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Abstract— Current work on complex systems has been heav-
ily focused on network interactions and network structure,
without significant emphasis on the emergent phenomena that
characterize such systems. In the included work, the ability to
perceive or observe emergent behavior in complex systems has
been studied. Specifically, by identifying emergent behavior as
the dynamics of reduced-order models of the self-organizing
systems, the observability of the emergent phenomena can be
studied as a function of the model order. Included analytical
results show the relationship between observability metrics
of the full- and reduced-order models. Singular perturbation
techniques have been used to perform model order reduction
for nonlinear systems such as the Hyper Réssler and coupled
Hindmarsh-Rose neuron models. Results indicate that accuracy
increases and observability decreases with increasing model
order. The trade-off between accuracy and observability metrics
has been used to propose a predictive metric that identifies the
desirable order at which to model emergent behavior.

I. INTRODUCTION

Emergent behavior refers to collective phenomenon ob-
served in several large-scale systems, when examined from
a global or macroscopic perspective [1]. Several natural and
engineered systems, such as school of fish [2], neurons [3],
traffic jams [4] etc., exhibit emergent behavior. Researchers
have been fascinated with the idea of emergent behavior and
self-organizing systems for several decades [5], but in recent
times there has been a concerted scientific effort to impart
additional mathematical rigor to these concepts [6][7]. There
is increasing understanding in the research community that
while self-organization refers to systems whose dynamics
reside on a low-dimensional manifold and have an intrinsic
structure or order [8], the term ‘emergent behavior’ should be
reserved for situations where such self-organizing dynamics
can actually be observed [9]. As such, the detection of
emergent behavior is largely governed by (a) the order
of the model being used to describe the self-organizing
system dynamics, (b) the spatial scale of observation, and (c)
structure of the observer. In this paper, we discuss the role
of the first factor, i.e. the model order, on the observability
of emergent behavior, with a discussion of other factors to
follow in upcoming publications.

There is a critical need for this work that goes beyond
the mere detection of emergence. Prediction and control of
emergent behavior are open problems in the field of complex
systems, with broad applications across diverse domains.
For example, in the context of human neuronal systems,
approximately 50 millions people are affected by epilepsy,
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of which up to 40% may continue to have seizures despite
optimal treatment [10]. The ability to identify and predict
emergent seizure events holds the potential to impact a
significant number of lives. One way to approach the problem
is to create high-dimensional microscopic-scale models that
attempt to capture the dynamics of every individual neu-
ron, but this approach is computationally expensive [11].
Moreover, it is well-known that observing real-world large-
scale complex systems (such a human brain) would require
significant sensing equipment that makes the real-world
implementation of such an approach intractable. On the other
hand, in this paper we seek to identify the trends in accuracy
and observability of emergent behavior (such as emergent
seizure events) are known as a function of the system model
order. With this knowledge, an appropriate model order
can be chosen that ‘optimally’ describes the dynamics of
the emergent behavior, which in turn can be leveraged for
prediction and control. For the purpose of this paper, we
use coupled singularly perturbed systems as prototypical
examples of high-dimensional self-organizing systems that
exhibit emergent behavior that resides on a low-dimensional
manifold.

II. LITERATURE REVIEW

The study of observability and controllability can be traced
back to the development of state-space models by Kalman
[12]. While the state-space model was readily adapted to
study observability of linear systems, its applicability to
nonlinear systems was somewhat limited. Later works to
extend the analysis of observability to nonlinear systems
were performed by the likes of Hermann [13], Krener [14],
Lobry [15], and Sussmann [16]. However, while these works
were extremely useful, they could not be utilized to identify
the ease of observing a nonlinear system, given a set of
outputs. In other words, they failed to distinguish if one
nonlinear system was more easily observed than another.
Recent works by Letellier [17], have sought to overcome
that limitation by developing metrics of observability that
will be discussed in more detail in Section III. However,
to the authors’ knowledge, neither of these works has been
used to study the trends of observability as it relates to
model order. In this work, we will utilize these measures
of nonlinear observability to identify trends in observability
of emergent behavior, which in turn may prove useful to
identify an optimal model order to observe, predict, and
control emergent behavior.

