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Abstract— This paper considers a planar multi-agent coor-
dination problem. Unlike other related works, we explicitly
consider a globally shared wireless communication channel
where individual agents must choose both a frequency and
power to transmit their messages at. This problem is motivated
by the pressing need for algorithms that are able to efficiently
and reliably operate on overcrowded wireless networks or
otherwise poor-performing RF environments. We develop a self-
triggered coordination algorithm that guarantees convergence
to the desired set of states with probability 1. The algorithm is
developed by using ideas from event/self-triggered coordination
and allows agents to autonomously decide for themselves when
to broadcast information, at which frequency and power, and
how to move based on information received from other agents
in the network. Simulations illustrate our results.

I. INTRODUCTION

This paper considers a multi-agent coordination problem
where agents can only communicate with one another by
broadcasting radio signals over a shared wireless spectrum.
This is in contrast to the overwhelming majority of similar
works that assume direct point-to-point communications are
possible at all times with the possibility of independent
chances of packet drops. Instead, we consider a model where
agents must not only determine when to communicate with
their neighbors, but also what frequency and power their
signal should be broadcast on. This model is motivated
by the RF spectrum already becoming overcrowded with
estimates that there will be 250 times more demand from
the spectrum by the year 2030 [1]. In the context of wireless
networked cyber-physical systems as a whole, this requires
a new generation of coordination algorithms that can (i)
efficiently utilize the scarce system while being (ii) resilient
to the fact that communication may not always be possible.

Literature review: In terms of multi-agent coordination,
there is a considerable amount of available literature, see
e.g., [2], [3], [4]. A continuous-time algorithm that achieves
asymptotic convergence to average consensus for both undi-
rected and weight-balanced directed graphs is introduced
in [5]. To incorporate the idea of reducing communication,
the works [6], [7] use event-triggered broadcasting. More
recently, these works have been extended to arbitrary directed
graphs, rather than only undirected ones [8], [9], [10].
However, these works all assume a fixed communication
topology with direct point-to-point communications on de-
mand. Instead, the same type of coordination problem is
considered with a cloud communication model in [11], [12],
[13], where agents are only able to communicate indirectly
through the use of a central cloud. However, in the above
works, this communication is always reliable when needed.

Instead, our communication model is based off of works
on Cognitive Radio Networks (CRNs), Dynamic Spectrum
Access (DSA), and NeXt Generation (xG) networks [14]. In
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particular, we are interested in works that consider dynamic
allocation of the spectrum [15], [16]. There are a myriad
of works on this topic that propose various methods for
sensing the spectrum in real time and selecting channels [17],
[18], [19], both in centralized and distributed ways. However,
these works base their decisions on real-time sensing of the
spectrum rather than through coordination or collaboration
among the users. Instead, we are interested in the coupling of
this type of communication model with an underlying multi-
agent/cyber-physical coordination problem, to find condi-
tions to guarantee reliability of the overall system even under
poor RF conditions. This idea of utilizing collaboration to
help overcome scarcity in the RF spectrum is already of large
interest as corroborated by the currently ongoing DARPA
Spectrum Collaboration Challenge [20].

Perhaps most similar to the problem we consider is
found in [21], where the authors consider the resource
management of a single wireless channel and determine
exactly when agents should transmit or listen, assuming
both cannot be done simultaneously. Instead, we consider
a multiple channel communication model where agents are
assumed to be listening at all times, but must decide for
themselves exactly when, which frequency, and what power
to broadcast signals on. Our solution methods are based on
ideas from event-triggered and self-triggered control, where
algorithms are designed to determine precisely when actions
like broadcasting signals or updating actuators should be
carried out to improve efficiency while maintaining stability
and correctness [22], [23], [24], [25], [26].

Statement of contributions: First, we formulate the coor-
dination problem with a novel communication model that
explicitly considers the globally shared wireless spectrum.
Then, we develop a distributed self-triggered coordination
algorithm that guarantees convergence to a consensus state
with probability 1; however, this algorithm is not guaranteed
to converge to the exact average of initial states. In partic-
ular, this paper is concerned with the minimum conditions
required to guarantee convergence to a consensus state. The
subject of designing efficient algorithms to better utilize the
wireless spectrum through collaboration and more efficiently
achieve consensus will be discussed in a separate paper.

