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Abstract. We use 4stout improved staggered lattice data at imaginary chemical potentials
to calculate fugacity expansion coefficients in finite temperature QCD. We discuss the
phenomenological interpretation of our results within the hadron resonance gas (HRG)
model, and the hints they give us about the hadron spectrum. We also discuss features of
the higher order coeflicients that are not captured by the HRG. This conference contribu-
tion is based on our recent papers [1, 2].,

1 Introduction

The vast majority of lattice results for QCD thermodynamics can be described, in the hadronic phase,
by a non-interacting gas of hadrons and resonances which includes the measured hadronic spectrum
up to a certain mass cut-off. This is known as the Hadron Resonance Gas (HRG) model [3, 4]. The
main ingredient of such a model being the hadron spectrum. It has been proposed recently to use
the precise lattice QCD results on specific observables, and their possible discrepancy with the HRG
model predictions, to infer the existence of higher mass states [5]. We will start this conference
contribution by describing how we went further along this direction in our recent paper [1], where
we separate thermodynamic contributions from different strageness and baryon number sectors, and
pinpoint which chanels have a significant number of states missing.

It is also known, that near the cross-over temperature, the ideal HRG description no longer de-
scribes the thermodynamics correctly. It was pointed out recently however, that the behavior of lattice
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observables in the crossover region, particularly of correlations and fluctuations of conserved charges,
are very sensitive to the modeling of baryonic interactions [6, 7]. In many cases including interaction
between hadrons changes even the qualitative features of some observables.

This is of great interest, since HRG type model calculations of conserved charge fluctuations are
often used to extract freeze-out parameters of heavy ion collisions [8]. Since the freeze-out tem-
perature is close to the cross-over temperature such a sensitivity means that the extracted freeze-out
parameters from such a model will depend on the modeling of the hadronic interactions. My second
topic in this conference contribution will be about using lattice calculations to constrain models with
repulsive interactions between baryons. This is based on our recent paper [2].

For both topics, hadron spectrum and hadronic repulsion, our discussion will be based on the
very simple fact that fugacity expansion parameters at a finite real chemical potential become Fourier
coeflicients at imaginary chemical potential.

2 Lattice Action

We use the 4stout improved staggered action, introduced in [9], for both calculations. We carry out
simulations at several different values of purely imaginary chemical potentials [10, 11]. For the study
of the hadron spectrum and the strangeness sectors, we use configurations both at ug = g = 0 and
Imug > 0. In this case we use N; = 10, 12, 16 lattices for continuum extrapolation. For studying the
repulsive hadronic interactions, we use lattices with Im yg > 0. For this project we did not carry out a
continuum extrapolation, we only use N; = 12 lattices.

3 Strange hadrons
3.1 Ideal HRG

In the ideal HRG approach, the pressure is given by:

4, T ( ﬁ2+m,%—,uk)

Pmt(T’/lk) = Zk:(_l)BkHW fd3171n 1+ (—l)BkJr1 exp —f (1)

where the sum runs over all the hadrons and resonances included in the model. Here the single particle
chemical potential is defined with respect to the global conserved charges (baryonic B, electric Q and
strangeness S) as py = Byup+ Orpro +S ks . For this section of the paper, we will work in the confines
of an ideal HRG model, and will try to implement every thermodynamic result in terms this model.

The HRG model provides a good description of several thermodynamic quantities below the phase
transition temperature. However, discrepancies are starting to appear when more differential observ-
ables are being calculated, such as the fluctuations of conserved charges, defined as:

2 :( 9" P(T, pg, pg. pis )/ T )
e \O(up/ TY O/ Ty 0 us [T)" ),y

@)

For some observables, including new hadron states, predicted by the quark model helps in making
the the discrepancy disappear. An important example of such an observable is shown in Figure 1.
However, for other observables the agreement between HRG model and lattice gets worse when the
QM states are included. For example the QM result overestimates both x3 /x5 and x'}. What does
this mean? Xf / )(g is proportional to the average strangeness squared in the system: the fact that the
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Figure 1. (Color online). Assuming strangeness neutrality, the strangeness chemical potential is given in leading
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from the ideal HRG model. The HRG results are shown for different hadronic spectra, namely by using the

PDG2012 (black solid line) and the QM (dashed red line).

