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Abstract. When comparing lattice calculation to experimental data from heavy ion col-

lision experiments, the higher order fluctuations of conserved charges are important ob-

servables. An efficient way to study these fluctuations is to determine them from simula-

tions at imaginary chemical potential. In this talk we present results up to the six order

derivative in µB (with up to eighth order included in the fit), calculated on a 483
× 12

lattice with staggered fermions using different values of µB while µS = µQ = 0.

1 Introduction

To analyse the quark gluon plasma that is created in heavy ion collision experiments at the LHC or

RHIC a theoretical understanding of the deconfinement region of QCD is needed. Lattice QCD is

a good tool to study QCD since this area can not be accessed perturbatively. At the moment direct

simulations that are continuum extrapolated and at physical quark masses are restricted to vanishing

or imaginary chemical potential. On the other hand the collisions especially at RHIC take place away

from the axis of zero µB [1]. Therefore information in that region are needed. Even though it is not

possible to do direct lattice simulations, it is possible to extrapolate observables from zero or imag-

inary chemical potential. This method is called analytical continuation. The analytical continuation

from imaginary potential is by now well established (see for example [2–5]).

In this proceeding we present preliminary results on the fluctuations of conserved charges. These

fluctuations can be measured on the particle distributions in heavy ion collisions (see for example [6]).

A comparison between the experimental measurements and the theoretical calculations allows then

for the determination of the order of the transition. A similar analysis form simulations at imaginary

chemical potential was done in [5], that we will improve upon by presenting calculations to higher

orders in µB. Results on the same observables were also studied by the Taylor expansion method and

published in [7]. This method relies on simulations at µB = 0 and calculates the analytical continuation

from the measured derivatives.
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All results shown in this proceeding are preliminary as the systematic error has not yet been

properly determined. Especially the error from different higher order terms are not yet included.

Further details on the error treatment for this analysis are given in section 3.4.

2 Lattice details

We use a tree-level Symanzik improved gauge action, with four times stout smeared (ρ = 0.125)

staggered fermions. We simulate 2+1+1 dynamical quarks where the light flavors are tuned in a way

to reproduce the physical pion and kaon mass and we set mc

ms
= 11.85 [8]. For the zero temperature

runs we use large volumes which full fill Lmπ > 4. The scale is determined via fπ. More Details can

be found in [9].

The maximal useful value of mB is mB = iπT because of the Roberge-Weiss transition [10]. We

simulate at eight different values of mB given as: µ
( j)

B
= iT

jπ

8
for j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. The analysis

is done purely on a 483 × 12 lattice without continuum extrapolation, at twenty-two temperatures in

the temperature range 140. . . 250 MeV. All simulations are done at µQ = µS = 0. The ratios of the

cumulates however are calculated at 〈nS 〉 = 0 and 〈nQ〉 = 0.4〈nB〉 to match the conditions in heavy

ion collisions.

3 Analysis

We present our analysis in three steps. We start with the analysis for χB
2
, χB

4
, χB

6
and χB

8
where we use

the notation

χ
B,Q,S

i, j,k
=

∂i+ j+k(p/T 4)

(∂µ̂B)i(∂µ̂Q) j(∂µ̂S )k
, (1)

with

µ̂i =
µi

T
. (2)

First we do the analysis for each temperature separately (section 3.1). Afterwards we use the informa-

tion that the results are expected to lie on a smooth curve, by introducing a spline through the results

(section 3.2). Finally we use the same techniques introduced for χB
i

to calculate three different ratios

of the cumulants of the baryon distribution at 〈nS 〉 = 0 and 〈nQ〉 = 0.4〈nB〉 in terms of the χ
B,Q,S

i, j,k

(section 3.3).

3.1 Single Temperature

As a first step we analyse the data for a single temperature. For each µB � 0 we measure χB
1
, χB

2
, χB

3

and χB
4
, while for µB = 0 only χB

2
and χB

4
are measured since χB

1
and χB

3
are odd functions in µB and

therefore equal to zero.

We make the ansatz for the partition sum:

χB
0 µ̂B = c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B + c8µ̂

8
B. (3)

From this we can calculate the derivatives that we can measure on the lattice:

χB
1 µ̂B = 2c2µ̂B + 4c4µ̂

3
B + 6c6µ̂

5
B + 8c8µ̂

7
B (4)

χB
2 µ̂B = 2c2 + 12c4µ̂

2
B + 30c6µ̂

4
B + 56c8µ̂

6
B (5)

χB
3 µ̂B = 24c4µ̂B + 120c6µ̂

3
B + 336c8µ̂

5
B (6)

χB
4 µ̂B = 24c4 + 360c6µ̂

2
B + 1680c8µ̂

4
B. (7)
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