ¼ ðR; tÞ is an arbitrary element of G. Then

there exist R� 2 P and ~RR 2 F 0
P\SOðnÞ (where P denotes the point

group defined below) such that ~RR ¼ R�R. And there exist

t� 2 T and ~tt 2 F 0
T\X such that ~tt ¼ t� þ ½R�tþ vðR�Þ�. Let

� ¼ ½R�; t� þ vðR�Þ� 2 �. Then

� � g ¼ ½R�; t� þ vðR�Þ� � ðR; tÞ ¼ ð ~RR; ~ttÞ 2 F

and therefore g ¼ ��1 � ð ~RR; ~ttÞ 2 ��1 � F, which verifies

equation (32). &

We conclude from equation (11) and Proposition 4.6 that

for arbitrary (exact) fundamental domains F 0
�\G, F 0

P\SOðnÞ, F 0
T\X .

4.4. Voronoi cells as fundamental domains in G

The fundamental domain FVor
�\G � G was defined in

Chirikjian & Yan (2012)6 as the set of all g 2 G such that

dðe; gÞ � dðg; �Þ 8 � 2 �\feg;
that is, FVor

�\G is the closed Voronoi cell for � centered at e. The

metrics defined in that paper were all left-invariant, and as a

consequence dð� � g1; � � g2Þ ¼ dðg1; g2Þ. They were also bi-

invariant with respect to pure rotations, i.e.

dðr1 � g1 � r2; r1 � g2 � r2Þ ¼ dðg1; g2Þ 8 r1; r2 2 R:

More generally, for any subgroup H � �, we have the Voronoi
cell FVor

H\G given by equation (4).

We let P< SOðnÞ denote the point group:

P¼: fR 2 SOðnÞ : 9 vðRÞ 2 X such that ½R; vðRÞ� 2 �g:
This is well known to be isomorphic with the quotient of � by

T: P ffiI T\�. In contrast, we can define a subgroup S � P

defined as

S¼: fR 2 SOðnÞ such that ðR; 0Þ 2 �g:
In the case when S ¼ P, then � is symmorphic. Otherwise,

S<P and � is nonsymmorphic.

We letR¼: SOðnÞ � f0g denote the rotation subgroup of G.

We also let S � P<R be given by7

P¼: P� f0g<G; S¼: R\ � ¼ P \ �; S¼: S� f0g:
Let N / �. If � 2 N and s 2 S, then s � � � s�1 2 N and

dðe; s � � � s�1Þ ¼ dðe; �Þ, and thus

dðe; gÞ � dðg; �Þ () dðe; s � g � s�1Þ � dðs � g � s�1; � 0Þ;

where � 0 ¼ s � � � s�1: Therefore, s � g � s�1 2 FVor
N\G for all

g 2 FVor
N\G. And so

sFVor
N\Gs�1 ¼ FVor

N\G for all s 2 S: ð34Þ
In the symmorphic case, S ¼ P and thus equation (34) holds

for all s 2 P.

Moreover, even if � is not symmorphic, for the case N ¼ T

we have

pFVor
T\Gp�1 ¼ FVor

T\G for all p 2 P: ð35Þ
To verify equation (35), we let p ¼ ðR; 0Þ, R 2 P. Then for

g 2 G and t ¼ ðI; aÞ 2 T, we have

dðe; gÞ�dðg; tÞ () dðe; p � g � p�1Þ�dðp � g � p�1; t0Þ;
where

t0 ¼ p � t � p�1 ¼ ðI;RaÞ 2 T;

as the point group P preserves the lattice.8

We recall from Chirikjian, Sajjadi et al. (2015) and

Chirikjian, Ratnayake et al. (2015) that � ¼ �B�S (in at least

one way for every Sohncke group, and in more than one way

for some) where �B is Bieberbach and �S is symmorphic.

Moreover, when �B and �S both share the primitive lattice of

�, this becomes � ¼ �BS where S<�S and S ffiI �S=T and

�B \ S ¼ feg. In most of these cases, �B / � and hence

� ¼ �B�S. The results in the next section are presented with

this in mind, but are not limited to the case when H ¼ �B or

even H / �.

5. Transferring symmetry between translational and
rotational parts of motion spaces

Suppose that � can be decomposed as KH where

K � S ¼ P \ � and H is a space group such that K \ H ¼ feg.
Note that this implies that H and � both share T as their

maximal translation group, and that K�T is a symmorphic

subgroup, also with T as its maximal translation group. We

then write

ðs; hÞ ¼: h � s 2 �; when s 2 K; h 2 H:

Explicitly, if s ¼ ðRs; 0Þ 2 K and h ¼ ½Rh; th þ vðRhÞ� 2 H, we

have ðs; hÞ ¼ ½RhRs; th þ vðRhÞ�. Note that if K ¼ S, then H is

a Bieberbach group.

The following results provide ways to decompose F�\G as a

measure-equivalent product space when � ¼ KH as above.

In the discussion below, we use the following elementary

facts:

(i) If A and B are subgroups of a group H such that H =

AB¼: fab : a 2 A; b 2 Bg, then H = H�1 = ðABÞ�1 = B�1A�1 =

BA and thus AB = BA (although neither subgroup may be

normal).