Preliminaries: The Euclidean norm on R
N is denoted

by ‖ · ‖. Given two matrices A ∈ R
n1×n1 , B ∈ R

n2×n2 ,
A ⊗ B ∈ R

n1n2×n1n2 denotes their Kronecker product.
The N -dimensional identity matrix is denoted IN . An undi-
rected graph G = (V, E) is defined by a set of vertices
V = {1, . . . , N} and edges E ⊂ V × V . Undirected means
that (i, j) ∈ E if and only if (j, i) ∈ E also. An edge
(i, j) ∈ E means that vertex j is a neighbor of i. The set of
neighbors of a given node i is given by Ni. The adjacency
matrix A ∈ R

N×N is defined by aij = 1 if (i, j) ∈ E
and aij = 0 otherwise. A path from vertex i to j is an
ordered sequence of vertices such that each intermediate
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pair of vertices is an edge. A graph G is connected if
there exists a path from all i ∈ V to all j ∈ V . The
degree matrix D is a diagonal matrix where dii = |Ni|.
The maximum degree is dmax = maxi∈{1,...,N} |Ni|. The
Laplacian matrix is a symmetric, positive semidefinite matrix
given by L = D − A. If the graph G is connected, the
associated Laplacian has exactly one eigenvalue equal to 0
(with associated eigenvector 1N ) with the rest being strictly
positive, 0 = λ1(L) < λ2(L) ≤ · · · ≤ λN (L).

II. PROBLEM FORMULATION

Consider the N agent coordination problem on the plane,
where agent i’s position is given by pi(t) ∈ R

2 with single-
integrator dynamics

ṗi(t) = ui(t) (1)

for all i ∈ {1, . . . , N}, where we are interested in reaching
a configuration such that ‖pi(t) − pj(t)‖ → 0 as t → ∞
for all i, j ∈ {1, . . . , N}. We only consider planar states for
simplicity, but note that the results are extendable to arbitrary
dimensions given appropriate communication models.

Given a connected interaction graph G, it is well known [5]
that the distributed continuous control law

ui(t) = −
∑
j∈Ni

(pi(t)− pj(t)) (2)

drives each agent of the system to asymptotically converge
to the average of the agents’ initial conditions. In compact
form, this can be expressed by

ṗ = −Lp,

where p = (pT1 , . . . , p
T
N )T is the column vector of all agent

states and L = L ⊗ I2. However, this control law requires
each agent to have exact information about its neighbors at
all times and continuously update its control law.

There have been many recent works aimed at relaxing
one or both of these requirements [8], [27], [10], [6]. How-
ever, they all require events triggered by some agent to be
immediately acknowledged by neighboring agents. In other
words, when an event is triggered by one agent, its neighbors
are immediately aware and can take action accordingly.
The authors in [7] consider this problem in the presence
of unreliable communication but assume that packet drops
randomly occur independent of what is actually going on in
the network. Instead, we are interested in explicitly modeling
the fact that packet drops occur because of interference with
other agents in the system.

In all of these works (except [7]), they utilize a piecewise
constant implementation of the controller (2) given by

ui(t) = −
∑
j∈Ni

(p̂i(t)− p̂j(t)), (3)

where p̂j(t) is the last broadcast position of agent j. Note
that although agent i has access to its own state pi(t), the
controller (3) uses the last broadcast state p̂i(t). This is
to ensure that the average of the agents’ initial states is
preserved throughout the evolution of the system. This means
that when an agent i broadcasts its current position pi(t

∗) at
some time t∗, all its neighbor j ∈ Ni immediately update
p̂i = pi(t

∗) so that the average can be preserved.

Instead, in this work, we are interested in explicitly
modeling wireless interference depending on how different
agents in the network are broadcasting messages. To simplify
the communication model later, we consider a discrete-time
implementation of the dynamics (1) given by

pi(�+ 1) = pi(�) + hui(�), (4)

where h > 0 is the timestep.
Unlike all the similar works mentioned above, we con-

sider a new communication model that is motivated by
the overcrowding of the RF spectrum. We describe the
communication model next.