The second aspect of this study is to identify a model
order reduction (MOR) technique to simplify the model used



to describe the self-organized system dynamics, which may
eventually manifest as emergent behavior to the observer.
Several MOR techniques have been developed over the past
decades, the most commonly used among them being the
balanced truncation. The fundamental principle that dictates
the balanced truncation MOR technique is the removal of
modes that are difficult to observe or control, and retaining
only the observable and controllable modes of the system.
However, we make no assumptions about the observability
or controllability of the low-dimensional dynamics, since
emergent behavior is not necessarily either controllable or
observable. Another commonly-used MOR technique relies
on Krylov subspaces, and builds upon the Arnoldi or Lanczos
algorithm. The Krylov-subspace-based methods are compu-
tationally fast and highly parallelizable, and are widely used
for order reduction of large, sparse linear systems. However,
since the dynamics of a self-organized system reside on a
low-dimensional manifold, we turn to singular perturbation
methods to present this analysis. Singular perturbation meth-
ods are primarily used for model order reduction of systems
with time-scale separation, i.e. in systems whose behavior
is separated into slow and fast dynamics. The functional
description of the dynamics is given by:

f(z,z,u)
g(x, z,u)

where © € R”™ represents the slow variables of the system,
whose dynamics reside on a low-dimensional slow manifold,
and z € R™ represents the fast variables of the system, which
evolve quickly towards the slow manifold, and € is a small
positive scalar that quantifies the time-scale separation. Upon
performing the order reduction, the system model reduces to:

flz, z(z,u),u) 2)

where the solution z(x,u) of g(z,z,u) = 0, which defines
the slow manifold of the self-organizing system, can be
substituted into the slow dynamics to obtain the reduced
order model. This MOR approach is only applicable for
systems where time-scale separation is evident. While many
self-organizing systems do not clearly exhibit such time-
scale separation (e.g. self-organized traffic jams [4]), the
use of the singularly perturbed systems as a prototypical
example is justified to establish the trends in observability as
a function of reduced model order. Moreover, such time-scale
separation is evident in other self-organizing systems, as
discussed in the observability study of the coupled multiple-
neuron model in Section V.
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III. MEASURE OF OBSERVABILITY FOR
NONLINEAR SYSTEMS

The key issue for analyzing and predicting emergent
behavior in complex self-organizing systems is to gauge
how ‘far’ the system is from being unobservable [18].
The observability of self-organizing systems, and nonlinear
systems in general, varies with time along its trajectory in
state-space. To assess the observability of such nonlinear
systems, we evaluate the Lie derivative and an associated

observability metric at every time instant along the system’s
trajectory. The Lie derivative for the ¢th component of the
vector field f () is defined as:

Ly ()= =) 3)

X
k=1 Ozx

and the higher order Lie derivatives may be evaluated recur-
sively using the lower-order Lie derivatives as follows:

L} (w) = Ly, (L} () )

The observability grammian is given by the observability
matrix Q as follows:

o [PE@) oL@ oLy i)
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where h(x) represents the output of the system. The ob-
servability matrix Q can be determined for both full- and
reduced-order systems. A comparison of their functional
forms not only helps assess how much observability is ‘re-
tained’ after order reduction, but also assess which observer
structure helps retain it the most (See Section IV).

A. Observability Metric

Complex systems may be observable in certain sections
of their state trajectories, and unobservable in other sections.
To assess their observability, a metric for nonlinear systems
can be defined using the observability matrix Q, similar
to observability metrics such as minimum singular values
for linear systems. Building on the works of Aguirre and
Letellier [17], an observability metric known as the degree
of observability can be defined as:

|)\mam [QT Qa m(t)”

where A0 [QT Q, 2(t)] indicates the maximum eigenvalue
of matrix Q7' Q at a specific location in the system trajectory,
and z(t) denotes the observed variable at time . The values
of the observability metric vary in the interval [0, 1], with a
larger value indicating better observability. This metric may
be used to study the reduced-order model of the complex
system, as well as determine spatial locations within the state
space where the complex system has high (or low) tendency
towards being observable.

§(x,t) =

(6)

B. Relationship between Full- and Reduced-order Metrics

We assume that Q, is a multidimensional observability
matrix for the full-order system, and Qi; is its block
component and represents the observability matrix of the
reduced-order system:

o,- |

Ql 1 Q12:| (7)

Q21 Q22

For the full-order system, the observability matrix can be
evaluated using the matrix /C, = QOT Q,, given by:

Qll Q{l + QIQQ,{Q Qll le + Q12 Qgg

Ko = [Qm OF + 02,0, 02:9% + Qo QQTQ] ®



We now examine the differences in full- and reduced-order
observability, by focusing our attention on the sub-matrix Cq
of the matrix /C, corresponding to the full-order observability
metric, as well as K., which will be used to evaluate the
reduced-order observability metric:

Ks =[9119F + 0120%)], K. =[219%] )