(ii) Suppose that A and B are subgroups of H such that

A \ B ¼ feg. If a; a0 2 A, b; b0 2 B such that ab ¼ a0b0, then
a�1a0 ¼ bb0�1 2 A \ B and thus a ¼ a0; b ¼ b0.
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If A and B are discrete groups acting properly discontinu-

ously on a manifold Y, we shall use the notation FB
A\Y to

indicate a fundamental domain that is invariant under the

action by elements of B. The following lemma describes a

general situation where such symmetric groups exist.

Lemma 5.1. Let � be a discrete group acting properly

discontinuously on a manifold Y. Suppose that A and B are

subgroups of � such that � ¼ AB and A \ B ¼ feg. Then
there exists a fundamental domain FB

A\Y for A acting on Y that

is invariant under the B action.

Proof. Let F�\Y be a fundamental domain for the action of

� on Y. We use the B images of F�\Y as building blocks to

construct the set

F ¼:
[
b2B

b � F�\Y ;

which has the symmetry b � F ¼ F for b 2 B. Let � be a

volume measure on Y (in any Riemannian metric). The sets

a � F cover all of Y except possibly for a set of measure zero,

since

YffiM

[
�2�

� � F�\Y ¼
[
a2A

[
b2B

ab � F�\Y ¼
[
a2A

a � F:

Now suppose that a 2 A\feg. We have

F \ a � F ¼
[

b;b02B

b0 � F�\Y \ ab � F�\Y

� �
:

We note that ab 6¼ b0 for all pairs b; b0 2 B since A \ B ¼ feg,
and thus

� b0 � F�\Y \ ab � F�\Y

� � ¼ 0 8 b; b0 2 B:

Therefore

� F \ a � Fð Þ ¼ 0;

so the set FB
A\Y ¼: F is our desired symmetric fundamental

domain. &

Theorem 5.2. Suppose that a space group � can be

decomposed as a product of two space groups as � ¼ �0�00

where �, �0 and �00 share the same translation group T, and

�0 \ �00 ¼ T. Let P ¼ P0P00 denote the point group of � with

P0 and P00 being the point groups of �0 and �00, respectively.
Then there exists a fundamental domain FP00

P0\R with the

symmetry

q � FP00
P0\R ¼ FP00

P0 \R; 8 q 2 P00 ð36Þ
and FP00

P0 \R � F�00 \X is a fundamental domain for �\G. Thus we

have

Proof. We note that P0 \ P00 ¼ feg since if p =

ðR; 0Þ 2 P0 \ P00, then ½R; vðRÞ� 2 �0 \ �00 = T and therefore

R ¼ I. By Lemma 5.1 with Y ¼ R, � ¼ P, A ¼ P0 and

B ¼ P00, we obtain a fundamental domain FP00
P0 \R having the

symmetry (38).

Write F ¼: FP00
P0 \R � F�00 \X, where FP00

P0 \R satisfies equation (36).

We let R0 ¼: P0 � FP00
P0 \R, which is a set of full measure in R by

equation (1), and we let

X0 ¼:
\
k2�0

k�00 � F�00\X ¼
\

k2FT\�0
k�00 � F�00\X ;

which is also a set of full measure in X, since it is a finite

intersection of sets of full measure.

Let g ¼ ðR; tÞ be an arbitrary element of R0 � X0. To

show that the sets � � F cover R0 � X0, we must find an

element � 2 � such that � � g 2 F. We first select

k ¼ ½Rk; tk þ vðRkÞ� 2 �0 such that R0 ¼: RkR 2 FP00
P0 \R. Write

k � g ¼ ðR0; t0Þ. Since t0 ¼ k � t 2 k � X0 ¼ X0, we can find

h ¼ ½Rh; tþ vðRhÞ� 2 �00 such that h � t0 2 F�00 \X . Let � ¼ h � k.

Then

� � g ¼ h � ðR0; t0Þ ¼ ðRhR0; h � t0Þ 2 R � F�00 \X :

Since Rh 2 P00, R0 ¼ RkR 2 FP00
P0 \R and FP00

P0 \R is invariant under

the left P00 action, it follows that RhR0 2 FP00
P0\R, and thus

� � g 2 F. Therefore,
S

�2� � � F contains R0 � X0, which has

full measure in G.

To complete the proof, we must show that F \ � � F has zero

measure for all � 2 �\feg. Let g 2 F and � 2 �\feg be arbitrary.
We can write � ¼ h � k, h 2 �00; k 2 P0. First suppose that

k 6¼ e. Recalling that Rh 2 P00, we have

� � g 2 RhRk � FP0 \R � X:

We note that P0 \ P00 ¼ feg, since if ðR
; 0Þ 2 P0 \ P00, then
½R
; vðR
Þ� 2 �0 \ �00 ¼ feg and thus R
 ¼ I. Since

P0P00 ¼ P00P0 (although neither P nor P00 may be normal),

RhRk ¼ Rk0Rq, k0 2 P0, q 2 P00. Furthermore, k0 6¼ e since

P0 \ P00 ¼ feg. Since FP00
P0 \R is invariant under P00, we then have

� � g 2 Rk0 � FP00
P0 \R � X . Thus

F \ � � F � FP00
P0\R \ Rk0 � FP00

P0\R
� �� X;

which has measure zero in R� X .