Communication via a Shared Wireless Spectrum
In order to communicate wirelessly, the agents will have to

broadcast signals with a chosen power and frequency among
a shared spectrum. We denote by S = {s1, . . . , sM} the set
of M different frequency bands, or channels, available for
wireless communication. Since signals at the same frequency
can still be successfully transmitted and received when
considering spatial reuse, the whole shared spectrum state
at any given timestep � is given by the Cartesian product of
physical space and frequency S = R

2 × S.
In order for these signals to be successfully received, they

will have to be received with a sufficient level of power
without interference. We now define exactly what subset of
the spectrum S is considered ‘occupied’ at a given time �
given full broadcast information about the network.

At any given time � ∈ Z≥0, we denote by Bi(�) =
(si(�), Pi(�)) ∈ S × R≥0 the current broadcast state of
agent i, where si(�) ∈ S and Pi(�) ∈ R≥0 are the
chosen frequency and power of the signal, respectively. For
simplicity, we may drop the explicit dependence on time �.

Given an agent i’s current position pi and broadcast
state Bi, we assume that the signal can be successfully
received by any agent j if it is within r(Pi) of agent i,
where r : R≥0 → R≥0 is a nondecreasing function of
the broadcast power, and there is no signal interference at
node j’s location. Given pi and Bi, we can then compute the
portion of the shared spectrum S that is being used by

Oi(pi,Bi) = {(p′, si) ∈ S | ‖p′ − pi(�)‖ ≤ r(Pi), },
With this, we can compute the entire occupied subset of the
spectrum O ⊂ S at any given time by

O =
⋃

i∈{1,...,N}
Oi(pi,Bi).

Similarly, we denote by

O−i =
⋃
j �=i

Oj(pj ,Bj)

the portion of the spectrum being occupied by any agent
besides i. More specifically, O−i ⊂ S is the set of physical
locations and frequencies at which a signal broadcast by
agent i cannot be received due to RF interference.

With this, given an agent i’s current position pi, broadcast
state Bi, and the current spectrum occupancy O, the set of
locations in R

2 that can successfully receive this transmission
is given by

R(pi,Bi,O) = B(pi, r(Pi))︸ ︷︷ ︸
points that signal can reach

\ loc(O−i, si)︸ ︷︷ ︸
points with RF interference

,
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pi = (xi, yi) ∈ R
2 position

ui ∈ R
2 control input

Bi = (si, Pi) ∈ S × R≥0 broadcast state

si ∈ S frequency of signal

Pi ∈ R≥0 power of signal

Oi(pi,Bi) ∈ S occupied portion of spectrum

p̃ij ∈ R
2 last received position of agent j

TABLE I

AGENT i MODEL DEFINITIONS.

where B(pi, r(Pi)) = {p ∈ R
2 | ‖pi − p‖ ≤ r(Pi)} denotes

the closed ball centered at pi with radius r(Pi), and

loc(O−i, si) = {p′ ∈ R
2 | (p′, si) ∈ O−i}

extracts the physical locations from O−i where interference
exists at frequency si. With a slight abuse of notation, we
let R(pi,Bi,O) = ∅ whenever Pi = 0. In other words, if
a signal is broadcast with zero power, the set of points that
can successfully receive this signal is empty. Thus, in order
for agent j to successfully receive a message from agent i at
time �, we need pj(�) ∈ R(pi(�),Bi(�),O(�)), which means
agent j is close enough to agent i to receive the signal and
there is no RF interference from any other agent at that time.
Note that we assume all agents can receive signals at any
frequency s ∈ S.

Equipped with this model, we define p̃ij(�) as the last
successfully received position of agent j by agent i up to
time �. More specifically, for neighbors j ∈ Ni,

p̃ij(�) =

{
pj(�) if pi(�) ∈ R(pj(�),Bj(�),O(�)),

p̃ij(�− 1) otherwise.

(5)

Thus, p̃ij(�) is updated with agent j’s true position pj(�) only
if agent i is in a location that was able to successfully receive
the signal Bj(�) broadcast by agent j.