From Cauchy’s interlace theorem [19], the relation be-
tween eigenvalues of symmetric matrices (such as K,) before
and after removing certain pair of columns and rows are:

)\;’)HZ’I’L S /\fmnv /\gn,ax 2 AS?”ﬂ,(lﬁ" (10)
In addition, under the condition that eigenvalues of

01,07%, tend to zero, the following relationship for the
12 g p
eigenvalue ratios can be obtained:
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Combining (10) and (11) leads to the conclusion that:
AT A2 )\0
min ~ min min 12
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Thus if observability matrix of reduced order system is a
block component of full order system, then we could predict
that the reduced order system is more observable than full
order system:

5 (x,t) > 8,(,t) (13)

IV. OBSERVABILITY VARIATION AS A FUNCTION
OF MODEL ORDER

In this section, we will present an analytical comparison of
the observability metrics of full- and reduced-order models,
using the hyperchaotic Rossler system as an example. The
analysis will also help guide the choice of observable for
examining emergent behavior. We begin with the general
singularly perturbed system described in (1), which may be
re-written as follows:

o= [ =L

and for which the output is given by y = h(x). The i
row of the associated observability matrix for the full-order
system Qy may be assumed to consist of two components:
o 0LY[h(x . .
e CLCU PR RE
where Q° indicates the partial derivative with respect to the
slow variables (x), and Q} indicates partial derivative with
respect to the fast variables (z). Additionally, we distinguish
between the full-order and the reduced-order observability
matrices (Qg and Q,, respectively) using the following
notation:

(14)
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By comparing the observability matrices Qg and Q,., we
show that the observability matrix for the reduced-order
system is a block component of the full-order observability

matrix as follows:
0, =]

Consequently, the key insight of this work is to realize that
eigenvalues of Q? 9, necessarily lie between the minimum
and maximum eigenvalues of Q?; Q,, resulting in the observ-
ability metric of the reduced-order system being higher than
that of the full-order singularly perturbed system.

(16)

A. Analytical Comparison of Full- and Reduced-order Ob-
servability Matrices

In this analysis, we assume that the system output is scalar
and a linear function of the slow variables, i.e. y = h(x) =
h(zx). Then, the slow dynamics component in the first row
of full-order observability matrix is given by:

ol = oLy [h(@)] _ OLG[A(x)] _ Oh(x)]
ox ox ox

The subsequent rows can be generated using the recursive
relationship of Lie derivatives, so that entries for the 2nd
row of full- and reduced-order models are [C'52 9| C ] and
C g£ , respectively. The key difference between these entries

corresponding to slow dynamics in the 3™ row lies in terms
of 0g and Of 8f 0z
0z edx OJx 0z Ox*

Similarly, we can examine the difference between the it
rows of the observability matrices Qf and Q.. The i row

of the full-order observability matrix is given by:

0} = [Qi(r,2), Qj(x, 2)]

=C (17
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where the components corresponding to the slow and fast dy-
namics (Q% and Q%, respectively) have been shown separated
by commas. The corresponding i™ row of the reduced-order
observability matrix is given by:

Q. (x,2)

an 1 f
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Additionally, Qfl and Qif_l are both obtained from
the previous row of the observability matrix. Rewriting
L5 ?[h(x)] as F(Qi72,Q}?), using recursive property of
Lie derivative, and evaluating the appropriate Jacobian, we
obtain a simplified expression for the components of the
observability matrix:

OF(Qi%,9?)
oz ’

(20)



Now, we can infer the following using (20):

00;! _OF(Qi*Q7Y)  oQit _ OF(Q1%Q)Y)
or 020z ’ 9z 020z
997" 990t 9Qit
or 9z

21

In addition, if the fourth components of the i™ row of the full-
and reduced-order observability matrices are also identical,
then the matrix Q,. is indeed a block component of Q,,. Then,
as a consequence of the interlacing theorem of symmetric
matrices [19], the eigenvalues of Q?Qr will necessarily lie
between the minimum and maximum eigenvalues of QZ Q..
indicating that the reduced-order observability is better than
full-order observability.