On the other hand, if � ¼ h 2 �00\feg, then the set of g 2 F

with � � g 2 F has measure zero since, by definition,

� F�00 \X \ h � F�00\X
� � ¼ 0 8 h 2 �00\feg:

&

Corollary 5.3. Let �< SEðnÞ be a Sohncke group that can

be decomposed as a product � ¼ KH where K � S ¼ � \R
is a subgroup of the point group and H is a Sohncke group

such that K \ H ¼ feg. If Q denotes the point group of H, then

there exists a fundamental domain FQ
K\R with the symmetry

q � FQ
K\R ¼ FQ

K\R; 8 q 2 Q; ð38Þ
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and FQ
K\R � FH\X is a fundamental domain for �\G. Thus we

have

Proof. Let T denote the translation group of �. Apply

Theorem 5.2 with �0 ¼ K�T and �00 ¼ H. &

When � ¼ KH as in Corollary 5.3, we can similarly

construct fundamental domains by instead requiring

symmetry of the second factor in equation (39):

Theorem 5.4. Let � ¼ KH be as in Corollary 5.3. Then there

exists a fundamental domain FK
H\X with the symmetry

k � FK
H\X ¼ FK

H\X 8 k 2 K; ð40Þ
and FK\R � FK

H\X is a fundamental domain for �\G. Thus we

have

Proof. The existence of a fundamental domain in X having

the symmetry (40) follows from Lemma 5.1, this time with

Y ¼ X , � ¼ �, A ¼ H and B ¼ K.

Let X0 ¼: H � FK
H\X , which has full measure in X, and suppose

that g ¼ ðR; tÞ is an arbitrary element ofR� X0. Then we can

find tF 2 FK
H\X and h 2 H such that h � tF ¼ t. Then

g ¼ h � ðR�1
h R; tFÞ:

We have a unique decomposition R�1
h R ¼ RsRF with k 2 K,

RF 2 F 0
K\R. Therefore

g ¼ h � ðRkRF; tFÞ
¼ ðh � kÞ � ðRF; k�1 � tFÞ
¼ � � ðRF; t

0Þ;

where � ¼ h � k 2 � and t0 ¼ k�1 � tF 2 FK
H\X since FK

H\X is

invariant under the K action. Therefore the � images of

F 0
K\R � FK

H\X coverR� X0, which has full measure in G. Since

the choice of k 2 K is unique, the only way these � images can

overlap is when there exists another decomposition ~hh � ~ttF ¼ t.

But this occurs only when t lies in the intersection

ðh � FK
H\XÞ \ ð ~hh � FK

H\XÞ, which is a set of measure zero. &

In the symmorphic case when � ¼ P�T, it was shown in

Chirikjian & Yan (2012) that the Wigner–Seitz cell (i.e. the

Voronoi cell centered on each lattice point) is a fundamental

domain FT\X with the symmetry p � FT\X ¼ FT\X for all p 2 P.

This generalizes to the case where � is the product of a

symmorphic group and a Bieberbach group (where neither

factor need be normal), yielding the following alternative

construction of the symmetric fundamental domain in

Theorem 5.4:

Proposition 5.5. Suppose that the group �< SEðnÞ can be

decomposed as a product � ¼ �S�B of a symmorphic group

�S and a Bieberbach group �B, where �, �S and �B share the

same translation group T, and �S \ �B ¼ T. Let

dðx; yÞ ¼ kx� yk denote the Euclidean distance in X from x

to y. Then the Voronoi cell

FVor
�B\X ¼: fx 2 Xjdðx; 0Þ � dðx; h � 0Þ 8 h 2 �Bg ð42Þ

is a fundamental domain for �B\X and has the symmetry

s � FVor
�B\X ¼ FVor

�B \X 8 s 2 S; ð43Þ
where S ¼ � \R is the point group of �S. Thus

Proof. We first note that

FVor
�B\X ¼ fx 2 Xjdðx; 0Þ � dðx; � � 0Þ 8 � 2 �g; ð45Þ

since each � 2 � ¼ �S�B ¼ �B�S ¼ �BS can be decomposed

as � ¼ hs, where h 2 �B and s 2 S, and thus

� � 0 ¼ h � ðs � 0Þ ¼ h � 0.
Since Euclidean distance has the property that

dðRx;RyÞ ¼ dðx; yÞ 8x; y 2 X; R 2 SOðnÞ;
we then have that

s � FVor
�B \X ¼ FVor

�B \X

because

fx 2 Xjdðs�1 � x; 0Þ � dðs�1 � x; � � 0Þ 8 � 2 �g
¼ fx 2 Xjdðx; 0Þ � dðx; s� � 0Þ 8 � 2 �g

and every � 2 � has the form s� 0, with � 0 ¼ s�1� 2 �. &

If K ¼ S ¼ P \ � in Theorem 5.4, then H must be a

Bieberbach group, resulting in a decomposition � ¼ �S�B,

where �S is a symmorphic group and �B is a Bieberbach

group. Every Sohncke space group �< SEð3Þ can be written as
a product � ¼ �S�B (Chirikjian, Ratnayake et al., 2015), but

�B is not always normal and its maximal translation subgroup

is not always T. A list of those groups having a decomposition

� ¼ S��B is provided in Chirikjian, Ratnayake et al. (2015).

Note that if we let K ¼ feg in equation (39), we recover our

basic example [equation (27)].

