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Abstract. The spectrum of hadronic resonances continually receives updates from the Particle
Data Group, which lists every state with a status representing how established the state is.
Moreover, the existence of additional states is predicted by relativistic quark models. It has
been suggested that further states might need to be included in the hadronic spectrum in order
to improve the agreement between the hadron resonance gas model predictions and lattice QCD
data. Such an inclusion would also affect the results of many areas of heavy-ion collision physics
that make use of hadronic degrees of freedom, such as hydrodynamical simulations afterburners.
However, for some selected observables, the inclusion of further states worsens the agreement
with the lattice results. We propose new observables, sensitive to the spectrum content divided
by quantum numbers, which allow us to gauge the contribution of additional states. The
comparison of Lattice QCD results and predictions from the Hadron Resonance Gas model for
these observables, helps to clarify the situation and determine how many, and which new states
are needed.

1. Introduction

The precision reached by Lattice simulations of QCD thermodynamics has allowed to study
with increasing level of detail the properties of strongly interacting matter. Observables like
fluctuations of conserved charges [1,2], sensitive to the chemical composition of a strongly
interacting system can now be calculated with sufficient precision, allowing for an in-depth
analysis of the relevant degrees of freedom near the QCD transition [3,4].

For temperatures below the QCD transition, in the hadronic phase, most Lattice results
can be reproduced successfully by the Hadron Resonance Gas (HRG) model, whose underlying
assumption is that a gas of interacting hadrons in the ground state can be well approximated by
a gas on non-interacting hadrons and resonances. The original idea of Rolf Hagedorn, was that a
hadronic system responds to an arbitrary increase in energy density, not through and indefinite
increase in the temperature, but rather populating the system via the creation of resonances
[5]. Thus, the concept of a limiting temperature for strongly interacting matter naturally
arises, which now is well understood to be the limiting temperature for hadronic matter, hence
connected to the transition temperature of QCD [6-8]. For this reason, it is reasonable to
expect the effects of resonance proliferation to become more relevant at the occurrence of such
transition.

The HRG model containing no interaction, provides the most advantageous setup, being
the evaluation of any thermodynamic quantity a simple sum over the hadron and resonance
spectrum of the theory. In this sense, the model is effectively parameter free, and depending
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only on the content of the spectrum of hadronic states that is included in the sum. However, the
content of the hadronic spectrum, especially in the strange sector, is far from being established.
The Particle Data Group (PDG) continuously updates the list of experimentally discovered
resonances [9], and the existence of each resonance is assigned a confidence level, where ****
indicate the most established, and * indicates those with the least experimental confirmation.

(usfugho

130 135 14D 145 150 155 160 165 170 T30 135 140 145 180 156 160 185 170
T [MeV] T [MaV]

Figure 1. Comparison of Lattice QCD and HRG model calculations based on the PDG2012
(solid black line) and QM (dashed red line) lists, for the ratio ug/up at leading order (left) and
for the ratio x5 /x5 (right).

With the increasing precision achieved in Lattice QCD calculations of more differential
observables, some discrepancy with the HRG results appeared [10]. It was suggested that the
inclusion of additional states in the spectrum, not yet experimentally discovered, but predicted
by relativistic quark models (QM) [11-13] or Lattice QCD spectroscopy, might be necessary
and cure the problem. However, the inclusion of additional states in the spectrum not always
improves the agreement between HRG predictions and Lattice results [14], as can be seen in
Fig.1.
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Figure 2. Strange mesonic states and Lambda resonances experimentally established in the
PDG2016 (green), PDG2016 including also one star states (red) and predicted by the QM (blue)
and the hQM (magenta).

Therefore, a more systematic analysis of the content of the hadronic spectrum is needed,
taking into consideration different possible choices. In Fig.2 we compare, for illustrative reasons,
the strange meson and Lambda states content of different lists: PDG2016 [9] (all PDG states
with ** #6k and *%) PDG2016+ [9] (including also * states), the original Quark Model
(QM) [11,12] and a more recent and refined hypercentral Quark Model [13] (hQM), where an
interaction is included between the constituent quarks in the baryons. For hadrons containing
only u, d and s quarks, including both particles and anti-particles, as well as isospin multiplicity,
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the number of states for the lists extracted from the PDG are 608 in the case of PDG2016 and
738 in the case of PDG2016+ respectively. A large increase in the number of states comes from
including QM resonances: the QM list contains 1517 states, whereas the hQM one contains 985.

In the following, comparison between HRG and Lattice QCD results for several strangeness
related observables is performed [14], which will depict a rather clear picture of whether, how
many, and which states are most likely still missing in the hadronic spectrum established from
experiment.