. Here we see this combination of conserveced charges from the lattice and

QM overestimates it means that it contains either too many multi-strange states or not enough [S| = 1
states. As for y!}, there the contribution is positive for baryons and negative for mesons, so the QM
overestimating it means that either it contains too many strange baryons or not enough strange mesons.
The bottom line is that the interpretation of these comparisons with the HRG is ambiguous. In order
to more effectively settle this issue alternative observables are needed.
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Figure 2. (Color online). Left: Ratio x3 /x5 as a function of the temperature. HRG model calculations based
on the PDG2012 (black solid line) and the QM (red dashed line) spectra are shown in comparison to the lattice
results from Ref. [12]. Right: comparison of up-strange correlator x| simulated on the lattice [9] and calculated
in the HRG model using the PDG2012 (solid black line) and the QM (dashed red line) spectra.
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3.2 Imaginary chemical potential and strangeness sectors

In order to solve this ambiguity, we separate the pressure of QCD as a function of the temperature
into contributions coming from hadrons grouped according to their quantum numbers:

P(fip, fis) = Pp-os-0 + Pp=1,s]=0 cOsh(fig) + Pp—qs|=1 cosh(fls) + P|p=1,s=1 cosh(fip — fis)
+Pp=1,s1=2 cosh(fip — 2{is) + Ppi=1,51=3 cosh(fip — 3fis) (3)

where [1; = y;/T. This particular truncation of the fugacity expansion of the pressure is motivated by
our assumption that in the confined phase, a HRG with some hadron spectra describes the thermody-
namics of the QCD system.

Assuming this ansatz for the pressure, the partial pressures Pjp;s=; can be expressed as linear
combinations of the susceptibilities )(5.8 . For example Pp—gjs1=1 = x5 — x5>. This means that in
principle we can determine the strangeness sectors just by using the usual fluctuation observables.
This is not the approach we pursue here. Instead, we simulate with an imaginary strangeness chemical
potential pg = iy;. In this case by simple differentiation one gets:

Imy? = —Pig—1si-1 sin(uy) — Pig=,s=2 $in(2ur) — Pi=151=3 sin(3y),
X5 = Pipi=1.5=0 + Pipj=1s1=1 €08(tt) + Pigi—151=2 €08(21y) + Pigi=15=3 cos(3py),
Imy} = (Ppojsi=1 + Pijp) sin(iy) + 2P i1 jsi=2 Sin(2u;) + 3Pjgi=1s)=3 sin(3uy), 4)
and similarly for Xg’ X§ and Xi~ The advantage of the imaginary chemical potential approach is that,
even though it is based on the exact same assumption as the direct evaluation of linear combinations,

it reduces the errors considerably, since the lower derivatives already contain the information on the
higher strangeness sectors.
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Figure 3. Left: Examples of continuum limit extrapolation from our N, = 10, 12, 16 lattices. Right: Comparison
of our method to Taylor expansion from p = 0 data for Py;. The statistics would explain only a factor of 2
difference in the errorbars, but the improvement is much more drastic than that.

To obtain the Fourier cofficients (Pp—osi=1 + Pigi=1,5/=1),PiB=1,5=2 and Pjp=1,s|=3 we perform a
correlated fit with the previous ansatz for the observables x3, x5, x5 and x; at every temperature. To
obtain Pyg-1 s-0 we fit x5, to obtain Pjg_1s1-1 we fit x%. To get Pip_o si-1 we just take the difference
(Pp=0,s|=1 + Pi=1,51=1)) — P|Bi=1,5)=1. For statistical errors, we use the jacknife method. For the con-
tinuum limit we use N, = 10, 12 and 16 lattices. For systematic errors on the continuum extrapolation
we use two different scale settings: wy and f;. More details on the scale setting can be found in [9].
We also include two different interpolating functions for temperature dependence of the Pgg: a third
order polynomial a + bT + ¢T? + dT? and a rational function (a + bT + ¢T?)/(1 + dT). Both of