Based on the information p̃ij(�) available to agent i at
time �, it must then determine a control input for the
dynamics (4). These objects are summarized in Table I. The
full problem is formalized below.

Problem II.1 Let p̃ij(0) = pj(0) for all i ∈ {1, . . . , N}, j ∈
Ni. Given the discrete-time dynamics (4) with the com-
munication model (5), find a distributed communication
and control strategy {ui(�),Bi(�)} for all agents such that
lim�→∞ ‖pi(�)− pj(�)‖ = 0 for all i, j ∈ {1, . . . , N}.

To summarize, in each timestep � ∈ Z≥0, each agent i
must determine whether to broadcast a signal or not, what
frequency and power to broadcast at, and what local control
input to use, such that the closed-loop system converges.

Remark II.2 (Interaction vs. communication) It should
be noted that our communication model allows agents to
communicate independent of the fixed interaction graph G,
so an agent i might have information about any subset of
the agents rather than only the neighbors in G. •

Remark II.3 (Multi-agent formation control) We note
here that for simplicity, we formulate the multi-agent

coordination problem as a consensus problem. The formal
treatment can easily be modified to handle a formation
control problem by letting pi(t) = Δpi(t) − bi, where
Δpi(t) is the actual position of agent i and bi is the
desired displacement from the average position of the fleet.
Alternatively, the interaction graph G could also be used to
encode a desired formation into the consensus problem. •

III. SELF-TRIGGERED ALGORITHM DESIGN

Having fully defined the problem, we first point out that
if we remove the problem of determining a frequency and
power to broadcast a signal on, the problem becomes very
similar to those studied in many different works considering
event-triggered consensus. In particular, these works study
when agents should broadcast state information to each other
and how to update their control signals. More specifically,
the motion control algorithm used in many event-triggered
consensus problems [6], [7], [9], [8], [10] is given by

ui(�) = −
∑
j∈Ni

(p̂i(�)− p̂j(�)), (6)

where p̂i(�) is the last state broadcast by agent i at time �.
Note that this motion control algorithm implicitly assumes
that any message broadcast by an agent i will be successfully
received by its neighbors j ∈ Ni, e.g., p̃ij(�) = p̂j(�) for
all i ∈ {1, . . . , N} and � ∈ Z≥0. Under this assumption, we
first extend the main results in [27], [7] to discrete time and
the higher order space R

2.

Lemma III.1 Given the dynamics (4) with control law (6), if
the sequence of broadcast times {�ik}k∈Z≥0

for all agents i ∈
{1, . . . , N} guarantees that

‖pi − p̂i‖2 ≤ Di

∑
j∈Ni

‖p̂i − p̂j‖2,

for all � with Di = σi
a

|Ni|
(
1− h

2 − a|Ni|
)

for some a ∈(
0, h

2dmax

)
and σi ∈ (0, 1), then the system will asymptoti-

cally converge to the average consensus state. In other words,
pi(�) → Avg(p(0)) as � → ∞ for all i ∈ {1, . . . , N}.

Lemma III.1 provides a sufficient event-trigger for con-
vergence that determines when agents should broadcast their
states assuming no packet drops or other wireless interfer-
ence. This result is useful as these prior works study exactly
when broadcasting state information is necessary in order
to reduce the amount of communication required by the
network to achieve consensus.

Unfortunately, the communication and control strategy
given in Lemma III.1 assumes that communication is always
available when necessary. Instead, under our new communi-
cation model and assuming no prior information is shared
among the agents, avoiding packet drops completely will
be impossible. More specifically, it is very possible that a
signal broadcast by an agent j is not received by some
neighbor i for two different reasons. The first is that the
power used by agent j to send the signal was simply not
strong enough to reach agent j, and the second is that a
third agent’s transmission is interfering with agent j’s signal
at agent i’s location. Consequently, the control law (6) is no
longer implementable because this assumes no packet drops
or wireless interference occurs.
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Motion Control Law
Instead, we consider the control input for agent i at any

given time to be

ui(�) = −
∑
j∈Ni

pi(�)− p̃ij(�), (7)

where p̃ij(�) is the last successfully received position of

agent j by agent i given in (5). In other words, p̃ij(�)
only gets redefined as pj(�) if agent i was in the set of
points R(pj(�),Bj(�),O(�)) ⊂ R

