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Abstract. When comparing lattice calculation to experimental data from heavy ion col-
lision experiments, the higher order fluctuations of conserved charges are important ob-
servables. An efficient way to study these fluctuations is to determine them from simula-
tions at imaginary chemical potential. In this talk we present results up to the six order
derivative in g (with up to eighth order included in the fit), calculated on a 483 x 12
lattice with staggered fermions using different values of up while ug = gy = 0.

1 Introduction

To analyse the quark gluon plasma that is created in heavy ion collision experiments at the LHC or
RHIC a theoretical understanding of the deconfinement region of QCD is needed. Lattice QCD is
a good tool to study QCD since this area can not be accessed perturbatively. At the moment direct
simulations that are continuum extrapolated and at physical quark masses are restricted to vanishing
or imaginary chemical potential. On the other hand the collisions especially at RHIC take place away
from the axis of zero up [1]. Therefore information in that region are needed. Even though it is not
possible to do direct lattice simulations, it is possible to extrapolate observables from zero or imag-
inary chemical potential. This method is called analytical continuation. The analytical continuation
from imaginary potential is by now well established (see for example [2-5]).

In this proceeding we present preliminary results on the fluctuations of conserved charges. These
fluctuations can be measured on the particle distributions in heavy ion collisions (see for example [6]).
A comparison between the experimental measurements and the theoretical calculations allows then
for the determination of the order of the transition. A similar analysis form simulations at imaginary
chemical potential was done in [5], that we will improve upon by presenting calculations to higher
orders in up. Results on the same observables were also studied by the Taylor expansion method and
published in [7]. This method relies on simulations at g = 0 and calculates the analytical continuation
from the measured derivatives.
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All results shown in this proceeding are preliminary as the systematic error has not yet been
properly determined. Especially the error from different higher order terms are not yet included.
Further details on the error treatment for this analysis are given in section 3.4.

2 Lattice details

We use a tree-level Symanzik improved gauge action, with four times stout smeared (p = 0.125)
staggered fermions. We simulate 2 + 1 + 1 dynamical quarks where the light flavors are tuned in a way
to reproduce the physical pion and kaon mass and we set =< = 11.85 [8]. For the zero temperature
runs we use large volumes which full fill Lm, > 4. The scale is determined via f;. More Details can
be found in [9].

The maximal useful value of mp is mp = inT because of the Roberge-Weiss transition [10]. We
simulate at eight different values of mp given as: ,ug) = iT% for j €{0,1,2,3,4,5,6,7}. The analysis
is done purely on a 48 x 12 lattice without continuum extrapolation, at twenty-two temperatures in
the temperature range 140...250 MeV. All simulations are done at up = us = 0. The ratios of the
cumulates however are calculated at {(ng) = 0 and (ng) = 0.4(np) to match the conditions in heavy
ion collisions.

3 Analysis

We present our analysis in three steps. We start with the analysis for x5, x%, xZ and x§ where we use
the notation

pos __ ORp/T) 0
Wik () (Oho) sk
with .
p="E ©)

T
First we do the analysis for each temperature separately (section 3.1). Afterwards we use the informa-
tion that the results are expected to lie on a smooth curve, by introducing a spline through the results
(section 3.2). Finally we use the same techniques introduced for )(f to calculate three different ratios

of the cumulants of the baryon distribution at (ns) = 0 and (ng) = 0.4(np) in terms of the )(f}%s
(section 3.3).

3.1 Single Temperature

As a first step we analyse the data for a single temperature. For each up # 0 we measure )(f, )(g, )(_,lf
and %, while for ug = 0 only x5 and x¥ are measured since x¥ and x¥ are odd functions in yz and
therefore equal to zero.

We make the ansatz for the partition sum:

BA A2 ~d A6 A8
Xofls = co + Cofiy + cafly + coflp + cafly. 3)

From this we can calculate the derivatives that we can measure on the lattice:

X2 = 2cafip + deafry, + 6¢6ity + Scsfiy )
X2 = 2¢y + 12¢4fi% + 30csfiyy + 56¢3425, (5)
X5 = 24cyfip + 120cqfy, + 336¢s/1y (6)
X2 = 24cy + 360csfiy + 1680cs iy, (7
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Figure 1. Preliminary results for x%, x? and y2
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Figure 2. Preliminary results for x%, x? and y? when y§ is included in the fit.

In a first step we determine the coefficients ¢, ¢4 and ¢¢ from a correlated fit to the data, while cg
is set to zero. The results are shown as blue points in figure 1. This ansatz does not account for the
systematic uncertainties that arise from higher order contributions in £2. As a first estimate for this
uncertainties we include cg in our fit and check for changes in ¢ to cg. The results are shown in figure
2. While the results for x5 and % are mostly unchanged, the changes for y¢ after the inclusion of y§
are significant. Here it becomes obvious that a careful investigation of the influences of higher orders
are necessary.