We now give an interpretation of Theorem 5.4 in terms of

integral formulas, which can be used to give an alternative

proof of the theorem. Consider an arbitrary non-negative

measurable function f : G ! R�0 with f ð� � gÞ ¼ f ðgÞ for all
� 2 �. Then we have

f ðh � gÞ ¼ f ðgÞ and f ðk � gÞ ¼ f ðgÞ
for all h ¼ ½Rh; th þ vðRhÞ� 2 H and k ¼ ðRk; 0Þ 2 K. We have
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1

½H : T�
Z

FT\G

f ðgÞ dg ¼
Z

FH\G

f ðgÞ dg

¼
Z

FH\X

Z
R

f ðR; tÞ dR dt:

Moreover, the integral overR ¼ SOðnÞ can be decomposed asR
R

f ðR; tÞ dR ¼ P
k2K

R
FK\R

f ðRkR; tÞ dR

for each fixed value of t 2 FH\X.

If we choose FH\X to have the symmetry of K, so that

Rk � FH\X ¼ FH\X , and since it is already the case that

f ðk � gÞ ¼ f ðgÞ, which can be written more explicitly as

f ðRkR;RktÞ ¼ f ðR; tÞ, thenP
k2K

R
FH\X

R
FK\R

f ðRkR; tÞ dR dt

¼ P
k2K

R
R

k�1 �FH\X

R
FK\R

f ðR; tÞ dR dt

¼ jKj � R
FH\X

R
FK\R

f ðR; tÞ dR dt: ð46Þ

Therefore, since ½H : T� � jKj ¼ ½� : T�,Z
FH\X

Z
FK\R

f ðR; tÞ dR dt ¼ 1

½H : T� � jKj
Z

FT\G

f ðgÞ dg

¼
Z

F�\G

f ðgÞ dg:

Since f is arbitrary, this provides an independent verification of

Theorem 5.4.

As an example of Theorem 5.4, we revisit Chirikjian & Yan

(2012). Let �P denote the symmorphic group P�T and

suppose that K / P. If we can find Q<P such that KQ ¼ P

and K \ Q ¼ feg, then P ¼ K�Q (and Q ffiI K\P). In this

case, H can be taken to be �K ¼ T�K, so that �P ¼ Q�H

and we have

F�P\G ffiM FQ\R � F�K\X :

The following summarizes the results of this section:

Corollary 5.6. Suppose that a space group � can be

decomposed as a product of two space groups as � ¼ �0�00

where �, �0 and �00 share the same translation group T, and

�0 \ �00 ¼ T. Let P ¼ P0P00 denote the point group of � with

P0 and P00 being the point groups of �0 and �00, respectively,
and let �P ¼ P�T. Then we have the following measure-

equivalent fundamental domains for �\G:

F�\G ffiM FP\R � FT\X ð47Þ

ffiM F�P\G ð48Þ

ffiM FP00
P0 \R � F�00 \X ð49Þ

ffiM FP0
P00 \R � F�0 \X ð50Þ

where FQ\R and FH\X denote arbitrary fundamental domains

for Q\R and H\X , respectively (for Q � P, H � �), and a

superscript P0 (respectively, P00) signifies that the fundamental

domain is invariant under the left P0 (respectively, P00) action.

Furthermore, if �0 is symmorphic, we have

F�\G ffiM FP0 \R � FP0
�00 \X ð51Þ

and, similarly, if �00 is symmorphic, then

F�\G ffiM FP00 \R � FP00
�0 \X : ð52Þ

Proof. The congruences (47) and (48) follow from Propo-

sition 4.6 and the fact that � and �P have the same point group

and translation group; (49) and (50) follow from Theorem 5.2;

(51) and (52) follow from Theorem 5.4, with K ¼ P0 (K ¼ P00,
respectively) and H ¼ �00 (H ¼ �0, respectively). &

6. Examples

We now apply our results to Sohncke space groups [i.e.

discrete co-compact subgroups of SEð3Þ]. Recall that when

referring to a space group of type �, one is referring to all

space groups that are equivalent under orientation-preserving

affine transformations. That is, if �
 ¼: 
�
�1 and � are both

space groups, where 
 2 Affþð3Þ ¼ GLþð3Þ�R
3, then �
 and

� are both instances of the same space-group type. But the

motion spaces �\G and �
\G in general will not be measure

equivalent unless 
 2 SEð3Þ, and neither will the fundamental

domains F�\G and F�
\G. However, for a fixed transformation


, one can decompose motion spaces and their corresponding

fundamental domains in multiple measure-equivalent ways.

In the examples illustrated below, for a given space group �
= ‘P#’ in the Hermann–Mauguin notation (Hahn, 2002), we let

‘#’ denote the ‘abstract point group’ T\� together with its

action on the torus T\R3. For example, the ðT\�Þ actions for the
space groups P212121, P2221, P21212 and P222 are denoted

212121, 2221, 21212 and 222, respectively. They have distinct

actions on T\R3, although as groups they are isomorphic to the

same abstract group Z2 � Z2. They can also be conjugated by

elements of A 2 GLþð3Þ; although ð212121ÞA ffiI 212121 ffiI 222

as abstract groups, the first two are similar to each other in the

sense that both act on T\R3 without fixed points, while 0 is a

fixed point of the third. And if A 2 SOð3Þ, we go as far as not

to distinguish between the first two (since this represents

nothing more than a change in perspective) and write

ð212121ÞA ¼ 212121.