2 that could successfully
receive the broadcast Bj(�) from location pj(�) with no
interference. Another difference here with respect to (6) is
that agent i is now using its exact position pi(�) rather than
its last broadcast position p̂i(�). The reason for this is due
to the nature of how communication occurs. In particular,
agents are only able to decide for themselves when to
broadcast signals to other agents, but there is no mechanism
for them to request information from them. This means
that when an agent i doesn’t know how to move because
its information is too outdated, it must wait for additional
information to arrive before it can begin moving again. Thus,
while the agent is waiting, the control law (7) ensures that
this agent will eventually stop moving until new information
is received. This type of control law is desirable in our
scenario because it is guaranteed to not drive the system to
instability even if the communication network is completely
shutdown.

Interestingly, trajectories of the dynamics (4) with con-
trol (7) behave very similarly with consensus algorithms
with randomized gossiping [28], [29] or switching topolo-
gies [5]. Consequently, we are able to provide a result to
guarantee convergence as long as enough successful trans-
missions occur. With a slight abuse of notation, we define
{�i→j

k′ }k′∈Z≥0
⊂ {�ik}k∈Z≥0

as the sequence of times that a
message broadcast by agent i was successfully received by
agent j. Then, given the communication model (5),

{�i→j
k′ }k′∈Z≥0

= {�ik′ | pj(�ik′) ∈ R(pi(�
i
k′),Bi(�

i
k′),O(�ik′))},

is the subset of times at which agent i broadcast a message
that was successfully received by another agent j. A condi-
tion for convergence is then formalized in Theorem III.2.

Theorem III.2 Given the dynamics (4) with control law (7),
if �i→j

k′ → ∞ as k′ → ∞ for all i ∈ {1, . . . , N}, j ∈ Ni,
then lim�→∞ ‖pi(�)− pj(�)‖ = 0 for all i, j ∈ {1, . . . , N}.

Communication Strategy
Given the result of Theorem III.2 and the fact that we

are only concerned with stability, it is easy to imagine
there are many different ways to design communication
strategies that satisfy the conditions of Theorem III.2. Due to
space restrictions, we only propose one possible strategy and
discuss a few of its key features aimed at minimizing how
much communication is required while still guaranteeing
convergence. Choosing a communication strategy to optimize
different metrics are instead studied in a separate paper.

The three components of the communication algorithm
we need to design are how agents should determine when
to communicate, with what power, and what frequency.
To answer the question of when agents should decide to

broadcast, inspired by Lemma III.1, we define the self-
triggered broadcasting time as

�ik+1 − �ik =

⌈
τ1

τ2 + h
∑

j∈Ni
‖p̂i − p̃ij‖2

⌉
,

where τ1, τ2 > 0 are design parameters. Equipped with a
method for determining when agents should communicate,
they also need to choose a power and frequency. In general,
it would be ideal for an agent i to use the minimum power
required to reach its neighbors,

P ∗
i = r−1(max

j∈Ni

‖pi − pj‖),

where r−1(D) is the power required to transmit a message
a distance D away. Unfortunately, agent i will not know the
positions of its neighbors in general. However, since the goal
of the algorithm is to achieve consensus, the power required
over time should be decreasing. Unfortunately, we cannot do
this blindly since we do not assume any acknowledgement
messages, it would be impossible for agent i to know if
any message has successfully been received by any agent.
To address this, we define an integer d > 0, where if an
agent i has not successfully received any message from a
neighbor j ∈ Ni in the time that agent i has broadcast its
position d times, it will increase its communication power.
This guarantees that, while a neighbor j cannot get a message
to i, agent i will keep increasing its communication power
until eventually the broadcast can reach agent j. In turn,
agent j will receive agent i’s position and set its power
accordingly. Although this guarantees that a message can
eventually be sent with enough power, we still need to choose
a frequency. To guarantee that all messages will eventually
succeed (even if with a small probability), we utilize a
simple jump-stay channel hopping method where an agent i
will stick to its last used frequency with probability α and
randomly change its frequency with probability 1 − α. The
self-triggered coordination algorithm is formally described
in Table II.

