


THE GRADUATE STUDENT SECTION

Figure 1. A surface of genus 5. The blue curve is
essential and nonseparating. The green curve is
inessential. The purple curve bounds a puncture or
boundary component, denoted by a red 𝑥, and is
therefore peripheral.

curve graph encodes the combinatorial topology of one-
dimensional submanifolds of 𝑆. Note that for relatively
simple surfaces, 𝒞(𝑆) may be empty or may fail to
have any edges as they are defined here. For sufficiently
complicated surfaces however, 𝒞(𝑆) has a very intricate
and interesting structure.

Figure 2. A surface of genus 5 with four essential
curves drawn. The subgraph of 𝒞(𝑆) spanned by
them is given in Figure 3.

Whereas the curve graph as defined here is amanifestly
combinatorial object, it is also a geometric object with
the metric being given by the graph metric.

It is an interesting exercise for the reader to prove that
if 𝒞(𝑆) admits at least one edge, then 𝒞(𝑆) is connected,
is locally infinite, and has infinite diameter.

The mapping class group of 𝑆 is the group of homo-
topy classes of orientation preserving homeomorphisms

Figure 3. The subgraph of 𝒞(𝑆) spanned by the
curves in Figure 2. The colored curves are
represented by vertices of the corresponding color.
The graph metric distance from the purple curve to
the red curve in 𝒞(𝑆) is exactly two.

of 𝑆, and is written Mod(𝑆). Mapping class groups are of
central interest to geometric group theorists, as well as
of significant interest to algebraic geometers, topologists,
and homotopy theorists. From the point of view of geo-
metric group theory, mapping class groups are studied
via the geometric objects on which they act. Homeomor-
phisms of 𝑆 act on the set of embedded loops on 𝑆, and
similarly homotopy classes of homeomorphisms act on
homotopy classes of embedded loops on 𝑆, and hence
of simple closed curves. Since the adjacency relation in𝒞(𝑆) is a topological property, Mod(𝑆) acts by graph
automorphisms and hence by graph metric isometries on𝒞(𝑆).

As natural as the action of Mod(𝑆) on 𝒞(𝑆) is, its
geometry is extremely complicated. For one, the quotient𝒞(𝑆)/Mod(𝑆) is finite, since two simple closed curves 𝛾1
and 𝛾2 are in the same mapping class group orbit if and
only if 𝑆\𝛾1 and 𝑆\𝛾2 are homeomorphic to each other,
as follows easily from the classification of surfaces. Thus,
the action of Mod(𝑆) on𝒞(𝑆) is highly transitive. This is in
spite of the fact that 𝒞(𝑆) is locally infinite, as mentioned
above: if 𝒞(𝑆) has at least one edge, then each vertex of𝒞(𝑆) has infinite degree. Thus, the action of Mod(𝑆) on𝒞(𝑆) is far from properly discontinuous.

Note that proper discontinuity (as we have defined it
at least) is perhaps not the best property to require from
the action, since 𝒞(𝑆) is not locally compact (by virtue of
being a locally infinite graph). A better notion which is
meaningful for actions on spaces like 𝒞(𝑆) is properness.
If 𝐺 is a group generated by a finite set 𝑆, then 𝐺 can be
viewed as a metric space by declaring 𝑔 and ℎ to have
distance one if 𝑔 = ℎ ⋅ 𝑠 for some 𝑠 ∈ 𝑆, and in general
defining the distance between 𝑔 and ℎ to be the least𝑛 such that 𝑔 = ℎ ⋅ 𝑠1 ⋯𝑠𝑛 for elements {𝑠1,… , 𝑠𝑛} ⊂ 𝑆.
The reader may recognize this as the graph metric on the
(right) Cayley graph of 𝐺 with respect to 𝑆. If 𝐺 acts on
a metric space 𝑋, the action is proper if (roughly) for all𝑥 ∈ 𝑋, the orbit map 𝐺 → 𝑋 given by 𝑔 ↦ 𝑔 ⋅ 𝑥 is a proper
map of metric spaces. The first example considered in
this article, i.e. the translation action of ℤ onℝ, is a proper
action. Note that we can build another action of ℤ on ℝ,
where a generator of ℤ acts by multiplication by 2. This
action of ℤ on ℝ is not proper. Returning to the situation
at hand, since vertices of 𝒞(𝑆) have infinite stabilizers in
Mod(𝑆), the action of Mod(𝑆) on 𝒞(𝑆) is not proper.

One way to see this is to observe the following: let𝛾 ⊂ 𝑆 be an essential, nonperipheral, simple closed curve
as in Figure 4. The surface 𝑆\𝛾 is a surface with boundary,
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Figure 4. By considering an essential, nonperipheral,
simple closed curve in red on this surface of genus 2,
we can see that the action of Mod(𝑆) on 𝒞(𝑆) cannot
be proper. Fortunately, it satisfies a weaker property:
it is acylindrical.

albeit simpler (in the sense that the Euler characteristic
is strictly larger).