We let T3 ¼: T\R3 ¼ P1\R3 denote the 3-torus. Furthermore,

F�\R3 ffiM F �
Tð Þ\T3 ffiM �\R3 ffiM;H

�

T

� �
\T3: ð53Þ

Moreover,

F 0
� \SEð3Þ ffiM;S F 0

�
Tð Þ\½T \SEð3Þ� ffiM;S � \SEð3Þ ð54Þ

and

� \SEð3Þ ffiM;H

�

T

� �
\½T \SEð3Þ�:
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Up to isomorphism, there are 65 Sohncke (orientation-

preserving) space groups. In most cases, they are either

Bieberbach (�B), symmorphic (�S) or a semi-direct product of

the form � ¼ �B�S where S ffiI �S=T with �B;�S <�. As a

consequence, � ¼ �BS ¼ �B�S with �B \ S ¼ feg and

�B \ �S ¼ T, and the theorems presented earlier in this paper

apply. In all cases it is possible to write � ¼ �B�S. In a

minority of cases addressed in Chirikjian, Ratnayake et al.

(2015), �B \ �S <T. These are not exemplified here. Some

examples of decompositions of motion spaces based on the

structure of these space groups are provided below.

6.1. The Bieberbach group P212121

The most common space group in which proteins crystallize

is the Bieberbach group P212121. We can choose FP212121=P1 as

fðx; y; zÞ; ð�x þ 1=2;�y; z þ 1=2Þ;
ð�x; y þ 1=2;�z þ 1=2Þ; ðx þ 1=2;�y þ 1=2;�zÞg:

Here each group element is denoted by its action on the point

ðx; y; zÞ, where the coordinates are with respect to a basis for

R
3 consisting of the generators of the lattice L. As described

above, we denote the quotient group P212121=P1 as 212121,

which acts on the 3-torus P1\R3.

Then the following are measure-equivalent fundamental

domains for P212121 acting on SEð3Þ: FP212121\½SOð3Þ�R
3�,

F222\SOð3Þ � FP1\R3 , SOð3Þ � FP212121 \R3 , FP222\SEð3Þ. Moreover,

P212121\SEð3Þ ffiM;H 212121\½SOð3Þ � T
3�

ffiM SOð3Þ � 212121\T
3;

with the first being homeomorphic, but the second not.

Note that the quotient space 212121\T
3 ffiH P212121\R

3 is

called the Hantzsche-Wendt flat manifold, which is an example

of a ‘Euclidean space form’ as described in Charlap (1986),

Montesinos (1987), Nikulin & Shafarevich (2002) and older

references therein.

On the other hand, given P212121 and ðP212121Þ
 < SEð3Þ
with 
 2 Affþð3Þ, such that the volume of the resulting unit

cells are different, then clearly there will be no measure-

equivalent map between P212121\SEð3Þ and ðP212121Þ
\SEð3Þ,
and no measure equivalence between their fundamental

domains. However,

P212121\SEð3Þ ffiH ðP212121Þ
\SEð3Þ:
Whenever � is one of the orientation-preserving Bieberbach

groups, decompositions analogous to those above can be

made.

6.2. The symmorphic group P2

P2 ¼ P1�2 is a symmorphic group with P2=P1 denoted as

2. That is,

FP2
P1
¼ fðx; y; zÞ; ð�x; y;�zÞg ð55Þ

and ‘2’ is the corresponding abstract point group.

The following fundamental domains are each measure

equivalent to the fundamental domain FP2\SEð3Þ: FP2\½SOð3Þ�R
3�,

F2\SOð3Þ � FP1\R3 , SOð3Þ � FP2\R3 . The spaces 2\T3 ffiH P2\R3 are

just orbifolds, while the other spaces above are manifolds.

6.3. The symmorphic group C2

The space group � ¼ C2 is the most highly represented

symmorphic space group in the PDB. In the standard setting, a

sublattice �<T is used instead of the primitive lattice T.

Relative to this � / �, coset representatives are defined

according to their actions as

F�
�
¼ fðx; y; zÞ; ð�x; y;�zÞ; ðx þ 1=2; y þ 1=2; zÞ;
ð�x þ 1=2; y þ 1=2;�zÞg

¼ fðx; y; zÞ; ð�x; y;�zÞg�
fðx; y; zÞ; ðx þ 1=2; y þ 1=2; zÞg:

Here the coordinates are with respect to� ¼ P1, and T >� is

the finest (i.e. full/primitive) translational lattice. The group

�=� is generated by a fractional translation relative to the

lattice �.
Viewing affine transformations (including rigid-body

transformations) as 4� 4 homogeneous transformation

matrices of the form

HðA; aÞ ¼ A a

0T 1

� �
2 Affþð3Þ

and applying the transformation


 ¼
1=2 1=2 0 0

�1=2 1=2 0 0

0 0 1 0

0 0 0 1

0BB@
1CCA;

we get T ¼ 
�1�
>�. Thus


�
�1

�
ffiI

�

T
ffiI P; ð56Þ

where

P ¼ fðx; y; zÞ; ð�y;�x;�zÞg:
Note also that

P ffiI fðx; y; zÞ; ð�x; y;�zÞg;
and even more than this, they are conjugated versions of each

other with respect to an element of SOð3Þ. Hence both can be

called ‘2’ and their actions on SOð3Þ are essentially the same.