3.2 Spline Fit

We expect our results for )(f (T) to lie on a smooth curve. We implement this information by fitting
the results with a spline. Therefore the fit parameters ¢, , c4, ¢6 and cg now become functions of T
themselves. For the spline fitting procedure the choice of note points is crucial. To reduce the bias that
is implemented with a specific choice we have three different modes. The first and possibley simplest
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Figure 3. Different techniques for choosing the spline node points.

method is just to have all note points evenly spaced. However at higher temperatures we expect slower
changes in our curves. Also for up = 0 our simulation points at high temperatures are more sparse.
Therefore as a second choice we double the distance between the last three note points. As a last
possibility we chose our note points randomly, with a uniform distribution. However to avoid the case
of two note points that are very close to each other we only except a configuration if the distance
between two neighbouring note points is at least 10 MeV. An illustration of this different node point
configurations is shown in figure 3. Also the number of note points is varied between six and eight.
The results are shown by the blue band in figure 1 and figure 2.

3.3 Cumulants

For a comparison with heavy ion collision experiments the cumulants of the net baryon distribution
are a useful tool. The first four cumulants are the mean Mp, the variance a'é, the skewness S g and
the kurtosis kg. By forming appropriate ratios, we can cancel out explicit volume factors. However
the measured distributions themselves may still depend on the volume, which one should take into
account, when comparing to experiments.

Heavy ion collisions with lead or gold take place with at ug > 0, (ns) = 0 and (np) = 0.4(np).
Since our simulations are done at us = up = 0 and up # 0 we have to do some calculations to arrive
at the same observables that are measured in experiments (see for example [6]). We investigate three
different rations of cumulants and write each as a Taylor expansion:

Mg xY(T.pg) R
— = =y gy ®)
Op /\/z(TallB)

S por; 5(T, i)
e XZ L )
Mg X (T,/lB) )

B ~
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The pp dependence of the X? (T, f1p) can be again written in terms of the Taylor expansion:

XE% (5) = XP8 (0) + g Yo (0) + qux 25, (0) + s1x] 50, (O)] (an
1
+ 5 SO + st 5, 0) + i, (0) (12)
+20151X; o 11 O) + 2510051 (0) + 2108 O] + ... (13)
(14)
with

1 djg
ol ) (15)

U dhgy

I dips

I ey (16)

We can now use the constrains {ng) = 0 and (np) = 0.4(ng) which can be rewritten as
¥e=04F,  xi=0 a7)

to determine rf;’k coeflicients form the equations 8, 9 and 10. However we now need to know not only
the behaviour of the X,B but also of derivatives with respect to pg and pp. For now our simulations
are restricted to ensembles with finite ug. Therefore the ug and o derivatives have to be calculated
directly and without the support from the fit that we used in the up direction. We calculate various

,\/?}%‘S with the appropriate values of j and k and all possible values for i so that

i+j+k<4. (18)

For each group of fluctuations with the same j and k£ we perform a fit analogous to the procedure
described in the sections 3.1 and 3.2. This is sufficient to determine the first to rg.’k coefficients for
all three observables. The results are shown in figure 4, 5 and 6. For higher order coefficients, higher
order derivatives in pg and po are needed. The direct measurements have a rapidly increasing error
with each derivative and very large statistics would be needed to improve our calculations in that
manner. Another possibility would be add ensembles with finite ug and pp and do a similar fit as for
the up direction. This approach has been used in [5].

3.4 Error Analysis

For a reliable comparison between experimental measurements and theoretical calculations the error
estimation is an important ingredient. As we present work in progress results the error estimation
process is not yet finished. Our statistical error is estimated by the Jack-Knife-Method. For our
systematic error there are several sources, which we have not yet completely covered. We determine
our systematic error by the histogram method described in [11], where each analysis is weighted with
the akaike information criteria. We include the influence of the number of points in the up direction,
by either including or ignoring the data from our highest value for pug. We also try to estimate the
influence of the spline node points as described in section 3.2. However a very important source for
our systematic error is the influence of the higher order contributions in up that are not included in
our fit ansatz. A rough idea of this influences can be gained from the comparison of the results shown
in figure 1 and figure 2, where one order more was included. However a more detailed analysis is
necessary to obtain a reliable error on our result.
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4 Conclusion

We presented preliminary results on fluctuations of conserved charges )(g , )(f and )(g and on the three
SBU‘;
3 Ms
ments. We calculated the Taylor expansion of each of these three observables to NLO in pg. Our

combinations of cumulants %, and KBO'% that can be measured by havy ion collision experi-
N Bo’%
5 Ms

been calculated at the strangeness neutral point (ng) = 0 and with (ng) = 0.4(np). The error investi-
gation is for now mostly limited to the statistical error. Especially an investigation of the influence of
higher order continuations is necessary to arrive at a final result.

analysis was done on an 48> x 12 lattice. To match experimental conditions %, and KBO'%, have
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