2. HRG and Lattice: Partial pressures

In the formulation of the HRG with no interactions, thermodynamical quantities can be
calculated in the grand-canonical ensemble as a function of temperature and baryonic chemical
potential [15]. The expression for the total pressure of the gas is

AT (/D% +mj — pg)
Prr(T, ) = Y (-1)5 1 25 [ a8 (1 (-1 e | -

- (2m)3 T ’

where the sum runs over all hadrons and resonances included in the spectrum. Every quantity
carrying the index k£ depends on the specific state, hence on the specific term in the sum. The
single particle chemical potential is defined with respect to the conserved charges of strong in-
teractions (baryon number B, strangeness S and electric charge Q) as p, = Brup+Skus+Qrpo-

In order to systematically analyze the different hadron spectra content, we separate the
contribution to the pressures from hadrons grouped according to their quantum numbers. Under
the assumption that Boltzmann approximation is valid for QCD thermodynamics in the range
of temperatures below the QCD transition, it is possible to write the pressure of the system as

P(T, jip, fis) = PE(T) + PES(T) cosh(jip) + PE*(T) cosh(jis) + PL(T) cosh(jip — fis)+
+ Pj3°(T) cosh(jip — 2fis) + P{3°(T) cosh(jip — 3jis) ,

where f; = p;/T and in Pl-js (T'), i and j refer to the absolute values of baryon number
and strangeness respectively. The partial pressures can be calculated on the Lattice using
an imaginary chemical potential approach. Indeed, setting pp = 0 and pg = iy, the previous
expression for the pressure becomes a sum of cosine terms, with the partial pressures being
the Fourier coefficients. A combined fit of different observables yields the partial pressures as
a function of the temperature. On the other hand, calculating the partial pressures with the
HRG model is straightforward: it will be sufficient to sum over particles with the corresponding

quantum numbers only.

3. Results and discussion
We show the comparison of Lattice QCD results and HRG model predictions using PDG2016,
PDG2016+, QM and hQM lists, for the partial pressures of |S| = 0,|S| = 1,|S| =2 and |S| =3
baryons, as well as S| = 1 mesons. Note that, the pressure being a positive definite quantity,
a prediction from the HRG model that underestimates the Lattice data in a certain sector, for
a specific hadron list, would directly imply that the list does not contain enough states in the
specific sector considered. Also, if the prediction overestimates the data, then it will follow that
too many states are included in such a list.

In Fig.3 we can see the partial pressure for different baryonic sectors. The first thing that
catches the eye is that, except for the case on non-strange baryons, the most established states
from the PDG are not enough to describe the data. For |S| = 1 and |S| = 2 baryons, the
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Figure 3. Comparison of Lattice QCD results and HRG model calculations based on the
PDG2016 (solid black line), PDG2016+ (dashed red line), hQM (dashed blue line) and QM
(dot dashed light blue line) lists, for the partial pressures of |S| = 0 (top left), |S| = 1 (top
right), |S| = 2 (bottom left) and |S| = 3 (bottom right) baryons. All Lattice results are
continuum extrapolated.
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Figure 4. Comparison of Lattice QCD results and HRG model calculations based on the
PDG2016 (solid black line), PDG2016+ (dashed red line), hQM (dashed blue line) and QM
(dot dashed light blue line) lists, for the partial pressures of |S| = 1 mesons. The black dots
indicate the continuum estimate.

inclusion of * states sensibly improves the agreement with the data. When futher states from
the hQM list are included, an additional slight improvement is noticeable in all the cases. For
|S| =1 and |S| = 3 baryons, however, it still seems that states predicted by the QM are needed
to reproduce the data; on the other hand, these are clearly too many in the case of |S| = 2
baryons.

Different considerations need to be made about the strange mesons in Fig.4. First, data are
shown for different lattice spacings, and a continuous estimate is shown in place of a continuum
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extrapolation, which was not achievable being the data not in a clear scaling regime. Secondly,
it is remarkable that all the lists seem to underpredict the value of this partial pressure. This
may be due to two different reasons: either all the lists do not contain enough states in this
sector, or the assumption of the ideal HRG model may not be applicable in the case of strange
mesons.

4. Conclusions
In this proceedings we showed the analysis of different hadronic spectra through the comparison
of Lattice QCD results and HRG model predictions. In the baryonic sector, it was rather evident
that the list of established states listed by the PDG is not sufficient, and additional states are
needed for all the families, in a couple cases even up to those from the original quark model. In
the mesonic sector, it seemed that additional states are needed in all the considered spectra, if
one trusts that the description of an ideal HRG model holds in the case of strange mesons too.
Through the presented analysis, it was possible to discern to what extent, and in what
quantum number sectors, additional states need to be included in the hadronic spectra to those
listed as established by the Particle Data Group. This can impact any analysis of the QCD
transition in heavy-ion collisions that makes use of thermal models, such as the extraction of
freeze-out parameters through thermal fits [16, 17], or ratios of fluctuations of conserved charges
[1,2,15], especially in the study of strangeness freeze-out [3, 18].
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