However, their actions on T
3 are different because the

conjugation under rotation relating them does not preserve

the lattice.

That is, if P2 ¼ P1�2, there exists A 2 SOð3Þ that is not in
the abstract point group 2 such that C2 ¼ P1�ð2ÞA where ð2ÞA

is a conjugated version of 2. And there exists no 
 2 Affþð3Þ
such that C2 can be written as ðP2Þ
. Hence, when we say that

all of the decompositions for C2 look like those for P2, we

mean that the following fundamental domains are each

measure equivalent to the fundamental domain FC2\SEð3Þ:
FC2\½SOð3Þ�R

3�, Fð2ÞA\SOð3Þ � FP1\R3 , SOð3Þ � FC2\R3 .
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6.4. The symmorphic group P222

A very uncommon space group for proteins is the

symmorphic space group P222 ¼ P1�222 with P222=P1

denoted as 222. This corresponds to

FP222
P1

¼ fðx; y; zÞ; ð�x;�y; zÞ; ð�x; y;�zÞ; ðx;�y;�zÞg:
We nevertheless include this as an example for illustration

purposes. The following fundamental domains are measure

equivalent to FP222\SEð3Þ: FP222\½SOð3Þ�R
3�, F222\SOð3Þ � FP1\R3 ,

SOð3Þ � FP222\R3 . Also, P222 ¼ 2�P2 and so, by Corollary 5.6,

we can also write the following:

F2\SOð3Þ � FP2\R3 :

Recall that, as abstract point groups, 222 and 212121 are the

same (isomorphic), but in terms of their actions on T3 they are

quite different. Nevertheless, as a consequence of Proposition

4.6 and the fact that 222 ¼ 2� 2 ffi 212121, the above can be

used in place of those given in x6.1.

6.5. Example: P2221

This and the following two examples are neither Bieberbach

nor symmorphic, but can be decomposed as a semi-direct

product of a point group and a normal Beiberbach subgroup,

as is the case for all but four of the 65 Sohncke space groups

(Chirikjian, Ratnayake et al., 2015). In this case,

FP2221
P1

¼ fðx; y; zÞ; ð�x;�y; z þ 1=2Þ;
ð�x; y;�z þ 1=2Þ; ðx;�y;�zÞg

¼ fðx; y; zÞ; ð�x;�y; z þ 1=2Þg�
fðx; y; zÞ; ðx;�y;�zÞg:

Therefore, P2221 ¼ 2�P21 as in Theorem 5.4, and the

following fundamental domains are measure equivalent to

FP2221\SEð3Þ: FP2221\½SOð3Þ�R
3�, SOð3Þ � FP2221\R3 , F2\SOð3Þ � FP21\R3 .

Again, as a consequence of Proposition 4.6 and Corollary 5.6,

these can be written using any of the fundamental domains

measure equivalent to FP222\½SOð3Þ�R
3� or FP212121\½SOð3Þ�R

3�.

6.6. Example: P21212

This group is also decomposable in the form

P21212 ¼ 2�P21, as can be seen from the fact that

FP21212

P1
¼ fðx; y; zÞ; ð�x;�y; zÞ;
ð�x þ 1=2; y þ 1=2;�zÞ;
ðx þ 1=2;�y þ 1=2;�zÞg

¼ fðx; y; zÞ; ð�x;�y; zÞg�
fðx; y; zÞ; ð�x þ 1=2; y þ 1=2;�zÞg

where fðx; y; zÞ; ð�x þ 1=2; y þ 1=2;�zÞg ¼ FP1\P21
.

Therefore, all of the decompositions for P212121, P222 and

P2221 given previously can be used with the understanding

that the specific actions of these groups on SEð3Þ (and on R
3)

are all different from each other. Moreover, the groups 212121,

222 and 2221 each act on the quotient manifold P1\SEð3Þ (and
on the torus P1\R3) in three different ways. Each of these

groups is isomorphic with P ¼ 222, which is a subgroup of

SOð3Þ. Therefore an action of 222 on SOð3Þ can be defined

naturally, and this can be used to define actions of 212121 and

2221 on SOð3Þ as well, by identifying them through their

isomorphism. The same cannot be done for the actions of

these groups on SEð3Þ, R3, P1\SEð3Þ and P1\R3.

6.7. Example: P6322

In some cases it is possible to decompose space groups into

semi-direct products in multiple ways. For example, using the

Bilbao Crystallographic Server (Aroyo et al., 2006, 2011)

function COSETS, we obtain FP6322=P1 which decomposes as

FP6322

P1
¼ FP21

P1
� FP321

P1

where

FP321
P1

¼ fðx; y; zÞ; ð�y; x � y; zÞ; ð�x þ y;�x; zÞ;
ðy; x;�zÞ; ðx � y;�y;�zÞ; ð�x;�x þ y;�zÞg

and

FP21
P1

¼ fðx; y; zÞ; ð�x;�y; z þ 1=2Þg:

Therefore, P6322 ¼ 321�P21 and so the following are

all measure equivalent to FP6322\SEð3Þ: FP6322\½SOð3Þ�R
3�,

SOð3Þ � FP6322\R3 , F321\SOð3Þ � FP21\R3 . Alternatively, with the

pure translation


1 ¼
1 0 0 0

0 1 0 0

0 0 1 1=4
0 0 0 1

0BB@
1CCA;

a similar calculation gives ðP6322Þ
1 ¼ 312�P21 resulting in

similar decompositions as those given above, with 312 in place

of 321.