EPJ Web of Conferences 175, 07046 (2018) https://doi.org/10.1051/epjconf/201817507046
Lattice 2017

these describe the data well. We also do the continuum limit with and without tree level improve-
ment factors for the pressure. The continuum limit is done with a linear a + b /N,2 anda l/(a + b/Ntz)
ansatz. These 8 different results are then weighted with the AKAIKE information criterion using the
histogram method [13]. Examples of linear continuum limit extrapolations are included in Fig. 3(left).
For the B = 0, |S| = 1 sector, which includes a large contribution from kaons, the continuum extrapo-
lation could not be carried out using these lattices. Therefore we only include results for the mesonic
|S| =1 partial pressure Pp—os=1 and the total S = 1 partial pressure (Pp-os=1 + P|p|=1,s|=1) for finite
lattices in this work. The results of our lattice study are summarized in Figure 4. Our analysis clearly
shows that the well-established states listed in the most updated version of the PDG are not enough to
correctly reproduce the lattice results. The minimal choice which reproduces most of the data is the
PDG2016 with the inclusion of one-star states which are not well-established. In some cases, such
as the strange mesons and |S| = 3 baryons, there is room to add even more states. These results will
potentially affect all phenomenological applications of the HRG model, including thermal fits and
other calculations relevant to heavy-ion physics.

PDG2016 —— 0.1 PDG2016 ——— 007 PDG2016 ——

PDG2016+
0.22 {QM PDG2016+
attice Ni=10

Lattice Nj=12 ~—w—s
02 Lattice Ni=16 —o—

o)t
1)m*
1)mt

1,1BI=
0,Bl=
1,1Bl=

p(St
p(SH
p(St

130 185 140 145 150 155 160 130 135 140 145 150 155 160 130
T [MeV] T [MeV]

155 160

00014 PDG2016 —— 10

PDG2016+ -+++--
0.0012 | hQM PDG2016+ — —

0.001

=1)T*
=1y

0.008 0.0008

=2,B
=3Bl
pr

0.006 0.0006

p(s!
p(s!

0.004 0.0004

0.001 i
0.0002

0.002 |

0 0 0.0001 [
130 135 140 145 150 155 160 130 135 140 145 150 155 160 135 140 145 150 155 160

T [MeV] T [MeV] T[Mev)

Figure 4. (Color online). Comparison between the lattice results for the partial pressures and the HRG model
predictions. Upper panels: Contribution to the total pressure from strange mesons (left), non-strange baryons
(center), |S| = 1 baryons (right). Lower panels: |S| = 2 baryons (left), |S| = 3 baryons (center), relative
magnitude of the single contributions with respect to the total (right). In the first five panels, the points are the
lattice results, while the curves are PDG2016 (solid black), PDG2016+ (including one star states, red dotted),
PDG2016+ and additional states from the hQM (blue, dashed) [14, 15]. In the lower center panel, the dark
red short-dashed curve corresponds to the PDG2016+ with inclusion of the Q resonances predicted by the QM
[16, 17].

4 Repulsive baryonic interactions

For this section we only consider the pis = up = 0 case, and keep only up to be nonzero. The pressure
can be written as:
p(T, 1)

T4 - Z Pig—i(T) cosh(k up/T), ®

k=0
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While the baryon number for ug = ifip is:
XP(T,ifig) =i ) bi(T) sin(k i/ T, ©)
k=1

where by = kPg-r. The coeflicients can easily be calculated by a Fourier transformation. The main
difference between this and the previous section (the strangeness sectors) is that in this case we do
not want to commit to a particular truncation of the series expansion (5), instead, we want the Fourier
analysis tell us, when a component appears. In the ideal HRG model with no light nuclei included

by > 0and b, = b3 = b3 = --- = 0. The inclusion of nuclei would induce nonzero b,, bs, ..., but
always with a positive sign. In contrast, at very large temperatures, where we have free quarks, we
expect:
p* 8n? 1 (/Jf )2 1 (,Uf )4
— =+ —+- = +—= (=] 7
Since we only consider the case ps = up = 0, one has uy = up/3. The net baryon susceptibility at
imaginary up reads
. ap/T* i (g 1 (ﬂB )3
B ~
T, = — = |— = —| — . 8
x1 (T, ifip) s/, 3T o2\ T (8)