For each agent i ∈ {1, . . . , N} at times � ∈ Z≥0, performs:

1: receive p̃ij = pj from all neighbors j where pi ∈
R(pj ,Bj ,O) and set �j→i = �

2: if � = �ik (this is a scheduled broadcast time) then
3: if ∃j such that �j→i ≤ �ik−d then
4: set Pi(�) = 1.1Pi(�− 1)
5: else
6: set Pi(�) = min{Pi(�), r

−1(maxj ‖pi − p̃ij)‖
7: end if
8: set si(�) = si(�

i
k−1) w.p. α, or randomly from S w.p.

1− α
9: broadcast position pi(�) and next scheduled broadcast

time �ik+1 at frequency si(�) and power Pi(�)
10: set k = k + 1
11: end if
12: update control ui(�) according to (7)

TABLE II

SELF-TRIGGERED COORDINATION ALGORITHM.

The main convergence result, formally stated below, is
then a direct consequence of Theorem III.2 and the fact
that the self-triggered coordination algorithm ensures all
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agents will attempt to communicate with their neighbors with
sufficient power an infinite number of times.

Theorem III.3 The self-triggered coordination algorithm
guarantees asymptotic convergence to the set of consensus
states with probability 1, i.e., ‖pi(�) − pj(�)‖ → 0 for all
i, j ∈ {1, . . . , N} as � → ∞ with probability 1.

It is clear and known that randomly selecting a channel
is not efficient [30] and efficiently selecting channels based
on real-time spectrum sensing is currently an active area of
research [31], [17], [18]. Instead, we are interested in using
collaboration between agents to better utilize the spectrum;
however, as this paper is only concerned with stability this
will be discussed in detail in a separate paper.

IV. SIMULATIONS

Due to the limited space and the fact that we have not
yet discussed communication strategies designed to optimize
various efficiency metrics, we only show two executions of
the proposed algorithm for a system of N = 20 agents with
d = 5, α = 0.5, h = 0.001, τ1 = 0.5, and τ2 = 0.05 to verify
the main convergence result of the paper.

We compare executions of the algorithm with M = 3
and M = 5 different channels. Figures 1-2(a) show the hori-
zontal component of agent positions over time and Figures 1-
2(b) show the power being utilized (capped based on initial
condition) by each agent to broadcast signals. It is interesting
to note that the plots (b) reveal that the agents are struggling
to establish communication to begin with before they are able
to well coordinate themselves. Giving them more channels
allows them to establish successful communications early on
to begin coordinating themselves better. As this paper is only
concerned with stability, discussions about performance will
be presented in a separate paper.
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Fig. 1. Plots of (a) horizontal component of positions and (b) power
allocations over time with M = 3 channels and N = 20 agents.
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Fig. 2. Plots of (a) horizontal component of positions and (b) power
allocations over time with M = 5 channels and N = 20 agents.

V. CONCLUSIONS

This paper formulates and solves a coordination problem
where agents communicate through a shared wireless spec-
trum. We propose a self-triggered coordination algorithm that
combines a communication strategy with a motion control
law that guarantees convergence with probability 1. The
focus of this paper is on minimum conditions for stability
under the proposed communication model motivated by the
need for coordination algorithms that need to communicate
via crowded or otherwise unreliable wireless networks.

Future work will be devoted to actually quantifying the
efficiency of the network and formulating appropriate opti-
mization problems to make better use of the scarce spectrum
through tight collaboration among the agents. In addition,
we also plan to further develop the communication model to
capture more realistic scenarios. For instance, we have only
considered a synchronous discrete-time TDMA schedule
which we plan to relax in the future. We also currently
only consider a hard collision model where both pack-
ets are dropped when collisions occur. However, by more
explicitly considering real-time Signal-Interference-to-Noise
Ratio (SINR) when determining collisions, it is possible
for interference to only cause one of the two interfering
packets to be dropped. This will give agents the ability to
essentially ‘shout’ their high-priority messages to increase
the chance of it being successfully received at the cost of
drowning out communications to nearby agents operating
at that frequency. We expect these scenarios to become
increasingly important problems that need to be addressed
as more and more wireless devices come into existence.
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APPENDIX