In addition, the following are also measure equivalent

to those given above: FP622\½SOð3Þ�R
3�, SOð3Þ � FP622\R3 ,

F622\SOð3Þ � FP1\R3 . Another decomposition results by observing

that

FP6322

P1
¼ fðx; y; zÞ; ð�y; x � y; zÞ;
ð�x þ y;�x; zÞ; ð�x;�y; z þ 1=2Þ;
ðy;�x þ y; z þ 1=2Þ; ðx � y; x; z þ 1=2Þg
� fðx; y; zÞ; ðy; x;�zÞg;

and so

P6322 ¼ 2�P63:

Though P63 is not Bieberbach, it is nevertheless possible to

write the following which is measure equivalent to FP6322\SEð3Þ:
F2\SOð3Þ � FP63\R3 .

6.8. Example: P4212

This space group cannot be decomposed as a semi-direct

product of a point group and a normal Bieberbach group. In

this case, FP4212=P1 can be chosen as
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fðx; y; zÞ; ð�x;�y; zÞ; ðy; x;�zÞ; ð�y;�x;�zÞ;
ð�y þ 1=2; x þ 1=2; zÞ; ðy þ 1=2;�x þ 1=2; zÞ;
ð�x þ 1=2; y þ 1=2;�zÞ; ðx þ 1=2;�y þ 1=2;�zÞg
¼ fðx; y; zÞ; ð�x;�y; zÞ; ðy; x;�zÞ; ð�y;�x;�zÞg
� fðx; y; zÞ; ð�x þ 1=2; y þ 1=2;�zÞg:

Here the first term is 222 conjugated by a rotation and the

second term is 21 conjugated by another rotation.

Fundamental domains measure equivalent to FP4212\SEð3Þ
include FP4212\ð½SOð3Þ�R

3�, SOð3Þ � FP4212\R3 , F222\SOð3Þ � FP21\R3 .

Note, however, that P222 is not a subgroup of index two in

P4212.

In contrast, with


0 ¼

1 0 0 0

0 1 0 1=2

0 0 1 0

0 0 0 1

0BBB@
1CCCA;

FðP4212Þ

0

P1

¼ FP4
P1
� FP21

P1

where

FP4
P1
¼ fðx; y; zÞ; ð�x;�y; zÞ; ð�y; x; zÞ; ðy;�x; zÞg

and

FP21
P1

¼ fðx; y; zÞ; ð�x þ 1=2; y þ 1=2;�zÞg:

Therefore,

ðP4212Þ

0 ¼ P4�21; ð57Þ

and fundamental domains measure equivalent to FðP4212Þ
\SEð3Þ
include FðP4212Þ


0
\½SOð3Þ�R

3�, SOð3Þ � FðP4212Þ

0
\R3 , F4\SOð3Þ � FP21\R3 .

Note that equation (57) is an outer semi-direct product and

21 ¼ P21=P1.

In addition, fundamental domains measure equivalent

to FP4212\SEð3Þ include FP422\½SOð3Þ�R
3�, SOð3Þ � FP422\R3 ,

F422\SOð3Þ � FP1\R3 .

7. Conclusions

Building on the presentation in Chirikjian & Yan (2012), the

observations about the structure of space groups in Chirikjian,

Sajjadi et al. (2015) and the resulting decomposition of space

groups in Chirikjian, Ratnayake et al. (2015), we have

presented here measure-theoretic decompositions of motion

spaces. The consequence of these decompositions is that there

are many different ways to sample rotations and translations

in exhaustive MR searches. For example, at one extreme one

can sample all translations in the unit cell and sample rotations

in a subset of the rotation group consisting of 1=jPj of its total
volume, where P is the point group of the crystal. At the

opposite extreme, one can sample rotations in the full rotation

group and restrict the translational search to a single asym-

metric unit. If the point group can be decomposed as a product

of subgroups that only share the identity element, then the

various fundamental domains described in this paper provide

for schemes in which full coverage in the MR search is

achieved with rotational and translational samples drawn from

intermediate-sized subsets of the full rotational and transla-

tional subspaces. As a special case, when the space group can

be decomposed as a product of a Bieberbach subgroup and a

point subgroup, the translation space can be identified with a

‘Euclidean space form’ and the rotation space can be identi-

fied with a ‘spherical space form’. In these cases, existing

sampling schemes for each of these spaces can be used to

benefit MR searches.

8. Glossary

The glossary below, modified from Chirikjian & Shiffman

(2016), summarizes the notation and terminology used in this

paper.

R;R>0;R�0 – the real numbers, positive and non-negative

real numbers, respectively.

X – n-dimensional Euclidean space equipped with the

structure of a vector space, i.e. X ¼ R
n.

t; x 2 X – an n-dimensional vector.

R 2 SOðnÞ – an n � n orthogonal matrix with determinant

1, i.e. R is a rotation matrix.