The next best
thing after
properness.

The surface 𝑆\𝛾 generally
admits many homotopically
nontrivial homeomorphisms
which act by the identity near𝛾, which therefore extend to
homeomorphisms of 𝑆 which
fix 𝛾. Moreover, one can build
the Dehn twist about 𝛾, which
is given by cutting 𝑆 open along 𝛾 and regluing with a
full twist. These (homotopy classes of) homeomorphisms
taken together form an infinite subgroup ofMod(𝑆)which
fixes the vertex 𝛾 of 𝒞(𝑆), whence it is clear that the
action of Mod(𝑆) on 𝒞(𝑆) cannot be proper.

How badly behaved is the action of Mod(𝑆) on 𝒞(𝑆)?
Can something be said about it which is not a general
statement about isometric group actions on graphs?
It turns out that yes, indeed one can. The action is
acylindrical, which is in some sense the next best thing
after properness.

Acylindrical actions were first generally defined by
Bowditch [1] in 2008. Let𝐺 be a group acting by isometries
on a path-metric space 𝑋. The action of 𝐺 on 𝑋 is
acylindrical if for all 𝑟 ≥ 0, there exist constants 𝑅,𝑁 ≥ 0
such that for any pair 𝑎,𝑏 ∈ 𝑋 with 𝑑(𝑎, 𝑏) ≥ 𝑅, we have|{𝑔 ∈ 𝐺 ∣ 𝑑(𝑔 ⋅ 𝑎, 𝑎) ≤ 𝑟 and 𝑑(𝑔 ⋅ 𝑏, 𝑏) ≤ 𝑟}| ≤ 𝑁.
The set of elements{𝑔 ∈ 𝐺 ∣ 𝑑(𝑔 ⋅ 𝑎, 𝑎) ≤ 𝑟}
is not quite the stabilizer of 𝑎, but rather the 𝑟-quasi-
stabilizer of 𝑎. Acylindricity can be summed up as saying
that “for all 𝑟, simultaneous 𝑟-quasi-stabilizers of suf-
ficiently distant points are uniformly small.” In more
informal terms, an acylindrical action is “uniformly

Figure 5. A path-metric space (such as a connected
graph) is hyperbolic if there exists a 𝛿 ≥ 0 such that
for every geodesic triangle, a 𝛿-neighborhood of two
sides contains the third side.

proper on sufficiently distant pairs of points.” Drop-
ping the uniformity condition (i.e. replacing the uniform
constant 𝑁 by a requirement that the relevant subset of𝐺 is finite), one gets the closely related notion of a weakly
properly discontinuous action. This latter notion appears
in a 2002 paper of M. Bestvina and K. Fujiwara.

Observe that, like many concepts in geometric group
theory and coarse geometry, acylindricity is blind to
phenomena on a bounded scale. For instance, a group
action on a bounded metric space is always acylindrical:
just let 𝑅 be greater than the diameter of 𝑋.

Bowditch proved the following fundamental result:

Theorem 1. The action of Mod(𝑆) on 𝒞(𝑆) is acylindrical.
The usefulness of acylindricity is perhaps not imme-

diately clear. The most productive setting for studying
acylindricity is in the case where 𝑋 is a hyperbolic graph.
This means that 𝑋 is a graph equipped with the graph
metric, and the graph metric is (Gromov) hyperbolic. That
is to say, there is a constant 𝛿 ≥ 0 such that for any
triple 𝑥,𝑦, 𝑧 ∈ 𝑉(𝑋) of vertices and geodesic segments[𝑥, 𝑦], [𝑦, 𝑧], [𝑥, 𝑧] ⊂ 𝑋, we have[𝑥, 𝑧] ⊂ 𝑁𝛿([𝑥, 𝑦] ∪ [𝑦, 𝑧]).
In other words, every geodesic triangle is 𝛿–thin in the
sense that a 𝛿–neighborhood of two sides contains the
third side (see Figure 5).

Note that the definition of hyperbolicity makes sense
for any geodesic metric space, and indeed this is the
definition of a hyperbolic (metric) space which is not
necessarily a graph. It is highly nonobvious though true
that 𝒞(𝑆) is a hyperbolic graph, by a deep result of
H. Masur and Y. Minsky from 1999.