B. Hyper-chaotic Rossler system

The hyper-chaotic Rossler system is used top illustrate the
effect of choice of output on system observability:

T=—-y—2z

) =x+ay +w

Y Y (22)
z=b+zz

w = —cz + dw

where x, y, 2z, and w are all scalars, and a, b, ¢, and
d represent scalar model parameters. With the appropriate
choice of parameters, the variable w can be made to possess
fast dynamics, so that the system dynamics are time-scale
separated and singular perturbation methods can be used
to reduce the model order. If w has fast dynamics, then
—cz 4+ dw — 0. In this situation, the slow manifold is given
by dw = cz or instead, w = kz, where k = ¢/d. As a result,
the hyper-chaotic Rossler system reduces to:

T=—-y—2z
y=x+ay+kz
z=b+xz

(23)

From analytical consideration presented in (21), all but
the fourth terms of the observability matrices of the full-
and reduced-order Rdossler systems are identical. Comparing
the fourth terms of Q° and Q. (defined in (18) and (19)) for
the current example, we observe:

0 0 O
, of o

From Q! : Ca—f% =C |0 0 —c¢ 24)

2 edz 00 0]

0 0 —c]
From Q! : ?g% =C|0 0 —ac (25)

x 0z Ox 00 0
Clearly, if the scalar linear output is h(x) = 2z, i.e.
the third state, so C' = [0,0,1], then the terms in the

above two equations are identical (and equal to zero). As
a consequence, Q, would be a block component of the Q,
and the Rossler system would have better observability than
the hyper-chaotic Rossler system with the state variable z as
the output. If any other state variable is chosen as the output,
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Fig. 1. Comparisons of the observability metrics of full- and reduced-order
system for different outputs under step input. Notice the difference in the
y-axis scales for state z as compared to the other state variables.

then the fourth terms will be different, and we will not be
able to make a similar claim about the observability of the
reduced order system. Indeed, as shown in Fig. 1, choosing
z as the output variable results in significant improvement in
observability as compared to other choices of variables.

V. THE ACCURACY VS. OBSERVABILITY TRADE-OFF:
MULTI-NEURON EXAMPLE

Models of neuronal bursting have been studied extensively,
and the emergent behavior of a neural system is difficult
to predict by examining a single neuron in isolation. In
this section, we examine the singularly perturbed coupled
Hindmarsh-Rose model of bursting neurons and assess the
observability and accuracy as a function of reduced model
orders [20].

A. Coupled Hindmarsh-Rose Neuron Model

Certain neurons in the brain, especially during periods
of drowsiness, inattentiveness, or sleep exhibit spike-burst
activity. This behavior can be modeled at the neuron level
using time-scale separation for the coupled Hindmarsh-Rose
model as shown below:

iy =y — axt +ba? — 21 + e(x1 — 12)
th =c—dxi —y

Z1 = r[(z1 — x0) — #1]

Ty =y — axh + bas — zo + e(xo — 21)
§o = c—daj —yo

2:’2 = ’I”[(JUQ — 330) — ZQ]

(26)



where z is the membrane potential, y is associated with
the fast current, Nat or K1, z with the slow current, and
the model parameters are given by ¢ = 1.0,b = 3.0,¢c =
1.0,d = 5.0,s = 4.0, = 0.006,zp = —1.60. The fast
variables are given by x and y, whereas z denotes the slow
variable. Here r represents the ratio of fast/slow times scales.

After reducing the model order of this coupled singularly
perturbed system (by setting the dynamics of the fast vari-
ables to zero), and rescaling the time to align with the slower
dynamics 7 = rt (where r plays the role of ¢), the reduced
order dynamics are given by:

2 = (x1 — o) — 21

2o = (x2 — o) — 22 @7)

where slow manifold can be modified to read as z; =
g1(z1,x2) and x5 = g2(22,x1). Now it is often intractable to
obtain the exact solution for the slow manifold, so the system
simulation can instead be carried out using the quasi-steady-
state model by evaluating:

Ty = %2}2 + %il

822 6.1'1

and substituting the appropriate values of z; and xs into
the reduced model (27). Fig. 2 provides a comparison of
the full- and reduced-order models for a single neuron
observabilty. It is evident that the reduced order model has
better observability than the full-order model for significant
periods of time.

(28)

B. Coupled Multiple-neuron System with Three Neurons

In this subsection, we examine the observability and
accuracy trends as we reduce the model order for a coupled
Hindmarsh-Rose model with three neurons arranged in a
linear topology . The model is given by:

1
- yi — axs +bx? — 2z + Logt + 62 Gi;H(x;)
J

Z;

1
ji = —(c—da} —y;
Y Ti(c z7 — i)
Zi = (zy —x0) — 2

(29)

where r; denotes the ratio for the fast/slow time scales for
each neuron and G;; is the adjacency matrix related to
the coupling among neurons. The values for r; in different
neurons are set to 0.001, 0.02, 0.1, and other parameters
remain unchanged. Order reduction was conducted based on
the time scales, with the fastest time scales removed first,
until only the slow states 21, ze and z3 are left.