0 2 X – the vector of zeros corresponding to the origin of a

coordinate system.

I 2 SOðnÞ – the n � n identity matrix.

� – proper subset, i.e. A � B indicates that A is contained

in B and A 6¼ B.

�A – the indicator function of a subset A; �AðyÞ ¼ 1 if y 2 A

and equals 0 otherwise.

< – proper subgroup, i.e. K <H indicates that K is a

subgroup of H and K 6¼ H.

/ – normal subgroup, i.e. N / G indicates that N is a proper

normal subgroup of G.

jHj – the order of a finite group H.

½H : K� – the index of a subgroup K of a group H.

K\H – the set of right cosets of a subgroup K in a group H.
H
N ¼ N\H ¼ H=N – the factor (or quotient) group H

modulo N, when N / H.

� – product (either Cartesian product of sets, or direct

product of groups, depending on context).

�;� – semi-direct product (either internal or external,

depending on context) of normal N and complement S written

as N� S or S �N.

ffiI;ffiH;ffiM – equivalence (as isomorphism between groups,

homeomorphism between topological spaces or measure-

equivalent spaces, as described in x3.2).
g ¼ ðR; tÞ 2 SEðnÞ – a special Euclidean transformation

(i.e. a proper rigid-body motion). Mathematically,

SEðnÞ ¼ SOðnÞ�R
n (an external semi-direct product) with

group law g1 � g2 ¼ ðR1; t1Þ � ðR2; t2Þ ¼ ðR1R2;R1t2 þ t1), and

which acts on positions as g � x ¼ Rxþ t.

dg – the Haar measure on SEðnÞ = SOðnÞ�R
n, dg = dR dt,

where dR is the normalized Haar measure on

SOðnÞ½RSOðnÞ dR ¼ 1� and dt ¼ dt1 � � � dtn is the Lebesgue

measure; dg is bi-invariant.

G – shorthand for SEðnÞ.
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R ¼ fðR; 0ÞjR 2 SOðnÞg ¼ SOðnÞ � f0g – the rotation

subgroup of G. Note that R<G.

� – an orientation-preserving (or ‘Sohncke’) crystal-

lographic group, i.e. a discrete subgroup of G that contains a

rank-n lattice of translations T.

�\G ¼ f�g : g 2 Gg – the set of right cosets of � in G. The

homogeneous space �\G is a smooth manifold.

T – the group of lattice translations in �. The subgroup

T / � is the maximal normal abelian subgroup of �.
T\G ¼ fTg : g 2 Gg – the set of right cosets of T in G. The

homogeneous space T\G is a smooth manifold.

L – the lattice in X of rank n corresponding to T; i.e.

T ¼ fIg � L.

� – an element of a Sohncke crystallographic space group �;
we write � ¼ ½R�; t� þ vðR�Þ�, where t� and v�ðR�Þ are as

follows:

ðI; t�Þ 2 T – a lattice translation such that ðI; t�Þ � L =

Lþ t� ¼ L:
vðR�Þ – a translation by a fraction (possibly 0) of an element

of L, given (uniquely modulo T) by � ¼ ½R�; t� þ vðR�Þ�, for
� 2 �.

P ¼ fR� 2 SOðnÞ : 9 vðR�Þ 2 X such that ½R�; vðR�Þ� 2 �g –
a discrete rotation group, called the point group; P ffiI T\�. If
vðR�Þ ¼ 0 for all � 2 � and thus P ¼ fR 2 SOðnÞ : ðR; 0Þ 2 �g,
one says that � is symmorphic.

P ¼ P� 0 – a subgroup of G such that P ffiI P ffiI �=T.

S¼: P \ � – a subgroup of both � and P. Moreover, it can be

written as S ¼ S� f0g and so S ffiI S<P.

FT\X – a crystallographic unit cell (a fundamental domain

for T acting on X; the T translates of FT\X cover X with all

pairwise intersections having measure 0).

F�\X – a crystallographic asymmetric unit; a fundamental

domain for � acting on X, i.e. the images of F�\X under the

action of elements of � cover Euclidean space, X, with inter-

sections of measure zero. [Particular choices of asymmetric

units can be found in Lučić & Molnár (1991) in the planar case

and in Grosse-Kunstleve et al. (2011) in R
3.] The space �\X

itself is a Euclidean orbifold (Dunbar, 1981).

F�\G – a fundamental domain for the left action of � on G. It

is a smallest finite-volume space of rotations and translations

in which MR searches need to be performed.

F 0
�\G – an ‘exact’ fundamental domain that contains exactly

one point in each � orbit. It is measure equivalent to its

closure, which is also a fundamental domain for � acting on G.

F 0
T\X – a crystallographic unit cell that is an exact funda-

mental domain for T acting on X.

� – a discrete co-compact subgroup of a general Lie group

G, or more generally a discrete group of isometries of a

Riemannian manifold acting properly discontinuously.

Y – an arbitrary Riemannian manifold (of which

X;G;T\X;T\G and �\G are examples).

�\Y – the space of orbits of a properly discontinuous group

action � on a manifold Y.

T
3 – the 3-torus T\R3, where T is the translation lattice of a

Sohnke space group �< SEð3Þ.

T\� – the abstract point group. It is isomorphic as a group to

the point group P, but it acts on T
3 possibly without fixed

points.
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