The coefficients b}® are calculated by a Fourier integral to be:

(D% 43 + 4 (nk)?]

b = 9

k k 27 (rk)? ©)

Since this sign alternating behavior is strikingly different from the HRG expectation of b, = b3 =

by = --- = 0, one might interpret the appearance of an alternating sign structure as a signal for

deconfinement.

Such a conclusion might be hasty however. As we point out in [2], hadronic models can also
produce such a sign structure. The simple model we use to illustrate this is the HRG with an ex-
cluded volume repulsive interaction between baryons and baryons, anti-baryon and anti-baryons, and
no interactions between other hadron pairs. We call this model EV-HRG. The model has one free
parameter, an average excluded volume parameter b. Model calculations of the b, can be found in [2].
The first Fourier coefficient b; does not depend on this b parameter, the higher coefficients do, but
once b is adjusted such that b, is reproduced, near T, it appears that also b3 and b4 are described well
by the model. This can be seen in Figure 5.

The success of the EV-HRG model in describing these four Fourier coefficients does not auto-
matically mean that such a model describes all other QCD observables, for instance the correlations
and fluctuations involving the electric charge and strangeness, in the same temperature range. These
observables are sensitive to the baryon-baryon interactions as well. At the same time, they are also
sensitive to interactions involving mesons, as these carry both electric charge and strangeness, and
to the strangeness-dependent baryonic interactions. These extensions are beyond the scope of the
present work. The main point we would like to make is that these fugacity expansion parameters are
quite sensitive to the modeling of hadronic interactions, and therefore can be quite useful when trying
to adjust hadronic modelling.

One might wonder how the fugacity expansion parameters relate to the more conventional ob-
servables, the fluctuations of conserved charges. This is illustrated in Figure 6. When the effects of
baryon-baryon interactions are small, the third and higher order coefficients can be neglected, and
X5 — xB is just proportional to b,. This fact was exploited in [18].
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Figure 5. The temperature dependence of the first four Fourier coefficients by, calculated on the lattice at
N, = 12(symbols), and within the EV-HRG model with baryonic eigenvolume parameter b = 1 fm? (solid lines).
This dependence is shown on (a) the linear and (b) the logarithmic scales. The dashed lines in (a) show the
calculations within the VDW-HRG model, with van der Waals parameters a and b fixed by the properties of the
nuclear ground state [6]. The arrows in (a) correspond to the Stefan-Boltzmann limit (9).
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Figure 6. The temperature dependence of x5 — y2, calculated within the EV-HRG model with baryonic eigen-
volume parameter b = 1fm® (solid line). Other lines depict the EV-HRG model calculations using truncations
of the fugacity expansion, at the second (dashed blue line), third (dash-dotted red line), and fourth (dotted black
line) orders. Lattice QCD data from Refs. [9] and [19] are depicted, respectively, by open and full symbols.

5 Summary

Lattice simulations at imaginary chemical potentials allow one to separate thermodynamic contri-
butions from sectors with different conserved charges. In this conference contribution we briefly
explained two phenomelogical applications of this fact. First, we with in an ideal HRG model, and
looked for missing strange resonances by separating sectors in baryon number and strangeness, with
simulations in the confined phase and with Im y; > 0. We clearly saw, that the well-established states
listed in PDG 2016 are not enough to correctly reproduce the lattice results. Next, we looked at
extending the HRG model with repulsive baryonic interactions. Here the higher order fugacity ex-
pansions in the baryon number proved useful, as we demonstrated these to be sensitive to repulsion
between baryons. We saw that repulsion between hadrons can reproduce the sign structure seen in the
higher order fugacity expansion coefficients, and that the lattice data constrain the excluded volume
parameter to be around 1fm?.
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