Now, a dynamical model for a self-organizing must not
only possess good observability, it should also accurately
represent the real-world emergent behavior. This emphasis on
accurate representation of the system dynamics is especially
true for reduced-order models. As the ratio over fast/slow
time scale starts decrease, we could do order reduction
sequentially by using singular perturbation. Thus, a trade-
off exists between our ability to observe the reduced-order
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Fig. 2. Comparisons of the observability for full- and reduced-order
systems towards step input on the state z. The reduced-order system is
more observable than the full-order system.

model, and the ability of the reduce-order model to mimic
the real-world dynamics (or full-order model). In order
to examine this trade-off for the coupled Hindmarsh-Rose
neuron models, we propose two normalized metrics — one for
the observability and another for the accuracy of the reduced-
order model. The normalized metric for observability is:

(51(.23) — (5mm(x)
5mam (.’E) - 5mzn (.’E)

where A(-) represents the normalized observability metric
for reduced order model of order 4, 0;(x) denotes the ob-
servability metric defined in (6) for the reduced order model
of order i, &, (2) denotes the observability metric for the
reduced order model with minimum dimension, and 0,4, ()
denotes the observability metric for the full order model. For
example, for the 3 coupled neuron system, reduced iteratively
through orders 9, 7, 5, and 3, the normalized observability
metric may be written as:

A() =

(30)

3D

Similarly the normalized accuracy metric A; for reduced
order model or order 7 can be evaluated as:

€i — Emin

Afi) = (32)

€maz — €min

where e; is the L; norm of the error in output signal between
the reduced order and full order model over a given time
interval. Clearly, this normalized accuracy metric is only
valid till dimension one less than the full-order dimension,
since e,,q, evaluates the L error norm of output between the
maximum reduced order model and full order model. These
metrics are evaluated for behaviors of the coupled neuron
systems respectively at order 3, 5, 7, 9, and are included
in Fig. 3. Moreover, it is evident from the structure that
the normalized accuracy metric .A; for lower order reduced
models is lower than reduced-order models of higher order,
since accuracy decreases with reducing order. On the other
hand, the observability increases with reducing model order.

It is evident that accuracy decreases and observability
increases with decreasing model order. Clearly there exists a
trade-off between these two quantities. The trade-off can be



leverage to determine an ‘optimal’ predictive metric that can
be used to best model emergent behavior in complex self-
organizing systems. In this paper, we propose a predictive
metric for emergent behavior that relies on the normalized
observability and normalized accuracy to identify the model
order that best captures the emergent behavior of a complex
system, and is given by:

A@) - AG)

KGO) = el A@) - A

(33)
The authors do not claim the optimality of this metric in
the sense proposed by Shalizi in [21]. Additionally, while
we do not make a claim regarding the optimal order to use
for modeling emergent behavior based on these results, this
remains an interesting question to pursue further.

A Emergent Behavior
Prediction Metric /7

=® Accuracy Metric /7 4

Observability Metric

7

Relative Metric

System Orders

Fig. 3. Trends in accuracy and observability of emergent behavior as a
function of the reduced model order. Also shown is the predictive metric
for emergent behavior that holds the potential to identify the model order
that is best suited to describe such behavior.

VI. CONCLUDING REMARKS AND FUTURE WORK

Emergent behavior is exhibited by several naturally occur-
ring and engineered complex systems. Such behavior usually
manifests in low-dimensional state space compared to the
high-dimensional state space of the complex system. In this
work, emergent behavior was represented by reduced order
models of higher dimensional systems. The order reduction
was carried out using singular perturbation methods for a
hyper Réssler system and coupled Hindmarsh-Rose multiple-
neuron model. Observability metrics for these nonlinear
systems indicated that the reduced order models (emergent
behaviors of the complex system) were more observable
than the full-order models representative of complex systems.
Moreover, there is evidence of a trade-off between the ob-
servability and accuracy of the emergent behavior at reduce
orders, indicating that there may be an optimal modeling
order that best captures the dynamics of a self-organizing
system, while ensuring good observability.

This work has the potential to guide the design of ob-
servers for complex systems exhibiting emergent behavior.
Moreover, once the observability (or the degree of observ-
ability) for a complex system and its accompanying emergent
behavior can be established, this information may be used
to design controllers to guide the complex system towards

desirable emergence and away from undesirable emergent
behavior, such as self-organized traffic jams and cascading
blackouts in power grids.
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