In the case of an action of a group 𝐺 on a hyperbolic
graph 𝑋, acylindricity of the 𝐺-action gives a tractable
geometric shadow of 𝐺 in 𝑋, given by considering the
orbit of an arbitrary vertex 𝑣 ∈ 𝑉(𝑋). To make sense of
this notion, we define the translation length of an element
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𝑔 ∈ 𝐺, a definition which makes sense for any isometric
action of 𝐺 on 𝑋. We write

𝜏(𝑔) = lim𝑛→∞ 𝑑(𝑔𝑛 ⋅ 𝑥, 𝑥)𝑛 ,
a limit which always exists and which is independent of
the choice of 𝑥.

The translation length of 𝑔 is either positive or zero.
In the former case, the element 𝑔 is called loxodromic.
An example of a loxodromic isometry is a homothetic
expansion of the upper half-space model for hyperbolic
space. One way that 𝜏(𝑔) can be zero is if some (or
indeed every) 𝑔-orbit has finite diameter, in which case𝑔 is called elliptic. An example of this latter case is
rotation of hyperbolic space. General actions can have
elements such that {𝑔𝑛 ⋅ 𝑥}𝑛∈ℤ is unbounded but where𝑑(𝑔𝑛 ⋅ 𝑥, 𝑥) grows strictly sublinearly as a function of 𝑛,
in which case 𝑔 is parabolic. The map (𝑥, 𝑦) ↦ (𝑥 + 1,𝑦)
of the upper half-plane is an example of a parabolic
isometry of the upper half-space model of hyperbolic
space. Parabolic isometries can imbue group actions with
significant complexity, as in the case of lattices acting
on symmetric spaces. In many higher rank situations,
parabolic elements can generate lattices which can often
be shown to never admit interesting acylindrical actions.

For acylindrical actions on hyperbolic graphs, Bowditch
proved the following general fact which simplifies the
picture somewhat:

Theorem 2. Let 𝐺 be a group acting acylindrically on
a hyperbolic graph 𝑋. Then every nontrivial 𝑔 ∈ 𝐺 is
either loxodromic or elliptic. Moreover, there is a con-
stant 𝜖 > 0 depending only on the acylindricity and
hyperbolicity constants such that if 𝑔 is loxodromic then𝜏(𝑔) ≥ 𝜖.

In terms of terminology, acylindrical actions are either
elementary or nonelementary. An action is elementary
if it is purely elliptic or if there is (essentially) only
one cyclic subgroup consisting of loxodromic elements.
Nonelementary acylindrical actions are the only interest-
ing ones. As might be expected, the Mod(𝑆) action on𝒞(𝑆) is nonelementary.

It is possible to show that loxodromic elements are
exactly the mapping classes such that no power fixes
a simple closed curve, as was done by Thurston. Such
mapping classes are called pseudo-Anosov, and are ar-
guably the most interesting mapping classes. Thurston’s
beautiful 1988 article in the Bulletin of the American Math-
ematical Society provides an accessible introduction. The
literature on the coarse geometry of subgroup of Mod(𝑆)
which consist entirely of pseudo-Anosov elements (i.e.
purely pseudo-Anosov subgroups) is vast, and is the do-
main of convex cocompact subgroups of Mod(𝑆). Convex
cocompact subgroups, which we will not define precisely
here, are of central importance in the geometry of the
moduli space of curves, hyperbolic group extensions, and
the algebraic and geometric structure of mapping class
groups. Note that it is not obvious a priori that there exist
noncyclic purely pseudo-Anosov subgroups of Mod(𝑆).
They can be produced directly with some work, but the

acylindricity of the Mod(𝑆) action on 𝒞(𝑆) again inter-
cedes to furnish a profusion of them, by the following
recent result of F. Dahmani, V. Guirardel, and D. Osin:

Theorem 3 (Dahmani–Guirardel–Osin (2017)). Let 𝐺 be a
group acting acylindrically on a hyperbolic space 𝑋. Then
there exists a natural number 𝑁 > 0 such that for every
loxodromic 𝑔 ∈ 𝐺, the normal closure ⟨⟨𝑔𝑁⟩⟩ is free and
purely loxodromic.

In recent years, there has been an explosion of re-
sults by many authors on acylindrical actions of various
groups on hyperbolic spaces. In addition to mapping
class groups, examples of groups admitting nonelemen-
tary acylindrical actions on hyperbolic spaces include
nonelementary hyperbolic groups, groups which are
nonelementary hyperbolic relative to proper subgroups,
outer automorphism groups of free groups, Cremona
groups, nonvirtually nilpotent groups acting properly on
a hyperbolic space of uniformly bounded geometry, right-
angled Artin groups, and compact 3-manifold groups
which are not Seifert fibered. A lot of these examples have
been organized and their properties developed recently
by the work of J. Behrstock, M. Hagen, and A. Sisto, to
form the class of hierarchically hyperbolic groups.

Acylindricity has been an extremely productive and
pervasive concept in geometric group theory, and has led
to fast paced and dramatic advances. Undoubtedly, it will
continue to do so for some time.
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