Proof of Lemma III.1: For convenience, we define
(xi, yi) = pi and (x̂i, ŷi) = p̂i. Let V (�) = 1

2 (x
TLx +

yTLy). Given the dynamics (4) with the motion control
law (6), defining ΔV (�) = V (�+ 1)− V (�), we have

ΔV (�) = −h(xTLLx̂+ yTLLŷ) +
1

2
h2(‖Lx̂‖2 + ‖Lŷ‖2).

Letting ΔVx(�) � V (�+1)−V (�)
h and ex = x̂ − x, we can

expand

ΔVx(�) = −
(
1− 1

2
h

)
‖Lx̂‖2 + eTxLLx̂.

Defining ΔVy(�) similarly, note that the sign of ΔV (�)
is equivalent to the sign of ΔVx(�) + ΔVy(�). Given the

similarity of ΔVx and ΔVy , we now focus on ΔVx to
simplify the presentation.

Letting ẑ � Lx̂, we can expand out

ΔVx(�) = −
N∑
i=1

(
1− 1

2
h

)
ẑ2i + ẑi

∑
j∈Ni

(ex,i − ex,j)

= −
N∑
i=1

(
1− 1

2
h

)
ẑ2i + |Ni|ẑiex,i − ẑi

∑
j∈Ni

ex,j .

Using Young’s inequality, we can bound

|Ni|ẑiex,i ≤ 1

2
|Ni|ẑ2i a+

1

2a
|Ni|e2x,i,

−ẑi
∑
j∈Ni

ex,j ≤
∑
j∈Ni

1

2
ẑ2i a+

1

2a
e2x,j ,

for any a > 0. Since the graph is undirected, we have

N∑
i=1

∑
j∈Ni

1

2a
e2x,j =

N∑
i=1

∑
j∈Ni

1

2a
e2x,i =

N∑
i=1

1

2a
|Ni|e2x,i.

Combining this with the inequalities above yields

ΔVx(�) ≤
N∑
i=1

(
a|Ni|+ 1

2
h− 1

)
ẑ2i +

|Ni|
a

e2x,i.

Choosing a small enough such that a < h
2|Ni| for all i ∈

{1, . . . , N}, if

e2x,i ≤ σi

(
a

|Ni|
)(

1− h

2
− a|Ni|

)
ẑ2i ,

is satisfied at all times �, then

ΔV (�) ≤
N∑
i=1

(σi − 1)

(
1− h

2
− a|Ni|

)
ẑ2i .

Combining this with the condition of the Lemma reveals that
ΔV (�) < 0 as long as there exists i, j such that ‖pi−pj‖ 
=
0. The proof is finally concluded by noticing that Avg(p(�))
is in invariant quantity under (6). •

Proof of Theorem III.2: Due to space restrictions we
only present a simple sketch here. Rather than analyzing pi
directly, we will instead analyze its components (xi, yi). Let
x+(�) = maxi xi(�) and x−(�) = mini xi(�). Take any i∗
such that xi∗ = x+, then according to (7)

ẋ∗
i = −

∑
j∈Ni∗

xi − x̃i
j . (8)

Noticing that x̃i
j is simply a random, nonuniform sampling

of xj , we can always bound x̃i
j ∈ [x−, x+], which means

we can upper-bound (8) by 0. Thus, x+(�) ≤ x+(0) for all
� ≥ 0. Similarly, x−i(�) ≥ x−(0) for all � ≥ 0. To show
that eventually x+(�) = xi(�), notice that if x+(�) 
= xi(�),
there exists at least one i∗ with x∗

i = x+
i with a neighbor j

such that xj < x∗
i , because the graph is connected. Using

this, we see that (8) becomes strictly negative assuming
updated information is available. Finally, it is important to
note that under (7), in the case that p̃ij are assumed constant,
the convergence of xi to a fixed point is asymptotic. This
rules out the possibility of two agents being able to fully
swap places in between successful communications, which
concludes the result. •

6719


